2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
45 #include <asm/errno.h>
46 #include <asm/intrinsics.h>
48 #include <asm/perfmon.h>
49 #include <asm/processor.h>
50 #include <asm/signal.h>
51 #include <asm/system.h>
52 #include <asm/uaccess.h>
53 #include <asm/delay.h>
57 * perfmon context state
59 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
60 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
61 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
62 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
64 #define PFM_INVALID_ACTIVATION (~0UL)
66 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
67 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
70 * depth of message queue
72 #define PFM_MAX_MSGS 32
73 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
76 * type of a PMU register (bitmask).
78 * bit0 : register implemented
81 * bit4 : pmc has pmc.pm
82 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
83 * bit6-7 : register type
86 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
87 #define PFM_REG_IMPL 0x1 /* register implemented */
88 #define PFM_REG_END 0x2 /* end marker */
89 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
90 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
91 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
92 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
93 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
95 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
96 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
98 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
100 /* i assumed unsigned */
101 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
102 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
104 /* XXX: these assume that register i is implemented */
105 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
108 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
110 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
111 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
112 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
113 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
115 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
116 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
118 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
119 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
120 #define PFM_CTX_TASK(h) (h)->ctx_task
122 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
124 /* XXX: does not support more than 64 PMDs */
125 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
126 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
128 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
130 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
131 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
133 #define PFM_CODE_RR 0 /* requesting code range restriction */
134 #define PFM_DATA_RR 1 /* requestion data range restriction */
136 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
137 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
138 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
140 #define RDEP(x) (1UL<<(x))
143 * context protection macros
145 * - we need to protect against CPU concurrency (spin_lock)
146 * - we need to protect against PMU overflow interrupts (local_irq_disable)
148 * - we need to protect against PMU overflow interrupts (local_irq_disable)
150 * spin_lock_irqsave()/spin_unlock_irqrestore():
151 * in SMP: local_irq_disable + spin_lock
152 * in UP : local_irq_disable
154 * spin_lock()/spin_lock():
155 * in UP : removed automatically
156 * in SMP: protect against context accesses from other CPU. interrupts
157 * are not masked. This is useful for the PMU interrupt handler
158 * because we know we will not get PMU concurrency in that code.
160 #define PROTECT_CTX(c, f) \
162 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
163 spin_lock_irqsave(&(c)->ctx_lock, f); \
164 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
167 #define UNPROTECT_CTX(c, f) \
169 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
170 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
173 #define PROTECT_CTX_NOPRINT(c, f) \
175 spin_lock_irqsave(&(c)->ctx_lock, f); \
179 #define UNPROTECT_CTX_NOPRINT(c, f) \
181 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
185 #define PROTECT_CTX_NOIRQ(c) \
187 spin_lock(&(c)->ctx_lock); \
190 #define UNPROTECT_CTX_NOIRQ(c) \
192 spin_unlock(&(c)->ctx_lock); \
198 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
199 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
200 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
202 #else /* !CONFIG_SMP */
203 #define SET_ACTIVATION(t) do {} while(0)
204 #define GET_ACTIVATION(t) do {} while(0)
205 #define INC_ACTIVATION(t) do {} while(0)
206 #endif /* CONFIG_SMP */
208 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
209 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
210 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
212 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
213 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
215 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
218 * cmp0 must be the value of pmc0
220 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
222 #define PFMFS_MAGIC 0xa0b4d889
227 #define PFM_DEBUGGING 1
231 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
234 #define DPRINT_ovfl(a) \
236 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
241 * 64-bit software counter structure
243 * the next_reset_type is applied to the next call to pfm_reset_regs()
246 unsigned long val; /* virtual 64bit counter value */
247 unsigned long lval; /* last reset value */
248 unsigned long long_reset; /* reset value on sampling overflow */
249 unsigned long short_reset; /* reset value on overflow */
250 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
251 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
252 unsigned long seed; /* seed for random-number generator */
253 unsigned long mask; /* mask for random-number generator */
254 unsigned int flags; /* notify/do not notify */
255 unsigned long eventid; /* overflow event identifier */
262 unsigned int block:1; /* when 1, task will blocked on user notifications */
263 unsigned int system:1; /* do system wide monitoring */
264 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
265 unsigned int is_sampling:1; /* true if using a custom format */
266 unsigned int excl_idle:1; /* exclude idle task in system wide session */
267 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
268 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
269 unsigned int no_msg:1; /* no message sent on overflow */
270 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
271 unsigned int reserved:22;
272 } pfm_context_flags_t;
274 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
275 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
276 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
280 * perfmon context: encapsulates all the state of a monitoring session
283 typedef struct pfm_context {
284 spinlock_t ctx_lock; /* context protection */
286 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
287 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
289 struct task_struct *ctx_task; /* task to which context is attached */
291 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
293 struct completion ctx_restart_done; /* use for blocking notification mode */
295 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
296 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
297 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
299 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
300 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
301 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
303 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
305 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
306 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
307 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
308 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
310 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
312 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
313 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
315 u64 ctx_saved_psr_up; /* only contains psr.up value */
317 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
318 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
319 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
321 int ctx_fd; /* file descriptor used my this context */
322 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
324 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
325 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
326 unsigned long ctx_smpl_size; /* size of sampling buffer */
327 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
329 wait_queue_head_t ctx_msgq_wait;
330 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
333 struct fasync_struct *ctx_async_queue;
335 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
339 * magic number used to verify that structure is really
342 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
344 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
347 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
348 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
350 #define SET_LAST_CPU(ctx, v) do {} while(0)
351 #define GET_LAST_CPU(ctx) do {} while(0)
355 #define ctx_fl_block ctx_flags.block
356 #define ctx_fl_system ctx_flags.system
357 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
358 #define ctx_fl_is_sampling ctx_flags.is_sampling
359 #define ctx_fl_excl_idle ctx_flags.excl_idle
360 #define ctx_fl_going_zombie ctx_flags.going_zombie
361 #define ctx_fl_trap_reason ctx_flags.trap_reason
362 #define ctx_fl_no_msg ctx_flags.no_msg
363 #define ctx_fl_can_restart ctx_flags.can_restart
365 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
366 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
369 * global information about all sessions
370 * mostly used to synchronize between system wide and per-process
373 spinlock_t pfs_lock; /* lock the structure */
375 unsigned int pfs_task_sessions; /* number of per task sessions */
376 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
377 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
378 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
379 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
383 * information about a PMC or PMD.
