]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - arch/powerpc/oprofile/op_model_cell.c
Pull platform-drivers into test branch
[linux-2.6.git] / arch / powerpc / oprofile / op_model_cell.c
1 /*
2  * Cell Broadband Engine OProfile Support
3  *
4  * (C) Copyright IBM Corporation 2006
5  *
6  * Author: David Erb (djerb@us.ibm.com)
7  * Modifications:
8  *         Carl Love <carll@us.ibm.com>
9  *         Maynard Johnson <maynardj@us.ibm.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version
14  * 2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/cpufreq.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/jiffies.h>
21 #include <linux/kthread.h>
22 #include <linux/oprofile.h>
23 #include <linux/percpu.h>
24 #include <linux/smp.h>
25 #include <linux/spinlock.h>
26 #include <linux/timer.h>
27 #include <asm/cell-pmu.h>
28 #include <asm/cputable.h>
29 #include <asm/firmware.h>
30 #include <asm/io.h>
31 #include <asm/oprofile_impl.h>
32 #include <asm/processor.h>
33 #include <asm/prom.h>
34 #include <asm/ptrace.h>
35 #include <asm/reg.h>
36 #include <asm/rtas.h>
37 #include <asm/system.h>
38
39 #include "../platforms/cell/interrupt.h"
40
41 #define PPU_CYCLES_EVENT_NUM 1  /*  event number for CYCLES */
42 #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
43
44 #define NUM_THREADS 2
45 #define VIRT_CNTR_SW_TIME_NS 100000000  // 0.5 seconds
46
47 struct pmc_cntrl_data {
48         unsigned long vcntr;
49         unsigned long evnts;
50         unsigned long masks;
51         unsigned long enabled;
52 };
53
54 /*
55  * ibm,cbe-perftools rtas parameters
56  */
57
58 struct pm_signal {
59         u16 cpu;                /* Processor to modify */
60         u16 sub_unit;           /* hw subunit this applies to (if applicable) */
61         u16 signal_group;       /* Signal Group to Enable/Disable */
62         u8 bus_word;            /* Enable/Disable on this Trace/Trigger/Event
63                                  * Bus Word(s) (bitmask)
64                                  */
65         u8 bit;                 /* Trigger/Event bit (if applicable) */
66 };
67
68 /*
69  * rtas call arguments
70  */
71 enum {
72         SUBFUNC_RESET = 1,
73         SUBFUNC_ACTIVATE = 2,
74         SUBFUNC_DEACTIVATE = 3,
75
76         PASSTHRU_IGNORE = 0,
77         PASSTHRU_ENABLE = 1,
78         PASSTHRU_DISABLE = 2,
79 };
80
81 struct pm_cntrl {
82         u16 enable;
83         u16 stop_at_max;
84         u16 trace_mode;
85         u16 freeze;
86         u16 count_mode;
87 };
88
89 static struct {
90         u32 group_control;
91         u32 debug_bus_control;
92         struct pm_cntrl pm_cntrl;
93         u32 pm07_cntrl[NR_PHYS_CTRS];
94 } pm_regs;
95
96
97 #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
98 #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
99 #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
100 #define GET_POLARITY(x) ((x & 0x00000002) >> 1)
101 #define GET_COUNT_CYCLES(x) (x & 0x00000001)
102 #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
103
104
105 static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
106
107 static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
108
109 /* Interpetation of hdw_thread:
110  * 0 - even virtual cpus 0, 2, 4,...
111  * 1 - odd virtual cpus 1, 3, 5, ...
112  */
113 static u32 hdw_thread;
114
115 static u32 virt_cntr_inter_mask;
116 static struct timer_list timer_virt_cntr;
117
118 /* pm_signal needs to be global since it is initialized in
119  * cell_reg_setup at the time when the necessary information
120  * is available.
121  */
122 static struct pm_signal pm_signal[NR_PHYS_CTRS];
123 static int pm_rtas_token;
124
125 static u32 reset_value[NR_PHYS_CTRS];
126 static int num_counters;
127 static int oprofile_running;
128 static spinlock_t virt_cntr_lock = SPIN_LOCK_UNLOCKED;
129
130 static u32 ctr_enabled;
131
132 static unsigned char trace_bus[4];
133 static unsigned char input_bus[2];
134
135 /*
136  * Firmware interface functions
137  */
138 static int
139 rtas_ibm_cbe_perftools(int subfunc, int passthru,
140                        void *address, unsigned long length)
141 {
142         u64 paddr = __pa(address);
143
144         return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc, passthru,
145                          paddr >> 32, paddr & 0xffffffff, length);
146 }
147
148 static void pm_rtas_reset_signals(u32 node)
149 {
150         int ret;
151         struct pm_signal pm_signal_local;
152
153         /*  The debug bus is being set to the passthru disable state.
