2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 /* debounce timing parameters in msecs { interval, duration, timeout } */
63 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
67 static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_device *dev);
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
75 struct workqueue_struct *ata_aux_wq;
77 int atapi_enabled = 1;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82 module_param(atapi_dmadir, int, 0444);
83 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86 module_param_named(fua, libata_fua, int, 0444);
87 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
89 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90 module_param(ata_probe_timeout, int, 0444);
91 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
93 MODULE_AUTHOR("Jeff Garzik");
94 MODULE_DESCRIPTION("Library module for ATA devices");
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(DRV_VERSION);
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
109 * Inherited from caller.
112 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
131 fis[13] = tf->hob_nsect;
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
149 * Inherited from caller.
152 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
167 tf->hob_nsect = fis[13];
170 static const u8 ata_rw_cmds[] = {
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
197 ATA_CMD_WRITE_FUA_EXT
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @tf: command to examine and configure
203 * @dev: device tf belongs to
205 * Examine the device configuration and tf->flags to calculate
206 * the proper read/write commands and protocol to use.
211 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
215 int index, fua, lba48, write;
217 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
218 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
219 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
221 if (dev->flags & ATA_DFLAG_PIO) {
222 tf->protocol = ATA_PROT_PIO;
223 index = dev->multi_count ? 0 : 8;
224 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
225 /* Unable to use DMA due to host limitation */
226 tf->protocol = ATA_PROT_PIO;
227 index = dev->multi_count ? 0 : 8;
229 tf->protocol = ATA_PROT_DMA;
233 cmd = ata_rw_cmds[index + fua + lba48 + write];
242 * ata_tf_read_block - Read block address from ATA taskfile
243 * @tf: ATA taskfile of interest
244 * @dev: ATA device @tf belongs to
249 * Read block address from @tf. This function can handle all
250 * three address formats - LBA, LBA48 and CHS. tf->protocol and
251 * flags select the address format to use.
254 * Block address read from @tf.
256 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
260 if (tf->flags & ATA_TFLAG_LBA) {
261 if (tf->flags & ATA_TFLAG_LBA48) {
262 block |= (u64)tf->hob_lbah << 40;
263 block |= (u64)tf->hob_lbam << 32;
264 block |= tf->hob_lbal << 24;
266 block |= (tf->device & 0xf) << 24;
268 block |= tf->lbah << 16;
269 block |= tf->lbam << 8;
274 cyl = tf->lbam | (tf->lbah << 8);
275 head = tf->device & 0xf;
278 block = (cyl * dev->heads + head) * dev->sectors + sect;
285 * ata_build_rw_tf - Build ATA taskfile for given read/write request
286 * @tf: Target ATA taskfile
287 * @dev: ATA device @tf belongs to
288 * @block: Block address
289 * @n_block: Number of blocks
290 * @tf_flags: RW/FUA etc...
296 * Build ATA taskfile @tf for read/write request described by
297 * @block, @n_block, @tf_flags and @tag on @dev.
301 * 0 on success, -ERANGE if the request is too large for @dev,
302 * -EINVAL if the request is invalid.
304 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
305 u64 block, u32 n_block, unsigned int tf_flags,
308 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
309 tf->flags |= tf_flags;
311 if ((dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF |
312 ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ &&
313 likely(tag != ATA_TAG_INTERNAL)) {
315 if (!lba_48_ok(block, n_block))
318 tf->protocol = ATA_PROT_NCQ;
319 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
321 if (tf->flags & ATA_TFLAG_WRITE)
322 tf->command = ATA_CMD_FPDMA_WRITE;
324 tf->command = ATA_CMD_FPDMA_READ;
326 tf->nsect = tag << 3;
327 tf->hob_feature = (n_block >> 8) & 0xff;
328 tf->feature = n_block & 0xff;
330 tf->hob_lbah = (block >> 40) & 0xff;
331 tf->hob_lbam = (block >> 32) & 0xff;
332 tf->hob_lbal = (block >> 24) & 0xff;
333 tf->lbah = (block >> 16) & 0xff;
334 tf->lbam = (block >> 8) & 0xff;
335 tf->lbal = block & 0xff;
338 if (tf->flags & ATA_TFLAG_FUA)
339 tf->device |= 1 << 7;
340 } else if (dev->flags & ATA_DFLAG_LBA) {
341 tf->flags |= ATA_TFLAG_LBA;
343 if (lba_28_ok(block, n_block)) {
345 tf->device |= (block >> 24) & 0xf;
346 } else if (lba_48_ok(block, n_block)) {
347 if (!(dev->flags & ATA_DFLAG_LBA48))
351 tf->flags |= ATA_TFLAG_LBA48;
353 tf->hob_nsect = (n_block >> 8) & 0xff;
355 tf->hob_lbah = (block >> 40) & 0xff;
356 tf->hob_lbam = (block >> 32) & 0xff;
357 tf->hob_lbal = (block >> 24) & 0xff;
359 /* request too large even for LBA48 */
362 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
365 tf->nsect = n_block & 0xff;
367 tf->lbah = (block >> 16) & 0xff;
368 tf->lbam = (block >> 8) & 0xff;
369 tf->lbal = block & 0xff;
371 tf->device |= ATA_LBA;
374 u32 sect, head, cyl, track;
376 /* The request -may- be too large for CHS addressing. */
377 if (!lba_28_ok(block, n_block))
380 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
383 /* Convert LBA to CHS */
384 track = (u32)block / dev->sectors;
385 cyl = track / dev->heads;
386 head = track % dev->heads;
387 sect = (u32)block % dev->sectors + 1;
389 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
390 (u32)block, track, cyl, head, sect);
392 /* Check whether the converted CHS can fit.
396 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
399 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
410 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
411 * @pio_mask: pio_mask
412 * @mwdma_mask: mwdma_mask
413 * @udma_mask: udma_mask
415 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
416 * unsigned int xfer_mask.
424 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
425 unsigned int mwdma_mask,
426 unsigned int udma_mask)
428 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
429 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
430 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
434 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
435 * @xfer_mask: xfer_mask to unpack
436 * @pio_mask: resulting pio_mask
437 * @mwdma_mask: resulting mwdma_mask
438 * @udma_mask: resulting udma_mask
440 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
441 * Any NULL distination masks will be ignored.
443 static void ata_unpack_xfermask(unsigned int xfer_mask,
444 unsigned int *pio_mask,
445 unsigned int *mwdma_mask,
446 unsigned int *udma_mask)
449 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
451 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
453 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
456 static const struct ata_xfer_ent {
460 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
461 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
462 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
467 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
468 * @xfer_mask: xfer_mask of interest
470 * Return matching XFER_* value for @xfer_mask. Only the highest
471 * bit of @xfer_mask is considered.
477 * Matching XFER_* value, 0 if no match found.
479 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
481 int highbit = fls(xfer_mask) - 1;
482 const struct ata_xfer_ent *ent;
484 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
485 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
486 return ent->base + highbit - ent->shift;
491 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
492 * @xfer_mode: XFER_* of interest
494 * Return matching xfer_mask for @xfer_mode.
500 * Matching xfer_mask, 0 if no match found.
502 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
504 const struct ata_xfer_ent *ent;
506 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
507 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
508 return 1 << (ent->shift + xfer_mode - ent->base);
513 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
514 * @xfer_mode: XFER_* of interest
516 * Return matching xfer_shift for @xfer_mode.
522 * Matching xfer_shift, -1 if no match found.
524 static int ata_xfer_mode2shift(unsigned int xfer_mode)
526 const struct ata_xfer_ent *ent;
528 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
529 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
535 * ata_mode_string - convert xfer_mask to string
536 * @xfer_mask: mask of bits supported; only highest bit counts.
538 * Determine string which represents the highest speed
539 * (highest bit in @modemask).
545 * Constant C string representing highest speed listed in
546 * @mode_mask, or the constant C string "<n/a>".
548 static const char *ata_mode_string(unsigned int xfer_mask)
550 static const char * const xfer_mode_str[] = {
574 highbit = fls(xfer_mask) - 1;
575 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
576 return xfer_mode_str[highbit];
580 static const char *sata_spd_string(unsigned int spd)
582 static const char * const spd_str[] = {
587 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
589 return spd_str[spd - 1];
592 void ata_dev_disable(struct ata_device *dev)
594 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
595 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
601 * ata_pio_devchk - PATA device presence detection
602 * @ap: ATA channel to examine
603 * @device: Device to examine (starting at zero)
605 * This technique was originally described in
606 * Hale Landis's ATADRVR (www.ata-atapi.com), and
607 * later found its way into the ATA/ATAPI spec.