384 * dep_pmd[]: a bitmask of dependent PMD registers
385 * dep_pmc[]: a bitmask of dependent PMC registers
387 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
391 unsigned long default_value; /* power-on default value */
392 unsigned long reserved_mask; /* bitmask of reserved bits */
393 pfm_reg_check_t read_check;
394 pfm_reg_check_t write_check;
395 unsigned long dep_pmd[4];
396 unsigned long dep_pmc[4];
399 /* assume cnum is a valid monitor */
400 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
403 * This structure is initialized at boot time and contains
404 * a description of the PMU main characteristics.
406 * If the probe function is defined, detection is based
407 * on its return value:
408 * - 0 means recognized PMU
409 * - anything else means not supported
410 * When the probe function is not defined, then the pmu_family field
411 * is used and it must match the host CPU family such that:
412 * - cpu->family & config->pmu_family != 0
415 unsigned long ovfl_val; /* overflow value for counters */
417 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
418 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
420 unsigned int num_pmcs; /* number of PMCS: computed at init time */
421 unsigned int num_pmds; /* number of PMDS: computed at init time */
422 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
423 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
425 char *pmu_name; /* PMU family name */
426 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
427 unsigned int flags; /* pmu specific flags */
428 unsigned int num_ibrs; /* number of IBRS: computed at init time */
429 unsigned int num_dbrs; /* number of DBRS: computed at init time */
430 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
431 int (*probe)(void); /* customized probe routine */
432 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
437 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
440 * debug register related type definitions
443 unsigned long ibr_mask:56;
444 unsigned long ibr_plm:4;
445 unsigned long ibr_ig:3;
446 unsigned long ibr_x:1;
450 unsigned long dbr_mask:56;
451 unsigned long dbr_plm:4;
452 unsigned long dbr_ig:2;
453 unsigned long dbr_w:1;
454 unsigned long dbr_r:1;
465 * perfmon command descriptions
468 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
471 unsigned int cmd_narg;
473 int (*cmd_getsize)(void *arg, size_t *sz);
476 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
477 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
478 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
479 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
482 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
483 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
484 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
485 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
486 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
488 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
491 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
492 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
493 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
497 unsigned long pfm_smpl_handler_calls;
498 unsigned long pfm_smpl_handler_cycles;
499 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
503 * perfmon internal variables
505 static pfm_stats_t pfm_stats[NR_CPUS];
506 static pfm_session_t pfm_sessions; /* global sessions information */
508 static DEFINE_SPINLOCK(pfm_alt_install_check);
509 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
511 static struct proc_dir_entry *perfmon_dir;
512 static pfm_uuid_t pfm_null_uuid = {0,};
514 static spinlock_t pfm_buffer_fmt_lock;
515 static LIST_HEAD(pfm_buffer_fmt_list);
517 static pmu_config_t *pmu_conf;
519 /* sysctl() controls */
520 pfm_sysctl_t pfm_sysctl;
521 EXPORT_SYMBOL(pfm_sysctl);
523 static ctl_table pfm_ctl_table[]={
525 .ctl_name = CTL_UNNUMBERED,
527 .data = &pfm_sysctl.debug,
528 .maxlen = sizeof(int),
530 .proc_handler = &proc_dointvec,
533 .ctl_name = CTL_UNNUMBERED,
534 .procname = "debug_ovfl",
535 .data = &pfm_sysctl.debug_ovfl,
536 .maxlen = sizeof(int),
538 .proc_handler = &proc_dointvec,
541 .ctl_name = CTL_UNNUMBERED,
542 .procname = "fastctxsw",
543 .data = &pfm_sysctl.fastctxsw,
544 .maxlen = sizeof(int),
546 .proc_handler = &proc_dointvec,
549 .ctl_name = CTL_UNNUMBERED,
550 .procname = "expert_mode",
551 .data = &pfm_sysctl.expert_mode,
552 .maxlen = sizeof(int),
554 .proc_handler = &proc_dointvec,
558 static ctl_table pfm_sysctl_dir[] = {
560 .ctl_name = CTL_UNNUMBERED,
561 .procname = "perfmon",
563 .child = pfm_ctl_table,
567 static ctl_table pfm_sysctl_root[] = {
569 .ctl_name = CTL_KERN,
570 .procname = "kernel",
572 .child = pfm_sysctl_dir,
576 static struct ctl_table_header *pfm_sysctl_header;
578 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
580 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
581 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
584 pfm_put_task(struct task_struct *task)
586 if (task != current) put_task_struct(task);
590 pfm_reserve_page(unsigned long a)
592 SetPageReserved(vmalloc_to_page((void *)a));
595 pfm_unreserve_page(unsigned long a)
597 ClearPageReserved(vmalloc_to_page((void*)a));
600 static inline unsigned long
601 pfm_protect_ctx_ctxsw(pfm_context_t *x)
603 spin_lock(&(x)->ctx_lock);
608 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
610 spin_unlock(&(x)->ctx_lock);
613 static inline unsigned int
614 pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
616 return do_munmap(mm, addr, len);
619 static inline unsigned long
620 pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
622 return get_unmapped_area(file, addr, len, pgoff, flags);
627 pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
628 struct vfsmount *mnt)
630 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
633 static struct file_system_type pfm_fs_type = {
635 .get_sb = pfmfs_get_sb,
636 .kill_sb = kill_anon_super,
639 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
640 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
641 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
642 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
643 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
646 /* forward declaration */
647 static const struct file_operations pfm_file_ops;
650 * forward declarations
653 static void pfm_lazy_save_regs (struct task_struct *ta);
656 void dump_pmu_state(const char *);
657 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
659 #include "perfmon_itanium.h"
660 #include "perfmon_mckinley.h"
661 #include "perfmon_montecito.h"