154          *  However, the FW still expects atleast one legal signal routing
155          *  entry or it will return an error on the arguments.  If we don't
156          *  supply a valid entry, we must ignore all return values.  Ignoring
157          *  all return values means we might miss an error we should be
158          *  concerned about.
159          */
160
161         /*  fw expects physical cpu #. */
162         pm_signal_local.cpu = node;
163         pm_signal_local.signal_group = 21;
164         pm_signal_local.bus_word = 1;
165         pm_signal_local.sub_unit = 0;
166         pm_signal_local.bit = 0;
167
168         ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
169                                      &pm_signal_local,
170                                      sizeof(struct pm_signal));
171
172         if (ret)
173                 printk(KERN_WARNING "%s: rtas returned: %d\n",
174                        __FUNCTION__, ret);
175 }
176
177 static void pm_rtas_activate_signals(u32 node, u32 count)
178 {
179         int ret;
180         int j;
181         struct pm_signal pm_signal_local[NR_PHYS_CTRS];
182
183         for (j = 0; j < count; j++) {
184                 /* fw expects physical cpu # */
185                 pm_signal_local[j].cpu = node;
186                 pm_signal_local[j].signal_group = pm_signal[j].signal_group;
187                 pm_signal_local[j].bus_word = pm_signal[j].bus_word;
188                 pm_signal_local[j].sub_unit = pm_signal[j].sub_unit;
189                 pm_signal_local[j].bit = pm_signal[j].bit;
190         }
191
192         ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
193                                      pm_signal_local,
194                                      count * sizeof(struct pm_signal));
195
196         if (ret)
197                 printk(KERN_WARNING "%s: rtas returned: %d\n",
198                        __FUNCTION__, ret);
199 }
200
201 /*
202  * PM Signal functions
203  */
204 static void set_pm_event(u32 ctr, int event, u32 unit_mask)
205 {
206         struct pm_signal *p;
207         u32 signal_bit;
208         u32 bus_word, bus_type, count_cycles, polarity, input_control;
209         int j, i;
210
211         if (event == PPU_CYCLES_EVENT_NUM) {
212                 /* Special Event: Count all cpu cycles */
213                 pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
214                 p = &(pm_signal[ctr]);
215                 p->signal_group = 21;
216                 p->bus_word = 1;
217                 p->sub_unit = 0;
218                 p->bit = 0;
219                 goto out;
220         } else {
221                 pm_regs.pm07_cntrl[ctr] = 0;
222         }
223
224         bus_word = GET_BUS_WORD(unit_mask);
225         bus_type = GET_BUS_TYPE(unit_mask);
226         count_cycles = GET_COUNT_CYCLES(unit_mask);
227         polarity = GET_POLARITY(unit_mask);
228         input_control = GET_INPUT_CONTROL(unit_mask);
229         signal_bit = (event % 100);
230
231         p = &(pm_signal[ctr]);
232
233         p->signal_group = event / 100;
234         p->bus_word = bus_word;
235         p->sub_unit = unit_mask & 0x0000f000;
236
237         pm_regs.pm07_cntrl[ctr] = 0;
238         pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
239         pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
240         pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
241
242         if (input_control == 0) {
243                 if (signal_bit > 31) {
244                         signal_bit -= 32;
245                         if (bus_word == 0x3)
246                                 bus_word = 0x2;
247                         else if (bus_word == 0xc)
248                                 bus_word = 0x8;
249                 }
250
251                 if ((bus_type == 0) && p->signal_group >= 60)
252                         bus_type = 2;
253                 if ((bus_type == 1) && p->signal_group >= 50)
254                         bus_type = 0;
255
256                 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
257         } else {
258                 pm_regs.pm07_cntrl[ctr] = 0;
259                 p->bit = signal_bit;
260         }
261
262         for (i = 0; i < 4; i++) {
