KVM: Add coalesced MMIO support (x86 part)
[linux-2.6.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Avi Kivity   <avi@qumranet.com>
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16
17 #include <linux/kvm_host.h>
18 #include "irq.h"
19 #include "mmu.h"
20 #include "i8254.h"
21 #include "tss.h"
22
23 #include <linux/clocksource.h>
24 #include <linux/kvm.h>
25 #include <linux/fs.h>
26 #include <linux/vmalloc.h>
27 #include <linux/module.h>
28 #include <linux/mman.h>
29 #include <linux/highmem.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/msr.h>
33 #include <asm/desc.h>
34
35 #define MAX_IO_MSRS 256
36 #define CR0_RESERVED_BITS                                               \
37         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
38                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
39                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
40 #define CR4_RESERVED_BITS                                               \
41         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
42                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
43                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
44                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
45
46 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
47 /* EFER defaults:
48  * - enable syscall per default because its emulated by KVM
49  * - enable LME and LMA per default on 64 bit KVM
50  */
51 #ifdef CONFIG_X86_64
52 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
53 #else
54 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
55 #endif
56
57 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
58 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
59
60 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
61                                     struct kvm_cpuid_entry2 __user *entries);
62
63 struct kvm_x86_ops *kvm_x86_ops;
64
65 struct kvm_stats_debugfs_item debugfs_entries[] = {
66         { "pf_fixed", VCPU_STAT(pf_fixed) },
67         { "pf_guest", VCPU_STAT(pf_guest) },
68         { "tlb_flush", VCPU_STAT(tlb_flush) },
69         { "invlpg", VCPU_STAT(invlpg) },
70         { "exits", VCPU_STAT(exits) },
71         { "io_exits", VCPU_STAT(io_exits) },
72         { "mmio_exits", VCPU_STAT(mmio_exits) },
73         { "signal_exits", VCPU_STAT(signal_exits) },
74         { "irq_window", VCPU_STAT(irq_window_exits) },
75         { "nmi_window", VCPU_STAT(nmi_window_exits) },
76         { "halt_exits", VCPU_STAT(halt_exits) },
77         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
78         { "hypercalls", VCPU_STAT(hypercalls) },
79         { "request_irq", VCPU_STAT(request_irq_exits) },
80         { "irq_exits", VCPU_STAT(irq_exits) },
81         { "host_state_reload", VCPU_STAT(host_state_reload) },
82         { "efer_reload", VCPU_STAT(efer_reload) },
83         { "fpu_reload", VCPU_STAT(fpu_reload) },
84         { "insn_emulation", VCPU_STAT(insn_emulation) },
85         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
86         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
87         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
88         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
89         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
90         { "mmu_flooded", VM_STAT(mmu_flooded) },
91         { "mmu_recycled", VM_STAT(mmu_recycled) },
92         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
93         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
94         { "largepages", VM_STAT(lpages) },
95         { NULL }
96 };
97
98
99 unsigned long segment_base(u16 selector)
100 {
101         struct descriptor_table gdt;
102         struct desc_struct *d;
103         unsigned long table_base;
104         unsigned long v;
105
106         if (selector == 0)
107                 return 0;
108
109         asm("sgdt %0" : "=m"(gdt));
110         table_base = gdt.base;
111
112         if (selector & 4) {           /* from ldt */
113                 u16 ldt_selector;
114
115                 asm("sldt %0" : "=g"(ldt_selector));
116                 table_base = segment_base(ldt_selector);
117         }
118         d = (struct desc_struct *)(table_base + (selector & ~7));
119         v = d->base0 | ((unsigned long)d->base1 << 16) |
120                 ((unsigned long)d->base2 << 24);
121 #ifdef CONFIG_X86_64
122         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
123                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
124 #endif
125         return v;
126 }
127 EXPORT_SYMBOL_GPL(segment_base);
128
129 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
130 {
131         if (irqchip_in_kernel(vcpu->kvm))
132                 return vcpu->arch.apic_base;
133         else
134                 return vcpu->arch.apic_base;
135 }
136 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
137
138 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
139 {
140         /* TODO: reserve bits check */
141         if (irqchip_in_kernel(vcpu->kvm))
142                 kvm_lapic_set_base(vcpu, data);
143         else
144                 vcpu->arch.apic_base = data;
145 }
146 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
147
148 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
149 {
150         WARN_ON(vcpu->arch.exception.pending);
151         vcpu->arch.exception.pending = true;
152         vcpu->arch.exception.has_error_code = false;
153         vcpu->arch.exception.nr = nr;
154 }
155 EXPORT_SYMBOL_GPL(kvm_queue_exception);
156
157 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
158                            u32 error_code)
159 {
160         ++vcpu->stat.pf_guest;
161         if (vcpu->arch.exception.pending) {
162                 if (vcpu->arch.exception.nr == PF_VECTOR) {
163                         printk(KERN_DEBUG "kvm: inject_page_fault:"
164                                         " double fault 0x%lx\n", addr);
165                         vcpu->arch.exception.nr = DF_VECTOR;
166                         vcpu->arch.exception.error_code = 0;
167                 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
168                         /* triple fault -> shutdown */
169                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
170                 }
171                 return;
172         }
173         vcpu->arch.cr2 = addr;
174         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
175 }
176
177 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
178 {
179         vcpu->arch.nmi_pending = 1;
180 }
181 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
182
183 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
184 {
185         WARN_ON(vcpu->arch.exception.pending);
186         vcpu->arch.exception.pending = true;
187         vcpu->arch.exception.has_error_code = true;
188         vcpu->arch.exception.nr = nr;
189         vcpu->arch.exception.error_code = error_code;
190 }
191 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
192
193 static void __queue_exception(struct kvm_vcpu *vcpu)
194 {
195         kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
196                                      vcpu->arch.exception.has_error_code,
197                                      vcpu->arch.exception.error_code);
198 }
199
200 /*
201  * Load the pae pdptrs.  Return true is they are all valid.
202  */
203 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
204 {
205         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
206         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
207         int i;
208         int ret;
209         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
210
211         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
212                                   offset * sizeof(u64), sizeof(pdpte));
213         if (ret < 0) {
214                 ret = 0;
215                 goto out;
216         }
217         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
218                 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
219                         ret = 0;
220                         goto out;
221                 }
222         }
223         ret = 1;
224
225         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
226 out:
227
228         return ret;
229 }
230 EXPORT_SYMBOL_GPL(load_pdptrs);
231
232 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
233 {
234         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
235         bool changed = true;
236         int r;
237
238         if (is_long_mode(vcpu) || !is_pae(vcpu))
239                 return false;
240
241         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
242         if (r < 0)
243                 goto out;
244         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
245 out:
246
247         return changed;
248 }
249
250 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
251 {
252         if (cr0 & CR0_RESERVED_BITS) {
253                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
254                        cr0, vcpu->arch.cr0);
255                 kvm_inject_gp(vcpu, 0);
256                 return;
257         }
258
259         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
260                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
261                 kvm_inject_gp(vcpu, 0);
262                 return;
263         }
264
265         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
266                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
267                        "and a clear PE flag\n");
268                 kvm_inject_gp(vcpu, 0);
269                 return;
270         }
271
272         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
273 #ifdef CONFIG_X86_64
274                 if ((vcpu->arch.shadow_efer & EFER_LME)) {
275                         int cs_db, cs_l;
276
277                         if (!is_pae(vcpu)) {
278                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
279                                        "in long mode while PAE is disabled\n");
280                                 kvm_inject_gp(vcpu, 0);
281                                 return;
282                         }
283                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
284                         if (cs_l) {
285                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
286                                        "in long mode while CS.L == 1\n");
287                                 kvm_inject_gp(vcpu, 0);
288                                 return;
289
290                         }
291                 } else
292 #endif
293                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
294                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
295                                "reserved bits\n");
296                         kvm_inject_gp(vcpu, 0);
297                         return;
298                 }
299
300         }
301
302         kvm_x86_ops->set_cr0(vcpu, cr0);
303         vcpu->arch.cr0 = cr0;
304
305         kvm_mmu_reset_context(vcpu);
306         return;
307 }
308 EXPORT_SYMBOL_GPL(kvm_set_cr0);
309
310 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
311 {
312         kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
313         KVMTRACE_1D(LMSW, vcpu,
314                     (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
315                     handler);
316 }
317 EXPORT_SYMBOL_GPL(kvm_lmsw);
318
319 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
320 {
321         if (cr4 & CR4_RESERVED_BITS) {
322                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
323                 kvm_inject_gp(vcpu, 0);
324                 return;
325         }
326
327         if (is_long_mode(vcpu)) {
328                 if (!(cr4 & X86_CR4_PAE)) {
329                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
330                                "in long mode\n");
331                         kvm_inject_gp(vcpu, 0);
332                         return;
333                 }
334         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
335                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
336                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
337                 kvm_inject_gp(vcpu, 0);
338                 return;
339         }
340
341         if (cr4 & X86_CR4_VMXE) {
342                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
343                 kvm_inject_gp(vcpu, 0);
344                 return;
345         }
346         kvm_x86_ops->set_cr4(vcpu, cr4);
347         vcpu->arch.cr4 = cr4;
348         kvm_mmu_reset_context(vcpu);
349 }
350 EXPORT_SYMBOL_GPL(kvm_set_cr4);
351
352 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
353 {
354         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
355                 kvm_mmu_flush_tlb(vcpu);
356                 return;
357         }
358
359         if (is_long_mode(vcpu)) {
360                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
361                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
362                         kvm_inject_gp(vcpu, 0);
363                         return;
364                 }
365         } else {
366                 if (is_pae(vcpu)) {
367                         if (cr3 & CR3_PAE_RESERVED_BITS) {
368                                 printk(KERN_DEBUG
369                                        "set_cr3: #GP, reserved bits\n");
370                                 kvm_inject_gp(vcpu, 0);
371                                 return;
372                         }
373                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
374                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
375                                        "reserved bits\n");
376                                 kvm_inject_gp(vcpu, 0);
377                                 return;
378                         }
379                 }
380                 /*
381                  * We don't check reserved bits in nonpae mode, because
382                  * this isn't enforced, and VMware depends on this.
383                  */
384         }
385
386         /*
387          * Does the new cr3 value map to physical memory? (Note, we
388          * catch an invalid cr3 even in real-mode, because it would
389          * cause trouble later on when we turn on paging anyway.)
390          *
391          * A real CPU would silently accept an invalid cr3 and would
392          * attempt to use it - with largely undefined (and often hard
393          * to debug) behavior on the guest side.
394          */
395         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
396                 kvm_inject_gp(vcpu, 0);
397         else {
398                 vcpu->arch.cr3 = cr3;
399                 vcpu->arch.mmu.new_cr3(vcpu);
400         }
401 }
402 EXPORT_SYMBOL_GPL(kvm_set_cr3);
403
404 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
405 {
406         if (cr8 & CR8_RESERVED_BITS) {
407                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
408                 kvm_inject_gp(vcpu, 0);
409                 return;
410         }
411         if (irqchip_in_kernel(vcpu->kvm))
412                 kvm_lapic_set_tpr(vcpu, cr8);
413         else
414                 vcpu->arch.cr8 = cr8;
415 }
416 EXPORT_SYMBOL_GPL(kvm_set_cr8);
417
418 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
419 {
420         if (irqchip_in_kernel(vcpu->kvm))
421                 return kvm_lapic_get_cr8(vcpu);
422         else
423                 return vcpu->arch.cr8;
424 }
425 EXPORT_SYMBOL_GPL(kvm_get_cr8);
426
427 /*
428  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
429  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
430  *
431  * This list is modified at module load time to reflect the
432  * capabilities of the host cpu.
