[MIPS] Jazz: remove unneeded reset functions
[linux-2.6.git] / arch / mips / jazz / jazzdma.c
1 /*
2  * Mips Jazz DMA controller support
3  * Copyright (C) 1995, 1996 by Andreas Busse
4  *
5  * NOTE: Some of the argument checking could be removed when
6  * things have settled down. Also, instead of returning 0xffffffff
7  * on failure of vdma_alloc() one could leave page #0 unused
8  * and return the more usual NULL pointer as logical address.
9  */
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/errno.h>
14 #include <linux/mm.h>
15 #include <linux/bootmem.h>
16 #include <linux/spinlock.h>
17 #include <asm/mipsregs.h>
18 #include <asm/jazz.h>
19 #include <asm/io.h>
20 #include <asm/uaccess.h>
21 #include <asm/dma.h>
22 #include <asm/jazzdma.h>
23 #include <asm/pgtable.h>
24
25 /*
26  * Set this to one to enable additional vdma debug code.
27  */
28 #define CONF_DEBUG_VDMA 0
29
30 static unsigned long vdma_pagetable_start;
31
32 static DEFINE_SPINLOCK(vdma_lock);
33
34 /*
35  * Debug stuff
36  */
37 #define vdma_debug     ((CONF_DEBUG_VDMA) ? debuglvl : 0)
38
39 static int debuglvl = 3;
40
41 /*
42  * Initialize the pagetable with a one-to-one mapping of
43  * the first 16 Mbytes of main memory and declare all
44  * entries to be unused. Using this method will at least
45  * allow some early device driver operations to work.
46  */
47 static inline void vdma_pgtbl_init(void)
48 {
49         VDMA_PGTBL_ENTRY *pgtbl = (VDMA_PGTBL_ENTRY *) vdma_pagetable_start;
50         unsigned long paddr = 0;
51         int i;
52
53         for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
54                 pgtbl[i].frame = paddr;
55                 pgtbl[i].owner = VDMA_PAGE_EMPTY;
56                 paddr += VDMA_PAGESIZE;
57         }
58 }
59
60 /*
61  * Initialize the Jazz R4030 dma controller
62  */
63 void __init vdma_init(void)
64 {
65         /*
66          * Allocate 32k of memory for DMA page tables.  This needs to be page
67          * aligned and should be uncached to avoid cache flushing after every
68          * update.
69          */
70         vdma_pagetable_start =
71                 (unsigned long) alloc_bootmem_low_pages(VDMA_PGTBL_SIZE);
72         if (!vdma_pagetable_start)
73                 BUG();
74         dma_cache_wback_inv(vdma_pagetable_start, VDMA_PGTBL_SIZE);
75         vdma_pagetable_start = KSEG1ADDR(vdma_pagetable_start);
76
77         /*
78          * Clear the R4030 translation table
79          */
80         vdma_pgtbl_init();
81
82         r4030_write_reg32(JAZZ_R4030_TRSTBL_BASE,
83                           CPHYSADDR(vdma_pagetable_start));
84         r4030_write_reg32(JAZZ_R4030_TRSTBL_LIM, VDMA_PGTBL_SIZE);
85         r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
86
87         printk("VDMA: R4030 DMA pagetables initialized.\n");
88 }
89
90 /*
91  * Allocate DMA pagetables using a simple first-fit algorithm
92  */
93 unsigned long vdma_alloc(unsigned long paddr, unsigned long size)
94 {
95         VDMA_PGTBL_ENTRY *entry = (VDMA_PGTBL_ENTRY *) vdma_pagetable_start;
96         int first, last, pages, frame, i;
97         unsigned long laddr, flags;
98
99         /* check arguments */
100
101         if (paddr > 0x1fffffff) {
102                 if (vdma_debug)
103                         printk("vdma_alloc: Invalid physical address: %08lx\n",
104                                paddr);
105                 return VDMA_ERROR;      /* invalid physical address */
106         }
107         if (size > 0x400000 || size == 0) {
108                 if (vdma_debug)
109                         printk("vdma_alloc: Invalid size: %08lx\n", size);
110                 return VDMA_ERROR;      /* invalid physical address */
111         }
112
113         spin_lock_irqsave(&vdma_lock, flags);
114         /*
115          * Find free chunk
116          */
117         pages = (size + 4095) >> 12;    /* no. of pages to allocate */
118         first = 0;
119         while (1) {
120                 while (entry[first].owner != VDMA_PAGE_EMPTY &&
121                        first < VDMA_PGTBL_ENTRIES) first++;
122                 if (first + pages > VDMA_PGTBL_ENTRIES) {       /* nothing free */
123                         spin_unlock_irqrestore(&vdma_lock, flags);
124                         return VDMA_ERROR;
125                 }
126
127                 last = first + 1;
128                 while (entry[last].owner == VDMA_PAGE_EMPTY
129                        && last - first < pages)
130                         last++;
131
132                 if (last - first == pages)
133                         break;  /* found */
134         }
135
136         /*
137          * Mark pages as allocated
138          */
139         laddr = (first << 12) + (paddr & (VDMA_PAGESIZE - 1));
140         frame = paddr & ~(VDMA_PAGESIZE - 1);
141
142         for (i = first; i < last; i++) {
143                 entry[i].frame = frame;
144                 entry[i].owner = laddr;