263                 if (bus_word & (1 << i)) {
264                         pm_regs.debug_bus_control |=
265                             (bus_type << (31 - (2 * i) + 1));
266
267                         for (j = 0; j < 2; j++) {
268                                 if (input_bus[j] == 0xff) {
269                                         input_bus[j] = i;
270                                         pm_regs.group_control |=
271                                             (i << (31 - i));
272                                         break;
273                                 }
274                         }
275                 }
276         }
277 out:
278         ;
279 }
280
281 static void write_pm_cntrl(int cpu, struct pm_cntrl *pm_cntrl)
282 {
283         /* Oprofile will use 32 bit counters, set bits 7:10 to 0 */
284         u32 val = 0;
285         if (pm_cntrl->enable == 1)
286                 val |= CBE_PM_ENABLE_PERF_MON;
287
288         if (pm_cntrl->stop_at_max == 1)
289                 val |= CBE_PM_STOP_AT_MAX;
290
291         if (pm_cntrl->trace_mode == 1)
292                 val |= CBE_PM_TRACE_MODE_SET(pm_cntrl->trace_mode);
293
294         if (pm_cntrl->freeze == 1)
295                 val |= CBE_PM_FREEZE_ALL_CTRS;
296
297         /* Routine set_count_mode must be called previously to set
298          * the count mode based on the user selection of user and kernel.
299          */
300         val |= CBE_PM_COUNT_MODE_SET(pm_cntrl->count_mode);
301         cbe_write_pm(cpu, pm_control, val);
302 }
303
304 static inline void
305 set_count_mode(u32 kernel, u32 user, struct pm_cntrl *pm_cntrl)
306 {
307         /* The user must specify user and kernel if they want them. If
308          *  neither is specified, OProfile will count in hypervisor mode
309          */
310         if (kernel) {
311                 if (user)
312                         pm_cntrl->count_mode = CBE_COUNT_ALL_MODES;
313                 else
314                         pm_cntrl->count_mode = CBE_COUNT_SUPERVISOR_MODE;
315         } else {
316                 if (user)
317                         pm_cntrl->count_mode = CBE_COUNT_PROBLEM_MODE;
318                 else
319                         pm_cntrl->count_mode = CBE_COUNT_HYPERVISOR_MODE;
320         }
321 }
322
323 static inline void enable_ctr(u32 cpu, u32 ctr, u32 * pm07_cntrl)
324 {
325
326         pm07_cntrl[ctr] |= PM07_CTR_ENABLE(1);
327         cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
328 }
329
330 /*
331  * Oprofile is expected to collect data on all CPUs simultaneously.
332  * However, there is one set of performance counters per node.  There are
333  * two hardware threads or virtual CPUs on each node.  Hence, OProfile must
334  * multiplex in time the performance counter collection on the two virtual
335  * CPUs.  The multiplexing of the performance counters is done by this
336  * virtual counter routine.
337  *
338  * The pmc_values used below is defined as 'per-cpu' but its use is
339  * more akin to 'per-node'.  We need to store two sets of counter
340  * values per node -- one for the previous run and one for the next.
341  * The per-cpu[NR_PHYS_CTRS] gives us the storage we need.  Each odd/even
342  * pair of per-cpu arrays is used for storing the previous and next
343  * pmc values for a given node.
344  * NOTE: We use the per-cpu variable to improve cache performance.
345  */
346 static void cell_virtual_cntr(unsigned long data)
347 {
348         /* This routine will alternate loading the virtual counters for
349          * virtual CPUs
350          */
351         int i, prev_hdw_thread, next_hdw_thread;
352         u32 cpu;
353         unsigned long flags;
354
355         /* Make sure that the interrupt_hander and
356          * the virt counter are not both playing with
357          * the counters on the same node.
358          */
359
360         spin_lock_irqsave(&virt_cntr_lock, flags);
361
362         prev_hdw_thread = hdw_thread;
363
364         /* switch the cpu handling the interrupts */
365         hdw_thread = 1 ^ hdw_thread;
366         next_hdw_thread = hdw_thread;
367
368         /* The following is done only once per each node, but
369          * we need cpu #, not node #, to pass to the cbe_xxx functions.