662 #include "perfmon_generic.h"
664 static pmu_config_t *pmu_confs[]={
668 &pmu_conf_gen, /* must be last */
673 static int pfm_end_notify_user(pfm_context_t *ctx);
676 pfm_clear_psr_pp(void)
678 ia64_rsm(IA64_PSR_PP);
685 ia64_ssm(IA64_PSR_PP);
690 pfm_clear_psr_up(void)
692 ia64_rsm(IA64_PSR_UP);
699 ia64_ssm(IA64_PSR_UP);
703 static inline unsigned long
707 tmp = ia64_getreg(_IA64_REG_PSR);
713 pfm_set_psr_l(unsigned long val)
715 ia64_setreg(_IA64_REG_PSR_L, val);
727 pfm_unfreeze_pmu(void)
734 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
738 for (i=0; i < nibrs; i++) {
739 ia64_set_ibr(i, ibrs[i]);
740 ia64_dv_serialize_instruction();
746 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
750 for (i=0; i < ndbrs; i++) {
751 ia64_set_dbr(i, dbrs[i]);
752 ia64_dv_serialize_data();
758 * PMD[i] must be a counter. no check is made
760 static inline unsigned long
761 pfm_read_soft_counter(pfm_context_t *ctx, int i)
763 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
767 * PMD[i] must be a counter. no check is made
770 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
772 unsigned long ovfl_val = pmu_conf->ovfl_val;
774 ctx->ctx_pmds[i].val = val & ~ovfl_val;
776 * writing to unimplemented part is ignore, so we do not need to
779 ia64_set_pmd(i, val & ovfl_val);
783 pfm_get_new_msg(pfm_context_t *ctx)
787 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
789 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
790 if (next == ctx->ctx_msgq_head) return NULL;
792 idx = ctx->ctx_msgq_tail;
793 ctx->ctx_msgq_tail = next;
795 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
797 return ctx->ctx_msgq+idx;
801 pfm_get_next_msg(pfm_context_t *ctx)
805 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
807 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
812 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
817 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
819 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
825 pfm_reset_msgq(pfm_context_t *ctx)
827 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
828 DPRINT(("ctx=%p msgq reset\n", ctx));
832 pfm_rvmalloc(unsigned long size)
837 size = PAGE_ALIGN(size);
840 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
841 memset(mem, 0, size);
842 addr = (unsigned long)mem;
844 pfm_reserve_page(addr);
853 pfm_rvfree(void *mem, unsigned long size)
858 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
859 addr = (unsigned long) mem;
860 while ((long) size > 0) {
861 pfm_unreserve_page(addr);
870 static pfm_context_t *
871 pfm_context_alloc(int ctx_flags)
876 * allocate context descriptor
877 * must be able to free with interrupts disabled
879 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
881 DPRINT(("alloc ctx @%p\n", ctx));
884 * init context protection lock
886 spin_lock_init(&ctx->ctx_lock);
889 * context is unloaded
891 ctx->ctx_state = PFM_CTX_UNLOADED;
894 * initialization of context's flags
896 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
897 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
898 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
900 * will move to set properties
901 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
905 * init restart semaphore to locked
907 init_completion(&ctx->ctx_restart_done);
910 * activation is used in SMP only
912 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
913 SET_LAST_CPU(ctx, -1);
916 * initialize notification message queue
918 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
919 init_waitqueue_head(&ctx->ctx_msgq_wait);
920 init_waitqueue_head(&ctx->ctx_zombieq);
927 pfm_context_free(pfm_context_t *ctx)
930 DPRINT(("free ctx @%p\n", ctx));
936 pfm_mask_monitoring(struct task_struct *task)
938 pfm_context_t *ctx = PFM_GET_CTX(task);
939 unsigned long mask, val, ovfl_mask;
942 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
944 ovfl_mask = pmu_conf->ovfl_val;
946 * monitoring can only be masked as a result of a valid
947 * counter overflow. In UP, it means that the PMU still
948 * has an owner. Note that the owner can be different
949 * from the current task. However the PMU state belongs
951 * In SMP, a valid overflow only happens when task is
952 * current. Therefore if we come here, we know that
953 * the PMU state belongs to the current task, therefore
954 * we can access the live registers.
956 * So in both cases, the live register contains the owner's
957 * state. We can ONLY touch the PMU registers and NOT the PSR.
959 * As a consequence to this call, the ctx->th_pmds[] array
960 * contains stale information which must be ignored
961 * when context is reloaded AND monitoring is active (see
964 mask = ctx->ctx_used_pmds[0];
965 for (i = 0; mask; i++, mask>>=1) {
966 /* skip non used pmds */
967 if ((mask & 0x1) == 0) continue;
968 val = ia64_get_pmd(i);
970 if (PMD_IS_COUNTING(i)) {
972 * we rebuild the full 64 bit value of the counter
974 ctx->ctx_pmds[i].val += (val & ovfl_mask);
976 ctx->ctx_pmds[i].val = val;
978 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
980 ctx->ctx_pmds[i].val,
984 * mask monitoring by setting the privilege level to 0
985 * we cannot use psr.pp/psr.up for this, it is controlled by
988 * if task is current, modify actual registers, otherwise modify
989 * thread save state, i.e., what will be restored in pfm_load_regs()
991 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
992 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
993 if ((mask & 0x1) == 0UL) continue;
994 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
995 ctx->th_pmcs[i] &= ~0xfUL;
996 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
999 * make all of this visible
1005 * must always be done with task == current
1007 * context must be in MASKED state when calling
1010 pfm_restore_monitoring(struct task_struct *task)
1012 pfm_context_t *ctx = PFM_GET_CTX(task);
1013 unsigned long mask, ovfl_mask;
1014 unsigned long psr, val;
1017 is_system = ctx->ctx_fl_system;
1018 ovfl_mask = pmu_conf->ovfl_val;
1020 if (task != current) {
1021 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1024 if (ctx->ctx_state != PFM_CTX_MASKED) {
1025 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1026 task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1029 psr = pfm_get_psr();
1031 * monitoring is masked via the PMC.
1032 * As we restore their value, we do not want each counter to
1033 * restart right away. We stop monitoring using the PSR,
1034 * restore the PMC (and PMD) and then re-establish the psr
1035 * as it was. Note that there can be no pending overflow at
1036 * this point, because monitoring was MASKED.
