2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
23 #include <linux/clocksource.h>
24 #include <linux/kvm.h>
26 #include <linux/vmalloc.h>
27 #include <linux/module.h>
28 #include <linux/mman.h>
29 #include <linux/highmem.h>
31 #include <asm/uaccess.h>
35 #define MAX_IO_MSRS 256
36 #define CR0_RESERVED_BITS \
37 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
38 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
39 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
40 #define CR4_RESERVED_BITS \
41 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
42 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
43 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
44 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
46 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
48 * - enable syscall per default because its emulated by KVM
49 * - enable LME and LMA per default on 64 bit KVM
52 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
54 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
57 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
58 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
60 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
61 struct kvm_cpuid_entry2 __user *entries);
63 struct kvm_x86_ops *kvm_x86_ops;
65 struct kvm_stats_debugfs_item debugfs_entries[] = {
66 { "pf_fixed", VCPU_STAT(pf_fixed) },
67 { "pf_guest", VCPU_STAT(pf_guest) },
68 { "tlb_flush", VCPU_STAT(tlb_flush) },
69 { "invlpg", VCPU_STAT(invlpg) },
70 { "exits", VCPU_STAT(exits) },
71 { "io_exits", VCPU_STAT(io_exits) },
72 { "mmio_exits", VCPU_STAT(mmio_exits) },
73 { "signal_exits", VCPU_STAT(signal_exits) },
74 { "irq_window", VCPU_STAT(irq_window_exits) },
75 { "nmi_window", VCPU_STAT(nmi_window_exits) },
76 { "halt_exits", VCPU_STAT(halt_exits) },
77 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
78 { "hypercalls", VCPU_STAT(hypercalls) },
79 { "request_irq", VCPU_STAT(request_irq_exits) },
80 { "irq_exits", VCPU_STAT(irq_exits) },
81 { "host_state_reload", VCPU_STAT(host_state_reload) },
82 { "efer_reload", VCPU_STAT(efer_reload) },
83 { "fpu_reload", VCPU_STAT(fpu_reload) },
84 { "insn_emulation", VCPU_STAT(insn_emulation) },
85 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
86 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
87 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
88 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
89 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
90 { "mmu_flooded", VM_STAT(mmu_flooded) },
91 { "mmu_recycled", VM_STAT(mmu_recycled) },
92 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
93 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
94 { "largepages", VM_STAT(lpages) },
99 unsigned long segment_base(u16 selector)
101 struct descriptor_table gdt;
102 struct desc_struct *d;
103 unsigned long table_base;
109 asm("sgdt %0" : "=m"(gdt));
110 table_base = gdt.base;
112 if (selector & 4) { /* from ldt */
115 asm("sldt %0" : "=g"(ldt_selector));
116 table_base = segment_base(ldt_selector);
118 d = (struct desc_struct *)(table_base + (selector & ~7));
119 v = d->base0 | ((unsigned long)d->base1 << 16) |
120 ((unsigned long)d->base2 << 24);
122 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
123 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
127 EXPORT_SYMBOL_GPL(segment_base);
129 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
131 if (irqchip_in_kernel(vcpu->kvm))
132 return vcpu->arch.apic_base;
134 return vcpu->arch.apic_base;
136 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
138 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
140 /* TODO: reserve bits check */
141 if (irqchip_in_kernel(vcpu->kvm))
142 kvm_lapic_set_base(vcpu, data);
144 vcpu->arch.apic_base = data;
146 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
148 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
150 WARN_ON(vcpu->arch.exception.pending);
151 vcpu->arch.exception.pending = true;
152 vcpu->arch.exception.has_error_code = false;
153 vcpu->arch.exception.nr = nr;
155 EXPORT_SYMBOL_GPL(kvm_queue_exception);
157 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
160 ++vcpu->stat.pf_guest;
161 if (vcpu->arch.exception.pending) {
162 if (vcpu->arch.exception.nr == PF_VECTOR) {
163 printk(KERN_DEBUG "kvm: inject_page_fault:"
164 " double fault 0x%lx\n", addr);
165 vcpu->arch.exception.nr = DF_VECTOR;
166 vcpu->arch.exception.error_code = 0;
167 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
168 /* triple fault -> shutdown */
169 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
173 vcpu->arch.cr2 = addr;
174 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
177 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
179 vcpu->arch.nmi_pending = 1;
181 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
183 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
185 WARN_ON(vcpu->arch.exception.pending);
186 vcpu->arch.exception.pending = true;
187 vcpu->arch.exception.has_error_code = true;
188 vcpu->arch.exception.nr = nr;
189 vcpu->arch.exception.error_code = error_code;
191 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
193 static void __queue_exception(struct kvm_vcpu *vcpu)
195 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
196 vcpu->arch.exception.has_error_code,
197 vcpu->arch.exception.error_code);
201 * Load the pae pdptrs. Return true is they are all valid.
203 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
205 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
206 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
209 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
211 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
212 offset * sizeof(u64), sizeof(pdpte));
217 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
218 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
225 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
230 EXPORT_SYMBOL_GPL(load_pdptrs);
232 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
234 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
238 if (is_long_mode(vcpu) || !is_pae(vcpu))
241 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
244 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
250 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
252 if (cr0 & CR0_RESERVED_BITS) {
253 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
254 cr0, vcpu->arch.cr0);
255 kvm_inject_gp(vcpu, 0);
259 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
260 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
261 kvm_inject_gp(vcpu, 0);
265 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
266 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
267 "and a clear PE flag\n");
268 kvm_inject_gp(vcpu, 0);
272 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
274 if ((vcpu->arch.shadow_efer & EFER_LME)) {
278 printk(KERN_DEBUG "set_cr0: #GP, start paging "
279 "in long mode while PAE is disabled\n");
280 kvm_inject_gp(vcpu, 0);
283 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
285 printk(KERN_DEBUG "set_cr0: #GP, start paging "
286 "in long mode while CS.L == 1\n");
287 kvm_inject_gp(vcpu, 0);
293 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
294 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
296 kvm_inject_gp(vcpu, 0);
302 kvm_x86_ops->set_cr0(vcpu, cr0);
303 vcpu->arch.cr0 = cr0;
305 kvm_mmu_reset_context(vcpu);
308 EXPORT_SYMBOL_GPL(kvm_set_cr0);
310 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
312 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
313 KVMTRACE_1D(LMSW, vcpu,
314 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
317 EXPORT_SYMBOL_GPL(kvm_lmsw);
319 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
321 if (cr4 & CR4_RESERVED_BITS) {
322 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
323 kvm_inject_gp(vcpu, 0);
327 if (is_long_mode(vcpu)) {
328 if (!(cr4 & X86_CR4_PAE)) {
329 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
331 kvm_inject_gp(vcpu, 0);
334 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
335 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
336 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
337 kvm_inject_gp(vcpu, 0);
341 if (cr4 & X86_CR4_VMXE) {
342 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
343 kvm_inject_gp(vcpu, 0);
346 kvm_x86_ops->set_cr4(vcpu, cr4);
347 vcpu->arch.cr4 = cr4;
348 kvm_mmu_reset_context(vcpu);
350 EXPORT_SYMBOL_GPL(kvm_set_cr4);
352 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
354 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
355 kvm_mmu_flush_tlb(vcpu);
359 if (is_long_mode(vcpu)) {
360 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
361 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
362 kvm_inject_gp(vcpu, 0);
367 if (cr3 & CR3_PAE_RESERVED_BITS) {
369 "set_cr3: #GP, reserved bits\n");
370 kvm_inject_gp(vcpu, 0);
373 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
374 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
376 kvm_inject_gp(vcpu, 0);
381 * We don't check reserved bits in nonpae mode, because
382 * this isn't enforced, and VMware depends on this.
387 * Does the new cr3 value map to physical memory? (Note, we
388 * catch an invalid cr3 even in real-mode, because it would
389 * cause trouble later on when we turn on paging anyway.)
391 * A real CPU would silently accept an invalid cr3 and would
392 * attempt to use it - with largely undefined (and often hard
393 * to debug) behavior on the guest side.