370          */
371         for_each_online_cpu(cpu) {
372                 if (cbe_get_hw_thread_id(cpu))
373                         continue;
374
375                 /* stop counters, save counter values, restore counts
376                  * for previous thread
377                  */
378                 cbe_disable_pm(cpu);
379                 cbe_disable_pm_interrupts(cpu);
380                 for (i = 0; i < num_counters; i++) {
381                         per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
382                             = cbe_read_ctr(cpu, i);
383
384                         if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
385                             == 0xFFFFFFFF)
386                                 /* If the cntr value is 0xffffffff, we must
387                                  * reset that to 0xfffffff0 when the current
388                                  * thread is restarted.  This will generate a new
389                                  * interrupt and make sure that we never restore
390                                  * the counters to the max value.  If the counters
391                                  * were restored to the max value, they do not
392                                  * increment and no interrupts are generated.  Hence
393                                  * no more samples will be collected on that cpu.
394                                  */
395                                 cbe_write_ctr(cpu, i, 0xFFFFFFF0);
396                         else
397                                 cbe_write_ctr(cpu, i,
398                                               per_cpu(pmc_values,
399                                                       cpu +
400                                                       next_hdw_thread)[i]);
401                 }
402
403                 /* Switch to the other thread. Change the interrupt
404                  * and control regs to be scheduled on the CPU
405                  * corresponding to the thread to execute.
406                  */
407                 for (i = 0; i < num_counters; i++) {
408                         if (pmc_cntrl[next_hdw_thread][i].enabled) {
409                                 /* There are some per thread events.
410                                  * Must do the set event, enable_cntr
411                                  * for each cpu.
412                                  */
413                                 set_pm_event(i,
414                                      pmc_cntrl[next_hdw_thread][i].evnts,
415                                      pmc_cntrl[next_hdw_thread][i].masks);
416                                 enable_ctr(cpu, i,
417                                            pm_regs.pm07_cntrl);
418                         } else {
419                                 cbe_write_pm07_control(cpu, i, 0);
420                         }
421                 }
422
423                 /* Enable interrupts on the CPU thread that is starting */
424                 cbe_enable_pm_interrupts(cpu, next_hdw_thread,
425                                          virt_cntr_inter_mask);
426                 cbe_enable_pm(cpu);
427         }
428
429         spin_unlock_irqrestore(&virt_cntr_lock, flags);
430
431         mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
432 }
433
434 static void start_virt_cntrs(void)
435 {
436         init_timer(&timer_virt_cntr);
437         timer_virt_cntr.function = cell_virtual_cntr;
438         timer_virt_cntr.data = 0UL;
439         timer_virt_cntr.expires = jiffies + HZ / 10;
440         add_timer(&timer_virt_cntr);
441 }
442
443 /* This function is called once for all cpus combined */
444 static void
445 cell_reg_setup(struct op_counter_config *ctr,
446                struct op_system_config *sys, int num_ctrs)
447 {
448         int i, j, cpu;
449
450         pm_rtas_token = rtas_token("ibm,cbe-perftools");
451         if (pm_rtas_token == RTAS_UNKNOWN_SERVICE) {
452                 printk(KERN_WARNING "%s: RTAS_UNKNOWN_SERVICE\n",
453                        __FUNCTION__);
454                 goto out;
455         }
456
457         num_counters = num_ctrs;
458
459         pm_regs.group_control = 0;
460         pm_regs.debug_bus_control = 0;
461
462         /* setup the pm_control register */
463         memset(&pm_regs.pm_cntrl, 0, sizeof(struct pm_cntrl));
464         pm_regs.pm_cntrl.stop_at_max = 1;
465         pm_regs.pm_cntrl.trace_mode = 0;
466         pm_regs.pm_cntrl.freeze = 1;
467
468         set_count_mode(sys->enable_kernel, sys->enable_user,
469                        &pm_regs.pm_cntrl);
470
471         /* Setup the thread 0 events */
472         for (i = 0; i < num_ctrs; ++i) {
473
474                 pmc_cntrl[0][i].evnts = ctr[i].event;
475                 pmc_cntrl[0][i].masks = ctr[i].unit_mask;
476                 pmc_cntrl[0][i].enabled = ctr[i].enabled;
477                 pmc_cntrl[0][i].vcntr = i;
478
479                 for_each_possible_cpu(j)
480                         per_cpu(pmc_values, j)[i] = 0;
481         }
482
483         /* Setup the thread 1 events, map the thread 0 event to the
484          * equivalent thread 1 event.