145                 frame += VDMA_PAGESIZE;
146         }
147
148         /*
149          * Update translation table and return logical start address
150          */
151         r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
152
153         if (vdma_debug > 1)
154                 printk("vdma_alloc: Allocated %d pages starting from %08lx\n",
155                      pages, laddr);
156
157         if (vdma_debug > 2) {
158                 printk("LADDR: ");
159                 for (i = first; i < last; i++)
160                         printk("%08x ", i << 12);
161                 printk("\nPADDR: ");
162                 for (i = first; i < last; i++)
163                         printk("%08x ", entry[i].frame);
164                 printk("\nOWNER: ");
165                 for (i = first; i < last; i++)
166                         printk("%08x ", entry[i].owner);
167                 printk("\n");
168         }
169
170         spin_unlock_irqrestore(&vdma_lock, flags);
171
172         return laddr;
173 }
174
175 EXPORT_SYMBOL(vdma_alloc);
176
177 /*
178  * Free previously allocated dma translation pages
179  * Note that this does NOT change the translation table,
180  * it just marks the free'd pages as unused!
181  */
182 int vdma_free(unsigned long laddr)
183 {
184         VDMA_PGTBL_ENTRY *pgtbl = (VDMA_PGTBL_ENTRY *) vdma_pagetable_start;
185         int i;
186
187         i = laddr >> 12;
188
189         if (pgtbl[i].owner != laddr) {
190                 printk
191                     ("vdma_free: trying to free other's dma pages, laddr=%8lx\n",
192                      laddr);
193                 return -1;
194         }
195
196         while (pgtbl[i].owner == laddr && i < VDMA_PGTBL_ENTRIES) {
197                 pgtbl[i].owner = VDMA_PAGE_EMPTY;
198                 i++;
199         }
200
201         if (vdma_debug > 1)
202                 printk("vdma_free: freed %ld pages starting from %08lx\n",
203                        i - (laddr >> 12), laddr);
204
205         return 0;
206 }
207
208 EXPORT_SYMBOL(vdma_free);
209
210 /*
211  * Map certain page(s) to another physical address.
212  * Caller must have allocated the page(s) before.
213  */
214 int vdma_remap(unsigned long laddr, unsigned long paddr, unsigned long size)
215 {
216         VDMA_PGTBL_ENTRY *pgtbl =
217             (VDMA_PGTBL_ENTRY *) vdma_pagetable_start;
218         int first, pages, npages;
219
220         if (laddr > 0xffffff) {
221                 if (vdma_debug)
222                         printk
223                             ("vdma_map: Invalid logical address: %08lx\n",
224                              laddr);
225                 return -EINVAL; /* invalid logical address */
226         }
227         if (paddr > 0x1fffffff) {
228                 if (vdma_debug)
229                         printk
230                             ("vdma_map: Invalid physical address: %08lx\n",
231                              paddr);
232                 return -EINVAL; /* invalid physical address */
233         }
234
235         npages = pages =
236             (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
237         first = laddr >> 12;
238         if (vdma_debug)
239                 printk("vdma_remap: first=%x, pages=%x\n", first, pages);
240         if (first + pages > VDMA_PGTBL_ENTRIES) {
241                 if (vdma_debug)
242                         printk("vdma_alloc: Invalid size: %08lx\n", size);
243                 return -EINVAL;
244         }
245
246         paddr &= ~(VDMA_PAGESIZE - 1);
247         while (pages > 0 && first < VDMA_PGTBL_ENTRIES) {
248                 if (pgtbl[first].owner != laddr) {
249                         if (vdma_debug)
250                                 printk("Trying to remap other's pages.\n");
251                         return -EPERM;  /* not owner */
252                 }
253                 pgtbl[first].frame = paddr;
254                 paddr += VDMA_PAGESIZE;
255                 first++;
256                 pages--;
257         }
258
259         /*
260          * Update translation table
261          */
262         r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
263
264         if (vdma_debug > 2) {
265                 int i;
266                 pages = (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
267                 first = laddr >> 12;
268                 printk("LADDR: ");
269                 for (i = first; i < first + pages; i++)
270                         printk("%08x ", i << 12);
271                 printk("\nPADDR: ");
272                 for (i = first; i < first + pages; i++)
273                         printk("%08x ", pgtbl[i].frame);
274                 printk("\nOWNER: ");
275                 for (i = first; i < first + pages; i++)
276                         printk("%08x ", pgtbl[i].owner);
277                 printk("\n");
278         }
279
280         return 0;
281 }
282
283 /*
284  * Translate a physical address to a logical address.