395 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
396 kvm_inject_gp(vcpu, 0);
398 vcpu->arch.cr3 = cr3;
399 vcpu->arch.mmu.new_cr3(vcpu);
402 EXPORT_SYMBOL_GPL(kvm_set_cr3);
404 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
406 if (cr8 & CR8_RESERVED_BITS) {
407 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
408 kvm_inject_gp(vcpu, 0);
411 if (irqchip_in_kernel(vcpu->kvm))
412 kvm_lapic_set_tpr(vcpu, cr8);
414 vcpu->arch.cr8 = cr8;
416 EXPORT_SYMBOL_GPL(kvm_set_cr8);
418 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
420 if (irqchip_in_kernel(vcpu->kvm))
421 return kvm_lapic_get_cr8(vcpu);
423 return vcpu->arch.cr8;
425 EXPORT_SYMBOL_GPL(kvm_get_cr8);
428 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
429 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
431 * This list is modified at module load time to reflect the
432 * capabilities of the host cpu.
434 static u32 msrs_to_save[] = {
435 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
438 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
440 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
441 MSR_IA32_PERF_STATUS,
444 static unsigned num_msrs_to_save;
446 static u32 emulated_msrs[] = {
447 MSR_IA32_MISC_ENABLE,
450 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
452 if (efer & efer_reserved_bits) {
453 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
455 kvm_inject_gp(vcpu, 0);
460 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
461 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
462 kvm_inject_gp(vcpu, 0);
466 kvm_x86_ops->set_efer(vcpu, efer);
469 efer |= vcpu->arch.shadow_efer & EFER_LMA;
471 vcpu->arch.shadow_efer = efer;
474 void kvm_enable_efer_bits(u64 mask)
476 efer_reserved_bits &= ~mask;
478 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
482 * Writes msr value into into the appropriate "register".
483 * Returns 0 on success, non-0 otherwise.
484 * Assumes vcpu_load() was already called.
486 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
488 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
492 * Adapt set_msr() to msr_io()'s calling convention
494 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
496 return kvm_set_msr(vcpu, index, *data);
499 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
502 struct pvclock_wall_clock wc;
503 struct timespec now, sys, boot;
510 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
513 * The guest calculates current wall clock time by adding
514 * system time (updated by kvm_write_guest_time below) to the
515 * wall clock specified here. guest system time equals host
516 * system time for us, thus we must fill in host boot time here.
518 now = current_kernel_time();
520 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
522 wc.sec = boot.tv_sec;
523 wc.nsec = boot.tv_nsec;
524 wc.version = version;
526 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
529 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
532 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
534 uint32_t quotient, remainder;
536 /* Don't try to replace with do_div(), this one calculates
537 * "(dividend << 32) / divisor" */
539 : "=a" (quotient), "=d" (remainder)
540 : "0" (0), "1" (dividend), "r" (divisor) );
544 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
546 uint64_t nsecs = 1000000000LL;
551 tps64 = tsc_khz * 1000LL;
552 while (tps64 > nsecs*2) {
557 tps32 = (uint32_t)tps64;
558 while (tps32 <= (uint32_t)nsecs) {
563 hv_clock->tsc_shift = shift;
564 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
566 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
567 __FUNCTION__, tsc_khz, hv_clock->tsc_shift,
568 hv_clock->tsc_to_system_mul);
571 static void kvm_write_guest_time(struct kvm_vcpu *v)
575 struct kvm_vcpu_arch *vcpu = &v->arch;
578 if ((!vcpu->time_page))
581 if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
582 kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
583 vcpu->hv_clock_tsc_khz = tsc_khz;
586 /* Keep irq disabled to prevent changes to the clock */
587 local_irq_save(flags);
588 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
589 &vcpu->hv_clock.tsc_timestamp);
591 local_irq_restore(flags);
593 /* With all the info we got, fill in the values */
595 vcpu->hv_clock.system_time = ts.tv_nsec +
596 (NSEC_PER_SEC * (u64)ts.tv_sec);
598 * The interface expects us to write an even number signaling that the
599 * update is finished. Since the guest won't see the intermediate
600 * state, we just increase by 2 at the end.
602 vcpu->hv_clock.version += 2;
604 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
606 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
607 sizeof(vcpu->hv_clock));
609 kunmap_atomic(shared_kaddr, KM_USER0);
611 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
614 static bool msr_mtrr_valid(unsigned msr)
617 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
618 case MSR_MTRRfix64K_00000:
619 case MSR_MTRRfix16K_80000:
620 case MSR_MTRRfix16K_A0000:
621 case MSR_MTRRfix4K_C0000:
622 case MSR_MTRRfix4K_C8000:
623 case MSR_MTRRfix4K_D0000:
624 case MSR_MTRRfix4K_D8000:
625 case MSR_MTRRfix4K_E0000:
626 case MSR_MTRRfix4K_E8000:
627 case MSR_MTRRfix4K_F0000:
628 case MSR_MTRRfix4K_F8000:
629 case MSR_MTRRdefType:
630 case MSR_IA32_CR_PAT:
638 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
640 if (!msr_mtrr_valid(msr))
643 vcpu->arch.mtrr[msr - 0x200] = data;
647 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
651 set_efer(vcpu, data);
653 case MSR_IA32_MC0_STATUS:
654 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
657 case MSR_IA32_MCG_STATUS:
658 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
661 case MSR_IA32_MCG_CTL:
662 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
665 case MSR_IA32_UCODE_REV:
666 case MSR_IA32_UCODE_WRITE:
668 case 0x200 ... 0x2ff:
669 return set_msr_mtrr(vcpu, msr, data);
670 case MSR_IA32_APICBASE:
671 kvm_set_apic_base(vcpu, data);
673 case MSR_IA32_MISC_ENABLE:
674 vcpu->arch.ia32_misc_enable_msr = data;
676 case MSR_KVM_WALL_CLOCK:
677 vcpu->kvm->arch.wall_clock = data;
678 kvm_write_wall_clock(vcpu->kvm, data);
680 case MSR_KVM_SYSTEM_TIME: {
681 if (vcpu->arch.time_page) {
682 kvm_release_page_dirty(vcpu->arch.time_page);
683 vcpu->arch.time_page = NULL;
686 vcpu->arch.time = data;
688 /* we verify if the enable bit is set... */
692 /* ...but clean it before doing the actual write */
693 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
695 down_read(¤t->mm->mmap_sem);
696 vcpu->arch.time_page =
697 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
698 up_read(¤t->mm->mmap_sem);
700 if (is_error_page(vcpu->arch.time_page)) {
701 kvm_release_page_clean(vcpu->arch.time_page);
702 vcpu->arch.time_page = NULL;
705 kvm_write_guest_time(vcpu);
709 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
714 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
718 * Reads an msr value (of 'msr_index') into 'pdata'.
719 * Returns 0 on success, non-0 otherwise.
720 * Assumes vcpu_load() was already called.
722 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
724 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
727 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
729 if (!msr_mtrr_valid(msr))
732 *pdata = vcpu->arch.mtrr[msr - 0x200];
736 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
741 case 0xc0010010: /* SYSCFG */
742 case 0xc0010015: /* HWCR */
743 case MSR_IA32_PLATFORM_ID:
744 case MSR_IA32_P5_MC_ADDR:
745 case MSR_IA32_P5_MC_TYPE:
746 case MSR_IA32_MC0_CTL:
747 case MSR_IA32_MCG_STATUS:
748 case MSR_IA32_MCG_CAP:
749 case MSR_IA32_MCG_CTL:
750 case MSR_IA32_MC0_MISC:
751 case MSR_IA32_MC0_MISC+4:
752 case MSR_IA32_MC0_MISC+8:
753 case MSR_IA32_MC0_MISC+12:
754 case MSR_IA32_MC0_MISC+16:
755 case MSR_IA32_UCODE_REV:
756 case MSR_IA32_EBL_CR_POWERON:
760 data = 0x500 | KVM_NR_VAR_MTRR;
762 case 0x200 ... 0x2ff:
763 return get_msr_mtrr(vcpu, msr, pdata);
764 case 0xcd: /* fsb frequency */
767 case MSR_IA32_APICBASE:
768 data = kvm_get_apic_base(vcpu);
770 case MSR_IA32_MISC_ENABLE:
771 data = vcpu->arch.ia32_misc_enable_msr;
773 case MSR_IA32_PERF_STATUS:
774 /* TSC increment by tick */
777 data |= (((uint64_t)4ULL) << 40);
780 data = vcpu->arch.shadow_efer;
782 case MSR_KVM_WALL_CLOCK:
783 data = vcpu->kvm->arch.wall_clock;
785 case MSR_KVM_SYSTEM_TIME:
786 data = vcpu->arch.time;
789 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
795 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
798 * Read or write a bunch of msrs. All parameters are kernel addresses.