1038 * system-wide session are pinned and self-monitoring
1040 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1041 /* disable dcr pp */
1042 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1048 * first, we restore the PMD
1050 mask = ctx->ctx_used_pmds[0];
1051 for (i = 0; mask; i++, mask>>=1) {
1052 /* skip non used pmds */
1053 if ((mask & 0x1) == 0) continue;
1055 if (PMD_IS_COUNTING(i)) {
1057 * we split the 64bit value according to
1060 val = ctx->ctx_pmds[i].val & ovfl_mask;
1061 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1063 val = ctx->ctx_pmds[i].val;
1065 ia64_set_pmd(i, val);
1067 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1069 ctx->ctx_pmds[i].val,
1075 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1076 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1077 if ((mask & 0x1) == 0UL) continue;
1078 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1079 ia64_set_pmc(i, ctx->th_pmcs[i]);
1080 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1081 task_pid_nr(task), i, ctx->th_pmcs[i]));
1086 * must restore DBR/IBR because could be modified while masked
1087 * XXX: need to optimize
1089 if (ctx->ctx_fl_using_dbreg) {
1090 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1091 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1097 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1099 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1106 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1112 for (i=0; mask; i++, mask>>=1) {
1113 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1118 * reload from thread state (used for ctxw only)
1121 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1124 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1126 for (i=0; mask; i++, mask>>=1) {
1127 if ((mask & 0x1) == 0) continue;
1128 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1129 ia64_set_pmd(i, val);
1135 * propagate PMD from context to thread-state
1138 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1140 unsigned long ovfl_val = pmu_conf->ovfl_val;
1141 unsigned long mask = ctx->ctx_all_pmds[0];
1145 DPRINT(("mask=0x%lx\n", mask));
1147 for (i=0; mask; i++, mask>>=1) {
1149 val = ctx->ctx_pmds[i].val;
1152 * We break up the 64 bit value into 2 pieces
1153 * the lower bits go to the machine state in the
1154 * thread (will be reloaded on ctxsw in).
1155 * The upper part stays in the soft-counter.
1157 if (PMD_IS_COUNTING(i)) {
1158 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1161 ctx->th_pmds[i] = val;
1163 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1166 ctx->ctx_pmds[i].val));
1171 * propagate PMC from context to thread-state
1174 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1176 unsigned long mask = ctx->ctx_all_pmcs[0];
1179 DPRINT(("mask=0x%lx\n", mask));
1181 for (i=0; mask; i++, mask>>=1) {
1182 /* masking 0 with ovfl_val yields 0 */
1183 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1184 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1191 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1195 for (i=0; mask; i++, mask>>=1) {
1196 if ((mask & 0x1) == 0) continue;
1197 ia64_set_pmc(i, pmcs[i]);
1203 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1205 return memcmp(a, b, sizeof(pfm_uuid_t));
1209 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1212 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1217 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1220 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1226 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1230 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1235 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1239 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1244 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1247 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1252 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1255 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1259 static pfm_buffer_fmt_t *
1260 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1262 struct list_head * pos;
1263 pfm_buffer_fmt_t * entry;
1265 list_for_each(pos, &pfm_buffer_fmt_list) {
1266 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1267 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1274 * find a buffer format based on its uuid
1276 static pfm_buffer_fmt_t *
1277 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1279 pfm_buffer_fmt_t * fmt;
1280 spin_lock(&pfm_buffer_fmt_lock);
1281 fmt = __pfm_find_buffer_fmt(uuid);
1282 spin_unlock(&pfm_buffer_fmt_lock);
1287 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1291 /* some sanity checks */
1292 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1294 /* we need at least a handler */
1295 if (fmt->fmt_handler == NULL) return -EINVAL;
1298 * XXX: need check validity of fmt_arg_size
1301 spin_lock(&pfm_buffer_fmt_lock);
1303 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1304 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1308 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1309 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1312 spin_unlock(&pfm_buffer_fmt_lock);
1315 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1318 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1320 pfm_buffer_fmt_t *fmt;
1323 spin_lock(&pfm_buffer_fmt_lock);
1325 fmt = __pfm_find_buffer_fmt(uuid);
1327 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1331 list_del_init(&fmt->fmt_list);
1332 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1335 spin_unlock(&pfm_buffer_fmt_lock);
1339 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1341 extern void update_pal_halt_status(int);
1344 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1346 unsigned long flags;
1348 * validity checks on cpu_mask have been done upstream
1352 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1353 pfm_sessions.pfs_sys_sessions,
1354 pfm_sessions.pfs_task_sessions,
1355 pfm_sessions.pfs_sys_use_dbregs,
1361 * cannot mix system wide and per-task sessions
1363 if (pfm_sessions.pfs_task_sessions > 0UL) {
1364 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1365 pfm_sessions.pfs_task_sessions));
1369 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1371 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1373 pfm_sessions.pfs_sys_session[cpu] = task;
1375 pfm_sessions.pfs_sys_sessions++ ;
1378 if (pfm_sessions.pfs_sys_sessions) goto abort;
1379 pfm_sessions.pfs_task_sessions++;
1382 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1383 pfm_sessions.pfs_sys_sessions,
1384 pfm_sessions.pfs_task_sessions,
1385 pfm_sessions.pfs_sys_use_dbregs,
1390 * disable default_idle() to go to PAL_HALT
1392 update_pal_halt_status(0);
1399 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1400 task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1410 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1412 unsigned long flags;
1414 * validity checks on cpu_mask have been done upstream
1418 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1419 pfm_sessions.pfs_sys_sessions,
1420 pfm_sessions.pfs_task_sessions,
1421 pfm_sessions.pfs_sys_use_dbregs,
1427 pfm_sessions.pfs_sys_session[cpu] = NULL;
1429 * would not work with perfmon+more than one bit in cpu_mask
1431 if (ctx && ctx->ctx_fl_using_dbreg) {
1432 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1433 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1435 pfm_sessions.pfs_sys_use_dbregs--;
1438 pfm_sessions.pfs_sys_sessions--;
1440 pfm_sessions.pfs_task_sessions--;
1442 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1443 pfm_sessions.pfs_sys_sessions,
1444 pfm_sessions.pfs_task_sessions,
1445 pfm_sessions.pfs_sys_use_dbregs,
1450 * if possible, enable default_idle() to go into PAL_HALT
1452 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1453 update_pal_halt_status(1);
1461 * removes virtual mapping of the sampling buffer.
1462 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1463 * a PROTECT_CTX() section.