285  * This will return the logical address of the first
286  * match.
287  */
288 unsigned long vdma_phys2log(unsigned long paddr)
289 {
290         int i;
291         int frame;
292         VDMA_PGTBL_ENTRY *pgtbl =
293             (VDMA_PGTBL_ENTRY *) vdma_pagetable_start;
294
295         frame = paddr & ~(VDMA_PAGESIZE - 1);
296
297         for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
298                 if (pgtbl[i].frame == frame)
299                         break;
300         }
301
302         if (i == VDMA_PGTBL_ENTRIES)
303                 return ~0UL;
304
305         return (i << 12) + (paddr & (VDMA_PAGESIZE - 1));
306 }
307
308 EXPORT_SYMBOL(vdma_phys2log);
309
310 /*
311  * Translate a logical DMA address to a physical address
312  */
313 unsigned long vdma_log2phys(unsigned long laddr)
314 {
315         VDMA_PGTBL_ENTRY *pgtbl =
316             (VDMA_PGTBL_ENTRY *) vdma_pagetable_start;
317
318         return pgtbl[laddr >> 12].frame + (laddr & (VDMA_PAGESIZE - 1));
319 }
320
321 EXPORT_SYMBOL(vdma_log2phys);
322
323 /*
324  * Print DMA statistics
325  */
326 void vdma_stats(void)
327 {
328         int i;
329
330         printk("vdma_stats: CONFIG: %08x\n",
331                r4030_read_reg32(JAZZ_R4030_CONFIG));
332         printk("R4030 translation table base: %08x\n",
333                r4030_read_reg32(JAZZ_R4030_TRSTBL_BASE));
334         printk("R4030 translation table limit: %08x\n",
335                r4030_read_reg32(JAZZ_R4030_TRSTBL_LIM));
336         printk("vdma_stats: INV_ADDR: %08x\n",
337                r4030_read_reg32(JAZZ_R4030_INV_ADDR));
338         printk("vdma_stats: R_FAIL_ADDR: %08x\n",
339                r4030_read_reg32(JAZZ_R4030_R_FAIL_ADDR));
340         printk("vdma_stats: M_FAIL_ADDR: %08x\n",
341                r4030_read_reg32(JAZZ_R4030_M_FAIL_ADDR));
342         printk("vdma_stats: IRQ_SOURCE: %08x\n",
343                r4030_read_reg32(JAZZ_R4030_IRQ_SOURCE));
344         printk("vdma_stats: I386_ERROR: %08x\n",
345                r4030_read_reg32(JAZZ_R4030_I386_ERROR));
346         printk("vdma_chnl_modes:   ");
347         for (i = 0; i < 8; i++)
348                 printk("%04x ",
349                        (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
350                                                    (i << 5)));
351         printk("\n");
352         printk("vdma_chnl_enables: ");
353         for (i = 0; i < 8; i++)
354                 printk("%04x ",
355                        (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
356                                                    (i << 5)));
357         printk("\n");
358 }
359
360 /*
361  * DMA transfer functions
362  */
363
364 /*
365  * Enable a DMA channel. Also clear any error conditions.
366  */
367 void vdma_enable(int channel)
368 {
369         int status;
370
371         if (vdma_debug)
372                 printk("vdma_enable: channel %d\n", channel);
373
374         /*
375          * Check error conditions first
376          */
377         status = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
378         if (status & 0x400)
379                 printk("VDMA: Channel %d: Address error!\n", channel);
380         if (status & 0x200)
381                 printk("VDMA: Channel %d: Memory error!\n", channel);
382
383         /*
384          * Clear all interrupt flags
385          */
386         r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
387                           r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
388                                            (channel << 5)) | R4030_TC_INTR
389                           | R4030_MEM_INTR | R4030_ADDR_INTR);
390
391         /*
392          * Enable the desired channel
393          */
394         r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
395                           r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
396                                            (channel << 5)) |
397                           R4030_CHNL_ENABLE);
398 }
399
400 EXPORT_SYMBOL(vdma_enable);
401
402 /*
403  * Disable a DMA channel
404  */
405 void vdma_disable(int channel)
406 {
407         if (vdma_debug) {
408                 int status =
409                     r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
410                                      (channel << 5));
411
412                 printk("vdma_disable: channel %d\n", channel);
413                 printk("VDMA: channel %d status: %04x (%s) mode: "
414                        "%02x addr: %06x count: %06x\n",
415                        channel, status,
416                        ((status & 0x600) ? "ERROR" : "OK"),
417                        (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
418                                                    (channel << 5)),
419                        (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ADDR +
420                                                    (channel << 5)),
421                        (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_COUNT +
422                                                    (channel << 5)));
423         }
424
425         r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
426                           r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
427                                            (channel << 5)) &
428                           ~R4030_CHNL_ENABLE);
429
430         /*
431          * After disabling a DMA channel a remote bus register should be
432          * read to ensure that the current DMA acknowledge cycle is completed.