609 * Write a pattern to the ATA shadow registers,
610 * and if a device is present, it will respond by
611 * correctly storing and echoing back the
612 * ATA shadow register contents.
618 static unsigned int ata_pio_devchk(struct ata_port *ap,
621 struct ata_ioports *ioaddr = &ap->ioaddr;
624 ap->ops->dev_select(ap, device);
626 outb(0x55, ioaddr->nsect_addr);
627 outb(0xaa, ioaddr->lbal_addr);
629 outb(0xaa, ioaddr->nsect_addr);
630 outb(0x55, ioaddr->lbal_addr);
632 outb(0x55, ioaddr->nsect_addr);
633 outb(0xaa, ioaddr->lbal_addr);
635 nsect = inb(ioaddr->nsect_addr);
636 lbal = inb(ioaddr->lbal_addr);
638 if ((nsect == 0x55) && (lbal == 0xaa))
639 return 1; /* we found a device */
641 return 0; /* nothing found */
645 * ata_mmio_devchk - PATA device presence detection
646 * @ap: ATA channel to examine
647 * @device: Device to examine (starting at zero)
649 * This technique was originally described in
650 * Hale Landis's ATADRVR (www.ata-atapi.com), and
651 * later found its way into the ATA/ATAPI spec.
653 * Write a pattern to the ATA shadow registers,
654 * and if a device is present, it will respond by
655 * correctly storing and echoing back the
656 * ATA shadow register contents.
662 static unsigned int ata_mmio_devchk(struct ata_port *ap,
665 struct ata_ioports *ioaddr = &ap->ioaddr;
668 ap->ops->dev_select(ap, device);
670 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
671 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
673 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
674 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
676 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
677 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
679 nsect = readb((void __iomem *) ioaddr->nsect_addr);
680 lbal = readb((void __iomem *) ioaddr->lbal_addr);
682 if ((nsect == 0x55) && (lbal == 0xaa))
683 return 1; /* we found a device */
685 return 0; /* nothing found */
689 * ata_devchk - PATA device presence detection
690 * @ap: ATA channel to examine
691 * @device: Device to examine (starting at zero)
693 * Dispatch ATA device presence detection, depending
694 * on whether we are using PIO or MMIO to talk to the
695 * ATA shadow registers.
701 static unsigned int ata_devchk(struct ata_port *ap,
704 if (ap->flags & ATA_FLAG_MMIO)
705 return ata_mmio_devchk(ap, device);
706 return ata_pio_devchk(ap, device);
710 * ata_dev_classify - determine device type based on ATA-spec signature
711 * @tf: ATA taskfile register set for device to be identified
713 * Determine from taskfile register contents whether a device is
714 * ATA or ATAPI, as per "Signature and persistence" section
715 * of ATA/PI spec (volume 1, sect 5.14).
721 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
722 * the event of failure.
725 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
727 /* Apple's open source Darwin code hints that some devices only
728 * put a proper signature into the LBA mid/high registers,
729 * So, we only check those. It's sufficient for uniqueness.
732 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
733 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
734 DPRINTK("found ATA device by sig\n");
738 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
739 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
740 DPRINTK("found ATAPI device by sig\n");
741 return ATA_DEV_ATAPI;
744 DPRINTK("unknown device\n");
745 return ATA_DEV_UNKNOWN;
749 * ata_dev_try_classify - Parse returned ATA device signature
750 * @ap: ATA channel to examine
751 * @device: Device to examine (starting at zero)
752 * @r_err: Value of error register on completion
754 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
755 * an ATA/ATAPI-defined set of values is placed in the ATA
756 * shadow registers, indicating the results of device detection
759 * Select the ATA device, and read the values from the ATA shadow
760 * registers. Then parse according to the Error register value,
761 * and the spec-defined values examined by ata_dev_classify().
767 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
771 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
773 struct ata_taskfile tf;
777 ap->ops->dev_select(ap, device);
779 memset(&tf, 0, sizeof(tf));
781 ap->ops->tf_read(ap, &tf);
786 /* see if device passed diags: if master then continue and warn later */
787 if (err == 0 && device == 0)
788 /* diagnostic fail : do nothing _YET_ */
789 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
792 else if ((device == 0) && (err == 0x81))
797 /* determine if device is ATA or ATAPI */
798 class = ata_dev_classify(&tf);
800 if (class == ATA_DEV_UNKNOWN)
802 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
808 * ata_id_string - Convert IDENTIFY DEVICE page into string
809 * @id: IDENTIFY DEVICE results we will examine
810 * @s: string into which data is output
811 * @ofs: offset into identify device page
812 * @len: length of string to return. must be an even number.
814 * The strings in the IDENTIFY DEVICE page are broken up into
815 * 16-bit chunks. Run through the string, and output each
816 * 8-bit chunk linearly, regardless of platform.
822 void ata_id_string(const u16 *id, unsigned char *s,
823 unsigned int ofs, unsigned int len)
842 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
843 * @id: IDENTIFY DEVICE results we will examine
844 * @s: string into which data is output
845 * @ofs: offset into identify device page
846 * @len: length of string to return. must be an odd number.
848 * This function is identical to ata_id_string except that it
849 * trims trailing spaces and terminates the resulting string with
850 * null. @len must be actual maximum length (even number) + 1.
855 void ata_id_c_string(const u16 *id, unsigned char *s,
856 unsigned int ofs, unsigned int len)
862 ata_id_string(id, s, ofs, len - 1);
864 p = s + strnlen(s, len - 1);
865 while (p > s && p[-1] == ' ')
870 static u64 ata_id_n_sectors(const u16 *id)
872 if (ata_id_has_lba(id)) {
873 if (ata_id_has_lba48(id))
874 return ata_id_u64(id, 100);
876 return ata_id_u32(id, 60);
878 if (ata_id_current_chs_valid(id))
879 return ata_id_u32(id, 57);
881 return id[1] * id[3] * id[6];
886 * ata_noop_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
890 * This function performs no actual function.
892 * May be used as the dev_select() entry in ata_port_operations.
897 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
903 * ata_std_dev_select - Select device 0/1 on ATA bus
904 * @ap: ATA channel to manipulate
905 * @device: ATA device (numbered from zero) to select
907 * Use the method defined in the ATA specification to
908 * make either device 0, or device 1, active on the
909 * ATA channel. Works with both PIO and MMIO.
911 * May be used as the dev_select() entry in ata_port_operations.
917 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
922 tmp = ATA_DEVICE_OBS;
924 tmp = ATA_DEVICE_OBS | ATA_DEV1;
926 if (ap->flags & ATA_FLAG_MMIO) {
927 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
929 outb(tmp, ap->ioaddr.device_addr);
931 ata_pause(ap); /* needed; also flushes, for mmio */
935 * ata_dev_select - Select device 0/1 on ATA bus
936 * @ap: ATA channel to manipulate
937 * @device: ATA device (numbered from zero) to select
938 * @wait: non-zero to wait for Status register BSY bit to clear
939 * @can_sleep: non-zero if context allows sleeping
941 * Use the method defined in the ATA specification to
942 * make either device 0, or device 1, active on the
945 * This is a high-level version of ata_std_dev_select(),
946 * which additionally provides the services of inserting
947 * the proper pauses and status polling, where needed.
953 void ata_dev_select(struct ata_port *ap, unsigned int device,
954 unsigned int wait, unsigned int can_sleep)
956 if (ata_msg_probe(ap))
957 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
958 "device %u, wait %u\n", ap->id, device, wait);
963 ap->ops->dev_select(ap, device);
966 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
973 * ata_dump_id - IDENTIFY DEVICE info debugging output
974 * @id: IDENTIFY DEVICE page to dump
976 * Dump selected 16-bit words from the given IDENTIFY DEVICE
983 static inline void ata_dump_id(const u16 *id)
985 DPRINTK("49==0x%04x "
995 DPRINTK("80==0x%04x "
1005 DPRINTK("88==0x%04x "
1012 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1013 * @id: IDENTIFY data to compute xfer mask from
1015 * Compute the xfermask for this device. This is not as trivial
1016 * as it seems if we must consider early devices correctly.
1018 * FIXME: pre IDE drive timing (do we care ?).