1466 pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1471 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1472 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1476 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1479 * does the actual unmapping
1481 down_write(&task->mm->mmap_sem);
1483 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1485 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1487 up_write(&task->mm->mmap_sem);
1489 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1492 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1498 * free actual physical storage used by sampling buffer
1502 pfm_free_smpl_buffer(pfm_context_t *ctx)
1504 pfm_buffer_fmt_t *fmt;
1506 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1509 * we won't use the buffer format anymore
1511 fmt = ctx->ctx_buf_fmt;
1513 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1516 ctx->ctx_smpl_vaddr));
1518 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1523 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1525 ctx->ctx_smpl_hdr = NULL;
1526 ctx->ctx_smpl_size = 0UL;
1531 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1537 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1539 if (fmt == NULL) return;
1541 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1546 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1547 * no real gain from having the whole whorehouse mounted. So we don't need
1548 * any operations on the root directory. However, we need a non-trivial
1549 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1551 static struct vfsmount *pfmfs_mnt;
1556 int err = register_filesystem(&pfm_fs_type);
1558 pfmfs_mnt = kern_mount(&pfm_fs_type);
1559 err = PTR_ERR(pfmfs_mnt);
1560 if (IS_ERR(pfmfs_mnt))
1561 unregister_filesystem(&pfm_fs_type);
1569 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1574 unsigned long flags;
1575 DECLARE_WAITQUEUE(wait, current);
1576 if (PFM_IS_FILE(filp) == 0) {
1577 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1581 ctx = (pfm_context_t *)filp->private_data;
1583 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1588 * check even when there is no message
1590 if (size < sizeof(pfm_msg_t)) {
1591 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1595 PROTECT_CTX(ctx, flags);
1598 * put ourselves on the wait queue
1600 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1608 set_current_state(TASK_INTERRUPTIBLE);
1610 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1613 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1615 UNPROTECT_CTX(ctx, flags);
1618 * check non-blocking read
1621 if(filp->f_flags & O_NONBLOCK) break;
1624 * check pending signals
1626 if(signal_pending(current)) {
1631 * no message, so wait
1635 PROTECT_CTX(ctx, flags);
1637 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1638 set_current_state(TASK_RUNNING);
1639 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1641 if (ret < 0) goto abort;
1644 msg = pfm_get_next_msg(ctx);
1646 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1650 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1653 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1656 UNPROTECT_CTX(ctx, flags);
1662 pfm_write(struct file *file, const char __user *ubuf,
1663 size_t size, loff_t *ppos)
1665 DPRINT(("pfm_write called\n"));
1670 pfm_poll(struct file *filp, poll_table * wait)
1673 unsigned long flags;
1674 unsigned int mask = 0;
1676 if (PFM_IS_FILE(filp) == 0) {
1677 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1681 ctx = (pfm_context_t *)filp->private_data;
1683 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1688 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1690 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1692 PROTECT_CTX(ctx, flags);
1694 if (PFM_CTXQ_EMPTY(ctx) == 0)
1695 mask = POLLIN | POLLRDNORM;
1697 UNPROTECT_CTX(ctx, flags);
1699 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1705 pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1707 DPRINT(("pfm_ioctl called\n"));
1712 * interrupt cannot be masked when coming here
1715 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1719 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1721 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1722 task_pid_nr(current),
1725 ctx->ctx_async_queue, ret));
1731 pfm_fasync(int fd, struct file *filp, int on)
1736 if (PFM_IS_FILE(filp) == 0) {
1737 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1741 ctx = (pfm_context_t *)filp->private_data;
1743 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1747 * we cannot mask interrupts during this call because this may
1748 * may go to sleep if memory is not readily avalaible.
1750 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1751 * done in caller. Serialization of this function is ensured by caller.
1753 ret = pfm_do_fasync(fd, filp, ctx, on);
1756 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1759 ctx->ctx_async_queue, ret));
1766 * this function is exclusively called from pfm_close().
1767 * The context is not protected at that time, nor are interrupts
1768 * on the remote CPU. That's necessary to avoid deadlocks.
1771 pfm_syswide_force_stop(void *info)
1773 pfm_context_t *ctx = (pfm_context_t *)info;
1774 struct pt_regs *regs = task_pt_regs(current);
1775 struct task_struct *owner;
1776 unsigned long flags;
1779 if (ctx->ctx_cpu != smp_processor_id()) {
1780 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1782 smp_processor_id());
1785 owner = GET_PMU_OWNER();
1786 if (owner != ctx->ctx_task) {
1787 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1789 task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1792 if (GET_PMU_CTX() != ctx) {
1793 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1795 GET_PMU_CTX(), ctx);
1799 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1801 * the context is already protected in pfm_close(), we simply
1802 * need to mask interrupts to avoid a PMU interrupt race on
1805 local_irq_save(flags);
1807 ret = pfm_context_unload(ctx, NULL, 0, regs);
1809 DPRINT(("context_unload returned %d\n", ret));
1813 * unmask interrupts, PMU interrupts are now spurious here
1815 local_irq_restore(flags);
1819 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1823 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1824 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1825 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1827 #endif /* CONFIG_SMP */
1830 * called for each close(). Partially free resources.
1831 * When caller is self-monitoring, the context is unloaded.
1834 pfm_flush(struct file *filp, fl_owner_t id)
1837 struct task_struct *task;
1838 struct pt_regs *regs;
1839 unsigned long flags;
1840 unsigned long smpl_buf_size = 0UL;
1841 void *smpl_buf_vaddr = NULL;
1842 int state, is_system;
1844 if (PFM_IS_FILE(filp) == 0) {
1845 DPRINT(("bad magic for\n"));
1849 ctx = (pfm_context_t *)filp->private_data;
1851 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1856 * remove our file from the async queue, if we use this mode.
1857 * This can be done without the context being protected. We come
1858 * here when the context has become unreachable by other tasks.
1860 * We may still have active monitoring at this point and we may
1861 * end up in pfm_overflow_handler(). However, fasync_helper()
1862 * operates with interrupts disabled and it cleans up the
1863 * queue. If the PMU handler is called prior to entering
1864 * fasync_helper() then it will send a signal. If it is
1865 * invoked after, it will find an empty queue and no
1866 * signal will be sent. In both case, we are safe
1868 PROTECT_CTX(ctx, flags);
1870 state = ctx->ctx_state;
1871 is_system = ctx->ctx_fl_system;
1873 task = PFM_CTX_TASK(ctx);
1874 regs = task_pt_regs(task);
1876 DPRINT(("ctx_state=%d is_current=%d\n",
1878 task == current ? 1 : 0));
1881 * if state == UNLOADED, then task is NULL
1885 * we must stop and unload because we are losing access to the context.
1887 if (task == current) {
1890 * the task IS the owner but it migrated to another CPU: that's bad
1891 * but we must handle this cleanly. Unfortunately, the kernel does
1892 * not provide a mechanism to block migration (while the context is loaded).
1894 * We need to release the resource on the ORIGINAL cpu.