800 * @return number of msrs set successfully.
802 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
803 struct kvm_msr_entry *entries,
804 int (*do_msr)(struct kvm_vcpu *vcpu,
805 unsigned index, u64 *data))
811 down_read(&vcpu->kvm->slots_lock);
812 for (i = 0; i < msrs->nmsrs; ++i)
813 if (do_msr(vcpu, entries[i].index, &entries[i].data))
815 up_read(&vcpu->kvm->slots_lock);
823 * Read or write a bunch of msrs. Parameters are user addresses.
825 * @return number of msrs set successfully.
827 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
828 int (*do_msr)(struct kvm_vcpu *vcpu,
829 unsigned index, u64 *data),
832 struct kvm_msrs msrs;
833 struct kvm_msr_entry *entries;
838 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
842 if (msrs.nmsrs >= MAX_IO_MSRS)
846 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
847 entries = vmalloc(size);
852 if (copy_from_user(entries, user_msrs->entries, size))
855 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
860 if (writeback && copy_to_user(user_msrs->entries, entries, size))
871 int kvm_dev_ioctl_check_extension(long ext)
876 case KVM_CAP_IRQCHIP:
878 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
879 case KVM_CAP_USER_MEMORY:
880 case KVM_CAP_SET_TSS_ADDR:
881 case KVM_CAP_EXT_CPUID:
882 case KVM_CAP_CLOCKSOURCE:
884 case KVM_CAP_NOP_IO_DELAY:
885 case KVM_CAP_MP_STATE:
888 case KVM_CAP_COALESCED_MMIO:
889 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
892 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
894 case KVM_CAP_NR_VCPUS:
897 case KVM_CAP_NR_MEMSLOTS:
898 r = KVM_MEMORY_SLOTS;
911 long kvm_arch_dev_ioctl(struct file *filp,
912 unsigned int ioctl, unsigned long arg)
914 void __user *argp = (void __user *)arg;
918 case KVM_GET_MSR_INDEX_LIST: {
919 struct kvm_msr_list __user *user_msr_list = argp;
920 struct kvm_msr_list msr_list;
924 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
927 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
928 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
931 if (n < num_msrs_to_save)
934 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
935 num_msrs_to_save * sizeof(u32)))
937 if (copy_to_user(user_msr_list->indices
938 + num_msrs_to_save * sizeof(u32),
940 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
945 case KVM_GET_SUPPORTED_CPUID: {
946 struct kvm_cpuid2 __user *cpuid_arg = argp;
947 struct kvm_cpuid2 cpuid;
950 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
952 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
958 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
970 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
972 kvm_x86_ops->vcpu_load(vcpu, cpu);
973 kvm_write_guest_time(vcpu);
976 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
978 kvm_x86_ops->vcpu_put(vcpu);
979 kvm_put_guest_fpu(vcpu);
982 static int is_efer_nx(void)
986 rdmsrl(MSR_EFER, efer);
987 return efer & EFER_NX;
990 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
993 struct kvm_cpuid_entry2 *e, *entry;
996 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
997 e = &vcpu->arch.cpuid_entries[i];
998 if (e->function == 0x80000001) {
1003 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1004 entry->edx &= ~(1 << 20);
1005 printk(KERN_INFO "kvm: guest NX capability removed\n");
1009 /* when an old userspace process fills a new kernel module */
1010 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1011 struct kvm_cpuid *cpuid,
1012 struct kvm_cpuid_entry __user *entries)
1015 struct kvm_cpuid_entry *cpuid_entries;
1018 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1021 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1025 if (copy_from_user(cpuid_entries, entries,
1026 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1028 for (i = 0; i < cpuid->nent; i++) {
1029 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1030 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1031 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1032 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1033 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1034 vcpu->arch.cpuid_entries[i].index = 0;
1035 vcpu->arch.cpuid_entries[i].flags = 0;
1036 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1037 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1038 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1040 vcpu->arch.cpuid_nent = cpuid->nent;
1041 cpuid_fix_nx_cap(vcpu);
1045 vfree(cpuid_entries);
1050 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1051 struct kvm_cpuid2 *cpuid,
1052 struct kvm_cpuid_entry2 __user *entries)
1057 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1060 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1061 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1063 vcpu->arch.cpuid_nent = cpuid->nent;
1070 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1071 struct kvm_cpuid2 *cpuid,
1072 struct kvm_cpuid_entry2 __user *entries)
1077 if (cpuid->nent < vcpu->arch.cpuid_nent)
1080 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1081 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1086 cpuid->nent = vcpu->arch.cpuid_nent;
1090 static inline u32 bit(int bitno)
1092 return 1 << (bitno & 31);
1095 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1098 entry->function = function;
1099 entry->index = index;
1100 cpuid_count(entry->function, entry->index,
1101 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1105 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1106 u32 index, int *nent, int maxnent)
1108 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1109 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1110 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1111 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1112 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1113 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1114 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1115 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1116 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1117 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1118 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1119 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1120 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1121 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1122 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1123 bit(X86_FEATURE_PGE) |
1124 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1125 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1126 bit(X86_FEATURE_SYSCALL) |
1127 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1128 #ifdef CONFIG_X86_64
1129 bit(X86_FEATURE_LM) |
1131 bit(X86_FEATURE_MMXEXT) |
1132 bit(X86_FEATURE_3DNOWEXT) |
1133 bit(X86_FEATURE_3DNOW);
1134 const u32 kvm_supported_word3_x86_features =
1135 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1136 const u32 kvm_supported_word6_x86_features =
1137 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1139 /* all func 2 cpuid_count() should be called on the same cpu */
1141 do_cpuid_1_ent(entry, function, index);
1146 entry->eax = min(entry->eax, (u32)0xb);
1149 entry->edx &= kvm_supported_word0_x86_features;
1150 entry->ecx &= kvm_supported_word3_x86_features;
1152 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1153 * may return different values. This forces us to get_cpu() before
1154 * issuing the first command, and also to emulate this annoying behavior
1155 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1157 int t, times = entry->eax & 0xff;
1159 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1160 for (t = 1; t < times && *nent < maxnent; ++t) {
1161 do_cpuid_1_ent(&entry[t], function, 0);
1162 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1167 /* function 4 and 0xb have additional index. */
1171 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1172 /* read more entries until cache_type is zero */
1173 for (i = 1; *nent < maxnent; ++i) {
1174 cache_type = entry[i - 1].eax & 0x1f;
1177 do_cpuid_1_ent(&entry[i], function, i);
1179 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1187 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1188 /* read more entries until level_type is zero */
1189 for (i = 1; *nent < maxnent; ++i) {
1190 level_type = entry[i - 1].ecx & 0xff;
1193 do_cpuid_1_ent(&entry[i], function, i);
1195 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1201 entry->eax = min(entry->eax, 0x8000001a);
1204 entry->edx &= kvm_supported_word1_x86_features;
1205 entry->ecx &= kvm_supported_word6_x86_features;
1211 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1212 struct kvm_cpuid_entry2 __user *entries)
1214 struct kvm_cpuid_entry2 *cpuid_entries;
1215 int limit, nent = 0, r = -E2BIG;
1218 if (cpuid->nent < 1)
1221 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1225 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1226 limit = cpuid_entries[0].eax;
1227 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1228 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1229 &nent, cpuid->nent);
1231 if (nent >= cpuid->nent)
1234 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1235 limit = cpuid_entries[nent - 1].eax;
1236 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1237 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1238 &nent, cpuid->nent);
1240 if (copy_to_user(entries, cpuid_entries,
1241 nent * sizeof(struct kvm_cpuid_entry2)))
1247 vfree(cpuid_entries);