1026 static unsigned int ata_id_xfermask(const u16 *id)
1028 unsigned int pio_mask, mwdma_mask, udma_mask;
1030 /* Usual case. Word 53 indicates word 64 is valid */
1031 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1032 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1036 /* If word 64 isn't valid then Word 51 high byte holds
1037 * the PIO timing number for the maximum. Turn it into
1040 u8 mode = id[ATA_ID_OLD_PIO_MODES] & 0xFF;
1041 if (mode < 5) /* Valid PIO range */
1042 pio_mask = (2 << mode) - 1;
1046 /* But wait.. there's more. Design your standards by
1047 * committee and you too can get a free iordy field to
1048 * process. However its the speeds not the modes that
1049 * are supported... Note drivers using the timing API
1050 * will get this right anyway
1054 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1056 if (ata_id_is_cfa(id)) {
1058 * Process compact flash extended modes
1060 int pio = id[163] & 0x7;
1061 int dma = (id[163] >> 3) & 7;
1064 pio_mask |= (1 << 5);
1066 pio_mask |= (1 << 6);
1068 mwdma_mask |= (1 << 3);
1070 mwdma_mask |= (1 << 4);
1074 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1075 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1077 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1081 * ata_port_queue_task - Queue port_task
1082 * @ap: The ata_port to queue port_task for
1083 * @fn: workqueue function to be scheduled
1084 * @data: data for @fn to use
1085 * @delay: delay time for workqueue function
1087 * Schedule @fn(@data) for execution after @delay jiffies using
1088 * port_task. There is one port_task per port and it's the
1089 * user(low level driver)'s responsibility to make sure that only
1090 * one task is active at any given time.
1092 * libata core layer takes care of synchronization between
1093 * port_task and EH. ata_port_queue_task() may be ignored for EH
1097 * Inherited from caller.
1099 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1100 unsigned long delay)
1104 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1107 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1108 ap->port_task_data = data;
1110 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1112 /* rc == 0 means that another user is using port task */
1117 * ata_port_flush_task - Flush port_task
1118 * @ap: The ata_port to flush port_task for
1120 * After this function completes, port_task is guranteed not to
1121 * be running or scheduled.
1124 * Kernel thread context (may sleep)
1126 void ata_port_flush_task(struct ata_port *ap)
1128 unsigned long flags;
1132 spin_lock_irqsave(ap->lock, flags);
1133 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1134 spin_unlock_irqrestore(ap->lock, flags);
1136 DPRINTK("flush #1\n");
1137 flush_workqueue(ata_wq);
1140 * At this point, if a task is running, it's guaranteed to see
1141 * the FLUSH flag; thus, it will never queue pio tasks again.
1144 if (!cancel_delayed_work(&ap->port_task)) {
1145 if (ata_msg_ctl(ap))
1146 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1148 flush_workqueue(ata_wq);
1151 spin_lock_irqsave(ap->lock, flags);
1152 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1153 spin_unlock_irqrestore(ap->lock, flags);
1155 if (ata_msg_ctl(ap))
1156 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1159 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1161 struct completion *waiting = qc->private_data;
1167 * ata_exec_internal_sg - execute libata internal command
1168 * @dev: Device to which the command is sent
1169 * @tf: Taskfile registers for the command and the result
1170 * @cdb: CDB for packet command
1171 * @dma_dir: Data tranfer direction of the command
1172 * @sg: sg list for the data buffer of the command
1173 * @n_elem: Number of sg entries
1175 * Executes libata internal command with timeout. @tf contains
1176 * command on entry and result on return. Timeout and error
1177 * conditions are reported via return value. No recovery action
1178 * is taken after a command times out. It's caller's duty to
1179 * clean up after timeout.
1182 * None. Should be called with kernel context, might sleep.
1185 * Zero on success, AC_ERR_* mask on failure
1187 unsigned ata_exec_internal_sg(struct ata_device *dev,
1188 struct ata_taskfile *tf, const u8 *cdb,
1189 int dma_dir, struct scatterlist *sg,
1190 unsigned int n_elem)
1192 struct ata_port *ap = dev->ap;
1193 u8 command = tf->command;
1194 struct ata_queued_cmd *qc;
1195 unsigned int tag, preempted_tag;
1196 u32 preempted_sactive, preempted_qc_active;
1197 DECLARE_COMPLETION_ONSTACK(wait);
1198 unsigned long flags;
1199 unsigned int err_mask;
1202 spin_lock_irqsave(ap->lock, flags);
1204 /* no internal command while frozen */
1205 if (ap->pflags & ATA_PFLAG_FROZEN) {
1206 spin_unlock_irqrestore(ap->lock, flags);
1207 return AC_ERR_SYSTEM;
1210 /* initialize internal qc */
1212 /* XXX: Tag 0 is used for drivers with legacy EH as some
1213 * drivers choke if any other tag is given. This breaks
1214 * ata_tag_internal() test for those drivers. Don't use new
1215 * EH stuff without converting to it.
1217 if (ap->ops->error_handler)
1218 tag = ATA_TAG_INTERNAL;
1222 if (test_and_set_bit(tag, &ap->qc_allocated))
1224 qc = __ata_qc_from_tag(ap, tag);
1232 preempted_tag = ap->active_tag;
1233 preempted_sactive = ap->sactive;
1234 preempted_qc_active = ap->qc_active;
1235 ap->active_tag = ATA_TAG_POISON;
1239 /* prepare & issue qc */
1242 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1243 qc->flags |= ATA_QCFLAG_RESULT_TF;
1244 qc->dma_dir = dma_dir;
1245 if (dma_dir != DMA_NONE) {
1246 unsigned int i, buflen = 0;
1248 for (i = 0; i < n_elem; i++)
1249 buflen += sg[i].length;
1251 ata_sg_init(qc, sg, n_elem);
1252 qc->nsect = buflen / ATA_SECT_SIZE;
1255 qc->private_data = &wait;
1256 qc->complete_fn = ata_qc_complete_internal;
1260 spin_unlock_irqrestore(ap->lock, flags);
1262 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1264 ata_port_flush_task(ap);
1267 spin_lock_irqsave(ap->lock, flags);
1269 /* We're racing with irq here. If we lose, the
1270 * following test prevents us from completing the qc
1271 * twice. If we win, the port is frozen and will be
1272 * cleaned up by ->post_internal_cmd().
1274 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1275 qc->err_mask |= AC_ERR_TIMEOUT;
1277 if (ap->ops->error_handler)
1278 ata_port_freeze(ap);
1280 ata_qc_complete(qc);
1282 if (ata_msg_warn(ap))
1283 ata_dev_printk(dev, KERN_WARNING,
1284 "qc timeout (cmd 0x%x)\n", command);
1287 spin_unlock_irqrestore(ap->lock, flags);
1290 /* do post_internal_cmd */
1291 if (ap->ops->post_internal_cmd)
1292 ap->ops->post_internal_cmd(qc);
1294 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1295 if (ata_msg_warn(ap))
1296 ata_dev_printk(dev, KERN_WARNING,
1297 "zero err_mask for failed "
1298 "internal command, assuming AC_ERR_OTHER\n");
1299 qc->err_mask |= AC_ERR_OTHER;
1303 spin_lock_irqsave(ap->lock, flags);
1305 *tf = qc->result_tf;
1306 err_mask = qc->err_mask;
1309 ap->active_tag = preempted_tag;
1310 ap->sactive = preempted_sactive;
1311 ap->qc_active = preempted_qc_active;
1313 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1314 * Until those drivers are fixed, we detect the condition
1315 * here, fail the command with AC_ERR_SYSTEM and reenable the
1318 * Note that this doesn't change any behavior as internal
1319 * command failure results in disabling the device in the
1320 * higher layer for LLDDs without new reset/EH callbacks.
1322 * Kill the following code as soon as those drivers are fixed.
1324 if (ap->flags & ATA_FLAG_DISABLED) {
1325 err_mask |= AC_ERR_SYSTEM;
1329 spin_unlock_irqrestore(ap->lock, flags);
1335 * ata_exec_internal_sg - execute libata internal command
1336 * @dev: Device to which the command is sent
1337 * @tf: Taskfile registers for the command and the result
1338 * @cdb: CDB for packet command
1339 * @dma_dir: Data tranfer direction of the command
1340 * @buf: Data buffer of the command
1341 * @buflen: Length of data buffer
1343 * Wrapper around ata_exec_internal_sg() which takes simple
1344 * buffer instead of sg list.
1347 * None. Should be called with kernel context, might sleep.