433          */
434         *((volatile unsigned int *) JAZZ_DUMMY_DEVICE);
435 }
436
437 EXPORT_SYMBOL(vdma_disable);
438
439 /*
440  * Set DMA mode. This function accepts the mode values used
441  * to set a PC-style DMA controller. For the SCSI and FDC
442  * channels, we also set the default modes each time we're
443  * called.
444  * NOTE: The FAST and BURST dma modes are supported by the
445  * R4030 Rev. 2 and PICA chipsets only. I leave them disabled
446  * for now.
447  */
448 void vdma_set_mode(int channel, int mode)
449 {
450         if (vdma_debug)
451                 printk("vdma_set_mode: channel %d, mode 0x%x\n", channel,
452                        mode);
453
454         switch (channel) {
455         case JAZZ_SCSI_DMA:     /* scsi */
456                 r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
457 /*                        R4030_MODE_FAST | */
458 /*                        R4030_MODE_BURST | */
459                                   R4030_MODE_INTR_EN |
460                                   R4030_MODE_WIDTH_16 |
461                                   R4030_MODE_ATIME_80);
462                 break;
463
464         case JAZZ_FLOPPY_DMA:   /* floppy */
465                 r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
466 /*                        R4030_MODE_FAST | */
467 /*                        R4030_MODE_BURST | */
468                                   R4030_MODE_INTR_EN |
469                                   R4030_MODE_WIDTH_8 |
470                                   R4030_MODE_ATIME_120);
471                 break;
472
473         case JAZZ_AUDIOL_DMA:
474         case JAZZ_AUDIOR_DMA:
475                 printk("VDMA: Audio DMA not supported yet.\n");
476                 break;
477
478         default:
479                 printk
480                     ("VDMA: vdma_set_mode() called with unsupported channel %d!\n",
481                      channel);
482         }
483
484         switch (mode) {
485         case DMA_MODE_READ:
486                 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
487                                   r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
488                                                    (channel << 5)) &
489                                   ~R4030_CHNL_WRITE);
490                 break;
491
492         case DMA_MODE_WRITE:
493                 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
494                                   r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
495                                                    (channel << 5)) |
496                                   R4030_CHNL_WRITE);
497                 break;
498
499         default:
500                 printk
501                     ("VDMA: vdma_set_mode() called with unknown dma mode 0x%x\n",
502                      mode);
503         }
504 }
505
506 EXPORT_SYMBOL(vdma_set_mode);
507
508 /*
509  * Set Transfer Address
510  */
511 void vdma_set_addr(int channel, long addr)
512 {
513         if (vdma_debug)
514                 printk("vdma_set_addr: channel %d, addr %lx\n", channel,
515                        addr);
516
517         r4030_write_reg32(JAZZ_R4030_CHNL_ADDR + (channel << 5), addr);
518 }
519
520 EXPORT_SYMBOL(vdma_set_addr);
521
522 /*
523  * Set Transfer Count
524  */
525 void vdma_set_count(int channel, int count)
526 {
527         if (vdma_debug)
528                 printk("vdma_set_count: channel %d, count %08x\n", channel,
529                        (unsigned) count);
530
531         r4030_write_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5), count);
532 }
533
534 EXPORT_SYMBOL(vdma_set_count);
535
536 /*
537  * Get Residual
538  */
539 int vdma_get_residue(int channel)
540 {
541         int residual;
542
543         residual = r4030_read_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5));
544
545         if (vdma_debug)
546                 printk("vdma_get_residual: channel %d: residual=%d\n",
547                        channel, residual);
548
549         return residual;
550 }
551
552 /*
553  * Get DMA channel enable register
554  */
555 int vdma_get_enable(int channel)
556 {
557         int enable;
558
559         enable = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
560
561         if (vdma_debug)
562                 printk("vdma_get_enable: channel %d: enable=%d\n", channel,
563                        enable);
564
565         return enable;
566 }