long vs. unsigned long - low-hanging fruits in drivers
[linux-2.6.git] / arch / ia64 / mm / contig.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1998-2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *      Stephane Eranian <eranian@hpl.hp.com>
9  * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10  * Copyright (C) 1999 VA Linux Systems
11  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12  * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
13  *
14  * Routines used by ia64 machines with contiguous (or virtually contiguous)
15  * memory.
16  */
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
19 #include <linux/mm.h>
20 #include <linux/nmi.h>
21 #include <linux/swap.h>
22
23 #include <asm/meminit.h>
24 #include <asm/pgalloc.h>
25 #include <asm/pgtable.h>
26 #include <asm/sections.h>
27 #include <asm/mca.h>
28
29 #ifdef CONFIG_VIRTUAL_MEM_MAP
30 static unsigned long max_gap;
31 #endif
32
33 /**
34  * show_mem - give short summary of memory stats
35  *
36  * Shows a simple page count of reserved and used pages in the system.
37  * For discontig machines, it does this on a per-pgdat basis.
38  */
39 void show_mem(void)
40 {
41         int i, total_reserved = 0;
42         int total_shared = 0, total_cached = 0;
43         unsigned long total_present = 0;
44         pg_data_t *pgdat;
45
46         printk(KERN_INFO "Mem-info:\n");
47         show_free_areas();
48         printk(KERN_INFO "Free swap:       %6ldkB\n",
49                nr_swap_pages<<(PAGE_SHIFT-10));
50         printk(KERN_INFO "Node memory in pages:\n");
51         for_each_online_pgdat(pgdat) {
52                 unsigned long present;
53                 unsigned long flags;
54                 int shared = 0, cached = 0, reserved = 0;
55
56                 pgdat_resize_lock(pgdat, &flags);
57                 present = pgdat->node_present_pages;
58                 for(i = 0; i < pgdat->node_spanned_pages; i++) {
59                         struct page *page;
60                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
61                                 touch_nmi_watchdog();
62                         if (pfn_valid(pgdat->node_start_pfn + i))
63                                 page = pfn_to_page(pgdat->node_start_pfn + i);
64                         else {
65 #ifdef CONFIG_VIRTUAL_MEM_MAP
66                                 if (max_gap < LARGE_GAP)
67                                         continue;
68 #endif
69                                 i = vmemmap_find_next_valid_pfn(pgdat->node_id,
70                                          i) - 1;
71                                 continue;
72                         }
73                         if (PageReserved(page))
74                                 reserved++;
75                         else if (PageSwapCache(page))
76                                 cached++;
77                         else if (page_count(page))
78                                 shared += page_count(page)-1;
79                 }
80                 pgdat_resize_unlock(pgdat, &flags);
81                 total_present += present;
82                 total_reserved += reserved;
83                 total_cached += cached;
84                 total_shared += shared;
85                 printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, "
86                        "shrd: %10d, swpd: %10d\n", pgdat->node_id,
87                        present, reserved, shared, cached);
88         }
89         printk(KERN_INFO "%ld pages of RAM\n", total_present);
90         printk(KERN_INFO "%d reserved pages\n", total_reserved);
91         printk(KERN_INFO "%d pages shared\n", total_shared);
92         printk(KERN_INFO "%d pages swap cached\n", total_cached);
93         printk(KERN_INFO "Total of %ld pages in page table cache\n",
94                quicklist_total_size());
95         printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
96 }
97
98
99 /* physical address where the bootmem map is located */
100 unsigned long bootmap_start;
101
102 /**
103  * find_bootmap_location - callback to find a memory area for the bootmap
104  * @start: start of region
105  * @end: end of region
106  * @arg: unused callback data
107  *
108  * Find a place to put the bootmap and return its starting address in
109  * bootmap_start.  This address must be page-aligned.
110  */
111 static int __init
112 find_bootmap_location (unsigned long start, unsigned long end, void *arg)
113 {
114         unsigned long needed = *(unsigned long *)arg;
115         unsigned long range_start, range_end, free_start;
116         int i;
117
118 #if IGNORE_PFN0
119         if (start == PAGE_OFFSET) {
120                 start += PAGE_SIZE;
121                 if (start >= end)
122                         return 0;
123         }
124 #endif
125
126         free_start = PAGE_OFFSET;
127
128         for (i = 0; i < num_rsvd_regions; i++) {
129                 range_start = max(start, free_start);
130                 range_end   = min(end, rsvd_region[i].start & PAGE_MASK);
131
132                 free_start = PAGE_ALIGN(rsvd_region[i].end);
133
134                 if (range_end <= range_start)
135                         continue; /* skip over empty range */
136
137                 if (range_end - range_start >= needed) {
138                         bootmap_start = __pa(range_start);
139                         return -1;      /* done */
140                 }
141
142                 /* nothing more available in this segment */
143                 if (range_end == end)
144                         return 0;
145         }
146         return 0;
147 }
148
149 /**
150  * find_memory - setup memory map
151  *
152  * Walk the EFI memory map and find usable memory for the system, taking
153  * into account reserved areas.