1252 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1253 struct kvm_lapic_state *s)
1256 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1262 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1263 struct kvm_lapic_state *s)
1266 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1267 kvm_apic_post_state_restore(vcpu);
1273 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1274 struct kvm_interrupt *irq)
1276 if (irq->irq < 0 || irq->irq >= 256)
1278 if (irqchip_in_kernel(vcpu->kvm))
1282 set_bit(irq->irq, vcpu->arch.irq_pending);
1283 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1290 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1291 struct kvm_tpr_access_ctl *tac)
1295 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1299 long kvm_arch_vcpu_ioctl(struct file *filp,
1300 unsigned int ioctl, unsigned long arg)
1302 struct kvm_vcpu *vcpu = filp->private_data;
1303 void __user *argp = (void __user *)arg;
1307 case KVM_GET_LAPIC: {
1308 struct kvm_lapic_state lapic;
1310 memset(&lapic, 0, sizeof lapic);
1311 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
1315 if (copy_to_user(argp, &lapic, sizeof lapic))
1320 case KVM_SET_LAPIC: {
1321 struct kvm_lapic_state lapic;
1324 if (copy_from_user(&lapic, argp, sizeof lapic))
1326 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
1332 case KVM_INTERRUPT: {
1333 struct kvm_interrupt irq;
1336 if (copy_from_user(&irq, argp, sizeof irq))
1338 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1344 case KVM_SET_CPUID: {
1345 struct kvm_cpuid __user *cpuid_arg = argp;
1346 struct kvm_cpuid cpuid;
1349 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1351 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1356 case KVM_SET_CPUID2: {
1357 struct kvm_cpuid2 __user *cpuid_arg = argp;
1358 struct kvm_cpuid2 cpuid;
1361 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1363 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1364 cpuid_arg->entries);
1369 case KVM_GET_CPUID2: {
1370 struct kvm_cpuid2 __user *cpuid_arg = argp;
1371 struct kvm_cpuid2 cpuid;
1374 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1376 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1377 cpuid_arg->entries);
1381 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1387 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1390 r = msr_io(vcpu, argp, do_set_msr, 0);
1392 case KVM_TPR_ACCESS_REPORTING: {
1393 struct kvm_tpr_access_ctl tac;
1396 if (copy_from_user(&tac, argp, sizeof tac))
1398 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1402 if (copy_to_user(argp, &tac, sizeof tac))
1407 case KVM_SET_VAPIC_ADDR: {
1408 struct kvm_vapic_addr va;
1411 if (!irqchip_in_kernel(vcpu->kvm))
1414 if (copy_from_user(&va, argp, sizeof va))
1417 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1427 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1431 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1433 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1437 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1438 u32 kvm_nr_mmu_pages)
1440 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1443 down_write(&kvm->slots_lock);
1445 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1446 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1448 up_write(&kvm->slots_lock);
1452 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1454 return kvm->arch.n_alloc_mmu_pages;
1457 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1460 struct kvm_mem_alias *alias;
1462 for (i = 0; i < kvm->arch.naliases; ++i) {
1463 alias = &kvm->arch.aliases[i];
1464 if (gfn >= alias->base_gfn
1465 && gfn < alias->base_gfn + alias->npages)
1466 return alias->target_gfn + gfn - alias->base_gfn;
1472 * Set a new alias region. Aliases map a portion of physical memory into
1473 * another portion. This is useful for memory windows, for example the PC
1476 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1477 struct kvm_memory_alias *alias)
1480 struct kvm_mem_alias *p;
1483 /* General sanity checks */
1484 if (alias->memory_size & (PAGE_SIZE - 1))
1486 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1488 if (alias->slot >= KVM_ALIAS_SLOTS)
1490 if (alias->guest_phys_addr + alias->memory_size
1491 < alias->guest_phys_addr)
1493 if (alias->target_phys_addr + alias->memory_size
1494 < alias->target_phys_addr)
1497 down_write(&kvm->slots_lock);
1499 p = &kvm->arch.aliases[alias->slot];
1500 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1501 p->npages = alias->memory_size >> PAGE_SHIFT;
1502 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1504 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1505 if (kvm->arch.aliases[n - 1].npages)
1507 kvm->arch.naliases = n;
1509 kvm_mmu_zap_all(kvm);
1511 up_write(&kvm->slots_lock);
1519 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1524 switch (chip->chip_id) {
1525 case KVM_IRQCHIP_PIC_MASTER:
1526 memcpy(&chip->chip.pic,
1527 &pic_irqchip(kvm)->pics[0],
1528 sizeof(struct kvm_pic_state));
1530 case KVM_IRQCHIP_PIC_SLAVE:
1531 memcpy(&chip->chip.pic,
1532 &pic_irqchip(kvm)->pics[1],
1533 sizeof(struct kvm_pic_state));
1535 case KVM_IRQCHIP_IOAPIC:
1536 memcpy(&chip->chip.ioapic,
1537 ioapic_irqchip(kvm),
1538 sizeof(struct kvm_ioapic_state));
1547 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1552 switch (chip->chip_id) {
1553 case KVM_IRQCHIP_PIC_MASTER:
1554 memcpy(&pic_irqchip(kvm)->pics[0],
1556 sizeof(struct kvm_pic_state));
1558 case KVM_IRQCHIP_PIC_SLAVE:
1559 memcpy(&pic_irqchip(kvm)->pics[1],
1561 sizeof(struct kvm_pic_state));
1563 case KVM_IRQCHIP_IOAPIC:
1564 memcpy(ioapic_irqchip(kvm),
1566 sizeof(struct kvm_ioapic_state));
1572 kvm_pic_update_irq(pic_irqchip(kvm));
1576 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1580 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1584 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1588 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1589 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1594 * Get (and clear) the dirty memory log for a memory slot.
1596 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1597 struct kvm_dirty_log *log)
1601 struct kvm_memory_slot *memslot;
1604 down_write(&kvm->slots_lock);
1606 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1610 /* If nothing is dirty, don't bother messing with page tables. */
1612 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1613 kvm_flush_remote_tlbs(kvm);
1614 memslot = &kvm->memslots[log->slot];
1615 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1616 memset(memslot->dirty_bitmap, 0, n);
1620 up_write(&kvm->slots_lock);
1624 long kvm_arch_vm_ioctl(struct file *filp,
1625 unsigned int ioctl, unsigned long arg)
1627 struct kvm *kvm = filp->private_data;
1628 void __user *argp = (void __user *)arg;
1632 case KVM_SET_TSS_ADDR:
1633 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1637 case KVM_SET_MEMORY_REGION: {
1638 struct kvm_memory_region kvm_mem;
1639 struct kvm_userspace_memory_region kvm_userspace_mem;
1642 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1644 kvm_userspace_mem.slot = kvm_mem.slot;
1645 kvm_userspace_mem.flags = kvm_mem.flags;
1646 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1647 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1648 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1653 case KVM_SET_NR_MMU_PAGES:
1654 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1658 case KVM_GET_NR_MMU_PAGES:
1659 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1661 case KVM_SET_MEMORY_ALIAS: {
1662 struct kvm_memory_alias alias;
1665 if (copy_from_user(&alias, argp, sizeof alias))
1667 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1672 case KVM_CREATE_IRQCHIP:
1674 kvm->arch.vpic = kvm_create_pic(kvm);
1675 if (kvm->arch.vpic) {
1676 r = kvm_ioapic_init(kvm);
1678 kfree(kvm->arch.vpic);
1679 kvm->arch.vpic = NULL;
1685 case KVM_CREATE_PIT:
1687 kvm->arch.vpit = kvm_create_pit(kvm);
1691 case KVM_IRQ_LINE: {
1692 struct kvm_irq_level irq_event;
1695 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1697 if (irqchip_in_kernel(kvm)) {
1698 mutex_lock(&kvm->lock);
1699 if (irq_event.irq < 16)
1700 kvm_pic_set_irq(pic_irqchip(kvm),
1703 kvm_ioapic_set_irq(kvm->arch.vioapic,
1706 mutex_unlock(&kvm->lock);
1711 case KVM_GET_IRQCHIP: {
1712 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1713 struct kvm_irqchip chip;
1716 if (copy_from_user(&chip, argp, sizeof chip))
1719 if (!irqchip_in_kernel(kvm))
1721 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1725 if (copy_to_user(argp, &chip, sizeof chip))
1730 case KVM_SET_IRQCHIP: {
1731 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1732 struct kvm_irqchip chip;
1735 if (copy_from_user(&chip, argp, sizeof chip))
1738 if (!irqchip_in_kernel(kvm))
1740 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1747 struct kvm_pit_state ps;
1749 if (copy_from_user(&ps, argp, sizeof ps))
1752 if (!kvm->arch.vpit)
1754 r = kvm_vm_ioctl_get_pit(kvm, &ps);
1758 if (copy_to_user(argp, &ps, sizeof ps))
1764 struct kvm_pit_state ps;
1766 if (copy_from_user(&ps, argp, sizeof ps))
1769 if (!kvm->arch.vpit)
1771 r = kvm_vm_ioctl_set_pit(kvm, &ps);
1784 static void kvm_init_msr_list(void)
1789 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1790 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1793 msrs_to_save[j] = msrs_to_save[i];
1796 num_msrs_to_save = j;
1800 * Only apic need an MMIO device hook, so shortcut now..