1350 * Zero on success, AC_ERR_* mask on failure
1352 unsigned ata_exec_internal(struct ata_device *dev,
1353 struct ata_taskfile *tf, const u8 *cdb,
1354 int dma_dir, void *buf, unsigned int buflen)
1356 struct scatterlist sg;
1358 sg_init_one(&sg, buf, buflen);
1360 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, &sg, 1);
1364 * ata_do_simple_cmd - execute simple internal command
1365 * @dev: Device to which the command is sent
1366 * @cmd: Opcode to execute
1368 * Execute a 'simple' command, that only consists of the opcode
1369 * 'cmd' itself, without filling any other registers
1372 * Kernel thread context (may sleep).
1375 * Zero on success, AC_ERR_* mask on failure
1377 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1379 struct ata_taskfile tf;
1381 ata_tf_init(dev, &tf);
1384 tf.flags |= ATA_TFLAG_DEVICE;
1385 tf.protocol = ATA_PROT_NODATA;
1387 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1391 * ata_pio_need_iordy - check if iordy needed
1394 * Check if the current speed of the device requires IORDY. Used
1395 * by various controllers for chip configuration.
1398 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1401 int speed = adev->pio_mode - XFER_PIO_0;
1408 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1410 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1411 pio = adev->id[ATA_ID_EIDE_PIO];
1412 /* Is the speed faster than the drive allows non IORDY ? */
1414 /* This is cycle times not frequency - watch the logic! */
1415 if (pio > 240) /* PIO2 is 240nS per cycle */
1424 * ata_dev_read_id - Read ID data from the specified device
1425 * @dev: target device
1426 * @p_class: pointer to class of the target device (may be changed)
1427 * @flags: ATA_READID_* flags
1428 * @id: buffer to read IDENTIFY data into
1430 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1431 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1432 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1433 * for pre-ATA4 drives.
1436 * Kernel thread context (may sleep)
1439 * 0 on success, -errno otherwise.
1441 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1442 unsigned int flags, u16 *id)
1444 struct ata_port *ap = dev->ap;
1445 unsigned int class = *p_class;
1446 struct ata_taskfile tf;
1447 unsigned int err_mask = 0;
1451 if (ata_msg_ctl(ap))
1452 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1453 __FUNCTION__, ap->id, dev->devno);
1455 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1458 ata_tf_init(dev, &tf);
1462 tf.command = ATA_CMD_ID_ATA;
1465 tf.command = ATA_CMD_ID_ATAPI;
1469 reason = "unsupported class";
1473 tf.protocol = ATA_PROT_PIO;
1474 tf.flags |= ATA_TFLAG_POLLING; /* for polling presence detection */
1476 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1477 id, sizeof(id[0]) * ATA_ID_WORDS);
1479 if (err_mask & AC_ERR_NODEV_HINT) {
1480 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1481 ap->id, dev->devno);
1486 reason = "I/O error";
1490 swap_buf_le16(id, ATA_ID_WORDS);
1494 reason = "device reports illegal type";
1496 if (class == ATA_DEV_ATA) {
1497 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1500 if (ata_id_is_ata(id))
1504 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1506 * The exact sequence expected by certain pre-ATA4 drives is:
1509 * INITIALIZE DEVICE PARAMETERS
1511 * Some drives were very specific about that exact sequence.
1513 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1514 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1517 reason = "INIT_DEV_PARAMS failed";
1521 /* current CHS translation info (id[53-58]) might be
1522 * changed. reread the identify device info.
1524 flags &= ~ATA_READID_POSTRESET;
1534 if (ata_msg_warn(ap))
1535 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1536 "(%s, err_mask=0x%x)\n", reason, err_mask);
1540 static inline u8 ata_dev_knobble(struct ata_device *dev)
1542 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1545 static void ata_dev_config_ncq(struct ata_device *dev,
1546 char *desc, size_t desc_sz)
1548 struct ata_port *ap = dev->ap;
1549 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1551 if (!ata_id_has_ncq(dev->id)) {
1555 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1556 snprintf(desc, desc_sz, "NCQ (not used)");
1559 if (ap->flags & ATA_FLAG_NCQ) {
1560 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1561 dev->flags |= ATA_DFLAG_NCQ;
1564 if (hdepth >= ddepth)
1565 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1567 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1570 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1574 if (ap->scsi_host) {
1575 unsigned int len = 0;
1577 for (i = 0; i < ATA_MAX_DEVICES; i++)
1578 len = max(len, ap->device[i].cdb_len);
1580 ap->scsi_host->max_cmd_len = len;
1585 * ata_dev_configure - Configure the specified ATA/ATAPI device
1586 * @dev: Target device to configure
1588 * Configure @dev according to @dev->id. Generic and low-level
1589 * driver specific fixups are also applied.
1592 * Kernel thread context (may sleep)
1595 * 0 on success, -errno otherwise
1597 int ata_dev_configure(struct ata_device *dev)
1599 struct ata_port *ap = dev->ap;
1600 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1601 const u16 *id = dev->id;
1602 unsigned int xfer_mask;
1603 char revbuf[7]; /* XYZ-99\0 */
1606 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1607 ata_dev_printk(dev, KERN_INFO,
1608 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1609 __FUNCTION__, ap->id, dev->devno);
1613 if (ata_msg_probe(ap))
1614 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1615 __FUNCTION__, ap->id, dev->devno);
1617 /* print device capabilities */
1618 if (ata_msg_probe(ap))
1619 ata_dev_printk(dev, KERN_DEBUG,
1620 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1621 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1623 id[49], id[82], id[83], id[84],
1624 id[85], id[86], id[87], id[88]);
1626 /* initialize to-be-configured parameters */
1627 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1628 dev->max_sectors = 0;
1636 * common ATA, ATAPI feature tests
1639 /* find max transfer mode; for printk only */
1640 xfer_mask = ata_id_xfermask(id);
1642 if (ata_msg_probe(ap))
1645 /* ATA-specific feature tests */
1646 if (dev->class == ATA_DEV_ATA) {
1647 if (ata_id_is_cfa(id)) {
1648 if (id[162] & 1) /* CPRM may make this media unusable */
1649 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1650 ap->id, dev->devno);
1651 snprintf(revbuf, 7, "CFA");
1654 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1656 dev->n_sectors = ata_id_n_sectors(id);
1658 if (ata_id_has_lba(id)) {
1659 const char *lba_desc;
1663 dev->flags |= ATA_DFLAG_LBA;
1664 if (ata_id_has_lba48(id)) {
1665 dev->flags |= ATA_DFLAG_LBA48;
1668 if (dev->n_sectors >= (1UL << 28) &&
1669 ata_id_has_flush_ext(id))
1670 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1674 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1676 /* print device info to dmesg */
1677 if (ata_msg_drv(ap) && print_info)
1678 ata_dev_printk(dev, KERN_INFO, "%s, "
1679 "max %s, %Lu sectors: %s %s\n",
1681 ata_mode_string(xfer_mask),
1682 (unsigned long long)dev->n_sectors,
1683 lba_desc, ncq_desc);
1687 /* Default translation */
1688 dev->cylinders = id[1];
1690 dev->sectors = id[6];
1692 if (ata_id_current_chs_valid(id)) {
1693 /* Current CHS translation is valid. */
1694 dev->cylinders = id[54];
1695 dev->heads = id[55];
1696 dev->sectors = id[56];
1699 /* print device info to dmesg */
1700 if (ata_msg_drv(ap) && print_info)
1701 ata_dev_printk(dev, KERN_INFO, "%s, "
1702 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1704 ata_mode_string(xfer_mask),
1705 (unsigned long long)dev->n_sectors,
1706 dev->cylinders, dev->heads,
1710 if (dev->id[59] & 0x100) {
1711 dev->multi_count = dev->id[59] & 0xff;
1712 if (ata_msg_drv(ap) && print_info)
1713 ata_dev_printk(dev, KERN_INFO,
1714 "ata%u: dev %u multi count %u\n",
1715 ap->id, dev->devno, dev->multi_count);
1721 /* ATAPI-specific feature tests */
1722 else if (dev->class == ATA_DEV_ATAPI) {
1723 char *cdb_intr_string = "";
1725 rc = atapi_cdb_len(id);
1726 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1727 if (ata_msg_warn(ap))
1728 ata_dev_printk(dev, KERN_WARNING,
1729 "unsupported CDB len\n");
1733 dev->cdb_len = (unsigned int) rc;
1735 if (ata_id_cdb_intr(dev->id)) {
1736 dev->flags |= ATA_DFLAG_CDB_INTR;
1737 cdb_intr_string = ", CDB intr";
1740 /* print device info to dmesg */
1741 if (ata_msg_drv(ap) && print_info)
1742 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1743 ata_mode_string(xfer_mask),
1747 /* determine max_sectors */
1748 dev->max_sectors = ATA_MAX_SECTORS;
1749 if (dev->flags & ATA_DFLAG_LBA48)
1750 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1752 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1753 /* Let the user know. We don't want to disallow opens for
1754 rescue purposes, or in case the vendor is just a blithering
1757 ata_dev_printk(dev, KERN_WARNING,
1758 "Drive reports diagnostics failure. This may indicate a drive\n");
1759 ata_dev_printk(dev, KERN_WARNING,
1760 "fault or invalid emulation. Contact drive vendor for information.\n");
1764 ata_set_port_max_cmd_len(ap);
1766 /* limit bridge transfers to udma5, 200 sectors */
1767 if (ata_dev_knobble(dev)) {
1768 if (ata_msg_drv(ap) && print_info)
1769 ata_dev_printk(dev, KERN_INFO,
1770 "applying bridge limits\n");
1771 dev->udma_mask &= ATA_UDMA5;
1772 dev->max_sectors = ATA_MAX_SECTORS;
1775 if (ap->ops->dev_config)
1776 ap->ops->dev_config(ap, dev);
1778 if (ata_msg_probe(ap))
1779 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1780 __FUNCTION__, ata_chk_status(ap));
1784 if (ata_msg_probe(ap))
1785 ata_dev_printk(dev, KERN_DEBUG,
1786 "%s: EXIT, err\n", __FUNCTION__);
1791 * ata_bus_probe - Reset and probe ATA bus
1794 * Master ATA bus probing function. Initiates a hardware-dependent
1795 * bus reset, then attempts to identify any devices found on
1799 * PCI/etc. bus probe sem.