433  */
434 static u32 msrs_to_save[] = {
435         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
436         MSR_K6_STAR,
437 #ifdef CONFIG_X86_64
438         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
439 #endif
440         MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
441         MSR_IA32_PERF_STATUS,
442 };
443
444 static unsigned num_msrs_to_save;
445
446 static u32 emulated_msrs[] = {
447         MSR_IA32_MISC_ENABLE,
448 };
449
450 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
451 {
452         if (efer & efer_reserved_bits) {
453                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
454                        efer);
455                 kvm_inject_gp(vcpu, 0);
456                 return;
457         }
458
459         if (is_paging(vcpu)
460             && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
461                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
462                 kvm_inject_gp(vcpu, 0);
463                 return;
464         }
465
466         kvm_x86_ops->set_efer(vcpu, efer);
467
468         efer &= ~EFER_LMA;
469         efer |= vcpu->arch.shadow_efer & EFER_LMA;
470
471         vcpu->arch.shadow_efer = efer;
472 }
473
474 void kvm_enable_efer_bits(u64 mask)
475 {
476        efer_reserved_bits &= ~mask;
477 }
478 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
479
480
481 /*
482  * Writes msr value into into the appropriate "register".
483  * Returns 0 on success, non-0 otherwise.
484  * Assumes vcpu_load() was already called.
485  */
486 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
487 {
488         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
489 }
490
491 /*
492  * Adapt set_msr() to msr_io()'s calling convention
493  */
494 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
495 {
496         return kvm_set_msr(vcpu, index, *data);
497 }
498
499 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
500 {
501         static int version;
502         struct pvclock_wall_clock wc;
503         struct timespec now, sys, boot;
504
505         if (!wall_clock)
506                 return;
507
508         version++;
509
510         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
511
512         /*
513          * The guest calculates current wall clock time by adding
514          * system time (updated by kvm_write_guest_time below) to the
515          * wall clock specified here.  guest system time equals host
516          * system time for us, thus we must fill in host boot time here.
517          */
518         now = current_kernel_time();
519         ktime_get_ts(&sys);
520         boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
521
522         wc.sec = boot.tv_sec;
523         wc.nsec = boot.tv_nsec;
524         wc.version = version;
525
526         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
527
528         version++;
529         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
530 }
531
532 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
533 {
534         uint32_t quotient, remainder;
535
536         /* Don't try to replace with do_div(), this one calculates
537          * "(dividend << 32) / divisor" */
538         __asm__ ( "divl %4"
539                   : "=a" (quotient), "=d" (remainder)
540                   : "0" (0), "1" (dividend), "r" (divisor) );
541         return quotient;
542 }
543
544 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
545 {
546         uint64_t nsecs = 1000000000LL;
547         int32_t  shift = 0;
548         uint64_t tps64;
549         uint32_t tps32;
550
551         tps64 = tsc_khz * 1000LL;
552         while (tps64 > nsecs*2) {
553                 tps64 >>= 1;
554                 shift--;
555         }
556
557         tps32 = (uint32_t)tps64;
558         while (tps32 <= (uint32_t)nsecs) {
559                 tps32 <<= 1;
560                 shift++;
561         }
562
563         hv_clock->tsc_shift = shift;
564         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
565
566         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
567                  __FUNCTION__, tsc_khz, hv_clock->tsc_shift,
568                  hv_clock->tsc_to_system_mul);
569 }
570
571 static void kvm_write_guest_time(struct kvm_vcpu *v)
572 {
573         struct timespec ts;
574         unsigned long flags;
575         struct kvm_vcpu_arch *vcpu = &v->arch;
576         void *shared_kaddr;
577
578         if ((!vcpu->time_page))
579                 return;
580
581         if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
582                 kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
583                 vcpu->hv_clock_tsc_khz = tsc_khz;
584         }
585
586         /* Keep irq disabled to prevent changes to the clock */
587         local_irq_save(flags);
588         kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
589                           &vcpu->hv_clock.tsc_timestamp);
590         ktime_get_ts(&ts);
591         local_irq_restore(flags);
592
593         /* With all the info we got, fill in the values */
594
595         vcpu->hv_clock.system_time = ts.tv_nsec +
596                                      (NSEC_PER_SEC * (u64)ts.tv_sec);
597         /*
598          * The interface expects us to write an even number signaling that the
599          * update is finished. Since the guest won't see the intermediate
600          * state, we just increase by 2 at the end.
601          */
602         vcpu->hv_clock.version += 2;
603
604         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
605
606         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
607                sizeof(vcpu->hv_clock));
608
609         kunmap_atomic(shared_kaddr, KM_USER0);
610
611         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
612 }
613
614 static bool msr_mtrr_valid(unsigned msr)
615 {
616         switch (msr) {
617         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
618         case MSR_MTRRfix64K_00000:
619         case MSR_MTRRfix16K_80000:
620         case MSR_MTRRfix16K_A0000:
621         case MSR_MTRRfix4K_C0000:
622         case MSR_MTRRfix4K_C8000:
623         case MSR_MTRRfix4K_D0000:
624         case MSR_MTRRfix4K_D8000:
625         case MSR_MTRRfix4K_E0000:
626         case MSR_MTRRfix4K_E8000:
627         case MSR_MTRRfix4K_F0000:
628         case MSR_MTRRfix4K_F8000:
629         case MSR_MTRRdefType:
630         case MSR_IA32_CR_PAT:
631                 return true;
632         case 0x2f8:
633                 return true;
634         }
635         return false;
636 }
637
638 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
639 {
640         if (!msr_mtrr_valid(msr))
641                 return 1;
642
643         vcpu->arch.mtrr[msr - 0x200] = data;
644         return 0;
645 }
646
647 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
648 {
649         switch (msr) {
650         case MSR_EFER:
651                 set_efer(vcpu, data);
652                 break;
653         case MSR_IA32_MC0_STATUS:
654                 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
655                        __func__, data);
656                 break;
657         case MSR_IA32_MCG_STATUS:
658                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
659                         __func__, data);
660                 break;
661         case MSR_IA32_MCG_CTL:
662                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
663                         __func__, data);
664                 break;
665         case MSR_IA32_UCODE_REV:
666         case MSR_IA32_UCODE_WRITE:
667                 break;
668         case 0x200 ... 0x2ff:
669                 return set_msr_mtrr(vcpu, msr, data);
670         case MSR_IA32_APICBASE:
671                 kvm_set_apic_base(vcpu, data);
672                 break;
673         case MSR_IA32_MISC_ENABLE:
674                 vcpu->arch.ia32_misc_enable_msr = data;
675                 break;
676         case MSR_KVM_WALL_CLOCK:
677                 vcpu->kvm->arch.wall_clock = data;
678                 kvm_write_wall_clock(vcpu->kvm, data);
679                 break;
680         case MSR_KVM_SYSTEM_TIME: {
681                 if (vcpu->arch.time_page) {
682                         kvm_release_page_dirty(vcpu->arch.time_page);
683                         vcpu->arch.time_page = NULL;
684                 }
685
686                 vcpu->arch.time = data;
687
688                 /* we verify if the enable bit is set... */
689                 if (!(data & 1))
690                         break;
691
692                 /* ...but clean it before doing the actual write */
693                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
694
695                 down_read(&current->mm->mmap_sem);
696                 vcpu->arch.time_page =
697                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
698                 up_read(&current->mm->mmap_sem);
699
700                 if (is_error_page(vcpu->arch.time_page)) {
701                         kvm_release_page_clean(vcpu->arch.time_page);
702                         vcpu->arch.time_page = NULL;
703                 }
704
705                 kvm_write_guest_time(vcpu);
706                 break;
707         }
708         default:
709                 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
710                 return 1;
711         }
712         return 0;
713 }
714 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
715
716
717 /*
718  * Reads an msr value (of 'msr_index') into 'pdata'.
719  * Returns 0 on success, non-0 otherwise.
720  * Assumes vcpu_load() was already called.
721  */
722 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
723 {
724         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
725 }
726
727 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
728 {
729         if (!msr_mtrr_valid(msr))
730                 return 1;
731
732         *pdata = vcpu->arch.mtrr[msr - 0x200];
733         return 0;
734 }
735
736 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
737 {
738         u64 data;
739
740         switch (msr) {
741         case 0xc0010010: /* SYSCFG */
742         case 0xc0010015: /* HWCR */
743         case MSR_IA32_PLATFORM_ID:
744         case MSR_IA32_P5_MC_ADDR:
745         case MSR_IA32_P5_MC_TYPE:
746         case MSR_IA32_MC0_CTL:
747         case MSR_IA32_MCG_STATUS:
748         case MSR_IA32_MCG_CAP:
749         case MSR_IA32_MCG_CTL:
750         case MSR_IA32_MC0_MISC:
751         case MSR_IA32_MC0_MISC+4:
752         case MSR_IA32_MC0_MISC+8:
753         case MSR_IA32_MC0_MISC+12:
754         case MSR_IA32_MC0_MISC+16:
755         case MSR_IA32_UCODE_REV:
756         case MSR_IA32_EBL_CR_POWERON:
757                 data = 0;
758                 break;
759         case MSR_MTRRcap:
760                 data = 0x500 | KVM_NR_VAR_MTRR;
761                 break;
762         case 0x200 ... 0x2ff:
763                 return get_msr_mtrr(vcpu, msr, pdata);
764         case 0xcd: /* fsb frequency */
765                 data = 3;
766                 break;
767         case MSR_IA32_APICBASE:
768                 data = kvm_get_apic_base(vcpu);
769                 break;
770         case MSR_IA32_MISC_ENABLE:
771                 data = vcpu->arch.ia32_misc_enable_msr;
772                 break;
773         case MSR_IA32_PERF_STATUS:
774                 /* TSC increment by tick */
775                 data = 1000ULL;
776                 /* CPU multiplier */
777                 data |= (((uint64_t)4ULL) << 40);
778                 break;
779         case MSR_EFER:
780                 data = vcpu->arch.shadow_efer;
781                 break;
782         case MSR_KVM_WALL_CLOCK:
783                 data = vcpu->kvm->arch.wall_clock;
784                 break;
785         case MSR_KVM_SYSTEM_TIME:
786                 data = vcpu->arch.time;
787                 break;
788         default:
789                 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
790                 return 1;
791         }
792         *pdata = data;
793         return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
796
797 /*
798  * Read or write a bunch of msrs. All parameters are kernel addresses.
799  *
800  * @return number of msrs set successfully.
801  */
802 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
803                     struct kvm_msr_entry *entries,
804                     int (*do_msr)(struct kvm_vcpu *vcpu,
805                                   unsigned index, u64 *data))
806 {
807         int i;
808
809         vcpu_load(vcpu);
810
811         down_read(&vcpu->kvm->slots_lock);
812         for (i = 0; i < msrs->nmsrs; ++i)
813                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
814                         break;
815         up_read(&vcpu->kvm->slots_lock);
816
817         vcpu_put(vcpu);
818
819         return i;
820 }
821
822 /*
823  * Read or write a bunch of msrs. Parameters are user addresses.
824  *
825  * @return number of msrs set successfully.