485          */
486         for (i = 0; i < num_ctrs; ++i) {
487                 if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
488                         pmc_cntrl[1][i].evnts = ctr[i].event + 19;
489                 else if (ctr[i].event == 2203)
490                         pmc_cntrl[1][i].evnts = ctr[i].event;
491                 else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
492                         pmc_cntrl[1][i].evnts = ctr[i].event + 16;
493                 else
494                         pmc_cntrl[1][i].evnts = ctr[i].event;
495
496                 pmc_cntrl[1][i].masks = ctr[i].unit_mask;
497                 pmc_cntrl[1][i].enabled = ctr[i].enabled;
498                 pmc_cntrl[1][i].vcntr = i;
499         }
500
501         for (i = 0; i < 4; i++)
502                 trace_bus[i] = 0xff;
503
504         for (i = 0; i < 2; i++)
505                 input_bus[i] = 0xff;
506
507         /* Our counters count up, and "count" refers to
508          * how much before the next interrupt, and we interrupt
509          * on overflow.  So we calculate the starting value
510          * which will give us "count" until overflow.
511          * Then we set the events on the enabled counters.
512          */
513         for (i = 0; i < num_counters; ++i) {
514                 /* start with virtual counter set 0 */
515                 if (pmc_cntrl[0][i].enabled) {
516                         /* Using 32bit counters, reset max - count */
517                         reset_value[i] = 0xFFFFFFFF - ctr[i].count;
518                         set_pm_event(i,
519                                      pmc_cntrl[0][i].evnts,
520                                      pmc_cntrl[0][i].masks);
521
522                         /* global, used by cell_cpu_setup */
523                         ctr_enabled |= (1 << i);
524                 }
525         }
526
527         /* initialize the previous counts for the virtual cntrs */
528         for_each_online_cpu(cpu)
529                 for (i = 0; i < num_counters; ++i) {
530                         per_cpu(pmc_values, cpu)[i] = reset_value[i];
531                 }
532 out:
533         ;
534 }
535
536 /* This function is called once for each cpu */
537 static void cell_cpu_setup(struct op_counter_config *cntr)
538 {
539         u32 cpu = smp_processor_id();
540         u32 num_enabled = 0;
541         int i;
542
543         /* There is one performance monitor per processor chip (i.e. node),
544          * so we only need to perform this function once per node.
545          */
546         if (cbe_get_hw_thread_id(cpu))
547                 goto out;
548
549         if (pm_rtas_token == RTAS_UNKNOWN_SERVICE) {
550                 printk(KERN_WARNING "%s: RTAS_UNKNOWN_SERVICE\n",
551                        __FUNCTION__);
552                 goto out;
553         }
554
555         /* Stop all counters */
556         cbe_disable_pm(cpu);
557         cbe_disable_pm_interrupts(cpu);
558
559         cbe_write_pm(cpu, pm_interval, 0);
560         cbe_write_pm(cpu, pm_start_stop, 0);
561         cbe_write_pm(cpu, group_control, pm_regs.group_control);
562         cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
563         write_pm_cntrl(cpu, &pm_regs.pm_cntrl);
564
565         for (i = 0; i < num_counters; ++i) {
566                 if (ctr_enabled & (1 << i)) {
567                         pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
568                         num_enabled++;
569                 }
570         }
571
572         pm_rtas_activate_signals(cbe_cpu_to_node(cpu), num_enabled);
573 out:
574         ;
575 }
576
577 static void cell_global_start(struct op_counter_config *ctr)
578 {
579         u32 cpu;
580         u32 interrupt_mask = 0;
581         u32 i;
582
583         /* This routine gets called once for the system.
584          * There is one performance monitor per node, so we
585          * only need to perform this function once per node.