1802 * Zero on success, negative errno otherwise.
1805 int ata_bus_probe(struct ata_port *ap)
1807 unsigned int classes[ATA_MAX_DEVICES];
1808 int tries[ATA_MAX_DEVICES];
1809 int i, rc, down_xfermask;
1810 struct ata_device *dev;
1814 for (i = 0; i < ATA_MAX_DEVICES; i++)
1815 tries[i] = ATA_PROBE_MAX_TRIES;
1820 /* reset and determine device classes */
1821 ap->ops->phy_reset(ap);
1823 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1824 dev = &ap->device[i];
1826 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1827 dev->class != ATA_DEV_UNKNOWN)
1828 classes[dev->devno] = dev->class;
1830 classes[dev->devno] = ATA_DEV_NONE;
1832 dev->class = ATA_DEV_UNKNOWN;
1837 /* after the reset the device state is PIO 0 and the controller
1838 state is undefined. Record the mode */
1840 for (i = 0; i < ATA_MAX_DEVICES; i++)
1841 ap->device[i].pio_mode = XFER_PIO_0;
1843 /* read IDENTIFY page and configure devices */
1844 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1845 dev = &ap->device[i];
1848 dev->class = classes[i];
1850 if (!ata_dev_enabled(dev))
1853 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1858 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1859 rc = ata_dev_configure(dev);
1860 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1865 /* configure transfer mode */
1866 rc = ata_set_mode(ap, &dev);
1872 for (i = 0; i < ATA_MAX_DEVICES; i++)
1873 if (ata_dev_enabled(&ap->device[i]))
1876 /* no device present, disable port */
1877 ata_port_disable(ap);
1878 ap->ops->port_disable(ap);
1885 tries[dev->devno] = 0;
1888 sata_down_spd_limit(ap);
1891 tries[dev->devno]--;
1892 if (down_xfermask &&
1893 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1894 tries[dev->devno] = 0;
1897 if (!tries[dev->devno]) {
1898 ata_down_xfermask_limit(dev, 1);
1899 ata_dev_disable(dev);
1906 * ata_port_probe - Mark port as enabled
1907 * @ap: Port for which we indicate enablement
1909 * Modify @ap data structure such that the system
1910 * thinks that the entire port is enabled.
1912 * LOCKING: host lock, or some other form of
1916 void ata_port_probe(struct ata_port *ap)
1918 ap->flags &= ~ATA_FLAG_DISABLED;
1922 * sata_print_link_status - Print SATA link status
1923 * @ap: SATA port to printk link status about
1925 * This function prints link speed and status of a SATA link.
1930 static void sata_print_link_status(struct ata_port *ap)
1932 u32 sstatus, scontrol, tmp;
1934 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1936 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1938 if (ata_port_online(ap)) {
1939 tmp = (sstatus >> 4) & 0xf;
1940 ata_port_printk(ap, KERN_INFO,
1941 "SATA link up %s (SStatus %X SControl %X)\n",
1942 sata_spd_string(tmp), sstatus, scontrol);
1944 ata_port_printk(ap, KERN_INFO,
1945 "SATA link down (SStatus %X SControl %X)\n",
1951 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1952 * @ap: SATA port associated with target SATA PHY.
1954 * This function issues commands to standard SATA Sxxx
1955 * PHY registers, to wake up the phy (and device), and
1956 * clear any reset condition.
1959 * PCI/etc. bus probe sem.
1962 void __sata_phy_reset(struct ata_port *ap)
1965 unsigned long timeout = jiffies + (HZ * 5);
1967 if (ap->flags & ATA_FLAG_SATA_RESET) {
1968 /* issue phy wake/reset */
1969 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1970 /* Couldn't find anything in SATA I/II specs, but
1971 * AHCI-1.1 10.4.2 says at least 1 ms. */
1974 /* phy wake/clear reset */
1975 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1977 /* wait for phy to become ready, if necessary */
1980 sata_scr_read(ap, SCR_STATUS, &sstatus);
1981 if ((sstatus & 0xf) != 1)
1983 } while (time_before(jiffies, timeout));
1985 /* print link status */
1986 sata_print_link_status(ap);
1988 /* TODO: phy layer with polling, timeouts, etc. */
1989 if (!ata_port_offline(ap))
1992 ata_port_disable(ap);
1994 if (ap->flags & ATA_FLAG_DISABLED)
1997 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1998 ata_port_disable(ap);
2002 ap->cbl = ATA_CBL_SATA;
2006 * sata_phy_reset - Reset SATA bus.
2007 * @ap: SATA port associated with target SATA PHY.
2009 * This function resets the SATA bus, and then probes
2010 * the bus for devices.
2013 * PCI/etc. bus probe sem.
2016 void sata_phy_reset(struct ata_port *ap)
2018 __sata_phy_reset(ap);
2019 if (ap->flags & ATA_FLAG_DISABLED)
2025 * ata_dev_pair - return other device on cable
2028 * Obtain the other device on the same cable, or if none is
2029 * present NULL is returned
2032 struct ata_device *ata_dev_pair(struct ata_device *adev)
2034 struct ata_port *ap = adev->ap;
2035 struct ata_device *pair = &ap->device[1 - adev->devno];
2036 if (!ata_dev_enabled(pair))
2042 * ata_port_disable - Disable port.
2043 * @ap: Port to be disabled.
2045 * Modify @ap data structure such that the system
2046 * thinks that the entire port is disabled, and should
2047 * never attempt to probe or communicate with devices
2050 * LOCKING: host lock, or some other form of
2054 void ata_port_disable(struct ata_port *ap)
2056 ap->device[0].class = ATA_DEV_NONE;
2057 ap->device[1].class = ATA_DEV_NONE;
2058 ap->flags |= ATA_FLAG_DISABLED;
2062 * sata_down_spd_limit - adjust SATA spd limit downward
2063 * @ap: Port to adjust SATA spd limit for
2065 * Adjust SATA spd limit of @ap downward. Note that this
2066 * function only adjusts the limit. The change must be applied
2067 * using sata_set_spd().
2070 * Inherited from caller.