826  */
827 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
828                   int (*do_msr)(struct kvm_vcpu *vcpu,
829                                 unsigned index, u64 *data),
830                   int writeback)
831 {
832         struct kvm_msrs msrs;
833         struct kvm_msr_entry *entries;
834         int r, n;
835         unsigned size;
836
837         r = -EFAULT;
838         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
839                 goto out;
840
841         r = -E2BIG;
842         if (msrs.nmsrs >= MAX_IO_MSRS)
843                 goto out;
844
845         r = -ENOMEM;
846         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
847         entries = vmalloc(size);
848         if (!entries)
849                 goto out;
850
851         r = -EFAULT;
852         if (copy_from_user(entries, user_msrs->entries, size))
853                 goto out_free;
854
855         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
856         if (r < 0)
857                 goto out_free;
858
859         r = -EFAULT;
860         if (writeback && copy_to_user(user_msrs->entries, entries, size))
861                 goto out_free;
862
863         r = n;
864
865 out_free:
866         vfree(entries);
867 out:
868         return r;
869 }
870
871 int kvm_dev_ioctl_check_extension(long ext)
872 {
873         int r;
874
875         switch (ext) {
876         case KVM_CAP_IRQCHIP:
877         case KVM_CAP_HLT:
878         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
879         case KVM_CAP_USER_MEMORY:
880         case KVM_CAP_SET_TSS_ADDR:
881         case KVM_CAP_EXT_CPUID:
882         case KVM_CAP_CLOCKSOURCE:
883         case KVM_CAP_PIT:
884         case KVM_CAP_NOP_IO_DELAY:
885         case KVM_CAP_MP_STATE:
886                 r = 1;
887                 break;
888         case KVM_CAP_COALESCED_MMIO:
889                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
890                 break;
891         case KVM_CAP_VAPIC:
892                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
893                 break;
894         case KVM_CAP_NR_VCPUS:
895                 r = KVM_MAX_VCPUS;
896                 break;
897         case KVM_CAP_NR_MEMSLOTS:
898                 r = KVM_MEMORY_SLOTS;
899                 break;
900         case KVM_CAP_PV_MMU:
901                 r = !tdp_enabled;
902                 break;
903         default:
904                 r = 0;
905                 break;
906         }
907         return r;
908
909 }
910
911 long kvm_arch_dev_ioctl(struct file *filp,
912                         unsigned int ioctl, unsigned long arg)
913 {
914         void __user *argp = (void __user *)arg;
915         long r;
916
917         switch (ioctl) {
918         case KVM_GET_MSR_INDEX_LIST: {
919                 struct kvm_msr_list __user *user_msr_list = argp;
920                 struct kvm_msr_list msr_list;
921                 unsigned n;
922
923                 r = -EFAULT;
924                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
925                         goto out;
926                 n = msr_list.nmsrs;
927                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
928                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
929                         goto out;
930                 r = -E2BIG;
931                 if (n < num_msrs_to_save)
932                         goto out;
933                 r = -EFAULT;
934                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
935                                  num_msrs_to_save * sizeof(u32)))
936                         goto out;
937                 if (copy_to_user(user_msr_list->indices
938                                  + num_msrs_to_save * sizeof(u32),
939                                  &emulated_msrs,
940                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
941                         goto out;
942                 r = 0;
943                 break;
944         }
945         case KVM_GET_SUPPORTED_CPUID: {
946                 struct kvm_cpuid2 __user *cpuid_arg = argp;
947                 struct kvm_cpuid2 cpuid;
948
949                 r = -EFAULT;
950                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
951                         goto out;
952                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
953                         cpuid_arg->entries);
954                 if (r)
955                         goto out;
956
957                 r = -EFAULT;
958                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
959                         goto out;
960                 r = 0;
961                 break;
962         }
963         default:
964                 r = -EINVAL;
965         }
966 out:
967         return r;
968 }
969
970 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
971 {
972         kvm_x86_ops->vcpu_load(vcpu, cpu);
973         kvm_write_guest_time(vcpu);
974 }
975
976 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
977 {
978         kvm_x86_ops->vcpu_put(vcpu);
979         kvm_put_guest_fpu(vcpu);
980 }
981
982 static int is_efer_nx(void)
983 {
984         u64 efer;
985
986         rdmsrl(MSR_EFER, efer);
987         return efer & EFER_NX;
988 }
989
990 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
991 {
992         int i;
993         struct kvm_cpuid_entry2 *e, *entry;
994
995         entry = NULL;
996         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
997                 e = &vcpu->arch.cpuid_entries[i];
998                 if (e->function == 0x80000001) {
999                         entry = e;
1000                         break;
1001                 }
1002         }
1003         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1004                 entry->edx &= ~(1 << 20);
1005                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1006         }
1007 }
1008
1009 /* when an old userspace process fills a new kernel module */
1010 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1011                                     struct kvm_cpuid *cpuid,
1012                                     struct kvm_cpuid_entry __user *entries)
1013 {
1014         int r, i;
1015         struct kvm_cpuid_entry *cpuid_entries;
1016
1017         r = -E2BIG;
1018         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1019                 goto out;
1020         r = -ENOMEM;
1021         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1022         if (!cpuid_entries)
1023                 goto out;
1024         r = -EFAULT;
1025         if (copy_from_user(cpuid_entries, entries,
1026                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1027                 goto out_free;
1028         for (i = 0; i < cpuid->nent; i++) {
1029                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1030                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1031                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1032                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1033                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1034                 vcpu->arch.cpuid_entries[i].index = 0;
1035                 vcpu->arch.cpuid_entries[i].flags = 0;
1036                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1037                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1038                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1039         }
1040         vcpu->arch.cpuid_nent = cpuid->nent;
1041         cpuid_fix_nx_cap(vcpu);
1042         r = 0;
1043
1044 out_free:
1045         vfree(cpuid_entries);
1046 out:
1047         return r;
1048 }
1049
1050 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1051                                     struct kvm_cpuid2 *cpuid,
1052                                     struct kvm_cpuid_entry2 __user *entries)
1053 {
1054         int r;
1055
1056         r = -E2BIG;
1057         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1058                 goto out;
1059         r = -EFAULT;
1060         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1061                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1062                 goto out;
1063         vcpu->arch.cpuid_nent = cpuid->nent;
1064         return 0;
1065
1066 out:
1067         return r;
1068 }
1069
1070 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1071                                     struct kvm_cpuid2 *cpuid,
1072                                     struct kvm_cpuid_entry2 __user *entries)
1073 {
1074         int r;
1075
1076         r = -E2BIG;
1077         if (cpuid->nent < vcpu->arch.cpuid_nent)
1078                 goto out;
1079         r = -EFAULT;
1080         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1081                            vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1082                 goto out;
1083         return 0;
1084
1085 out:
1086         cpuid->nent = vcpu->arch.cpuid_nent;
1087         return r;
1088 }
1089
1090 static inline u32 bit(int bitno)
1091 {
1092         return 1 << (bitno & 31);
1093 }
1094
1095 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1096                           u32 index)
1097 {
1098         entry->function = function;
1099         entry->index = index;
1100         cpuid_count(entry->function, entry->index,
1101                 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1102         entry->flags = 0;
1103 }
1104
1105 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1106                          u32 index, int *nent, int maxnent)
1107 {
1108         const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1109                 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1110                 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1111                 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1112                 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1113                 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1114                 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1115                 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1116                 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1117                 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1118         const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1119                 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1120                 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1121                 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1122                 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1123                 bit(X86_FEATURE_PGE) |
1124                 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1125                 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1126                 bit(X86_FEATURE_SYSCALL) |
1127                 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1128 #ifdef CONFIG_X86_64
1129                 bit(X86_FEATURE_LM) |
1130 #endif
1131                 bit(X86_FEATURE_MMXEXT) |
1132                 bit(X86_FEATURE_3DNOWEXT) |
1133                 bit(X86_FEATURE_3DNOW);
1134         const u32 kvm_supported_word3_x86_features =
1135                 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1136         const u32 kvm_supported_word6_x86_features =
1137                 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1138
1139         /* all func 2 cpuid_count() should be called on the same cpu */
1140         get_cpu();
1141         do_cpuid_1_ent(entry, function, index);
1142         ++*nent;
1143
1144         switch (function) {
1145         case 0:
1146                 entry->eax = min(entry->eax, (u32)0xb);
1147                 break;
1148         case 1:
1149                 entry->edx &= kvm_supported_word0_x86_features;
1150                 entry->ecx &= kvm_supported_word3_x86_features;
1151                 break;
1152         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1153          * may return different values. This forces us to get_cpu() before
1154          * issuing the first command, and also to emulate this annoying behavior
1155          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1156         case 2: {
1157                 int t, times = entry->eax & 0xff;
1158
1159                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1160                 for (t = 1; t < times && *nent < maxnent; ++t) {
1161                         do_cpuid_1_ent(&entry[t], function, 0);
1162                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1163                         ++*nent;
1164                 }
1165                 break;
1166         }
1167         /* function 4 and 0xb have additional index. */
1168         case 4: {
1169                 int i, cache_type;
1170
1171                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1172                 /* read more entries until cache_type is zero */
1173                 for (i = 1; *nent < maxnent; ++i) {
1174                         cache_type = entry[i - 1].eax & 0x1f;
1175                         if (!cache_type)
1176                                 break;
1177                         do_cpuid_1_ent(&entry[i], function, i);
1178                         entry[i].flags |=
1179                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1180                         ++*nent;
1181                 }
1182                 break;
1183         }
1184         case 0xb: {
1185                 int i, level_type;
1186
1187                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1188                 /* read more entries until level_type is zero */
1189                 for (i = 1; *nent < maxnent; ++i) {
1190                         level_type = entry[i - 1].ecx & 0xff;
1191                         if (!level_type)
1192                                 break;
1193                         do_cpuid_1_ent(&entry[i], function, i);
1194                         entry[i].flags |=
1195                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1196                         ++*nent;
1197                 }
1198                 break;
1199         }
1200         case 0x80000000:
1201                 entry->eax = min(entry->eax, 0x8000001a);
1202                 break;
1203         case 0x80000001:
1204                 entry->edx &= kvm_supported_word1_x86_features;
1205                 entry->ecx &= kvm_supported_word6_x86_features;
1206                 break;
1207         }
1208         put_cpu();
1209 }
1210
1211 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1212                                     struct kvm_cpuid_entry2 __user *entries)
1213 {
1214         struct kvm_cpuid_entry2 *cpuid_entries;
1215         int limit, nent = 0, r = -E2BIG;
1216         u32 func;
1217
1218         if (cpuid->nent < 1)
1219                 goto out;
1220         r = -ENOMEM;
1221         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1222         if (!cpuid_entries)
1223                 goto out;
1224
1225         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1226         limit = cpuid_entries[0].eax;
1227         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1228                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1229                                 &nent, cpuid->nent);
1230         r = -E2BIG;
1231         if (nent >= cpuid->nent)
1232                 goto out_free;
1233
1234         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1235         limit = cpuid_entries[nent - 1].eax;
1236         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1237                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1238                                &nent, cpuid->nent);
1239         r = -EFAULT;
1240         if (copy_to_user(entries, cpuid_entries,
1241                         nent * sizeof(struct kvm_cpuid_entry2)))
1242                 goto out_free;
1243         cpuid->nent = nent;
1244         r = 0;
1245
1246 out_free:
1247         vfree(cpuid_entries);
1248 out:
1249         return r;
1250 }
1251
1252 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1253                                     struct kvm_lapic_state *s)
1254 {
1255         vcpu_load(vcpu);
1256         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1257         vcpu_put(vcpu);
1258
1259         return 0;
1260 }
1261
1262 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1263                                     struct kvm_lapic_state *s)
1264 {
1265         vcpu_load(vcpu);
1266         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1267         kvm_apic_post_state_restore(vcpu);
1268         vcpu_put(vcpu);
1269
1270         return 0;
1271 }
1272
1273 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1274                                     struct kvm_interrupt *irq)
1275 {
1276         if (irq->irq < 0 || irq->irq >= 256)
1277                 return -EINVAL;
1278         if (irqchip_in_kernel(vcpu->kvm))
1279                 return -ENXIO;
1280         vcpu_load(vcpu);
1281
1282         set_bit(irq->irq, vcpu->arch.irq_pending);
1283         set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1284
1285         vcpu_put(vcpu);
1286
1287         return 0;
1288 }
1289
1290 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1291                                            struct kvm_tpr_access_ctl *tac)
1292 {
1293         if (tac->flags)
1294                 return -EINVAL;
1295         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1296         return 0;
1297 }
1298
1299 long kvm_arch_vcpu_ioctl(struct file *filp,
1300                          unsigned int ioctl, unsigned long arg)
1301 {
1302         struct kvm_vcpu *vcpu = filp->private_data;
1303         void __user *argp = (void __user *)arg;
1304         int r;
1305
1306         switch (ioctl) {
1307         case KVM_GET_LAPIC: {