586          */
587         for_each_online_cpu(cpu) {
588                 if (cbe_get_hw_thread_id(cpu))
589                         continue;
590
591                 interrupt_mask = 0;
592
593                 for (i = 0; i < num_counters; ++i) {
594                         if (ctr_enabled & (1 << i)) {
595                                 cbe_write_ctr(cpu, i, reset_value[i]);
596                                 enable_ctr(cpu, i, pm_regs.pm07_cntrl);
597                                 interrupt_mask |=
598                                     CBE_PM_CTR_OVERFLOW_INTR(i);
599                         } else {
600                                 /* Disable counter */
601                                 cbe_write_pm07_control(cpu, i, 0);
602                         }
603                 }
604
605                 cbe_clear_pm_interrupts(cpu);
606                 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
607                 cbe_enable_pm(cpu);
608         }
609
610         virt_cntr_inter_mask = interrupt_mask;
611         oprofile_running = 1;
612         smp_wmb();
613
614         /* NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
615          * executed which manipulates the PMU.  We start the "virtual counter"
616          * here so that we do not need to synchronize access to the PMU in
617          * the above for-loop.
618          */
619         start_virt_cntrs();
620 }
621
622 static void cell_global_stop(void)
623 {
624         int cpu;
625
626         /* This routine will be called once for the system.
627          * There is one performance monitor per node, so we
628          * only need to perform this function once per node.
629          */
630         del_timer_sync(&timer_virt_cntr);
631         oprofile_running = 0;
632         smp_wmb();
633
634         for_each_online_cpu(cpu) {
635                 if (cbe_get_hw_thread_id(cpu))
636                         continue;
637
638                 cbe_sync_irq(cbe_cpu_to_node(cpu));
639                 /* Stop the counters */
640                 cbe_disable_pm(cpu);
641
642                 /* Deactivate the signals */
643                 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
644
645                 /* Deactivate interrupts */
646                 cbe_disable_pm_interrupts(cpu);
647         }
648 }
649
650 static void
651 cell_handle_interrupt(struct pt_regs *regs, struct op_counter_config *ctr)
652 {
653         u32 cpu;
654         u64 pc;
655         int is_kernel;
656         unsigned long flags = 0;
657         u32 interrupt_mask;
658         int i;
659
660         cpu = smp_processor_id();
661
662         /* Need to make sure the interrupt handler and the virt counter
663          * routine are not running at the same time. See the
664          * cell_virtual_cntr() routine for additional comments.
665          */
666         spin_lock_irqsave(&virt_cntr_lock, flags);
667
668         /* Need to disable and reenable the performance counters
669          * to get the desired behavior from the hardware.  This
670          * is hardware specific.
671          */
672
673         cbe_disable_pm(cpu);
674
675         interrupt_mask = cbe_clear_pm_interrupts(cpu);
676
677         /* If the interrupt mask has been cleared, then the virt cntr
678          * has cleared the interrupt.  When the thread that generated
679          * the interrupt is restored, the data count will be restored to
680          * 0xffffff0 to cause the interrupt to be regenerated.
681          */
682
683         if ((oprofile_running == 1) && (interrupt_mask != 0)) {
684                 pc = regs->nip;
685                 is_kernel = is_kernel_addr(pc);
686
687                 for (i = 0; i < num_counters; ++i) {
688                         if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
689                             && ctr[i].enabled) {
690                                 oprofile_add_pc(pc, is_kernel, i);
691                                 cbe_write_ctr(cpu, i, reset_value[i]);
692                         }
693                 }
694
695                 /* The counters were frozen by the interrupt.
696                  * Reenable the interrupt and restart the counters.
697                  * If there was a race between the interrupt handler and
698                  * the virtual counter routine.  The virutal counter
699                  * routine may have cleared the interrupts.  Hence must
700                  * use the virt_cntr_inter_mask to re-enable the interrupts.
701                  */
702                 cbe_enable_pm_interrupts(cpu, hdw_thread,
703                                          virt_cntr_inter_mask);
704
705                 /* The writes to the various performance counters only writes
706                  * to a latch.  The new values (interrupt setting bits, reset
707                  * counter value etc.) are not copied to the actual registers
708                  * until the performance monitor is enabled.  In order to get
709                  * this to work as desired, the permormance monitor needs to
710                  * be disabled while writting to the latches.  This is a
711                  * HW design issue.
712                  */
713                 cbe_enable_pm(cpu);
714         }
715         spin_unlock_irqrestore(&virt_cntr_lock, flags);
716 }
717
718 struct op_powerpc_model op_model_cell = {
719         .reg_setup = cell_reg_setup,
720         .cpu_setup = cell_cpu_setup,
721         .global_start = cell_global_start,
722         .global_stop = cell_global_stop,
723         .handle_interrupt = cell_handle_interrupt,
724 };