]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - arch/x86/include/asm/pgtable_32.h
Merge commit 'v2.6.28-rc2' into x86/pci-ioapic-boot-irq-quirks
[linux-2.6.git] / arch / x86 / include / asm / pgtable_32.h
1 #ifndef _ASM_X86_PGTABLE_32_H
2 #define _ASM_X86_PGTABLE_32_H
3
4
5 /*
6  * The Linux memory management assumes a three-level page table setup. On
7  * the i386, we use that, but "fold" the mid level into the top-level page
8  * table, so that we physically have the same two-level page table as the
9  * i386 mmu expects.
10  *
11  * This file contains the functions and defines necessary to modify and use
12  * the i386 page table tree.
13  */
14 #ifndef __ASSEMBLY__
15 #include <asm/processor.h>
16 #include <asm/fixmap.h>
17 #include <linux/threads.h>
18 #include <asm/paravirt.h>
19
20 #include <linux/bitops.h>
21 #include <linux/slab.h>
22 #include <linux/list.h>
23 #include <linux/spinlock.h>
24
25 struct mm_struct;
26 struct vm_area_struct;
27
28 extern pgd_t swapper_pg_dir[1024];
29
30 static inline void pgtable_cache_init(void) { }
31 static inline void check_pgt_cache(void) { }
32 void paging_init(void);
33
34 extern void set_pmd_pfn(unsigned long, unsigned long, pgprot_t);
35
36 /*
37  * The Linux x86 paging architecture is 'compile-time dual-mode', it
38  * implements both the traditional 2-level x86 page tables and the
39  * newer 3-level PAE-mode page tables.
40  */
41 #ifdef CONFIG_X86_PAE
42 # include <asm/pgtable-3level-defs.h>
43 # define PMD_SIZE       (1UL << PMD_SHIFT)
44 # define PMD_MASK       (~(PMD_SIZE - 1))
45 #else
46 # include <asm/pgtable-2level-defs.h>
47 #endif
48
49 #define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
50 #define PGDIR_MASK      (~(PGDIR_SIZE - 1))
51
52 /* Just any arbitrary offset to the start of the vmalloc VM area: the
53  * current 8MB value just means that there will be a 8MB "hole" after the
54  * physical memory until the kernel virtual memory starts.  That means that
55  * any out-of-bounds memory accesses will hopefully be caught.
56  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
57  * area for the same reason. ;)
58  */
59 #define VMALLOC_OFFSET  (8 * 1024 * 1024)
60 #define VMALLOC_START   ((unsigned long)high_memory + VMALLOC_OFFSET)
61 #ifdef CONFIG_X86_PAE
62 #define LAST_PKMAP 512
63 #else
64 #define LAST_PKMAP 1024
65 #endif
66
67 #define PKMAP_BASE ((FIXADDR_BOOT_START - PAGE_SIZE * (LAST_PKMAP + 1)) \
68                     & PMD_MASK)
69
70 #ifdef CONFIG_HIGHMEM
71 # define VMALLOC_END    (PKMAP_BASE - 2 * PAGE_SIZE)
72 #else
73 # define VMALLOC_END    (FIXADDR_START - 2 * PAGE_SIZE)
74 #endif
75
76 #define MAXMEM  (VMALLOC_END - PAGE_OFFSET - __VMALLOC_RESERVE)
77
78 /*
79  * Define this if things work differently on an i386 and an i486:
80  * it will (on an i486) warn about kernel memory accesses that are
81  * done without a 'access_ok(VERIFY_WRITE,..)'
82  */
83 #undef TEST_ACCESS_OK
84
85 /* The boot page tables (all created as a single array) */
86 extern unsigned long pg0[];
87
88 #define pte_present(x)  ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
89
90 /* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
91 #define pmd_none(x)     (!(unsigned long)pmd_val((x)))
92 #define pmd_present(x)  (pmd_val((x)) & _PAGE_PRESENT)
93 #define pmd_bad(x) ((pmd_val(x) & (PTE_FLAGS_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
94
95 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
96
97 #ifdef CONFIG_X86_PAE
98 # include <asm/pgtable-3level.h>
99 #else
100 # include <asm/pgtable-2level.h>
101 #endif
102
103 /*
104  * Macro to mark a page protection value as "uncacheable".
105  * On processors which do not support it, this is a no-op.
106  */
107 #define pgprot_noncached(prot)                                  \
108         ((boot_cpu_data.x86 > 3)                                \
109          ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) \
110          : (prot))
111
112 /*
113  * Conversion functions: convert a page and protection to a page entry,
114  * and a page entry and page directory to the page they refer to.
115  */
116 #define mk_pte(page, pgprot)    pfn_pte(page_to_pfn(page), (pgprot))
117
118
119 static inline int pud_large(pud_t pud) { return 0; }
120
121 /*
122  * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
123  *
124  * this macro returns the index of the entry in the pmd page which would
125  * control the given virtual address
126  */
127 #define pmd_index(address)                              \
128         (((address) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
129
130 /*
131  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
132  *
133  * this macro returns the index of the entry in the pte page which would
134  * control the given virtual address
135  */
136 #define pte_index(address)                                      \
137         (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
138 #define pte_offset_kernel(dir, address)                         \
139         ((pte_t *)pmd_page_vaddr(*(dir)) +  pte_index((address)))
140
141 #define pmd_page(pmd) (pfn_to_page(pmd_val((pmd)) >> PAGE_SHIFT))
142
143 #define pmd_page_vaddr(pmd)                                     \
144         ((unsigned long)__va(pmd_val((pmd)) & PTE_PFN_MASK))
145
146 #if defined(CONFIG_HIGHPTE)
147 #define pte_offset_map(dir, address)                                    \
148         ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)), KM_PTE0) +          \
149          pte_index((address)))
150 #define pte_offset_map_nested(dir, address)                             \
151         ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)), KM_PTE1) +          \
152          pte_index((address)))
153 #define pte_unmap(pte) kunmap_atomic((pte), KM_PTE0)
154 #define pte_unmap_nested(pte) kunmap_atomic((pte), KM_PTE1)
155 #else
156 #define pte_offset_map(dir, address)                                    \
157         ((pte_t *)page_address(pmd_page(*(dir))) + pte_index((address)))
158 #define pte_offset_map_nested(dir, address) pte_offset_map((dir), (address))
159 #define pte_unmap(pte) do { } while (0)
160 #define pte_unmap_nested(pte) do { } while (0)
161 #endif
162
163 /* Clear a kernel PTE and flush it from the TLB */
164 #define kpte_clear_flush(ptep, vaddr)           \
165 do {                                            \
166         pte_clear(&init_mm, (vaddr), (ptep));   \
167         __flush_tlb_one((vaddr));               \
168 } while (0)
169
170 /*
171  * The i386 doesn't have any external MMU info: the kernel page
172  * tables contain all the necessary information.
173  */
174 #define update_mmu_cache(vma, address, pte) do { } while (0)
175
176 #endif /* !__ASSEMBLY__ */
177
178 /*
179  * kern_addr_valid() is (1) for FLATMEM and (0) for
180  * SPARSEMEM and DISCONTIGMEM
181  */
182 #ifdef CONFIG_FLATMEM
183 #define kern_addr_valid(addr)   (1)
184 #else
185 #define kern_addr_valid(kaddr)  (0)
186 #endif
187
188 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
189         remap_pfn_range(vma, vaddr, pfn, size, prot)
190
191 #endif /* _ASM_X86_PGTABLE_32_H */