1308                 struct kvm_lapic_state lapic;
1309
1310                 memset(&lapic, 0, sizeof lapic);
1311                 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
1312                 if (r)
1313                         goto out;
1314                 r = -EFAULT;
1315                 if (copy_to_user(argp, &lapic, sizeof lapic))
1316                         goto out;
1317                 r = 0;
1318                 break;
1319         }
1320         case KVM_SET_LAPIC: {
1321                 struct kvm_lapic_state lapic;
1322
1323                 r = -EFAULT;
1324                 if (copy_from_user(&lapic, argp, sizeof lapic))
1325                         goto out;
1326                 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
1327                 if (r)
1328                         goto out;
1329                 r = 0;
1330                 break;
1331         }
1332         case KVM_INTERRUPT: {
1333                 struct kvm_interrupt irq;
1334
1335                 r = -EFAULT;
1336                 if (copy_from_user(&irq, argp, sizeof irq))
1337                         goto out;
1338                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1339                 if (r)
1340                         goto out;
1341                 r = 0;
1342                 break;
1343         }
1344         case KVM_SET_CPUID: {
1345                 struct kvm_cpuid __user *cpuid_arg = argp;
1346                 struct kvm_cpuid cpuid;
1347
1348                 r = -EFAULT;
1349                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1350                         goto out;
1351                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1352                 if (r)
1353                         goto out;
1354                 break;
1355         }
1356         case KVM_SET_CPUID2: {
1357                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1358                 struct kvm_cpuid2 cpuid;
1359
1360                 r = -EFAULT;
1361                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1362                         goto out;
1363                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1364                                 cpuid_arg->entries);
1365                 if (r)
1366                         goto out;
1367                 break;
1368         }
1369         case KVM_GET_CPUID2: {
1370                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1371                 struct kvm_cpuid2 cpuid;
1372
1373                 r = -EFAULT;
1374                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1375                         goto out;
1376                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1377                                 cpuid_arg->entries);
1378                 if (r)
1379                         goto out;
1380                 r = -EFAULT;
1381                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1382                         goto out;
1383                 r = 0;
1384                 break;
1385         }
1386         case KVM_GET_MSRS:
1387                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1388                 break;
1389         case KVM_SET_MSRS:
1390                 r = msr_io(vcpu, argp, do_set_msr, 0);
1391                 break;
1392         case KVM_TPR_ACCESS_REPORTING: {
1393                 struct kvm_tpr_access_ctl tac;
1394
1395                 r = -EFAULT;
1396                 if (copy_from_user(&tac, argp, sizeof tac))
1397                         goto out;
1398                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1399                 if (r)
1400                         goto out;
1401                 r = -EFAULT;
1402                 if (copy_to_user(argp, &tac, sizeof tac))
1403                         goto out;
1404                 r = 0;
1405                 break;
1406         };
1407         case KVM_SET_VAPIC_ADDR: {
1408                 struct kvm_vapic_addr va;
1409
1410                 r = -EINVAL;
1411                 if (!irqchip_in_kernel(vcpu->kvm))
1412                         goto out;
1413                 r = -EFAULT;
1414                 if (copy_from_user(&va, argp, sizeof va))
1415                         goto out;
1416                 r = 0;
1417                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1418                 break;
1419         }
1420         default:
1421                 r = -EINVAL;
1422         }
1423 out:
1424         return r;
1425 }
1426
1427 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1428 {
1429         int ret;
1430
1431         if (addr > (unsigned int)(-3 * PAGE_SIZE))
1432                 return -1;
1433         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1434         return ret;
1435 }
1436
1437 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1438                                           u32 kvm_nr_mmu_pages)
1439 {
1440         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1441                 return -EINVAL;
1442
1443         down_write(&kvm->slots_lock);
1444
1445         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1446         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1447
1448         up_write(&kvm->slots_lock);
1449         return 0;
1450 }
1451
1452 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1453 {
1454         return kvm->arch.n_alloc_mmu_pages;
1455 }
1456
1457 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1458 {
1459         int i;
1460         struct kvm_mem_alias *alias;
1461
1462         for (i = 0; i < kvm->arch.naliases; ++i) {
1463                 alias = &kvm->arch.aliases[i];
1464                 if (gfn >= alias->base_gfn
1465                     && gfn < alias->base_gfn + alias->npages)
1466                         return alias->target_gfn + gfn - alias->base_gfn;
1467         }
1468         return gfn;
1469 }
1470
1471 /*
1472  * Set a new alias region.  Aliases map a portion of physical memory into
1473  * another portion.  This is useful for memory windows, for example the PC
1474  * VGA region.
1475  */
1476 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1477                                          struct kvm_memory_alias *alias)
1478 {
1479         int r, n;
1480         struct kvm_mem_alias *p;
1481
1482         r = -EINVAL;
1483         /* General sanity checks */
1484         if (alias->memory_size & (PAGE_SIZE - 1))
1485                 goto out;
1486         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1487                 goto out;
1488         if (alias->slot >= KVM_ALIAS_SLOTS)
1489                 goto out;
1490         if (alias->guest_phys_addr + alias->memory_size
1491             < alias->guest_phys_addr)
1492                 goto out;
1493         if (alias->target_phys_addr + alias->memory_size
1494             < alias->target_phys_addr)
1495                 goto out;
1496
1497         down_write(&kvm->slots_lock);
1498
1499         p = &kvm->arch.aliases[alias->slot];
1500         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1501         p->npages = alias->memory_size >> PAGE_SHIFT;
1502         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1503
1504         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1505                 if (kvm->arch.aliases[n - 1].npages)
1506                         break;
1507         kvm->arch.naliases = n;
1508
1509         kvm_mmu_zap_all(kvm);
1510
1511         up_write(&kvm->slots_lock);
1512
1513         return 0;
1514
1515 out:
1516         return r;
1517 }
1518
1519 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1520 {
1521         int r;
1522
1523         r = 0;
1524         switch (chip->chip_id) {
1525         case KVM_IRQCHIP_PIC_MASTER:
1526                 memcpy(&chip->chip.pic,
1527                         &pic_irqchip(kvm)->pics[0],
1528                         sizeof(struct kvm_pic_state));
1529                 break;
1530         case KVM_IRQCHIP_PIC_SLAVE:
1531                 memcpy(&chip->chip.pic,
1532                         &pic_irqchip(kvm)->pics[1],
1533                         sizeof(struct kvm_pic_state));
1534                 break;
1535         case KVM_IRQCHIP_IOAPIC:
1536                 memcpy(&chip->chip.ioapic,
1537                         ioapic_irqchip(kvm),
1538                         sizeof(struct kvm_ioapic_state));
1539                 break;
1540         default:
1541                 r = -EINVAL;
1542                 break;
1543         }
1544         return r;
1545 }
1546
1547 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1548 {
1549         int r;
1550
1551         r = 0;
1552         switch (chip->chip_id) {
1553         case KVM_IRQCHIP_PIC_MASTER:
1554                 memcpy(&pic_irqchip(kvm)->pics[0],
1555                         &chip->chip.pic,
1556                         sizeof(struct kvm_pic_state));
1557                 break;
1558         case KVM_IRQCHIP_PIC_SLAVE:
1559                 memcpy(&pic_irqchip(kvm)->pics[1],
1560                         &chip->chip.pic,
1561                         sizeof(struct kvm_pic_state));
1562                 break;
1563         case KVM_IRQCHIP_IOAPIC:
1564                 memcpy(ioapic_irqchip(kvm),
1565                         &chip->chip.ioapic,
1566                         sizeof(struct kvm_ioapic_state));
1567                 break;
1568         default:
1569                 r = -EINVAL;
1570                 break;
1571         }
1572         kvm_pic_update_irq(pic_irqchip(kvm));
1573         return r;
1574 }
1575
1576 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1577 {
1578         int r = 0;
1579
1580         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1581         return r;
1582 }
1583
1584 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1585 {
1586         int r = 0;
1587
1588         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1589         kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1590         return r;
1591 }
1592
1593 /*
1594  * Get (and clear) the dirty memory log for a memory slot.
1595  */
1596 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1597                                       struct kvm_dirty_log *log)
1598 {
1599         int r;
1600         int n;
1601         struct kvm_memory_slot *memslot;
1602         int is_dirty = 0;
1603
1604         down_write(&kvm->slots_lock);
1605
1606         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1607         if (r)
1608                 goto out;
1609
1610         /* If nothing is dirty, don't bother messing with page tables. */
1611         if (is_dirty) {
1612                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1613                 kvm_flush_remote_tlbs(kvm);
1614                 memslot = &kvm->memslots[log->slot];
1615                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1616                 memset(memslot->dirty_bitmap, 0, n);
1617         }
1618         r = 0;
1619 out:
1620         up_write(&kvm->slots_lock);
1621         return r;
1622 }
1623
1624 long kvm_arch_vm_ioctl(struct file *filp,
1625                        unsigned int ioctl, unsigned long arg)
1626 {
1627         struct kvm *kvm = filp->private_data;
1628         void __user *argp = (void __user *)arg;
1629         int r = -EINVAL;
1630
1631         switch (ioctl) {
1632         case KVM_SET_TSS_ADDR:
1633                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1634                 if (r < 0)
1635                         goto out;
1636                 break;
1637         case KVM_SET_MEMORY_REGION: {
1638                 struct kvm_memory_region kvm_mem;
1639                 struct kvm_userspace_memory_region kvm_userspace_mem;
1640
1641                 r = -EFAULT;
1642                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1643                         goto out;
1644                 kvm_userspace_mem.slot = kvm_mem.slot;
1645                 kvm_userspace_mem.flags = kvm_mem.flags;
1646                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1647                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1648                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1649                 if (r)
1650                         goto out;
1651                 break;
1652         }
1653         case KVM_SET_NR_MMU_PAGES:
1654                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1655                 if (r)
1656                         goto out;
1657                 break;
1658         case KVM_GET_NR_MMU_PAGES:
1659                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1660                 break;
1661         case KVM_SET_MEMORY_ALIAS: {
1662                 struct kvm_memory_alias alias;
1663
1664                 r = -EFAULT;
1665                 if (copy_from_user(&alias, argp, sizeof alias))
1666                         goto out;
1667                 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1668                 if (r)
1669                         goto out;
1670                 break;
1671         }
1672         case KVM_CREATE_IRQCHIP:
1673                 r = -ENOMEM;
1674                 kvm->arch.vpic = kvm_create_pic(kvm);
1675                 if (kvm->arch.vpic) {
1676                         r = kvm_ioapic_init(kvm);
1677                         if (r) {
1678                                 kfree(kvm->arch.vpic);
1679                                 kvm->arch.vpic = NULL;
1680                                 goto out;
1681                         }
1682                 } else
1683                         goto out;
1684                 break;
1685         case KVM_CREATE_PIT:
1686                 r = -ENOMEM;
1687                 kvm->arch.vpit = kvm_create_pit(kvm);
1688                 if (kvm->arch.vpit)
1689                         r = 0;
1690                 break;
1691         case KVM_IRQ_LINE: {
1692                 struct kvm_irq_level irq_event;
1693
1694                 r = -EFAULT;
1695                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1696                         goto out;
1697                 if (irqchip_in_kernel(kvm)) {
1698                         mutex_lock(&kvm->lock);
1699                         if (irq_event.irq < 16)
1700                                 kvm_pic_set_irq(pic_irqchip(kvm),
1701                                         irq_event.irq,
1702                                         irq_event.level);
1703                         kvm_ioapic_set_irq(kvm->arch.vioapic,
1704                                         irq_event.irq,
1705                                         irq_event.level);
1706                         mutex_unlock(&kvm->lock);
1707                         r = 0;
1708                 }
1709                 break;
1710         }
1711         case KVM_GET_IRQCHIP: {
1712                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1713                 struct kvm_irqchip chip;
1714
1715                 r = -EFAULT;
1716                 if (copy_from_user(&chip, argp, sizeof chip))
1717                         goto out;
1718                 r = -ENXIO;
1719                 if (!irqchip_in_kernel(kvm))
1720                         goto out;
1721                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1722                 if (r)
1723                         goto out;
1724                 r = -EFAULT;
1725                 if (copy_to_user(argp, &chip, sizeof chip))
1726                         goto out;
1727                 r = 0;
1728                 break;
1729         }
1730         case KVM_SET_IRQCHIP: {
1731                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1732                 struct kvm_irqchip chip;
1733
1734                 r = -EFAULT;
1735                 if (copy_from_user(&chip, argp, sizeof chip))
1736                         goto out;
1737                 r = -ENXIO;
1738                 if (!irqchip_in_kernel(kvm))
1739                         goto out;
1740                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1741                 if (r)
1742                         goto out;
1743                 r = 0;
1744                 break;
1745         }
1746         case KVM_GET_PIT: {
1747                 struct kvm_pit_state ps;
1748                 r = -EFAULT;
1749                 if (copy_from_user(&ps, argp, sizeof ps))
1750                         goto out;
1751                 r = -ENXIO;
1752                 if (!kvm->arch.vpit)
1753                         goto out;
1754                 r = kvm_vm_ioctl_get_pit(kvm, &ps);
1755                 if (r)
1756                         goto out;
1757                 r = -EFAULT;
1758                 if (copy_to_user(argp, &ps, sizeof ps))
1759                         goto out;
1760                 r = 0;
1761                 break;
1762         }
1763         case KVM_SET_PIT: {
1764                 struct kvm_pit_state ps;
1765                 r = -EFAULT;
1766                 if (copy_from_user(&ps, argp, sizeof ps))
1767                         goto out;
1768                 r = -ENXIO;
1769                 if (!kvm->arch.vpit)
1770                         goto out;
1771                 r = kvm_vm_ioctl_set_pit(kvm, &ps);
1772                 if (r)
1773                         goto out;
1774                 r = 0;
1775                 break;
1776         }
1777         default:
1778                 ;
1779         }
1780 out:
1781         return r;
1782 }
1783
1784 static void kvm_init_msr_list(void)
1785 {
1786         u32 dummy[2];
1787         unsigned i, j;
1788
1789         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1790                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1791                         continue;
1792                 if (j < i)
1793                         msrs_to_save[j] = msrs_to_save[i];
1794                 j++;
1795         }
1796         num_msrs_to_save = j;
1797 }
1798
1799 /*
1800  * Only apic need an MMIO device hook, so shortcut now..