1896 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1898 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1900 * keep context protected but unmask interrupt for IPI
1902 local_irq_restore(flags);
1904 pfm_syswide_cleanup_other_cpu(ctx);
1907 * restore interrupt masking
1909 local_irq_save(flags);
1912 * context is unloaded at this point
1915 #endif /* CONFIG_SMP */
1918 DPRINT(("forcing unload\n"));
1920 * stop and unload, returning with state UNLOADED
1921 * and session unreserved.
1923 pfm_context_unload(ctx, NULL, 0, regs);
1925 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1930 * remove virtual mapping, if any, for the calling task.
1931 * cannot reset ctx field until last user is calling close().
1933 * ctx_smpl_vaddr must never be cleared because it is needed
1934 * by every task with access to the context
1936 * When called from do_exit(), the mm context is gone already, therefore
1937 * mm is NULL, i.e., the VMA is already gone and we do not have to
1940 if (ctx->ctx_smpl_vaddr && current->mm) {
1941 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1942 smpl_buf_size = ctx->ctx_smpl_size;
1945 UNPROTECT_CTX(ctx, flags);
1948 * if there was a mapping, then we systematically remove it
1949 * at this point. Cannot be done inside critical section
1950 * because some VM function reenables interrupts.
1953 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1958 * called either on explicit close() or from exit_files().
1959 * Only the LAST user of the file gets to this point, i.e., it is
1962 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1963 * (fput()),i.e, last task to access the file. Nobody else can access the
1964 * file at this point.
1966 * When called from exit_files(), the VMA has been freed because exit_mm()
1967 * is executed before exit_files().
1969 * When called from exit_files(), the current task is not yet ZOMBIE but we
1970 * flush the PMU state to the context.
1973 pfm_close(struct inode *inode, struct file *filp)
1976 struct task_struct *task;
1977 struct pt_regs *regs;
1978 DECLARE_WAITQUEUE(wait, current);
1979 unsigned long flags;
1980 unsigned long smpl_buf_size = 0UL;
1981 void *smpl_buf_addr = NULL;
1982 int free_possible = 1;
1983 int state, is_system;
1985 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1987 if (PFM_IS_FILE(filp) == 0) {
1988 DPRINT(("bad magic\n"));
1992 ctx = (pfm_context_t *)filp->private_data;
1994 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1998 PROTECT_CTX(ctx, flags);
2000 state = ctx->ctx_state;
2001 is_system = ctx->ctx_fl_system;
2003 task = PFM_CTX_TASK(ctx);
2004 regs = task_pt_regs(task);
2006 DPRINT(("ctx_state=%d is_current=%d\n",
2008 task == current ? 1 : 0));
2011 * if task == current, then pfm_flush() unloaded the context
2013 if (state == PFM_CTX_UNLOADED) goto doit;
2016 * context is loaded/masked and task != current, we need to
2017 * either force an unload or go zombie
2021 * The task is currently blocked or will block after an overflow.
2022 * we must force it to wakeup to get out of the
2023 * MASKED state and transition to the unloaded state by itself.
2025 * This situation is only possible for per-task mode
2027 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2030 * set a "partial" zombie state to be checked
2031 * upon return from down() in pfm_handle_work().
2033 * We cannot use the ZOMBIE state, because it is checked
2034 * by pfm_load_regs() which is called upon wakeup from down().
2035 * In such case, it would free the context and then we would
2036 * return to pfm_handle_work() which would access the
2037 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2038 * but visible to pfm_handle_work().
2040 * For some window of time, we have a zombie context with
2041 * ctx_state = MASKED and not ZOMBIE
2043 ctx->ctx_fl_going_zombie = 1;
2046 * force task to wake up from MASKED state
2048 complete(&ctx->ctx_restart_done);
2050 DPRINT(("waking up ctx_state=%d\n", state));
2053 * put ourself to sleep waiting for the other
2054 * task to report completion
2056 * the context is protected by mutex, therefore there
2057 * is no risk of being notified of completion before
2058 * begin actually on the waitq.
2060 set_current_state(TASK_INTERRUPTIBLE);
2061 add_wait_queue(&ctx->ctx_zombieq, &wait);
2063 UNPROTECT_CTX(ctx, flags);
2066 * XXX: check for signals :
2067 * - ok for explicit close
2068 * - not ok when coming from exit_files()
2073 PROTECT_CTX(ctx, flags);
2076 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2077 set_current_state(TASK_RUNNING);
2080 * context is unloaded at this point
2082 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2084 else if (task != current) {
2087 * switch context to zombie state
2089 ctx->ctx_state = PFM_CTX_ZOMBIE;
2091 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2093 * cannot free the context on the spot. deferred until
2094 * the task notices the ZOMBIE state
2098 pfm_context_unload(ctx, NULL, 0, regs);
2103 /* reload state, may have changed during opening of critical section */
2104 state = ctx->ctx_state;
2107 * the context is still attached to a task (possibly current)
2108 * we cannot destroy it right now
2112 * we must free the sampling buffer right here because
2113 * we cannot rely on it being cleaned up later by the
2114 * monitored task. It is not possible to free vmalloc'ed
2115 * memory in pfm_load_regs(). Instead, we remove the buffer
2116 * now. should there be subsequent PMU overflow originally
2117 * meant for sampling, the will be converted to spurious
2118 * and that's fine because the monitoring tools is gone anyway.
2120 if (ctx->ctx_smpl_hdr) {
2121 smpl_buf_addr = ctx->ctx_smpl_hdr;
2122 smpl_buf_size = ctx->ctx_smpl_size;
2123 /* no more sampling */
2124 ctx->ctx_smpl_hdr = NULL;
2125 ctx->ctx_fl_is_sampling = 0;
2128 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2134 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2137 * UNLOADED that the session has already been unreserved.
2139 if (state == PFM_CTX_ZOMBIE) {
2140 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2144 * disconnect file descriptor from context must be done
2147 filp->private_data = NULL;
2150 * if we free on the spot, the context is now completely unreachable
2151 * from the callers side. The monitored task side is also cut, so we
2154 * If we have a deferred free, only the caller side is disconnected.
2156 UNPROTECT_CTX(ctx, flags);
2159 * All memory free operations (especially for vmalloc'ed memory)
2160 * MUST be done with interrupts ENABLED.