154  */
155 void __init
156 find_memory (void)
157 {
158         unsigned long bootmap_size;
159
160         reserve_memory();
161
162         /* first find highest page frame number */
163         min_low_pfn = ~0UL;
164         max_low_pfn = 0;
165         efi_memmap_walk(find_max_min_low_pfn, NULL);
166         max_pfn = max_low_pfn;
167         /* how many bytes to cover all the pages */
168         bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
169
170         /* look for a location to hold the bootmap */
171         bootmap_start = ~0UL;
172         efi_memmap_walk(find_bootmap_location, &bootmap_size);
173         if (bootmap_start == ~0UL)
174                 panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
175
176         bootmap_size = init_bootmem_node(NODE_DATA(0),
177                         (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
178
179         /* Free all available memory, then mark bootmem-map as being in use. */
180         efi_memmap_walk(filter_rsvd_memory, free_bootmem);
181         reserve_bootmem(bootmap_start, bootmap_size);
182
183         find_initrd();
184
185 }
186
187 #ifdef CONFIG_SMP
188 /**
189  * per_cpu_init - setup per-cpu variables
190  *
191  * Allocate and setup per-cpu data areas.
192  */
193 void * __cpuinit
194 per_cpu_init (void)
195 {
196         void *cpu_data;
197         int cpu;
198         static int first_time=1;
199
200         /*
201          * get_free_pages() cannot be used before cpu_init() done.  BSP
202          * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
203          * get_zeroed_page().
204          */
205         if (first_time) {
206                 first_time=0;
207                 cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
208                                            PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
209                 for (cpu = 0; cpu < NR_CPUS; cpu++) {
210                         memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
211                         __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start;
212                         cpu_data += PERCPU_PAGE_SIZE;
213                         per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
214                 }
215         }
216         return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
217 }
218 #endif /* CONFIG_SMP */
219
220 static int
221 count_pages (u64 start, u64 end, void *arg)
222 {
223         unsigned long *count = arg;
224
225         *count += (end - start) >> PAGE_SHIFT;
226         return 0;
227 }
228
229 /*
230  * Set up the page tables.
231  */
232
233 void __init
234 paging_init (void)
235 {
236         unsigned long max_dma;
237         unsigned long max_zone_pfns[MAX_NR_ZONES];
238
239         num_physpages = 0;
240         efi_memmap_walk(count_pages, &num_physpages);
241
242         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
243 #ifdef CONFIG_ZONE_DMA
244         max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
245         max_zone_pfns[ZONE_DMA] = max_dma;
246 #endif
247         max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
248
249 #ifdef CONFIG_VIRTUAL_MEM_MAP
250         efi_memmap_walk(register_active_ranges, NULL);
251         efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
252         if (max_gap < LARGE_GAP) {
253                 vmem_map = (struct page *) 0;
254                 free_area_init_nodes(max_zone_pfns);
255         } else {
256                 unsigned long map_size;
257
258                 /* allocate virtual_mem_map */
259
260                 map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
261                         sizeof(struct page));
262                 vmalloc_end -= map_size;
263                 vmem_map = (struct page *) vmalloc_end;
264                 efi_memmap_walk(create_mem_map_page_table, NULL);
265
266                 /*
267                  * alloc_node_mem_map makes an adjustment for mem_map
268                  * which isn't compatible with vmem_map.
269                  */
270                 NODE_DATA(0)->node_mem_map = vmem_map +
271                         find_min_pfn_with_active_regions();
272                 free_area_init_nodes(max_zone_pfns);
273
274                 printk("Virtual mem_map starts at 0x%p\n", mem_map);
275         }
276 #else /* !CONFIG_VIRTUAL_MEM_MAP */
277         add_active_range(0, 0, max_low_pfn);
278         free_area_init_nodes(max_zone_pfns);
279 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
280         zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
281 }