1801  */
1802 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1803                                                 gpa_t addr, int len,
1804                                                 int is_write)
1805 {
1806         struct kvm_io_device *dev;
1807
1808         if (vcpu->arch.apic) {
1809                 dev = &vcpu->arch.apic->dev;
1810                 if (dev->in_range(dev, addr, len, is_write))
1811                         return dev;
1812         }
1813         return NULL;
1814 }
1815
1816
1817 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1818                                                 gpa_t addr, int len,
1819                                                 int is_write)
1820 {
1821         struct kvm_io_device *dev;
1822
1823         dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
1824         if (dev == NULL)
1825                 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
1826                                           is_write);
1827         return dev;
1828 }
1829
1830 int emulator_read_std(unsigned long addr,
1831                              void *val,
1832                              unsigned int bytes,
1833                              struct kvm_vcpu *vcpu)
1834 {
1835         void *data = val;
1836         int r = X86EMUL_CONTINUE;
1837
1838         while (bytes) {
1839                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1840                 unsigned offset = addr & (PAGE_SIZE-1);
1841                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1842                 int ret;
1843
1844                 if (gpa == UNMAPPED_GVA) {
1845                         r = X86EMUL_PROPAGATE_FAULT;
1846                         goto out;
1847                 }
1848                 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1849                 if (ret < 0) {
1850                         r = X86EMUL_UNHANDLEABLE;
1851                         goto out;
1852                 }
1853
1854                 bytes -= tocopy;
1855                 data += tocopy;
1856                 addr += tocopy;
1857         }
1858 out:
1859         return r;
1860 }
1861 EXPORT_SYMBOL_GPL(emulator_read_std);
1862
1863 static int emulator_read_emulated(unsigned long addr,
1864                                   void *val,
1865                                   unsigned int bytes,
1866                                   struct kvm_vcpu *vcpu)
1867 {
1868         struct kvm_io_device *mmio_dev;
1869         gpa_t                 gpa;
1870
1871         if (vcpu->mmio_read_completed) {
1872                 memcpy(val, vcpu->mmio_data, bytes);
1873                 vcpu->mmio_read_completed = 0;
1874                 return X86EMUL_CONTINUE;
1875         }
1876
1877         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1878
1879         /* For APIC access vmexit */
1880         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1881                 goto mmio;
1882
1883         if (emulator_read_std(addr, val, bytes, vcpu)
1884                         == X86EMUL_CONTINUE)
1885                 return X86EMUL_CONTINUE;
1886         if (gpa == UNMAPPED_GVA)
1887                 return X86EMUL_PROPAGATE_FAULT;
1888
1889 mmio:
1890         /*
1891          * Is this MMIO handled locally?
1892          */
1893         mutex_lock(&vcpu->kvm->lock);
1894         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
1895         if (mmio_dev) {
1896                 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1897                 mutex_unlock(&vcpu->kvm->lock);
1898                 return X86EMUL_CONTINUE;
1899         }
1900         mutex_unlock(&vcpu->kvm->lock);
1901
1902         vcpu->mmio_needed = 1;
1903         vcpu->mmio_phys_addr = gpa;
1904         vcpu->mmio_size = bytes;
1905         vcpu->mmio_is_write = 0;
1906
1907         return X86EMUL_UNHANDLEABLE;
1908 }
1909
1910 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1911                           const void *val, int bytes)
1912 {
1913         int ret;
1914
1915         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1916         if (ret < 0)
1917                 return 0;
1918         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1919         return 1;
1920 }
1921
1922 static int emulator_write_emulated_onepage(unsigned long addr,
1923                                            const void *val,
1924                                            unsigned int bytes,
1925                                            struct kvm_vcpu *vcpu)
1926 {
1927         struct kvm_io_device *mmio_dev;
1928         gpa_t                 gpa;
1929
1930         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1931
1932         if (gpa == UNMAPPED_GVA) {
1933                 kvm_inject_page_fault(vcpu, addr, 2);
1934                 return X86EMUL_PROPAGATE_FAULT;
1935         }
1936
1937         /* For APIC access vmexit */
1938         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1939                 goto mmio;
1940
1941         if (emulator_write_phys(vcpu, gpa, val, bytes))
1942                 return X86EMUL_CONTINUE;
1943
1944 mmio:
1945         /*
1946          * Is this MMIO handled locally?
1947          */
1948         mutex_lock(&vcpu->kvm->lock);
1949         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
1950         if (mmio_dev) {
1951                 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1952                 mutex_unlock(&vcpu->kvm->lock);
1953                 return X86EMUL_CONTINUE;
1954         }
1955         mutex_unlock(&vcpu->kvm->lock);
1956
1957         vcpu->mmio_needed = 1;
1958         vcpu->mmio_phys_addr = gpa;
1959         vcpu->mmio_size = bytes;
1960         vcpu->mmio_is_write = 1;
1961         memcpy(vcpu->mmio_data, val, bytes);
1962
1963         return X86EMUL_CONTINUE;
1964 }
1965
1966 int emulator_write_emulated(unsigned long addr,
1967                                    const void *val,
1968                                    unsigned int bytes,
1969                                    struct kvm_vcpu *vcpu)
1970 {
1971         /* Crossing a page boundary? */
1972         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1973                 int rc, now;
1974
1975                 now = -addr & ~PAGE_MASK;
1976                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1977                 if (rc != X86EMUL_CONTINUE)
1978                         return rc;
1979                 addr += now;
1980                 val += now;
1981                 bytes -= now;
1982         }
1983         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1984 }
1985 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1986
1987 static int emulator_cmpxchg_emulated(unsigned long addr,
1988                                      const void *old,
1989                                      const void *new,
1990                                      unsigned int bytes,
1991                                      struct kvm_vcpu *vcpu)
1992 {
1993         static int reported;
1994
1995         if (!reported) {
1996                 reported = 1;
1997                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1998         }
1999 #ifndef CONFIG_X86_64
2000         /* guests cmpxchg8b have to be emulated atomically */
2001         if (bytes == 8) {
2002                 gpa_t gpa;
2003                 struct page *page;
2004                 char *kaddr;
2005                 u64 val;
2006
2007                 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2008
2009                 if (gpa == UNMAPPED_GVA ||
2010                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2011                         goto emul_write;
2012
2013                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2014                         goto emul_write;
2015
2016                 val = *(u64 *)new;
2017
2018                 down_read(&current->mm->mmap_sem);
2019                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2020                 up_read(&current->mm->mmap_sem);
2021
2022                 kaddr = kmap_atomic(page, KM_USER0);
2023                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2024                 kunmap_atomic(kaddr, KM_USER0);
2025                 kvm_release_page_dirty(page);
2026         }
2027 emul_write:
2028 #endif
2029
2030         return emulator_write_emulated(addr, new, bytes, vcpu);
2031 }
2032
2033 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2034 {
2035         return kvm_x86_ops->get_segment_base(vcpu, seg);
2036 }
2037
2038 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2039 {
2040         return X86EMUL_CONTINUE;
2041 }
2042
2043 int emulate_clts(struct kvm_vcpu *vcpu)
2044 {
2045         KVMTRACE_0D(CLTS, vcpu, handler);
2046         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2047         return X86EMUL_CONTINUE;
2048 }
2049
2050 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2051 {
2052         struct kvm_vcpu *vcpu = ctxt->vcpu;
2053
2054         switch (dr) {
2055         case 0 ... 3:
2056                 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2057                 return X86EMUL_CONTINUE;
2058         default:
2059                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2060                 return X86EMUL_UNHANDLEABLE;
2061         }
2062 }
2063
2064 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2065 {
2066         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2067         int exception;
2068
2069         kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2070         if (exception) {
2071                 /* FIXME: better handling */
2072                 return X86EMUL_UNHANDLEABLE;
2073         }
2074         return X86EMUL_CONTINUE;
2075 }
2076
2077 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2078 {
2079         static int reported;
2080         u8 opcodes[4];
2081         unsigned long rip = vcpu->arch.rip;
2082         unsigned long rip_linear;
2083
2084         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2085
2086         if (reported)
2087                 return;
2088
2089         emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2090
2091         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2092                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2093         reported = 1;
2094 }
2095 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2096
2097 static struct x86_emulate_ops emulate_ops = {
2098         .read_std            = emulator_read_std,
2099         .read_emulated       = emulator_read_emulated,
2100         .write_emulated      = emulator_write_emulated,
2101         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2102 };
2103
2104 int emulate_instruction(struct kvm_vcpu *vcpu,
2105                         struct kvm_run *run,
2106                         unsigned long cr2,
2107                         u16 error_code,
2108                         int emulation_type)
2109 {
2110         int r;
2111         struct decode_cache *c;
2112
2113         vcpu->arch.mmio_fault_cr2 = cr2;
2114         kvm_x86_ops->cache_regs(vcpu);
2115
2116         vcpu->mmio_is_write = 0;
2117         vcpu->arch.pio.string = 0;
2118
2119         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2120                 int cs_db, cs_l;
2121                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2122
2123                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2124                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2125                 vcpu->arch.emulate_ctxt.mode =
2126                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2127                         ? X86EMUL_MODE_REAL : cs_l
2128                         ? X86EMUL_MODE_PROT64 : cs_db
2129                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2130
2131                 if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
2132                         vcpu->arch.emulate_ctxt.cs_base = 0;
2133                         vcpu->arch.emulate_ctxt.ds_base = 0;
2134                         vcpu->arch.emulate_ctxt.es_base = 0;
2135                         vcpu->arch.emulate_ctxt.ss_base = 0;
2136                 } else {
2137                         vcpu->arch.emulate_ctxt.cs_base =
2138                                         get_segment_base(vcpu, VCPU_SREG_CS);
2139                         vcpu->arch.emulate_ctxt.ds_base =
2140                                         get_segment_base(vcpu, VCPU_SREG_DS);
2141                         vcpu->arch.emulate_ctxt.es_base =
2142                                         get_segment_base(vcpu, VCPU_SREG_ES);
2143                         vcpu->arch.emulate_ctxt.ss_base =
2144                                         get_segment_base(vcpu, VCPU_SREG_SS);
2145                 }
2146
2147                 vcpu->arch.emulate_ctxt.gs_base =
2148                                         get_segment_base(vcpu, VCPU_SREG_GS);
2149                 vcpu->arch.emulate_ctxt.fs_base =
2150                                         get_segment_base(vcpu, VCPU_SREG_FS);
2151
2152                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2153
2154                 /* Reject the instructions other than VMCALL/VMMCALL when
2155                  * try to emulate invalid opcode */
2156                 c = &vcpu->arch.emulate_ctxt.decode;
2157                 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2158                     (!(c->twobyte && c->b == 0x01 &&
2159                       (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2160                        c->modrm_mod == 3 && c->modrm_rm == 1)))
2161                         return EMULATE_FAIL;
2162
2163                 ++vcpu->stat.insn_emulation;
2164                 if (r)  {
2165                         ++vcpu->stat.insn_emulation_fail;
2166                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2167                                 return EMULATE_DONE;
2168                         return EMULATE_FAIL;
2169                 }
2170         }
2171
2172         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2173
2174         if (vcpu->arch.pio.string)
2175                 return EMULATE_DO_MMIO;
2176
2177         if ((r || vcpu->mmio_is_write) && run) {
2178                 run->exit_reason = KVM_EXIT_MMIO;
2179                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2180                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2181                 run->mmio.len = vcpu->mmio_size;
2182                 run->mmio.is_write = vcpu->mmio_is_write;
2183         }
2184
2185         if (r) {
2186                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2187                         return EMULATE_DONE;