2162 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2165 * return the memory used by the context
2167 if (free_possible) pfm_context_free(ctx);
2173 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2175 DPRINT(("pfm_no_open called\n"));
2181 static const struct file_operations pfm_file_ops = {
2182 .llseek = no_llseek,
2187 .open = pfm_no_open, /* special open code to disallow open via /proc */
2188 .fasync = pfm_fasync,
2189 .release = pfm_close,
2194 pfmfs_delete_dentry(struct dentry *dentry)
2199 static const struct dentry_operations pfmfs_dentry_operations = {
2200 .d_delete = pfmfs_delete_dentry,
2204 static struct file *
2205 pfm_alloc_file(pfm_context_t *ctx)
2208 struct inode *inode;
2209 struct dentry *dentry;
2214 * allocate a new inode
2216 inode = new_inode(pfmfs_mnt->mnt_sb);
2218 return ERR_PTR(-ENOMEM);
2220 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2222 inode->i_mode = S_IFCHR|S_IRUGO;
2223 inode->i_uid = current_fsuid();
2224 inode->i_gid = current_fsgid();
2226 sprintf(name, "[%lu]", inode->i_ino);
2228 this.len = strlen(name);
2229 this.hash = inode->i_ino;
2232 * allocate a new dcache entry
2234 dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2237 return ERR_PTR(-ENOMEM);
2240 dentry->d_op = &pfmfs_dentry_operations;
2241 d_add(dentry, inode);
2243 file = alloc_file(pfmfs_mnt, dentry, FMODE_READ, &pfm_file_ops);
2246 return ERR_PTR(-ENFILE);
2249 file->f_flags = O_RDONLY;
2250 file->private_data = ctx;
2256 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2258 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2261 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2264 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2275 * allocate a sampling buffer and remaps it into the user address space of the task
2278 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2280 struct mm_struct *mm = task->mm;
2281 struct vm_area_struct *vma = NULL;
2287 * the fixed header + requested size and align to page boundary
2289 size = PAGE_ALIGN(rsize);
2291 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2294 * check requested size to avoid Denial-of-service attacks
2295 * XXX: may have to refine this test
2296 * Check against address space limit.
2298 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2301 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2305 * We do the easy to undo allocations first.
2307 * pfm_rvmalloc(), clears the buffer, so there is no leak
2309 smpl_buf = pfm_rvmalloc(size);
2310 if (smpl_buf == NULL) {
2311 DPRINT(("Can't allocate sampling buffer\n"));
2315 DPRINT(("smpl_buf @%p\n", smpl_buf));
2318 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2320 DPRINT(("Cannot allocate vma\n"));
2325 * partially initialize the vma for the sampling buffer
2328 vma->vm_file = filp;
2329 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2330 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2333 * Now we have everything we need and we can initialize
2334 * and connect all the data structures
2337 ctx->ctx_smpl_hdr = smpl_buf;
2338 ctx->ctx_smpl_size = size; /* aligned size */
2341 * Let's do the difficult operations next.
2343 * now we atomically find some area in the address space and
2344 * remap the buffer in it.
2346 down_write(&task->mm->mmap_sem);
2348 /* find some free area in address space, must have mmap sem held */
2349 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2350 if (vma->vm_start == 0UL) {
2351 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2352 up_write(&task->mm->mmap_sem);
2355 vma->vm_end = vma->vm_start + size;
2356 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2358 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2360 /* can only be applied to current task, need to have the mm semaphore held when called */
2361 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2362 DPRINT(("Can't remap buffer\n"));
2363 up_write(&task->mm->mmap_sem);
2370 * now insert the vma in the vm list for the process, must be
2371 * done with mmap lock held
2373 insert_vm_struct(mm, vma);
2375 mm->total_vm += size >> PAGE_SHIFT;
2376 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2378 up_write(&task->mm->mmap_sem);
2381 * keep track of user level virtual address
2383 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2384 *(unsigned long *)user_vaddr = vma->vm_start;
2389 kmem_cache_free(vm_area_cachep, vma);
2391 pfm_rvfree(smpl_buf, size);
2397 * XXX: do something better here
2400 pfm_bad_permissions(struct task_struct *task)
2402 const struct cred *tcred;
2403 uid_t uid = current_uid();
2404 gid_t gid = current_gid();
2408 tcred = __task_cred(task);
2410 /* inspired by ptrace_attach() */
2411 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2420 ret = ((uid != tcred->euid)
2421 || (uid != tcred->suid)
2422 || (uid != tcred->uid)
2423 || (gid != tcred->egid)
2424 || (gid != tcred->sgid)
2425 || (gid != tcred->gid)) && !capable(CAP_SYS_PTRACE);
2432 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2438 ctx_flags = pfx->ctx_flags;
2440 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2443 * cannot block in this mode
2445 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2446 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2451 /* probably more to add here */
2457 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2458 unsigned int cpu, pfarg_context_t *arg)
2460 pfm_buffer_fmt_t *fmt = NULL;
2461 unsigned long size = 0UL;
2463 void *fmt_arg = NULL;
2465 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2467 /* invoke and lock buffer format, if found */
2468 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2470 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2475 * buffer argument MUST be contiguous to pfarg_context_t
2477 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2479 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2481 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2483 if (ret) goto error;
2485 /* link buffer format and context */
2486 ctx->ctx_buf_fmt = fmt;
2487 ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2490 * check if buffer format wants to use perfmon buffer allocation/mapping service
2492 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2493 if (ret) goto error;
2497 * buffer is always remapped into the caller's address space
2499 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2500 if (ret) goto error;
2502 /* keep track of user address of buffer */
2503 arg->ctx_smpl_vaddr = uaddr;
2505 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2512 pfm_reset_pmu_state(pfm_context_t *ctx)
2517 * install reset values for PMC.
2519 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2520 if (PMC_IS_IMPL(i) == 0) continue;
2521 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2522 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2525 * PMD registers are set to 0UL when the context in memset()
2529 * On context switched restore, we must restore ALL pmc and ALL pmd even
2530 * when they are not actively used by the task. In UP, the incoming process
2531 * may otherwise pick up left over PMC, PMD state from the previous process.
2532 * As opposed to PMD, stale PMC can cause harm to the incoming
2533 * process because they may change what is being measured.
2534 * Therefore, we must systematically reinstall the entire
2535 * PMC state. In SMP, the same thing is possible on the
2536 * same CPU but also on between 2 CPUs.