2073 * 0 on success, negative errno on failure
2075 int sata_down_spd_limit(struct ata_port *ap)
2077 u32 sstatus, spd, mask;
2080 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2084 mask = ap->sata_spd_limit;
2087 highbit = fls(mask) - 1;
2088 mask &= ~(1 << highbit);
2090 spd = (sstatus >> 4) & 0xf;
2094 mask &= (1 << spd) - 1;
2098 ap->sata_spd_limit = mask;
2100 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2101 sata_spd_string(fls(mask)));
2106 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2110 if (ap->sata_spd_limit == UINT_MAX)
2113 limit = fls(ap->sata_spd_limit);
2115 spd = (*scontrol >> 4) & 0xf;
2116 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2118 return spd != limit;
2122 * sata_set_spd_needed - is SATA spd configuration needed
2123 * @ap: Port in question
2125 * Test whether the spd limit in SControl matches
2126 * @ap->sata_spd_limit. This function is used to determine
2127 * whether hardreset is necessary to apply SATA spd
2131 * Inherited from caller.
2134 * 1 if SATA spd configuration is needed, 0 otherwise.
2136 int sata_set_spd_needed(struct ata_port *ap)
2140 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2143 return __sata_set_spd_needed(ap, &scontrol);
2147 * sata_set_spd - set SATA spd according to spd limit
2148 * @ap: Port to set SATA spd for
2150 * Set SATA spd of @ap according to sata_spd_limit.
2153 * Inherited from caller.
2156 * 0 if spd doesn't need to be changed, 1 if spd has been
2157 * changed. Negative errno if SCR registers are inaccessible.
2159 int sata_set_spd(struct ata_port *ap)
2164 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2167 if (!__sata_set_spd_needed(ap, &scontrol))
2170 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2177 * This mode timing computation functionality is ported over from
2178 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2181 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2182 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2183 * for UDMA6, which is currently supported only by Maxtor drives.
2185 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2188 static const struct ata_timing ata_timing[] = {
2190 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2191 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2192 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2193 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2195 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2196 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2197 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2198 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2199 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2201 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2203 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2204 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2205 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2207 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2208 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2209 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2211 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2212 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2213 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2214 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2216 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2217 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2218 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2220 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2225 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2226 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2228 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2230 q->setup = EZ(t->setup * 1000, T);
2231 q->act8b = EZ(t->act8b * 1000, T);
2232 q->rec8b = EZ(t->rec8b * 1000, T);
2233 q->cyc8b = EZ(t->cyc8b * 1000, T);
2234 q->active = EZ(t->active * 1000, T);
2235 q->recover = EZ(t->recover * 1000, T);
2236 q->cycle = EZ(t->cycle * 1000, T);
2237 q->udma = EZ(t->udma * 1000, UT);
2240 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2241 struct ata_timing *m, unsigned int what)
2243 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2244 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2245 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2246 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2247 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2248 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2249 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2250 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2253 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2255 const struct ata_timing *t;
2257 for (t = ata_timing; t->mode != speed; t++)
2258 if (t->mode == 0xFF)
2263 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2264 struct ata_timing *t, int T, int UT)
2266 const struct ata_timing *s;
2267 struct ata_timing p;
2273 if (!(s = ata_timing_find_mode(speed)))
2276 memcpy(t, s, sizeof(*s));
2279 * If the drive is an EIDE drive, it can tell us it needs extended
2280 * PIO/MW_DMA cycle timing.
2283 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2284 memset(&p, 0, sizeof(p));
2285 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2286 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2287 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2288 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2289 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2291 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2295 * Convert the timing to bus clock counts.
2298 ata_timing_quantize(t, t, T, UT);
2301 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2302 * S.M.A.R.T * and some other commands. We have to ensure that the
2303 * DMA cycle timing is slower/equal than the fastest PIO timing.
2306 if (speed > XFER_PIO_6) {
2307 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2308 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2312 * Lengthen active & recovery time so that cycle time is correct.
2315 if (t->act8b + t->rec8b < t->cyc8b) {
2316 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2317 t->rec8b = t->cyc8b - t->act8b;
2320 if (t->active + t->recover < t->cycle) {
2321 t->active += (t->cycle - (t->active + t->recover)) / 2;
2322 t->recover = t->cycle - t->active;
2329 * ata_down_xfermask_limit - adjust dev xfer masks downward
2330 * @dev: Device to adjust xfer masks
2331 * @force_pio0: Force PIO0
2333 * Adjust xfer masks of @dev downward. Note that this function
2334 * does not apply the change. Invoking ata_set_mode() afterwards
2335 * will apply the limit.
2338 * Inherited from caller.
2341 * 0 on success, negative errno on failure
2343 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2345 unsigned long xfer_mask;
2348 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2353 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2354 if (xfer_mask & ATA_MASK_UDMA)
2355 xfer_mask &= ~ATA_MASK_MWDMA;
2357 highbit = fls(xfer_mask) - 1;
2358 xfer_mask &= ~(1 << highbit);
2360 xfer_mask &= 1 << ATA_SHIFT_PIO;
2364 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2367 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2368 ata_mode_string(xfer_mask));
2376 static int ata_dev_set_mode(struct ata_device *dev)
2378 struct ata_eh_context *ehc = &dev->ap->eh_context;
2379 unsigned int err_mask;
2382 dev->flags &= ~ATA_DFLAG_PIO;
2383 if (dev->xfer_shift == ATA_SHIFT_PIO)
2384 dev->flags |= ATA_DFLAG_PIO;
2386 err_mask = ata_dev_set_xfermode(dev);
2388 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2389 "(err_mask=0x%x)\n", err_mask);
2393 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2394 rc = ata_dev_revalidate(dev, 0);
2395 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2399 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2400 dev->xfer_shift, (int)dev->xfer_mode);
2402 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2403 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2408 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2409 * @ap: port on which timings will be programmed
2410 * @r_failed_dev: out paramter for failed device
2412 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2413 * ata_set_mode() fails, pointer to the failing device is
2414 * returned in @r_failed_dev.
2417 * PCI/etc. bus probe sem.
2420 * 0 on success, negative errno otherwise
2422 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2424 struct ata_device *dev;
2425 int i, rc = 0, used_dma = 0, found = 0;
2427 /* has private set_mode? */
2428 if (ap->ops->set_mode) {
2429 /* FIXME: make ->set_mode handle no device case and
2430 * return error code and failing device on failure.
2432 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2433 if (ata_dev_ready(&ap->device[i])) {
2434 ap->ops->set_mode(ap);
2441 /* step 1: calculate xfer_mask */
2442 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2443 unsigned int pio_mask, dma_mask;
2445 dev = &ap->device[i];
2447 if (!ata_dev_enabled(dev))
2450 ata_dev_xfermask(dev);
2452 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2453 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2454 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2455 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2464 /* step 2: always set host PIO timings */
2465 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2466 dev = &ap->device[i];
2467 if (!ata_dev_enabled(dev))
2470 if (!dev->pio_mode) {
2471 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2476 dev->xfer_mode = dev->pio_mode;
2477 dev->xfer_shift = ATA_SHIFT_PIO;
2478 if (ap->ops->set_piomode)
2479 ap->ops->set_piomode(ap, dev);
2482 /* step 3: set host DMA timings */
2483 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2484 dev = &ap->device[i];
2486 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2489 dev->xfer_mode = dev->dma_mode;
2490 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2491 if (ap->ops->set_dmamode)
2492 ap->ops->set_dmamode(ap, dev);
2495 /* step 4: update devices' xfer mode */
2496 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2497 dev = &ap->device[i];
2499 /* don't udpate suspended devices' xfer mode */
2500 if (!ata_dev_ready(dev))
2503 rc = ata_dev_set_mode(dev);
2508 /* Record simplex status. If we selected DMA then the other
2509 * host channels are not permitted to do so.
2511 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2512 ap->host->simplex_claimed = 1;
2514 /* step5: chip specific finalisation */
2515 if (ap->ops->post_set_mode)
2516 ap->ops->post_set_mode(ap);
2520 *r_failed_dev = dev;
2525 * ata_tf_to_host - issue ATA taskfile to host controller
2526 * @ap: port to which command is being issued
2527 * @tf: ATA taskfile register set
2529 * Issues ATA taskfile register set to ATA host controller,
2530 * with proper synchronization with interrupt handler and
2534 * spin_lock_irqsave(host lock)
2537 static inline void ata_tf_to_host(struct ata_port *ap,
2538 const struct ata_taskfile *tf)
2540 ap->ops->tf_load(ap, tf);
2541 ap->ops->exec_command(ap, tf);
2545 * ata_busy_sleep - sleep until BSY clears, or timeout
2546 * @ap: port containing status register to be polled
2547 * @tmout_pat: impatience timeout
2548 * @tmout: overall timeout
2550 * Sleep until ATA Status register bit BSY clears,
2551 * or a timeout occurs.