2188                 if (!vcpu->mmio_needed) {
2189                         kvm_report_emulation_failure(vcpu, "mmio");
2190                         return EMULATE_FAIL;
2191                 }
2192                 return EMULATE_DO_MMIO;
2193         }
2194
2195         kvm_x86_ops->decache_regs(vcpu);
2196         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2197
2198         if (vcpu->mmio_is_write) {
2199                 vcpu->mmio_needed = 0;
2200                 return EMULATE_DO_MMIO;
2201         }
2202
2203         return EMULATE_DONE;
2204 }
2205 EXPORT_SYMBOL_GPL(emulate_instruction);
2206
2207 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2208 {
2209         int i;
2210
2211         for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2212                 if (vcpu->arch.pio.guest_pages[i]) {
2213                         kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2214                         vcpu->arch.pio.guest_pages[i] = NULL;
2215                 }
2216 }
2217
2218 static int pio_copy_data(struct kvm_vcpu *vcpu)
2219 {
2220         void *p = vcpu->arch.pio_data;
2221         void *q;
2222         unsigned bytes;
2223         int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2224
2225         q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2226                  PAGE_KERNEL);
2227         if (!q) {
2228                 free_pio_guest_pages(vcpu);
2229                 return -ENOMEM;
2230         }
2231         q += vcpu->arch.pio.guest_page_offset;
2232         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2233         if (vcpu->arch.pio.in)
2234                 memcpy(q, p, bytes);
2235         else
2236                 memcpy(p, q, bytes);
2237         q -= vcpu->arch.pio.guest_page_offset;
2238         vunmap(q);
2239         free_pio_guest_pages(vcpu);
2240         return 0;
2241 }
2242
2243 int complete_pio(struct kvm_vcpu *vcpu)
2244 {
2245         struct kvm_pio_request *io = &vcpu->arch.pio;
2246         long delta;
2247         int r;
2248
2249         kvm_x86_ops->cache_regs(vcpu);
2250
2251         if (!io->string) {
2252                 if (io->in)
2253                         memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2254                                io->size);
2255         } else {
2256                 if (io->in) {
2257                         r = pio_copy_data(vcpu);
2258                         if (r) {
2259                                 kvm_x86_ops->cache_regs(vcpu);
2260                                 return r;
2261                         }
2262                 }
2263
2264                 delta = 1;
2265                 if (io->rep) {
2266                         delta *= io->cur_count;
2267                         /*
2268                          * The size of the register should really depend on
2269                          * current address size.
2270                          */
2271                         vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2272                 }
2273                 if (io->down)
2274                         delta = -delta;
2275                 delta *= io->size;
2276                 if (io->in)
2277                         vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2278                 else
2279                         vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2280         }
2281
2282         kvm_x86_ops->decache_regs(vcpu);
2283
2284         io->count -= io->cur_count;
2285         io->cur_count = 0;
2286
2287         return 0;
2288 }
2289
2290 static void kernel_pio(struct kvm_io_device *pio_dev,
2291                        struct kvm_vcpu *vcpu,
2292                        void *pd)
2293 {
2294         /* TODO: String I/O for in kernel device */
2295
2296         mutex_lock(&vcpu->kvm->lock);
2297         if (vcpu->arch.pio.in)
2298                 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2299                                   vcpu->arch.pio.size,
2300                                   pd);
2301         else
2302                 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2303                                    vcpu->arch.pio.size,
2304                                    pd);
2305         mutex_unlock(&vcpu->kvm->lock);
2306 }
2307
2308 static void pio_string_write(struct kvm_io_device *pio_dev,
2309                              struct kvm_vcpu *vcpu)
2310 {
2311         struct kvm_pio_request *io = &vcpu->arch.pio;
2312         void *pd = vcpu->arch.pio_data;
2313         int i;
2314
2315         mutex_lock(&vcpu->kvm->lock);
2316         for (i = 0; i < io->cur_count; i++) {
2317                 kvm_iodevice_write(pio_dev, io->port,
2318                                    io->size,
2319                                    pd);
2320                 pd += io->size;
2321         }
2322         mutex_unlock(&vcpu->kvm->lock);
2323 }
2324
2325 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2326                                                gpa_t addr, int len,
2327                                                int is_write)
2328 {
2329         return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2330 }
2331
2332 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2333                   int size, unsigned port)
2334 {
2335         struct kvm_io_device *pio_dev;
2336
2337         vcpu->run->exit_reason = KVM_EXIT_IO;
2338         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2339         vcpu->run->io.size = vcpu->arch.pio.size = size;
2340         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2341         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2342         vcpu->run->io.port = vcpu->arch.pio.port = port;
2343         vcpu->arch.pio.in = in;
2344         vcpu->arch.pio.string = 0;
2345         vcpu->arch.pio.down = 0;
2346         vcpu->arch.pio.guest_page_offset = 0;
2347         vcpu->arch.pio.rep = 0;
2348
2349         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2350                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2351                             handler);
2352         else
2353                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2354                             handler);
2355
2356         kvm_x86_ops->cache_regs(vcpu);
2357         memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2358
2359         kvm_x86_ops->skip_emulated_instruction(vcpu);
2360
2361         pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2362         if (pio_dev) {
2363                 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2364                 complete_pio(vcpu);
2365                 return 1;
2366         }
2367         return 0;
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2370
2371 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2372                   int size, unsigned long count, int down,
2373                   gva_t address, int rep, unsigned port)
2374 {
2375         unsigned now, in_page;
2376         int i, ret = 0;
2377         int nr_pages = 1;
2378         struct page *page;
2379         struct kvm_io_device *pio_dev;
2380
2381         vcpu->run->exit_reason = KVM_EXIT_IO;
2382         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2383         vcpu->run->io.size = vcpu->arch.pio.size = size;
2384         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2385         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2386         vcpu->run->io.port = vcpu->arch.pio.port = port;
2387         vcpu->arch.pio.in = in;
2388         vcpu->arch.pio.string = 1;
2389         vcpu->arch.pio.down = down;
2390         vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2391         vcpu->arch.pio.rep = rep;
2392
2393         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2394                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2395                             handler);
2396         else
2397                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2398                             handler);
2399
2400         if (!count) {
2401                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2402                 return 1;
2403         }
2404
2405         if (!down)
2406                 in_page = PAGE_SIZE - offset_in_page(address);
2407         else
2408                 in_page = offset_in_page(address) + size;
2409         now = min(count, (unsigned long)in_page / size);
2410         if (!now) {
2411                 /*
2412                  * String I/O straddles page boundary.  Pin two guest pages
2413                  * so that we satisfy atomicity constraints.  Do just one
2414                  * transaction to avoid complexity.
2415                  */
2416                 nr_pages = 2;
2417                 now = 1;
2418         }
2419         if (down) {
2420                 /*
2421                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
2422                  */
2423                 pr_unimpl(vcpu, "guest string pio down\n");
2424                 kvm_inject_gp(vcpu, 0);
2425                 return 1;
2426         }
2427         vcpu->run->io.count = now;
2428         vcpu->arch.pio.cur_count = now;
2429
2430         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2431                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2432
2433         for (i = 0; i < nr_pages; ++i) {
2434                 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2435                 vcpu->arch.pio.guest_pages[i] = page;
2436                 if (!page) {
2437                         kvm_inject_gp(vcpu, 0);
2438                         free_pio_guest_pages(vcpu);
2439                         return 1;
2440                 }
2441         }
2442
2443         pio_dev = vcpu_find_pio_dev(vcpu, port,
2444                                     vcpu->arch.pio.cur_count,
2445                                     !vcpu->arch.pio.in);
2446         if (!vcpu->arch.pio.in) {
2447                 /* string PIO write */
2448                 ret = pio_copy_data(vcpu);
2449                 if (ret >= 0 && pio_dev) {
2450                         pio_string_write(pio_dev, vcpu);
2451                         complete_pio(vcpu);
2452                         if (vcpu->arch.pio.count == 0)
2453                                 ret = 1;
2454                 }
2455         } else if (pio_dev)
2456                 pr_unimpl(vcpu, "no string pio read support yet, "
2457                        "port %x size %d count %ld\n",
2458                         port, size, count);
2459
2460         return ret;
2461 }
2462 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2463
2464 int kvm_arch_init(void *opaque)
2465 {
2466         int r;
2467         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2468
2469         if (kvm_x86_ops) {
2470                 printk(KERN_ERR "kvm: already loaded the other module\n");
2471                 r = -EEXIST;
2472                 goto out;
2473         }
2474
2475         if (!ops->cpu_has_kvm_support()) {
2476                 printk(KERN_ERR "kvm: no hardware support\n");
2477                 r = -EOPNOTSUPP;
2478                 goto out;
2479         }
2480         if (ops->disabled_by_bios()) {
2481                 printk(KERN_ERR "kvm: disabled by bios\n");
2482                 r = -EOPNOTSUPP;
2483                 goto out;
2484         }
2485
2486         r = kvm_mmu_module_init();
2487         if (r)
2488                 goto out;
2489
2490         kvm_init_msr_list();
2491
2492         kvm_x86_ops = ops;
2493         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2494         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2495         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2496                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
2497         return 0;
2498
2499 out:
2500         return r;
2501 }
2502
2503 void kvm_arch_exit(void)
2504 {
2505         kvm_x86_ops = NULL;
2506         kvm_mmu_module_exit();
2507 }
2508
2509 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2510 {
2511         ++vcpu->stat.halt_exits;
2512         KVMTRACE_0D(HLT, vcpu, handler);
2513         if (irqchip_in_kernel(vcpu->kvm)) {
2514                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2515                 up_read(&vcpu->kvm->slots_lock);
2516                 kvm_vcpu_block(vcpu);
2517                 down_read(&vcpu->kvm->slots_lock);
2518                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
2519                         return -EINTR;
2520                 return 1;
2521         } else {
2522                 vcpu->run->exit_reason = KVM_EXIT_HLT;
2523                 return 0;
2524         }
2525 }
2526 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2527
2528 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2529                            unsigned long a1)
2530 {
2531         if (is_long_mode(vcpu))
2532                 return a0;
2533         else
2534                 return a0 | ((gpa_t)a1 << 32);
2535 }
2536
2537 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2538 {
2539         unsigned long nr, a0, a1, a2, a3, ret;
2540         int r = 1;
2541
2542         kvm_x86_ops->cache_regs(vcpu);
2543
2544         nr = vcpu->arch.regs[VCPU_REGS_RAX];
2545         a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2546         a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2547         a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2548         a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2549
2550         KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2551
2552         if (!is_long_mode(vcpu)) {
2553                 nr &= 0xFFFFFFFF;
2554                 a0 &= 0xFFFFFFFF;
2555                 a1 &= 0xFFFFFFFF;
2556                 a2 &= 0xFFFFFFFF;
2557                 a3 &= 0xFFFFFFFF;
2558         }
2559
2560         switch (nr) {
2561         case KVM_HC_VAPIC_POLL_IRQ:
2562                 ret = 0;
2563                 break;
2564         case KVM_HC_MMU_OP:
2565                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2566                 break;
2567         default:
2568                 ret = -KVM_ENOSYS;
2569                 break;
2570         }
2571         vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2572         kvm_x86_ops->decache_regs(vcpu);
2573         ++vcpu->stat.hypercalls;
2574         return r;
2575 }
2576 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2577
2578 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2579 {
2580         char instruction[3];
2581         int ret = 0;
2582
2583
2584         /*
2585          * Blow out the MMU to ensure that no other VCPU has an active mapping
2586          * to ensure that the updated hypercall appears atomically across all
2587          * VCPUs.