1802 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1803 gpa_t addr, int len,
1806 struct kvm_io_device *dev;
1808 if (vcpu->arch.apic) {
1809 dev = &vcpu->arch.apic->dev;
1810 if (dev->in_range(dev, addr, len, is_write))
1817 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1818 gpa_t addr, int len,
1821 struct kvm_io_device *dev;
1823 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
1825 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
1830 int emulator_read_std(unsigned long addr,
1833 struct kvm_vcpu *vcpu)
1836 int r = X86EMUL_CONTINUE;
1839 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1840 unsigned offset = addr & (PAGE_SIZE-1);
1841 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1844 if (gpa == UNMAPPED_GVA) {
1845 r = X86EMUL_PROPAGATE_FAULT;
1848 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1850 r = X86EMUL_UNHANDLEABLE;
1861 EXPORT_SYMBOL_GPL(emulator_read_std);
1863 static int emulator_read_emulated(unsigned long addr,
1866 struct kvm_vcpu *vcpu)
1868 struct kvm_io_device *mmio_dev;
1871 if (vcpu->mmio_read_completed) {
1872 memcpy(val, vcpu->mmio_data, bytes);
1873 vcpu->mmio_read_completed = 0;
1874 return X86EMUL_CONTINUE;
1877 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1879 /* For APIC access vmexit */
1880 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1883 if (emulator_read_std(addr, val, bytes, vcpu)
1884 == X86EMUL_CONTINUE)
1885 return X86EMUL_CONTINUE;
1886 if (gpa == UNMAPPED_GVA)
1887 return X86EMUL_PROPAGATE_FAULT;
1891 * Is this MMIO handled locally?
1893 mutex_lock(&vcpu->kvm->lock);
1894 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
1896 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1897 mutex_unlock(&vcpu->kvm->lock);
1898 return X86EMUL_CONTINUE;
1900 mutex_unlock(&vcpu->kvm->lock);
1902 vcpu->mmio_needed = 1;
1903 vcpu->mmio_phys_addr = gpa;
1904 vcpu->mmio_size = bytes;
1905 vcpu->mmio_is_write = 0;
1907 return X86EMUL_UNHANDLEABLE;
1910 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1911 const void *val, int bytes)
1915 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1918 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1922 static int emulator_write_emulated_onepage(unsigned long addr,
1925 struct kvm_vcpu *vcpu)
1927 struct kvm_io_device *mmio_dev;
1930 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1932 if (gpa == UNMAPPED_GVA) {
1933 kvm_inject_page_fault(vcpu, addr, 2);
1934 return X86EMUL_PROPAGATE_FAULT;
1937 /* For APIC access vmexit */
1938 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1941 if (emulator_write_phys(vcpu, gpa, val, bytes))
1942 return X86EMUL_CONTINUE;
1946 * Is this MMIO handled locally?
1948 mutex_lock(&vcpu->kvm->lock);
1949 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
1951 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1952 mutex_unlock(&vcpu->kvm->lock);
1953 return X86EMUL_CONTINUE;
1955 mutex_unlock(&vcpu->kvm->lock);
1957 vcpu->mmio_needed = 1;
1958 vcpu->mmio_phys_addr = gpa;
1959 vcpu->mmio_size = bytes;
1960 vcpu->mmio_is_write = 1;
1961 memcpy(vcpu->mmio_data, val, bytes);
1963 return X86EMUL_CONTINUE;
1966 int emulator_write_emulated(unsigned long addr,
1969 struct kvm_vcpu *vcpu)
1971 /* Crossing a page boundary? */
1972 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1975 now = -addr & ~PAGE_MASK;
1976 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1977 if (rc != X86EMUL_CONTINUE)
1983 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1985 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1987 static int emulator_cmpxchg_emulated(unsigned long addr,
1991 struct kvm_vcpu *vcpu)
1993 static int reported;
1997 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1999 #ifndef CONFIG_X86_64
2000 /* guests cmpxchg8b have to be emulated atomically */
2007 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2009 if (gpa == UNMAPPED_GVA ||
2010 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2013 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2018 down_read(¤t->mm->mmap_sem);
2019 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2020 up_read(¤t->mm->mmap_sem);
2022 kaddr = kmap_atomic(page, KM_USER0);
2023 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2024 kunmap_atomic(kaddr, KM_USER0);
2025 kvm_release_page_dirty(page);
2030 return emulator_write_emulated(addr, new, bytes, vcpu);
2033 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2035 return kvm_x86_ops->get_segment_base(vcpu, seg);
2038 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2040 return X86EMUL_CONTINUE;
2043 int emulate_clts(struct kvm_vcpu *vcpu)
2045 KVMTRACE_0D(CLTS, vcpu, handler);
2046 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2047 return X86EMUL_CONTINUE;
2050 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2052 struct kvm_vcpu *vcpu = ctxt->vcpu;
2056 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2057 return X86EMUL_CONTINUE;
2059 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2060 return X86EMUL_UNHANDLEABLE;
2064 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2066 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2069 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2071 /* FIXME: better handling */
2072 return X86EMUL_UNHANDLEABLE;
2074 return X86EMUL_CONTINUE;
2077 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2079 static int reported;
2081 unsigned long rip = vcpu->arch.rip;
2082 unsigned long rip_linear;
2084 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2089 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2091 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2092 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2095 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2097 static struct x86_emulate_ops emulate_ops = {
2098 .read_std = emulator_read_std,
2099 .read_emulated = emulator_read_emulated,
2100 .write_emulated = emulator_write_emulated,
2101 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2104 int emulate_instruction(struct kvm_vcpu *vcpu,
2105 struct kvm_run *run,
2111 struct decode_cache *c;
2113 vcpu->arch.mmio_fault_cr2 = cr2;
2114 kvm_x86_ops->cache_regs(vcpu);
2116 vcpu->mmio_is_write = 0;
2117 vcpu->arch.pio.string = 0;
2119 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2121 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2123 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2124 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2125 vcpu->arch.emulate_ctxt.mode =
2126 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2127 ? X86EMUL_MODE_REAL : cs_l
2128 ? X86EMUL_MODE_PROT64 : cs_db
2129 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2131 if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
2132 vcpu->arch.emulate_ctxt.cs_base = 0;
2133 vcpu->arch.emulate_ctxt.ds_base = 0;
2134 vcpu->arch.emulate_ctxt.es_base = 0;
2135 vcpu->arch.emulate_ctxt.ss_base = 0;
2137 vcpu->arch.emulate_ctxt.cs_base =
2138 get_segment_base(vcpu, VCPU_SREG_CS);
2139 vcpu->arch.emulate_ctxt.ds_base =
2140 get_segment_base(vcpu, VCPU_SREG_DS);
2141 vcpu->arch.emulate_ctxt.es_base =
2142 get_segment_base(vcpu, VCPU_SREG_ES);
2143 vcpu->arch.emulate_ctxt.ss_base =
2144 get_segment_base(vcpu, VCPU_SREG_SS);
2147 vcpu->arch.emulate_ctxt.gs_base =
2148 get_segment_base(vcpu, VCPU_SREG_GS);
2149 vcpu->arch.emulate_ctxt.fs_base =
2150 get_segment_base(vcpu, VCPU_SREG_FS);
2152 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2154 /* Reject the instructions other than VMCALL/VMMCALL when
2155 * try to emulate invalid opcode */
2156 c = &vcpu->arch.emulate_ctxt.decode;
2157 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2158 (!(c->twobyte && c->b == 0x01 &&
2159 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2160 c->modrm_mod == 3 && c->modrm_rm == 1)))
2161 return EMULATE_FAIL;
2163 ++vcpu->stat.insn_emulation;
2165 ++vcpu->stat.insn_emulation_fail;
2166 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2167 return EMULATE_DONE;
2168 return EMULATE_FAIL;
2172 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2174 if (vcpu->arch.pio.string)
2175 return EMULATE_DO_MMIO;
2177 if ((r || vcpu->mmio_is_write) && run) {
2178 run->exit_reason = KVM_EXIT_MMIO;
2179 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2180 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2181 run->mmio.len = vcpu->mmio_size;
2182 run->mmio.is_write = vcpu->mmio_is_write;
2186 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2187 return EMULATE_DONE;
2188 if (!vcpu->mmio_needed) {
2189 kvm_report_emulation_failure(vcpu, "mmio");
2190 return EMULATE_FAIL;
2192 return EMULATE_DO_MMIO;
2195 kvm_x86_ops->decache_regs(vcpu);
2196 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2198 if (vcpu->mmio_is_write) {
2199 vcpu->mmio_needed = 0;
2200 return EMULATE_DO_MMIO;
2203 return EMULATE_DONE;
2205 EXPORT_SYMBOL_GPL(emulate_instruction);
2207 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2211 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2212 if (vcpu->arch.pio.guest_pages[i]) {
2213 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2214 vcpu->arch.pio.guest_pages[i] = NULL;
2218 static int pio_copy_data(struct kvm_vcpu *vcpu)
2220 void *p = vcpu->arch.pio_data;
2223 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2225 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2228 free_pio_guest_pages(vcpu);
2231 q += vcpu->arch.pio.guest_page_offset;
2232 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2233 if (vcpu->arch.pio.in)
2234 memcpy(q, p, bytes);
2236 memcpy(p, q, bytes);
2237 q -= vcpu->arch.pio.guest_page_offset;
2239 free_pio_guest_pages(vcpu);
2243 int complete_pio(struct kvm_vcpu *vcpu)
2245 struct kvm_pio_request *io = &vcpu->arch.pio;
2249 kvm_x86_ops->cache_regs(vcpu);
2253 memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2257 r = pio_copy_data(vcpu);
2259 kvm_x86_ops->cache_regs(vcpu);
2266 delta *= io->cur_count;
2268 * The size of the register should really depend on
2269 * current address size.