2554 * Kernel thread context (may sleep).
2557 * 0 on success, -errno otherwise.
2559 int ata_busy_sleep(struct ata_port *ap,
2560 unsigned long tmout_pat, unsigned long tmout)
2562 unsigned long timer_start, timeout;
2565 status = ata_busy_wait(ap, ATA_BUSY, 300);
2566 timer_start = jiffies;
2567 timeout = timer_start + tmout_pat;
2568 while (status != 0xff && (status & ATA_BUSY) &&
2569 time_before(jiffies, timeout)) {
2571 status = ata_busy_wait(ap, ATA_BUSY, 3);
2574 if (status != 0xff && (status & ATA_BUSY))
2575 ata_port_printk(ap, KERN_WARNING,
2576 "port is slow to respond, please be patient "
2577 "(Status 0x%x)\n", status);
2579 timeout = timer_start + tmout;
2580 while (status != 0xff && (status & ATA_BUSY) &&
2581 time_before(jiffies, timeout)) {
2583 status = ata_chk_status(ap);
2589 if (status & ATA_BUSY) {
2590 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2591 "(%lu secs, Status 0x%x)\n",
2592 tmout / HZ, status);
2599 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2601 struct ata_ioports *ioaddr = &ap->ioaddr;
2602 unsigned int dev0 = devmask & (1 << 0);
2603 unsigned int dev1 = devmask & (1 << 1);
2604 unsigned long timeout;
2606 /* if device 0 was found in ata_devchk, wait for its
2610 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2612 /* if device 1 was found in ata_devchk, wait for
2613 * register access, then wait for BSY to clear
2615 timeout = jiffies + ATA_TMOUT_BOOT;
2619 ap->ops->dev_select(ap, 1);
2620 if (ap->flags & ATA_FLAG_MMIO) {
2621 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2622 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2624 nsect = inb(ioaddr->nsect_addr);
2625 lbal = inb(ioaddr->lbal_addr);
2627 if ((nsect == 1) && (lbal == 1))
2629 if (time_after(jiffies, timeout)) {
2633 msleep(50); /* give drive a breather */
2636 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2638 /* is all this really necessary? */
2639 ap->ops->dev_select(ap, 0);
2641 ap->ops->dev_select(ap, 1);
2643 ap->ops->dev_select(ap, 0);
2646 static unsigned int ata_bus_softreset(struct ata_port *ap,
2647 unsigned int devmask)
2649 struct ata_ioports *ioaddr = &ap->ioaddr;
2651 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2653 /* software reset. causes dev0 to be selected */
2654 if (ap->flags & ATA_FLAG_MMIO) {
2655 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2656 udelay(20); /* FIXME: flush */
2657 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2658 udelay(20); /* FIXME: flush */
2659 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2661 outb(ap->ctl, ioaddr->ctl_addr);
2663 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2665 outb(ap->ctl, ioaddr->ctl_addr);
2668 /* spec mandates ">= 2ms" before checking status.
2669 * We wait 150ms, because that was the magic delay used for
2670 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2671 * between when the ATA command register is written, and then
2672 * status is checked. Because waiting for "a while" before
2673 * checking status is fine, post SRST, we perform this magic
2674 * delay here as well.
2676 * Old drivers/ide uses the 2mS rule and then waits for ready
2680 /* Before we perform post reset processing we want to see if
2681 * the bus shows 0xFF because the odd clown forgets the D7
2682 * pulldown resistor.
2684 if (ata_check_status(ap) == 0xFF)
2687 ata_bus_post_reset(ap, devmask);
2693 * ata_bus_reset - reset host port and associated ATA channel
2694 * @ap: port to reset
2696 * This is typically the first time we actually start issuing
2697 * commands to the ATA channel. We wait for BSY to clear, then
2698 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2699 * result. Determine what devices, if any, are on the channel
2700 * by looking at the device 0/1 error register. Look at the signature
2701 * stored in each device's taskfile registers, to determine if
2702 * the device is ATA or ATAPI.
2705 * PCI/etc. bus probe sem.
2706 * Obtains host lock.
2709 * Sets ATA_FLAG_DISABLED if bus reset fails.
2712 void ata_bus_reset(struct ata_port *ap)
2714 struct ata_ioports *ioaddr = &ap->ioaddr;
2715 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2717 unsigned int dev0, dev1 = 0, devmask = 0;
2719 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2721 /* determine if device 0/1 are present */
2722 if (ap->flags & ATA_FLAG_SATA_RESET)
2725 dev0 = ata_devchk(ap, 0);
2727 dev1 = ata_devchk(ap, 1);
2731 devmask |= (1 << 0);
2733 devmask |= (1 << 1);
2735 /* select device 0 again */
2736 ap->ops->dev_select(ap, 0);
2738 /* issue bus reset */
2739 if (ap->flags & ATA_FLAG_SRST)
2740 if (ata_bus_softreset(ap, devmask))
2744 * determine by signature whether we have ATA or ATAPI devices
2746 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2747 if ((slave_possible) && (err != 0x81))
2748 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2750 /* re-enable interrupts */
2751 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2754 /* is double-select really necessary? */
2755 if (ap->device[1].class != ATA_DEV_NONE)
2756 ap->ops->dev_select(ap, 1);
2757 if (ap->device[0].class != ATA_DEV_NONE)
2758 ap->ops->dev_select(ap, 0);
2760 /* if no devices were detected, disable this port */
2761 if ((ap->device[0].class == ATA_DEV_NONE) &&
2762 (ap->device[1].class == ATA_DEV_NONE))
2765 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2766 /* set up device control for ATA_FLAG_SATA_RESET */
2767 if (ap->flags & ATA_FLAG_MMIO)
2768 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2770 outb(ap->ctl, ioaddr->ctl_addr);
2777 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2778 ap->ops->port_disable(ap);
2784 * sata_phy_debounce - debounce SATA phy status
2785 * @ap: ATA port to debounce SATA phy status for
2786 * @params: timing parameters { interval, duratinon, timeout } in msec
2788 * Make sure SStatus of @ap reaches stable state, determined by
2789 * holding the same value where DET is not 1 for @duration polled
2790 * every @interval, before @timeout. Timeout constraints the
2791 * beginning of the stable state. Because, after hot unplugging,
2792 * DET gets stuck at 1 on some controllers, this functions waits
2793 * until timeout then returns 0 if DET is stable at 1.
2796 * Kernel thread context (may sleep)
2799 * 0 on success, -errno on failure.
2801 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2803 unsigned long interval_msec = params[0];
2804 unsigned long duration = params[1] * HZ / 1000;
2805 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2806 unsigned long last_jiffies;
2810 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2815 last_jiffies = jiffies;
2818 msleep(interval_msec);
2819 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2825 if (cur == 1 && time_before(jiffies, timeout))
2827 if (time_after(jiffies, last_jiffies + duration))
2832 /* unstable, start over */
2834 last_jiffies = jiffies;
2837 if (time_after(jiffies, timeout))
2843 * sata_phy_resume - resume SATA phy
2844 * @ap: ATA port to resume SATA phy for
2845 * @params: timing parameters { interval, duratinon, timeout } in msec
2847 * Resume SATA phy of @ap and debounce it.
2850 * Kernel thread context (may sleep)
2853 * 0 on success, -errno on failure.
2855 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2860 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2863 scontrol = (scontrol & 0x0f0) | 0x300;
2865 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2868 /* Some PHYs react badly if SStatus is pounded immediately
2869 * after resuming. Delay 200ms before debouncing.
2873 return sata_phy_debounce(ap, params);
2876 static void ata_wait_spinup(struct ata_port *ap)
2878 struct ata_eh_context *ehc = &ap->eh_context;
2879 unsigned long end, secs;
2882 /* first, debounce phy if SATA */
2883 if (ap->cbl == ATA_CBL_SATA) {
2884 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2886 /* if debounced successfully and offline, no need to wait */
2887 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2891 /* okay, let's give the drive time to spin up */
2892 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2893 secs = ((end - jiffies) + HZ - 1) / HZ;
2895 if (time_after(jiffies, end))
2899 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2900 "(%lu secs)\n", secs);
2902 schedule_timeout_uninterruptible(end - jiffies);
2906 * ata_std_prereset - prepare for reset
2907 * @ap: ATA port to be reset
2909 * @ap is about to be reset. Initialize it.
2912 * Kernel thread context (may sleep)
2915 * 0 on success, -errno otherwise.