2588          */
2589         kvm_mmu_zap_all(vcpu->kvm);
2590
2591         kvm_x86_ops->cache_regs(vcpu);
2592         kvm_x86_ops->patch_hypercall(vcpu, instruction);
2593         if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2594             != X86EMUL_CONTINUE)
2595                 ret = -EFAULT;
2596
2597         return ret;
2598 }
2599
2600 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2601 {
2602         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2603 }
2604
2605 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2606 {
2607         struct descriptor_table dt = { limit, base };
2608
2609         kvm_x86_ops->set_gdt(vcpu, &dt);
2610 }
2611
2612 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2613 {
2614         struct descriptor_table dt = { limit, base };
2615
2616         kvm_x86_ops->set_idt(vcpu, &dt);
2617 }
2618
2619 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2620                    unsigned long *rflags)
2621 {
2622         kvm_lmsw(vcpu, msw);
2623         *rflags = kvm_x86_ops->get_rflags(vcpu);
2624 }
2625
2626 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2627 {
2628         unsigned long value;
2629
2630         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2631         switch (cr) {
2632         case 0:
2633                 value = vcpu->arch.cr0;
2634                 break;
2635         case 2:
2636                 value = vcpu->arch.cr2;
2637                 break;
2638         case 3:
2639                 value = vcpu->arch.cr3;
2640                 break;
2641         case 4:
2642                 value = vcpu->arch.cr4;
2643                 break;
2644         case 8:
2645                 value = kvm_get_cr8(vcpu);
2646                 break;
2647         default:
2648                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2649                 return 0;
2650         }
2651         KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2652                     (u32)((u64)value >> 32), handler);
2653
2654         return value;
2655 }
2656
2657 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2658                      unsigned long *rflags)
2659 {
2660         KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2661                     (u32)((u64)val >> 32), handler);
2662
2663         switch (cr) {
2664         case 0:
2665                 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2666                 *rflags = kvm_x86_ops->get_rflags(vcpu);
2667                 break;
2668         case 2:
2669                 vcpu->arch.cr2 = val;
2670                 break;
2671         case 3:
2672                 kvm_set_cr3(vcpu, val);
2673                 break;
2674         case 4:
2675                 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2676                 break;
2677         case 8:
2678                 kvm_set_cr8(vcpu, val & 0xfUL);
2679                 break;
2680         default:
2681                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2682         }
2683 }
2684
2685 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2686 {
2687         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2688         int j, nent = vcpu->arch.cpuid_nent;
2689
2690         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2691         /* when no next entry is found, the current entry[i] is reselected */
2692         for (j = i + 1; j == i; j = (j + 1) % nent) {
2693                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2694                 if (ej->function == e->function) {
2695                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2696                         return j;
2697                 }
2698         }
2699         return 0; /* silence gcc, even though control never reaches here */
2700 }
2701
2702 /* find an entry with matching function, matching index (if needed), and that
2703  * should be read next (if it's stateful) */
2704 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2705         u32 function, u32 index)
2706 {
2707         if (e->function != function)
2708                 return 0;
2709         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2710                 return 0;
2711         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2712                 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2713                 return 0;
2714         return 1;
2715 }
2716
2717 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2718 {
2719         int i;
2720         u32 function, index;
2721         struct kvm_cpuid_entry2 *e, *best;
2722
2723         kvm_x86_ops->cache_regs(vcpu);
2724         function = vcpu->arch.regs[VCPU_REGS_RAX];
2725         index = vcpu->arch.regs[VCPU_REGS_RCX];
2726         vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2727         vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2728         vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2729         vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2730         best = NULL;
2731         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2732                 e = &vcpu->arch.cpuid_entries[i];
2733                 if (is_matching_cpuid_entry(e, function, index)) {
2734                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2735                                 move_to_next_stateful_cpuid_entry(vcpu, i);
2736                         best = e;
2737                         break;
2738                 }
2739                 /*
2740                  * Both basic or both extended?
2741                  */
2742                 if (((e->function ^ function) & 0x80000000) == 0)
2743                         if (!best || e->function > best->function)
2744                                 best = e;
2745         }
2746         if (best) {
2747                 vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2748                 vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2749                 vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2750                 vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2751         }
2752         kvm_x86_ops->decache_regs(vcpu);
2753         kvm_x86_ops->skip_emulated_instruction(vcpu);
2754         KVMTRACE_5D(CPUID, vcpu, function,
2755                     (u32)vcpu->arch.regs[VCPU_REGS_RAX],
2756                     (u32)vcpu->arch.regs[VCPU_REGS_RBX],
2757                     (u32)vcpu->arch.regs[VCPU_REGS_RCX],
2758                     (u32)vcpu->arch.regs[VCPU_REGS_RDX], handler);
2759 }
2760 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2761
2762 /*
2763  * Check if userspace requested an interrupt window, and that the
2764  * interrupt window is open.
2765  *
2766  * No need to exit to userspace if we already have an interrupt queued.
2767  */
2768 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2769                                           struct kvm_run *kvm_run)
2770 {
2771         return (!vcpu->arch.irq_summary &&
2772                 kvm_run->request_interrupt_window &&
2773                 vcpu->arch.interrupt_window_open &&
2774                 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2775 }
2776
2777 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2778                               struct kvm_run *kvm_run)
2779 {
2780         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2781         kvm_run->cr8 = kvm_get_cr8(vcpu);
2782         kvm_run->apic_base = kvm_get_apic_base(vcpu);
2783         if (irqchip_in_kernel(vcpu->kvm))
2784                 kvm_run->ready_for_interrupt_injection = 1;
2785         else
2786                 kvm_run->ready_for_interrupt_injection =
2787                                         (vcpu->arch.interrupt_window_open &&
2788                                          vcpu->arch.irq_summary == 0);
2789 }
2790
2791 static void vapic_enter(struct kvm_vcpu *vcpu)
2792 {
2793         struct kvm_lapic *apic = vcpu->arch.apic;
2794         struct page *page;
2795
2796         if (!apic || !apic->vapic_addr)
2797                 return;
2798
2799         down_read(&current->mm->mmap_sem);
2800         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2801         up_read(&current->mm->mmap_sem);
2802
2803         vcpu->arch.apic->vapic_page = page;
2804 }
2805
2806 static void vapic_exit(struct kvm_vcpu *vcpu)
2807 {
2808         struct kvm_lapic *apic = vcpu->arch.apic;
2809
2810         if (!apic || !apic->vapic_addr)
2811                 return;
2812
2813         kvm_release_page_dirty(apic->vapic_page);
2814         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2815 }
2816
2817 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2818 {
2819         int r;
2820
2821         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
2822                 pr_debug("vcpu %d received sipi with vector # %x\n",
2823                        vcpu->vcpu_id, vcpu->arch.sipi_vector);
2824                 kvm_lapic_reset(vcpu);
2825                 r = kvm_x86_ops->vcpu_reset(vcpu);
2826                 if (r)
2827                         return r;
2828                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2829         }
2830
2831         down_read(&vcpu->kvm->slots_lock);
2832         vapic_enter(vcpu);
2833
2834 preempted:
2835         if (vcpu->guest_debug.enabled)
2836                 kvm_x86_ops->guest_debug_pre(vcpu);
2837
2838 again:
2839         if (vcpu->requests)
2840                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2841                         kvm_mmu_unload(vcpu);
2842
2843         r = kvm_mmu_reload(vcpu);
2844         if (unlikely(r))
2845                 goto out;
2846
2847         if (vcpu->requests) {
2848                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2849                         __kvm_migrate_timers(vcpu);
2850                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2851                         kvm_x86_ops->tlb_flush(vcpu);
2852                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2853                                        &vcpu->requests)) {
2854                         kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2855                         r = 0;
2856                         goto out;
2857                 }
2858                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2859                         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2860                         r = 0;
2861                         goto out;
2862                 }
2863         }
2864
2865         clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
2866         kvm_inject_pending_timer_irqs(vcpu);
2867
2868         preempt_disable();
2869
2870         kvm_x86_ops->prepare_guest_switch(vcpu);
2871         kvm_load_guest_fpu(vcpu);
2872
2873         local_irq_disable();
2874
2875         if (vcpu->requests || need_resched()) {
2876                 local_irq_enable();
2877                 preempt_enable();
2878                 r = 1;
2879                 goto out;
2880         }
2881
2882         if (signal_pending(current)) {
2883                 local_irq_enable();
2884                 preempt_enable();
2885                 r = -EINTR;
2886                 kvm_run->exit_reason = KVM_EXIT_INTR;
2887                 ++vcpu->stat.signal_exits;
2888                 goto out;
2889         }
2890
2891         vcpu->guest_mode = 1;
2892         /*
2893          * Make sure that guest_mode assignment won't happen after
2894          * testing the pending IRQ vector bitmap.
2895          */
2896         smp_wmb();
2897
2898         if (vcpu->arch.exception.pending)
2899                 __queue_exception(vcpu);
2900         else if (irqchip_in_kernel(vcpu->kvm))
2901                 kvm_x86_ops->inject_pending_irq(vcpu);
2902         else
2903                 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2904
2905         kvm_lapic_sync_to_vapic(vcpu);
2906
2907         up_read(&vcpu->kvm->slots_lock);
2908
2909         kvm_guest_enter();
2910
2911
2912         KVMTRACE_0D(VMENTRY, vcpu, entryexit);
2913         kvm_x86_ops->run(vcpu, kvm_run);
2914
2915         vcpu->guest_mode = 0;
2916         local_irq_enable();
2917
2918         ++vcpu->stat.exits;
2919
2920         /*
2921          * We must have an instruction between local_irq_enable() and
2922          * kvm_guest_exit(), so the timer interrupt isn't delayed by
2923          * the interrupt shadow.  The stat.exits increment will do nicely.
2924          * But we need to prevent reordering, hence this barrier():
2925          */
2926         barrier();
2927
2928         kvm_guest_exit();
2929
2930         preempt_enable();
2931
2932         down_read(&vcpu->kvm->slots_lock);
2933
2934         /*
2935          * Profile KVM exit RIPs:
2936          */
2937         if (unlikely(prof_on == KVM_PROFILING)) {
2938                 kvm_x86_ops->cache_regs(vcpu);
2939                 profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2940         }
2941
2942         if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2943                 vcpu->arch.exception.pending = false;
2944
2945         kvm_lapic_sync_from_vapic(vcpu);
2946
2947         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2948
2949         if (r > 0) {
2950                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2951                         r = -EINTR;
2952                         kvm_run->exit_reason = KVM_EXIT_INTR;
2953                         ++vcpu->stat.request_irq_exits;
2954                         goto out;
2955                 }
2956                 if (!need_resched())
2957                         goto again;
2958         }
2959
2960 out:
2961         up_read(&vcpu->kvm->slots_lock);
2962         if (r > 0) {
2963                 kvm_resched(vcpu);
2964                 down_read(&vcpu->kvm->slots_lock);
2965                 goto preempted;
2966         }
2967
2968         post_kvm_run_save(vcpu, kvm_run);
2969
2970         down_read(&vcpu->kvm->slots_lock);
2971         vapic_exit(vcpu);
2972         up_read(&vcpu->kvm->slots_lock);
2973
2974         return r;
2975 }
2976
2977 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2978 {
2979         int r;
2980         sigset_t sigsaved;
2981
2982         vcpu_load(vcpu);
2983
2984         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
2985                 kvm_vcpu_block(vcpu);
2986                 vcpu_put(vcpu);
2987                 return -EAGAIN;
2988         }
2989
2990         if (vcpu->sigset_active)
2991                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2992
2993         /* re-sync apic's tpr */
2994         if (!irqchip_in_kernel(vcpu->kvm))
2995                 kvm_set_cr8(vcpu, kvm_run->cr8);
2996
2997         if (vcpu->arch.pio.cur_count) {
2998                 r = complete_pio(vcpu);
2999                 if (r)
3000                         goto out;
3001         }
3002 #if CONFIG_HAS_IOMEM
3003         if (vcpu->mmio_needed) {
3004                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3005                 vcpu->mmio_read_completed = 1;
3006                 vcpu->mmio_needed = 0;
3007
3008                 down_read(&vcpu->kvm->slots_lock);
3009                 r = emulate_instruction(vcpu, kvm_run,
3010                                         vcpu->arch.mmio_fault_cr2, 0,
3011                                         EMULTYPE_NO_DECODE);
3012                 up_read(&vcpu->kvm->slots_lock);
3013                 if (r == EMULATE_DO_MMIO) {
3014                         /*
3015                          * Read-modify-write.  Back to userspace.