2271 vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2277 vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2279 vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2282 kvm_x86_ops->decache_regs(vcpu);
2284 io->count -= io->cur_count;
2290 static void kernel_pio(struct kvm_io_device *pio_dev,
2291 struct kvm_vcpu *vcpu,
2294 /* TODO: String I/O for in kernel device */
2296 mutex_lock(&vcpu->kvm->lock);
2297 if (vcpu->arch.pio.in)
2298 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2299 vcpu->arch.pio.size,
2302 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2303 vcpu->arch.pio.size,
2305 mutex_unlock(&vcpu->kvm->lock);
2308 static void pio_string_write(struct kvm_io_device *pio_dev,
2309 struct kvm_vcpu *vcpu)
2311 struct kvm_pio_request *io = &vcpu->arch.pio;
2312 void *pd = vcpu->arch.pio_data;
2315 mutex_lock(&vcpu->kvm->lock);
2316 for (i = 0; i < io->cur_count; i++) {
2317 kvm_iodevice_write(pio_dev, io->port,
2322 mutex_unlock(&vcpu->kvm->lock);
2325 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2326 gpa_t addr, int len,
2329 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2332 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2333 int size, unsigned port)
2335 struct kvm_io_device *pio_dev;
2337 vcpu->run->exit_reason = KVM_EXIT_IO;
2338 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2339 vcpu->run->io.size = vcpu->arch.pio.size = size;
2340 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2341 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2342 vcpu->run->io.port = vcpu->arch.pio.port = port;
2343 vcpu->arch.pio.in = in;
2344 vcpu->arch.pio.string = 0;
2345 vcpu->arch.pio.down = 0;
2346 vcpu->arch.pio.guest_page_offset = 0;
2347 vcpu->arch.pio.rep = 0;
2349 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2350 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2353 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2356 kvm_x86_ops->cache_regs(vcpu);
2357 memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2359 kvm_x86_ops->skip_emulated_instruction(vcpu);
2361 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2363 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2369 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2371 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2372 int size, unsigned long count, int down,
2373 gva_t address, int rep, unsigned port)
2375 unsigned now, in_page;
2379 struct kvm_io_device *pio_dev;
2381 vcpu->run->exit_reason = KVM_EXIT_IO;
2382 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2383 vcpu->run->io.size = vcpu->arch.pio.size = size;
2384 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2385 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2386 vcpu->run->io.port = vcpu->arch.pio.port = port;
2387 vcpu->arch.pio.in = in;
2388 vcpu->arch.pio.string = 1;
2389 vcpu->arch.pio.down = down;
2390 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2391 vcpu->arch.pio.rep = rep;
2393 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2394 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2397 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2401 kvm_x86_ops->skip_emulated_instruction(vcpu);
2406 in_page = PAGE_SIZE - offset_in_page(address);
2408 in_page = offset_in_page(address) + size;
2409 now = min(count, (unsigned long)in_page / size);
2412 * String I/O straddles page boundary. Pin two guest pages
2413 * so that we satisfy atomicity constraints. Do just one
2414 * transaction to avoid complexity.
2421 * String I/O in reverse. Yuck. Kill the guest, fix later.
2423 pr_unimpl(vcpu, "guest string pio down\n");
2424 kvm_inject_gp(vcpu, 0);
2427 vcpu->run->io.count = now;
2428 vcpu->arch.pio.cur_count = now;
2430 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2431 kvm_x86_ops->skip_emulated_instruction(vcpu);
2433 for (i = 0; i < nr_pages; ++i) {
2434 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2435 vcpu->arch.pio.guest_pages[i] = page;
2437 kvm_inject_gp(vcpu, 0);
2438 free_pio_guest_pages(vcpu);
2443 pio_dev = vcpu_find_pio_dev(vcpu, port,
2444 vcpu->arch.pio.cur_count,
2445 !vcpu->arch.pio.in);
2446 if (!vcpu->arch.pio.in) {
2447 /* string PIO write */
2448 ret = pio_copy_data(vcpu);
2449 if (ret >= 0 && pio_dev) {
2450 pio_string_write(pio_dev, vcpu);
2452 if (vcpu->arch.pio.count == 0)
2456 pr_unimpl(vcpu, "no string pio read support yet, "
2457 "port %x size %d count %ld\n",
2462 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2464 int kvm_arch_init(void *opaque)
2467 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2470 printk(KERN_ERR "kvm: already loaded the other module\n");
2475 if (!ops->cpu_has_kvm_support()) {
2476 printk(KERN_ERR "kvm: no hardware support\n");
2480 if (ops->disabled_by_bios()) {
2481 printk(KERN_ERR "kvm: disabled by bios\n");
2486 r = kvm_mmu_module_init();
2490 kvm_init_msr_list();
2493 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2494 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2495 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2496 PT_DIRTY_MASK, PT64_NX_MASK, 0);
2503 void kvm_arch_exit(void)
2506 kvm_mmu_module_exit();
2509 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2511 ++vcpu->stat.halt_exits;
2512 KVMTRACE_0D(HLT, vcpu, handler);
2513 if (irqchip_in_kernel(vcpu->kvm)) {
2514 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2515 up_read(&vcpu->kvm->slots_lock);
2516 kvm_vcpu_block(vcpu);
2517 down_read(&vcpu->kvm->slots_lock);
2518 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
2522 vcpu->run->exit_reason = KVM_EXIT_HLT;
2526 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2528 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2531 if (is_long_mode(vcpu))
2534 return a0 | ((gpa_t)a1 << 32);
2537 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2539 unsigned long nr, a0, a1, a2, a3, ret;
2542 kvm_x86_ops->cache_regs(vcpu);
2544 nr = vcpu->arch.regs[VCPU_REGS_RAX];
2545 a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2546 a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2547 a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2548 a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2550 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2552 if (!is_long_mode(vcpu)) {
2561 case KVM_HC_VAPIC_POLL_IRQ:
2565 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2571 vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2572 kvm_x86_ops->decache_regs(vcpu);
2573 ++vcpu->stat.hypercalls;
2576 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2578 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2580 char instruction[3];
2585 * Blow out the MMU to ensure that no other VCPU has an active mapping
2586 * to ensure that the updated hypercall appears atomically across all
2589 kvm_mmu_zap_all(vcpu->kvm);
2591 kvm_x86_ops->cache_regs(vcpu);
2592 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2593 if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2594 != X86EMUL_CONTINUE)
2600 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2602 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2605 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2607 struct descriptor_table dt = { limit, base };
2609 kvm_x86_ops->set_gdt(vcpu, &dt);
2612 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2614 struct descriptor_table dt = { limit, base };
2616 kvm_x86_ops->set_idt(vcpu, &dt);
2619 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2620 unsigned long *rflags)
2622 kvm_lmsw(vcpu, msw);
2623 *rflags = kvm_x86_ops->get_rflags(vcpu);
2626 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2628 unsigned long value;
2630 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2633 value = vcpu->arch.cr0;
2636 value = vcpu->arch.cr2;
2639 value = vcpu->arch.cr3;
2642 value = vcpu->arch.cr4;
2645 value = kvm_get_cr8(vcpu);
2648 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2651 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2652 (u32)((u64)value >> 32), handler);
2657 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2658 unsigned long *rflags)
2660 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2661 (u32)((u64)val >> 32), handler);
2665 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2666 *rflags = kvm_x86_ops->get_rflags(vcpu);
2669 vcpu->arch.cr2 = val;
2672 kvm_set_cr3(vcpu, val);
2675 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2678 kvm_set_cr8(vcpu, val & 0xfUL);
2681 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2685 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2687 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2688 int j, nent = vcpu->arch.cpuid_nent;
2690 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2691 /* when no next entry is found, the current entry[i] is reselected */
2692 for (j = i + 1; j == i; j = (j + 1) % nent) {
2693 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2694 if (ej->function == e->function) {
2695 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2699 return 0; /* silence gcc, even though control never reaches here */
2702 /* find an entry with matching function, matching index (if needed), and that
2703 * should be read next (if it's stateful) */
2704 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2705 u32 function, u32 index)
2707 if (e->function != function)
2709 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2711 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2712 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2717 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2720 u32 function, index;
2721 struct kvm_cpuid_entry2 *e, *best;
2723 kvm_x86_ops->cache_regs(vcpu);
2724 function = vcpu->arch.regs[VCPU_REGS_RAX];
2725 index = vcpu->arch.regs[VCPU_REGS_RCX];
2726 vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2727 vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2728 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2729 vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2731 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2732 e = &vcpu->arch.cpuid_entries[i];
2733 if (is_matching_cpuid_entry(e, function, index)) {
2734 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2735 move_to_next_stateful_cpuid_entry(vcpu, i);
2740 * Both basic or both extended?