2917 int ata_std_prereset(struct ata_port *ap)
2919 struct ata_eh_context *ehc = &ap->eh_context;
2920 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2923 /* handle link resume & hotplug spinup */
2924 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2925 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2926 ehc->i.action |= ATA_EH_HARDRESET;
2928 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2929 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2930 ata_wait_spinup(ap);
2932 /* if we're about to do hardreset, nothing more to do */
2933 if (ehc->i.action & ATA_EH_HARDRESET)
2936 /* if SATA, resume phy */
2937 if (ap->cbl == ATA_CBL_SATA) {
2938 rc = sata_phy_resume(ap, timing);
2939 if (rc && rc != -EOPNOTSUPP) {
2940 /* phy resume failed */
2941 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2942 "link for reset (errno=%d)\n", rc);
2947 /* Wait for !BSY if the controller can wait for the first D2H
2948 * Reg FIS and we don't know that no device is attached.
2950 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2951 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2957 * ata_std_softreset - reset host port via ATA SRST
2958 * @ap: port to reset
2959 * @classes: resulting classes of attached devices
2961 * Reset host port using ATA SRST.
2964 * Kernel thread context (may sleep)
2967 * 0 on success, -errno otherwise.
2969 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2971 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2972 unsigned int devmask = 0, err_mask;
2977 if (ata_port_offline(ap)) {
2978 classes[0] = ATA_DEV_NONE;
2982 /* determine if device 0/1 are present */
2983 if (ata_devchk(ap, 0))
2984 devmask |= (1 << 0);
2985 if (slave_possible && ata_devchk(ap, 1))
2986 devmask |= (1 << 1);
2988 /* select device 0 again */
2989 ap->ops->dev_select(ap, 0);
2991 /* issue bus reset */
2992 DPRINTK("about to softreset, devmask=%x\n", devmask);
2993 err_mask = ata_bus_softreset(ap, devmask);
2995 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3000 /* determine by signature whether we have ATA or ATAPI devices */
3001 classes[0] = ata_dev_try_classify(ap, 0, &err);
3002 if (slave_possible && err != 0x81)
3003 classes[1] = ata_dev_try_classify(ap, 1, &err);
3006 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3011 * sata_port_hardreset - reset port via SATA phy reset
3012 * @ap: port to reset
3013 * @timing: timing parameters { interval, duratinon, timeout } in msec
3015 * SATA phy-reset host port using DET bits of SControl register.
3018 * Kernel thread context (may sleep)
3021 * 0 on success, -errno otherwise.
3023 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3030 if (sata_set_spd_needed(ap)) {
3031 /* SATA spec says nothing about how to reconfigure
3032 * spd. To be on the safe side, turn off phy during
3033 * reconfiguration. This works for at least ICH7 AHCI
3036 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3039 scontrol = (scontrol & 0x0f0) | 0x304;
3041 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3047 /* issue phy wake/reset */
3048 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3051 scontrol = (scontrol & 0x0f0) | 0x301;
3053 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3056 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3057 * 10.4.2 says at least 1 ms.
3061 /* bring phy back */
3062 rc = sata_phy_resume(ap, timing);
3064 DPRINTK("EXIT, rc=%d\n", rc);
3069 * sata_std_hardreset - reset host port via SATA phy reset
3070 * @ap: port to reset
3071 * @class: resulting class of attached device
3073 * SATA phy-reset host port using DET bits of SControl register,
3074 * wait for !BSY and classify the attached device.
3077 * Kernel thread context (may sleep)
3080 * 0 on success, -errno otherwise.
3082 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3084 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3090 rc = sata_port_hardreset(ap, timing);
3092 ata_port_printk(ap, KERN_ERR,
3093 "COMRESET failed (errno=%d)\n", rc);
3097 /* TODO: phy layer with polling, timeouts, etc. */
3098 if (ata_port_offline(ap)) {
3099 *class = ATA_DEV_NONE;
3100 DPRINTK("EXIT, link offline\n");
3104 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3105 ata_port_printk(ap, KERN_ERR,
3106 "COMRESET failed (device not ready)\n");
3110 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3112 *class = ata_dev_try_classify(ap, 0, NULL);
3114 DPRINTK("EXIT, class=%u\n", *class);
3119 * ata_std_postreset - standard postreset callback
3120 * @ap: the target ata_port
3121 * @classes: classes of attached devices
3123 * This function is invoked after a successful reset. Note that
3124 * the device might have been reset more than once using
3125 * different reset methods before postreset is invoked.
3128 * Kernel thread context (may sleep)
3130 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3136 /* print link status */
3137 sata_print_link_status(ap);
3140 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3141 sata_scr_write(ap, SCR_ERROR, serror);
3143 /* re-enable interrupts */
3144 if (!ap->ops->error_handler) {
3145 /* FIXME: hack. create a hook instead */
3146 if (ap->ioaddr.ctl_addr)
3150 /* is double-select really necessary? */
3151 if (classes[0] != ATA_DEV_NONE)
3152 ap->ops->dev_select(ap, 1);
3153 if (classes[1] != ATA_DEV_NONE)
3154 ap->ops->dev_select(ap, 0);
3156 /* bail out if no device is present */
3157 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3158 DPRINTK("EXIT, no device\n");
3162 /* set up device control */
3163 if (ap->ioaddr.ctl_addr) {
3164 if (ap->flags & ATA_FLAG_MMIO)
3165 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
3167 outb(ap->ctl, ap->ioaddr.ctl_addr);
3174 * ata_dev_same_device - Determine whether new ID matches configured device
3175 * @dev: device to compare against
3176 * @new_class: class of the new device
3177 * @new_id: IDENTIFY page of the new device
3179 * Compare @new_class and @new_id against @dev and determine
3180 * whether @dev is the device indicated by @new_class and
3187 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3189 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3192 const u16 *old_id = dev->id;
3193 unsigned char model[2][41], serial[2][21];
3196 if (dev->class != new_class) {
3197 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3198 dev->class, new_class);
3202 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
3203 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
3204 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
3205 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
3206 new_n_sectors = ata_id_n_sectors(new_id);
3208 if (strcmp(model[0], model[1])) {
3209 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3210 "'%s' != '%s'\n", model[0], model[1]);
3214 if (strcmp(serial[0], serial[1])) {
3215 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3216 "'%s' != '%s'\n", serial[0], serial[1]);
3220 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3221 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3223 (unsigned long long)dev->n_sectors,
3224 (unsigned long long)new_n_sectors);
3232 * ata_dev_revalidate - Revalidate ATA device
3233 * @dev: device to revalidate
3234 * @readid_flags: read ID flags
3236 * Re-read IDENTIFY page and make sure @dev is still attached to
3240 * Kernel thread context (may sleep)
3243 * 0 on success, negative errno otherwise
3245 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3247 unsigned int class = dev->class;
3248 u16 *id = (void *)dev->ap->sector_buf;
3251 if (!ata_dev_enabled(dev)) {
3257 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3261 /* is the device still there? */
3262 if (!ata_dev_same_device(dev, class, id)) {
3267 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3269 /* configure device according to the new ID */
3270 rc = ata_dev_configure(dev);
3275 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3279 struct ata_blacklist_entry {
3280 const char *model_num;
3281 const char *model_rev;
3282 unsigned long horkage;
3285 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3286 /* Devices with DMA related problems under Linux */
3287 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3288 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3289 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3290 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3291 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3292 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3293 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3294 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3295 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3296 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3297 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3298 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3299 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3300 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3301 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3302 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3303 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3304 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3305 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3306 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3307 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3308 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3309 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3310 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3311 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3312 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3313 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3314 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3315 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3316 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3318 /* Devices we expect to fail diagnostics */
3320 /* Devices where NCQ should be avoided */
3322 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3324 /* Devices with NCQ limits */
3330 static int ata_strim(char *s, size_t len)
3332 len = strnlen(s, len);
3334 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3335 while ((len > 0) && (s[len - 1] == ' ')) {
3342 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3344 unsigned char model_num[40];
3345 unsigned char model_rev[16];
3346 unsigned int nlen, rlen;
3347 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3349 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3351 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3353 nlen = ata_strim(model_num, sizeof(model_num));
3354 rlen = ata_strim(model_rev, sizeof(model_rev));
3356 while (ad->model_num) {
3357 if (!strncmp(ad->model_num, model_num, nlen)) {
3358 if (ad->model_rev == NULL)
3360 if (!strncmp(ad->model_rev, model_rev, rlen))