3016                          */
3017                         r = 0;
3018                         goto out;
3019                 }
3020         }
3021 #endif
3022         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
3023                 kvm_x86_ops->cache_regs(vcpu);
3024                 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
3025                 kvm_x86_ops->decache_regs(vcpu);
3026         }
3027
3028         r = __vcpu_run(vcpu, kvm_run);
3029
3030 out:
3031         if (vcpu->sigset_active)
3032                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3033
3034         vcpu_put(vcpu);
3035         return r;
3036 }
3037
3038 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3039 {
3040         vcpu_load(vcpu);
3041
3042         kvm_x86_ops->cache_regs(vcpu);
3043
3044         regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
3045         regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
3046         regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
3047         regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
3048         regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
3049         regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
3050         regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3051         regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
3052 #ifdef CONFIG_X86_64
3053         regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
3054         regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
3055         regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
3056         regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
3057         regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
3058         regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
3059         regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
3060         regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
3061 #endif
3062
3063         regs->rip = vcpu->arch.rip;
3064         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3065
3066         /*
3067          * Don't leak debug flags in case they were set for guest debugging
3068          */
3069         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
3070                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3071
3072         vcpu_put(vcpu);
3073
3074         return 0;
3075 }
3076
3077 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3078 {
3079         vcpu_load(vcpu);
3080
3081         vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
3082         vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
3083         vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
3084         vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
3085         vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
3086         vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
3087         vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
3088         vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
3089 #ifdef CONFIG_X86_64
3090         vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
3091         vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
3092         vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
3093         vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
3094         vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
3095         vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
3096         vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
3097         vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
3098 #endif
3099
3100         vcpu->arch.rip = regs->rip;
3101         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3102
3103         kvm_x86_ops->decache_regs(vcpu);
3104
3105         vcpu->arch.exception.pending = false;
3106
3107         vcpu_put(vcpu);
3108
3109         return 0;
3110 }
3111
3112 void kvm_get_segment(struct kvm_vcpu *vcpu,
3113                      struct kvm_segment *var, int seg)
3114 {
3115         kvm_x86_ops->get_segment(vcpu, var, seg);
3116 }
3117
3118 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3119 {
3120         struct kvm_segment cs;
3121
3122         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3123         *db = cs.db;
3124         *l = cs.l;
3125 }
3126 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3127
3128 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3129                                   struct kvm_sregs *sregs)
3130 {
3131         struct descriptor_table dt;
3132         int pending_vec;
3133
3134         vcpu_load(vcpu);
3135
3136         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3137         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3138         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3139         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3140         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3141         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3142
3143         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3144         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3145
3146         kvm_x86_ops->get_idt(vcpu, &dt);
3147         sregs->idt.limit = dt.limit;
3148         sregs->idt.base = dt.base;
3149         kvm_x86_ops->get_gdt(vcpu, &dt);
3150         sregs->gdt.limit = dt.limit;
3151         sregs->gdt.base = dt.base;
3152
3153         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3154         sregs->cr0 = vcpu->arch.cr0;
3155         sregs->cr2 = vcpu->arch.cr2;
3156         sregs->cr3 = vcpu->arch.cr3;
3157         sregs->cr4 = vcpu->arch.cr4;
3158         sregs->cr8 = kvm_get_cr8(vcpu);
3159         sregs->efer = vcpu->arch.shadow_efer;
3160         sregs->apic_base = kvm_get_apic_base(vcpu);
3161
3162         if (irqchip_in_kernel(vcpu->kvm)) {
3163                 memset(sregs->interrupt_bitmap, 0,
3164                        sizeof sregs->interrupt_bitmap);
3165                 pending_vec = kvm_x86_ops->get_irq(vcpu);
3166                 if (pending_vec >= 0)
3167                         set_bit(pending_vec,
3168                                 (unsigned long *)sregs->interrupt_bitmap);
3169         } else
3170                 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3171                        sizeof sregs->interrupt_bitmap);
3172
3173         vcpu_put(vcpu);
3174
3175         return 0;
3176 }
3177
3178 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3179                                     struct kvm_mp_state *mp_state)
3180 {
3181         vcpu_load(vcpu);
3182         mp_state->mp_state = vcpu->arch.mp_state;
3183         vcpu_put(vcpu);
3184         return 0;
3185 }
3186
3187 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3188                                     struct kvm_mp_state *mp_state)
3189 {
3190         vcpu_load(vcpu);
3191         vcpu->arch.mp_state = mp_state->mp_state;
3192         vcpu_put(vcpu);
3193         return 0;
3194 }
3195
3196 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3197                         struct kvm_segment *var, int seg)
3198 {
3199         kvm_x86_ops->set_segment(vcpu, var, seg);
3200 }
3201
3202 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3203                                    struct kvm_segment *kvm_desct)
3204 {
3205         kvm_desct->base = seg_desc->base0;
3206         kvm_desct->base |= seg_desc->base1 << 16;
3207         kvm_desct->base |= seg_desc->base2 << 24;
3208         kvm_desct->limit = seg_desc->limit0;
3209         kvm_desct->limit |= seg_desc->limit << 16;
3210         kvm_desct->selector = selector;
3211         kvm_desct->type = seg_desc->type;
3212         kvm_desct->present = seg_desc->p;
3213         kvm_desct->dpl = seg_desc->dpl;
3214         kvm_desct->db = seg_desc->d;
3215         kvm_desct->s = seg_desc->s;
3216         kvm_desct->l = seg_desc->l;
3217         kvm_desct->g = seg_desc->g;
3218         kvm_desct->avl = seg_desc->avl;
3219         if (!selector)
3220                 kvm_desct->unusable = 1;
3221         else
3222                 kvm_desct->unusable = 0;
3223         kvm_desct->padding = 0;
3224 }
3225
3226 static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
3227                                            u16 selector,
3228                                            struct descriptor_table *dtable)
3229 {
3230         if (selector & 1 << 2) {
3231                 struct kvm_segment kvm_seg;
3232
3233                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3234
3235                 if (kvm_seg.unusable)
3236                         dtable->limit = 0;
3237                 else
3238                         dtable->limit = kvm_seg.limit;
3239                 dtable->base = kvm_seg.base;
3240         }
3241         else
3242                 kvm_x86_ops->get_gdt(vcpu, dtable);
3243 }
3244
3245 /* allowed just for 8 bytes segments */
3246 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3247                                          struct desc_struct *seg_desc)
3248 {
3249         struct descriptor_table dtable;
3250         u16 index = selector >> 3;
3251
3252         get_segment_descritptor_dtable(vcpu, selector, &dtable);
3253
3254         if (dtable.limit < index * 8 + 7) {
3255                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3256                 return 1;
3257         }
3258         return kvm_read_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
3259 }
3260
3261 /* allowed just for 8 bytes segments */
3262 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3263                                          struct desc_struct *seg_desc)
3264 {
3265         struct descriptor_table dtable;
3266         u16 index = selector >> 3;
3267
3268         get_segment_descritptor_dtable(vcpu, selector, &dtable);
3269
3270         if (dtable.limit < index * 8 + 7)
3271                 return 1;
3272         return kvm_write_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
3273 }
3274
3275 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3276                              struct desc_struct *seg_desc)
3277 {
3278         u32 base_addr;
3279
3280         base_addr = seg_desc->base0;
3281         base_addr |= (seg_desc->base1 << 16);
3282         base_addr |= (seg_desc->base2 << 24);
3283
3284         return base_addr;
3285 }
3286
3287 static int load_tss_segment32(struct kvm_vcpu *vcpu,
3288                               struct desc_struct *seg_desc,
3289                               struct tss_segment_32 *tss)
3290 {
3291         u32 base_addr;
3292
3293         base_addr = get_tss_base_addr(vcpu, seg_desc);
3294
3295         return kvm_read_guest(vcpu->kvm, base_addr, tss,
3296                               sizeof(struct tss_segment_32));
3297 }
3298
3299 static int save_tss_segment32(struct kvm_vcpu *vcpu,
3300                               struct desc_struct *seg_desc,
3301                               struct tss_segment_32 *tss)
3302 {
3303         u32 base_addr;
3304
3305         base_addr = get_tss_base_addr(vcpu, seg_desc);
3306
3307         return kvm_write_guest(vcpu->kvm, base_addr, tss,
3308                                sizeof(struct tss_segment_32));
3309 }
3310
3311 static int load_tss_segment16(struct kvm_vcpu *vcpu,
3312                               struct desc_struct *seg_desc,
3313                               struct tss_segment_16 *tss)
3314 {
3315         u32 base_addr;
3316
3317         base_addr = get_tss_base_addr(vcpu, seg_desc);
3318
3319         return kvm_read_guest(vcpu->kvm, base_addr, tss,
3320                               sizeof(struct tss_segment_16));
3321 }
3322
3323 static int save_tss_segment16(struct kvm_vcpu *vcpu,
3324                               struct desc_struct *seg_desc,
3325                               struct tss_segment_16 *tss)
3326 {
3327         u32 base_addr;
3328
3329         base_addr = get_tss_base_addr(vcpu, seg_desc);
3330
3331         return kvm_write_guest(vcpu->kvm, base_addr, tss,
3332                                sizeof(struct tss_segment_16));
3333 }
3334
3335 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3336 {
3337         struct kvm_segment kvm_seg;
3338
3339         kvm_get_segment(vcpu, &kvm_seg, seg);
3340         return kvm_seg.selector;
3341 }
3342
3343 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3344                                                 u16 selector,
3345                                                 struct kvm_segment *kvm_seg)
3346 {
3347         struct desc_struct seg_desc;
3348
3349         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3350                 return 1;
3351         seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3352         return 0;
3353 }
3354
3355 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3356                                 int type_bits, int seg)
3357 {
3358         struct kvm_segment kvm_seg;
3359
3360         if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3361                 return 1;
3362         kvm_seg.type |= type_bits;
3363
3364         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3365             seg != VCPU_SREG_LDTR)
3366                 if (!kvm_seg.s)
3367                         kvm_seg.unusable = 1;
3368
3369         kvm_set_segment(vcpu, &kvm_seg, seg);
3370         return 0;
3371 }
3372
3373 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3374                                 struct tss_segment_32 *tss)
3375 {
3376         tss->cr3 = vcpu->arch.cr3;
3377         tss->eip = vcpu->arch.rip;
3378         tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3379         tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
3380         tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3381         tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
3382         tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
3383         tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
3384         tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
3385         tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
3386         tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];
3387
3388         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3389         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3390         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3391         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3392         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3393         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3394         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3395         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3396 }
3397
3398 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3399                                   struct tss_segment_32 *tss)
3400 {
3401         kvm_set_cr3(vcpu, tss->cr3);
3402
3403         vcpu->arch.rip = tss->eip;
3404         kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3405
3406         vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
3407         vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
3408         vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
3409         vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;