2742 if (((e->function ^ function) & 0x80000000) == 0)
2743 if (!best || e->function > best->function)
2747 vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2748 vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2749 vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2750 vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2752 kvm_x86_ops->decache_regs(vcpu);
2753 kvm_x86_ops->skip_emulated_instruction(vcpu);
2754 KVMTRACE_5D(CPUID, vcpu, function,
2755 (u32)vcpu->arch.regs[VCPU_REGS_RAX],
2756 (u32)vcpu->arch.regs[VCPU_REGS_RBX],
2757 (u32)vcpu->arch.regs[VCPU_REGS_RCX],
2758 (u32)vcpu->arch.regs[VCPU_REGS_RDX], handler);
2760 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2763 * Check if userspace requested an interrupt window, and that the
2764 * interrupt window is open.
2766 * No need to exit to userspace if we already have an interrupt queued.
2768 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2769 struct kvm_run *kvm_run)
2771 return (!vcpu->arch.irq_summary &&
2772 kvm_run->request_interrupt_window &&
2773 vcpu->arch.interrupt_window_open &&
2774 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2777 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2778 struct kvm_run *kvm_run)
2780 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2781 kvm_run->cr8 = kvm_get_cr8(vcpu);
2782 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2783 if (irqchip_in_kernel(vcpu->kvm))
2784 kvm_run->ready_for_interrupt_injection = 1;
2786 kvm_run->ready_for_interrupt_injection =
2787 (vcpu->arch.interrupt_window_open &&
2788 vcpu->arch.irq_summary == 0);
2791 static void vapic_enter(struct kvm_vcpu *vcpu)
2793 struct kvm_lapic *apic = vcpu->arch.apic;
2796 if (!apic || !apic->vapic_addr)
2799 down_read(¤t->mm->mmap_sem);
2800 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2801 up_read(¤t->mm->mmap_sem);
2803 vcpu->arch.apic->vapic_page = page;
2806 static void vapic_exit(struct kvm_vcpu *vcpu)
2808 struct kvm_lapic *apic = vcpu->arch.apic;
2810 if (!apic || !apic->vapic_addr)
2813 kvm_release_page_dirty(apic->vapic_page);
2814 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2817 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2821 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
2822 pr_debug("vcpu %d received sipi with vector # %x\n",
2823 vcpu->vcpu_id, vcpu->arch.sipi_vector);
2824 kvm_lapic_reset(vcpu);
2825 r = kvm_x86_ops->vcpu_reset(vcpu);
2828 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2831 down_read(&vcpu->kvm->slots_lock);
2835 if (vcpu->guest_debug.enabled)
2836 kvm_x86_ops->guest_debug_pre(vcpu);
2840 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2841 kvm_mmu_unload(vcpu);
2843 r = kvm_mmu_reload(vcpu);
2847 if (vcpu->requests) {
2848 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2849 __kvm_migrate_timers(vcpu);
2850 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2851 kvm_x86_ops->tlb_flush(vcpu);
2852 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2854 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2858 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2859 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2865 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
2866 kvm_inject_pending_timer_irqs(vcpu);
2870 kvm_x86_ops->prepare_guest_switch(vcpu);
2871 kvm_load_guest_fpu(vcpu);
2873 local_irq_disable();
2875 if (vcpu->requests || need_resched()) {
2882 if (signal_pending(current)) {
2886 kvm_run->exit_reason = KVM_EXIT_INTR;
2887 ++vcpu->stat.signal_exits;
2891 vcpu->guest_mode = 1;
2893 * Make sure that guest_mode assignment won't happen after
2894 * testing the pending IRQ vector bitmap.
2898 if (vcpu->arch.exception.pending)
2899 __queue_exception(vcpu);
2900 else if (irqchip_in_kernel(vcpu->kvm))
2901 kvm_x86_ops->inject_pending_irq(vcpu);
2903 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2905 kvm_lapic_sync_to_vapic(vcpu);
2907 up_read(&vcpu->kvm->slots_lock);
2912 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
2913 kvm_x86_ops->run(vcpu, kvm_run);
2915 vcpu->guest_mode = 0;
2921 * We must have an instruction between local_irq_enable() and
2922 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2923 * the interrupt shadow. The stat.exits increment will do nicely.
2924 * But we need to prevent reordering, hence this barrier():
2932 down_read(&vcpu->kvm->slots_lock);
2935 * Profile KVM exit RIPs:
2937 if (unlikely(prof_on == KVM_PROFILING)) {
2938 kvm_x86_ops->cache_regs(vcpu);
2939 profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2942 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2943 vcpu->arch.exception.pending = false;
2945 kvm_lapic_sync_from_vapic(vcpu);
2947 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2950 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2952 kvm_run->exit_reason = KVM_EXIT_INTR;
2953 ++vcpu->stat.request_irq_exits;
2956 if (!need_resched())
2961 up_read(&vcpu->kvm->slots_lock);
2964 down_read(&vcpu->kvm->slots_lock);
2968 post_kvm_run_save(vcpu, kvm_run);
2970 down_read(&vcpu->kvm->slots_lock);
2972 up_read(&vcpu->kvm->slots_lock);
2977 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2984 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
2985 kvm_vcpu_block(vcpu);
2990 if (vcpu->sigset_active)
2991 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2993 /* re-sync apic's tpr */
2994 if (!irqchip_in_kernel(vcpu->kvm))
2995 kvm_set_cr8(vcpu, kvm_run->cr8);
2997 if (vcpu->arch.pio.cur_count) {
2998 r = complete_pio(vcpu);
3002 #if CONFIG_HAS_IOMEM
3003 if (vcpu->mmio_needed) {
3004 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3005 vcpu->mmio_read_completed = 1;
3006 vcpu->mmio_needed = 0;
3008 down_read(&vcpu->kvm->slots_lock);
3009 r = emulate_instruction(vcpu, kvm_run,
3010 vcpu->arch.mmio_fault_cr2, 0,
3011 EMULTYPE_NO_DECODE);
3012 up_read(&vcpu->kvm->slots_lock);
3013 if (r == EMULATE_DO_MMIO) {
3015 * Read-modify-write. Back to userspace.
3022 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
3023 kvm_x86_ops->cache_regs(vcpu);
3024 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
3025 kvm_x86_ops->decache_regs(vcpu);
3028 r = __vcpu_run(vcpu, kvm_run);
3031 if (vcpu->sigset_active)
3032 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3038 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3042 kvm_x86_ops->cache_regs(vcpu);
3044 regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
3045 regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
3046 regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
3047 regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
3048 regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
3049 regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
3050 regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3051 regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
3052 #ifdef CONFIG_X86_64
3053 regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
3054 regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
3055 regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
3056 regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
3057 regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
3058 regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
3059 regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
3060 regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
3063 regs->rip = vcpu->arch.rip;
3064 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3067 * Don't leak debug flags in case they were set for guest debugging
3069 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
3070 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3077 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3081 vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
3082 vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
3083 vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
3084 vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
3085 vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
3086 vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
3087 vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
3088 vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
3089 #ifdef CONFIG_X86_64
3090 vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
3091 vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
3092 vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
3093 vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
3094 vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
3095 vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
3096 vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
3097 vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
3100 vcpu->arch.rip = regs->rip;
3101 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3103 kvm_x86_ops->decache_regs(vcpu);
3105 vcpu->arch.exception.pending = false;
3112 void kvm_get_segment(struct kvm_vcpu *vcpu,
3113 struct kvm_segment *var, int seg)
3115 kvm_x86_ops->get_segment(vcpu, var, seg);
3118 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3120 struct kvm_segment cs;
3122 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3126 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3128 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3129 struct kvm_sregs *sregs)
3131 struct descriptor_table dt;
3136 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3137 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3138 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3139 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3140 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3141 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3143 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3144 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3146 kvm_x86_ops->get_idt(vcpu, &dt);
3147 sregs->idt.limit = dt.limit;
3148 sregs->idt.base = dt.base;
3149 kvm_x86_ops->get_gdt(vcpu, &dt);
3150 sregs->gdt.limit = dt.limit;
3151 sregs->gdt.base = dt.base;
3153 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3154 sregs->cr0 = vcpu->arch.cr0;
3155 sregs->cr2 = vcpu->arch.cr2;
3156 sregs->cr3 = vcpu->arch.cr3;
3157 sregs->cr4 = vcpu->arch.cr4;
3158 sregs->cr8 = kvm_get_cr8(vcpu);
3159 sregs->efer = vcpu->arch.shadow_efer;
3160 sregs->apic_base = kvm_get_apic_base(vcpu);
3162 if (irqchip_in_kernel(vcpu->kvm)) {
3163 memset(sregs->interrupt_bitmap, 0,
3164 sizeof sregs->interrupt_bitmap);
3165 pending_vec = kvm_x86_ops->get_irq(vcpu);
3166 if (pending_vec >= 0)
3167 set_bit(pending_vec,
3168 (unsigned long *)sregs->interrupt_bitmap);
3170 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3171 sizeof sregs->interrupt_bitmap);
3178 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3179 struct kvm_mp_state *mp_state)
3182 mp_state->mp_state = vcpu->arch.mp_state;
3187 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3188 struct kvm_mp_state *mp_state)
3191 vcpu->arch.mp_state = mp_state->mp_state;
3196 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3197 struct kvm_segment *var, int seg)
3199 kvm_x86_ops->set_segment(vcpu, var, seg);
3202 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3203 struct kvm_segment *kvm_desct)
3205 kvm_desct->base = seg_desc->base0;
3206 kvm_desct->base |= seg_desc->base1 << 16;
3207 kvm_desct->base |= seg_desc->base2 << 24;
3208 kvm_desct->limit = seg_desc->limit0;
3209 kvm_desct->limit |= seg_desc->limit << 16;
3210 kvm_desct->selector = selector;
3211 kvm_desct->type = seg_desc->type;
3212 kvm_desct->present = seg_desc->p;
3213 kvm_desct->dpl = seg_desc->dpl;
3214 kvm_desct->db = seg_desc->d;
3215 kvm_desct->s = seg_desc->s;
3216 kvm_desct->l = seg_desc->l;
3217 kvm_desct->g = seg_desc->g;
3218 kvm_desct->avl = seg_desc->avl;
3220 kvm_desct->unusable = 1;
3222 kvm_desct->unusable = 0;
3223 kvm_desct->padding = 0;
3226 static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
3228 struct descriptor_table *dtable)
3230 if (selector & 1 << 2) {
3231 struct kvm_segment kvm_seg;
3233 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3235 if (kvm_seg.unusable)
3238 dtable->limit = kvm_seg.limit;
3239 dtable->base = kvm_seg.base;
3242 kvm_x86_ops->get_gdt(vcpu, dtable);
3245 /* allowed just for 8 bytes segments */
3246 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3247 struct desc_struct *seg_desc)
3249 struct descriptor_table dtable;
3250 u16 index = selector >> 3;
3252 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3254 if (dtable.limit < index * 8 + 7) {
3255 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3258 return kvm_read_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
3261 /* allowed just for 8 bytes segments */
3262 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3263 struct desc_struct *seg_desc)
3265 struct descriptor_table dtable;
3266 u16 index = selector >> 3;
3268 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3270 if (dtable.limit < index * 8 + 7)
3272 return kvm_write_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
3275 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3276 struct desc_struct *seg_desc)
3280 base_addr = seg_desc->base0;
3281 base_addr |= (seg_desc->base1 << 16);
3282 base_addr |= (seg_desc->base2 << 24);
3287 static int load_tss_segment32(struct kvm_vcpu *vcpu,
3288 struct desc_struct *seg_desc,
3289 struct tss_segment_32 *tss)
3293 base_addr = get_tss_base_addr(vcpu, seg_desc);
3295 return kvm_read_guest(vcpu->kvm, base_addr, tss,
3296 sizeof(struct tss_segment_32));
3299 static int save_tss_segment32(struct kvm_vcpu *vcpu,
3300 struct desc_struct *seg_desc,
3301 struct tss_segment_32 *tss)
3305 base_addr = get_tss_base_addr(vcpu, seg_desc);
3307 return kvm_write_guest(vcpu->kvm, base_addr, tss,
3308 sizeof(struct tss_segment_32));
3311 static int load_tss_segment16(struct kvm_vcpu *vcpu,
3312 struct desc_struct *seg_desc,
3313 struct tss_segment_16 *tss)
3317 base_addr = get_tss_base_addr(vcpu, seg_desc);
3319 return kvm_read_guest(vcpu->kvm, base_addr, tss,
3320 sizeof(struct tss_segment_16));
3323 static int save_tss_segment16(struct kvm_vcpu *vcpu,
3324 struct desc_struct *seg_desc,
3325 struct tss_segment_16 *tss)
3329 base_addr = get_tss_base_addr(vcpu, seg_desc);
3331 return kvm_write_guest(vcpu->kvm, base_addr, tss,
3332 sizeof(struct tss_segment_16));
3335 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3337 struct kvm_segment kvm_seg;
3339 kvm_get_segment(vcpu, &kvm_seg, seg);
3340 return kvm_seg.selector;
3343 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3345 struct kvm_segment *kvm_seg)
3347 struct desc_struct seg_desc;
3349 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3351 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3355 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3356 int type_bits, int seg)
3358 struct kvm_segment kvm_seg;
3360 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3362 kvm_seg.type |= type_bits;
3364 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3365 seg != VCPU_SREG_LDTR)
3367 kvm_seg.unusable = 1;
3369 kvm_set_segment(vcpu, &kvm_seg, seg);
3373 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3374 struct tss_segment_32 *tss)
3376 tss->cr3 = vcpu->arch.cr3;
3377 tss->eip = vcpu->arch.rip;
3378 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3379 tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
3380 tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3381 tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
3382 tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
3383 tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
3384 tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
3385 tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
3386 tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];
3388 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3389 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3390 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3391 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3392 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3393 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3394 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3395 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3398 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3399 struct tss_segment_32 *tss)
3401 kvm_set_cr3(vcpu, tss->cr3);
3403 vcpu->arch.rip = tss->eip;
3404 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3406 vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
3407 vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
3408 vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
3409 vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;