2538 * The problem with PMD is information leaking especially
2539 * to user level when psr.sp=0
2541 * There is unfortunately no easy way to avoid this problem
2542 * on either UP or SMP. This definitively slows down the
2543 * pfm_load_regs() function.
2547 * bitmask of all PMCs accessible to this context
2549 * PMC0 is treated differently.
2551 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2554 * bitmask of all PMDs that are accessible to this context
2556 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2558 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2561 * useful in case of re-enable after disable
2563 ctx->ctx_used_ibrs[0] = 0UL;
2564 ctx->ctx_used_dbrs[0] = 0UL;
2568 pfm_ctx_getsize(void *arg, size_t *sz)
2570 pfarg_context_t *req = (pfarg_context_t *)arg;
2571 pfm_buffer_fmt_t *fmt;
2575 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2577 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2579 DPRINT(("cannot find buffer format\n"));
2582 /* get just enough to copy in user parameters */
2583 *sz = fmt->fmt_arg_size;
2584 DPRINT(("arg_size=%lu\n", *sz));
2592 * cannot attach if :
2594 * - task not owned by caller
2595 * - task incompatible with context mode
2598 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2601 * no kernel task or task not owner by caller
2603 if (task->mm == NULL) {
2604 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2607 if (pfm_bad_permissions(task)) {
2608 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
2612 * cannot block in self-monitoring mode
2614 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2615 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2619 if (task->exit_state == EXIT_ZOMBIE) {
2620 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
2625 * always ok for self
2627 if (task == current) return 0;
2629 if (!task_is_stopped_or_traced(task)) {
2630 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2634 * make sure the task is off any CPU
2636 wait_task_inactive(task, 0);
2638 /* more to come... */
2644 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2646 struct task_struct *p = current;
2649 /* XXX: need to add more checks here */
2650 if (pid < 2) return -EPERM;
2652 if (pid != task_pid_vnr(current)) {
2654 read_lock(&tasklist_lock);
2656 p = find_task_by_vpid(pid);
2658 /* make sure task cannot go away while we operate on it */
2659 if (p) get_task_struct(p);
2661 read_unlock(&tasklist_lock);
2663 if (p == NULL) return -ESRCH;
2666 ret = pfm_task_incompatible(ctx, p);
2669 } else if (p != current) {
2678 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2680 pfarg_context_t *req = (pfarg_context_t *)arg;
2687 /* let's check the arguments first */
2688 ret = pfarg_is_sane(current, req);
2692 ctx_flags = req->ctx_flags;
2696 fd = get_unused_fd();
2700 ctx = pfm_context_alloc(ctx_flags);
2704 filp = pfm_alloc_file(ctx);
2706 ret = PTR_ERR(filp);
2710 req->ctx_fd = ctx->ctx_fd = fd;
2713 * does the user want to sample?
2715 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2716 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2721 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2726 ctx->ctx_fl_excl_idle,
2731 * initialize soft PMU state
2733 pfm_reset_pmu_state(ctx);
2735 fd_install(fd, filp);
2740 path = filp->f_path;
2744 if (ctx->ctx_buf_fmt) {
2745 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2748 pfm_context_free(ctx);
2755 static inline unsigned long
2756 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2758 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2759 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2760 extern unsigned long carta_random32 (unsigned long seed);
2762 if (reg->flags & PFM_REGFL_RANDOM) {
2763 new_seed = carta_random32(old_seed);
2764 val -= (old_seed & mask); /* counter values are negative numbers! */
2765 if ((mask >> 32) != 0)
2766 /* construct a full 64-bit random value: */
2767 new_seed |= carta_random32(old_seed >> 32) << 32;
2768 reg->seed = new_seed;
2775 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2777 unsigned long mask = ovfl_regs[0];
2778 unsigned long reset_others = 0UL;
2783 * now restore reset value on sampling overflowed counters
2785 mask >>= PMU_FIRST_COUNTER;
2786 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2788 if ((mask & 0x1UL) == 0UL) continue;
2790 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2791 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2793 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2797 * Now take care of resetting the other registers
2799 for(i = 0; reset_others; i++, reset_others >>= 1) {
2801 if ((reset_others & 0x1) == 0) continue;
2803 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2805 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2806 is_long_reset ? "long" : "short", i, val));
2811 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2813 unsigned long mask = ovfl_regs[0];
2814 unsigned long reset_others = 0UL;
2818 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2820 if (ctx->ctx_state == PFM_CTX_MASKED) {
2821 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2826 * now restore reset value on sampling overflowed counters
2828 mask >>= PMU_FIRST_COUNTER;
2829 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2831 if ((mask & 0x1UL) == 0UL) continue;
2833 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2834 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2836 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2838 pfm_write_soft_counter(ctx, i, val);
2842 * Now take care of resetting the other registers
2844 for(i = 0; reset_others; i++, reset_others >>= 1) {
2846 if ((reset_others & 0x1) == 0) continue;
2848 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2850 if (PMD_IS_COUNTING(i)) {
2851 pfm_write_soft_counter(ctx, i, val);
2853 ia64_set_pmd(i, val);
2855 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2856 is_long_reset ? "long" : "short", i, val));
2862 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2864 struct task_struct *task;
2865 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2866 unsigned long value, pmc_pm;
2867 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2868 unsigned int cnum, reg_flags, flags, pmc_type;
2869 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2870 int is_monitor, is_counting, state;
2872 pfm_reg_check_t wr_func;
2873 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2875 state = ctx->ctx_state;
2876 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2877 is_system = ctx->ctx_fl_system;
2878 task = ctx->ctx_task;
2879 impl_pmds = pmu_conf->impl_pmds[0];
2881 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2885 * In system wide and when the context is loaded, access can only happen
2886 * when the caller is running on the CPU being monitored by the session.
2887 * It does not have to be the owner (ctx_task) of the context per se.
2889 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2890 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2893 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2895 expert_mode = pfm_sysctl.expert_mode;
2897 for (i = 0; i < count; i++, req++) {
2899 cnum = req->reg_num;
2900 reg_flags = req->reg_flags;
2901 value = req->reg_value;
2902 smpl_pmds = req->reg_smpl_pmds[0];
2903 reset_pmds = req->reg_reset_pmds[0];
2907 if (cnum >= PMU_MAX_PMCS) {
2908 DPRINT(("pmc%u is invalid\n", cnum));
2912 pmc_type = pmu_conf->pmc_desc[cnum].type;
2913 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2914 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2915 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2918 * we reject all non implemented PMC as well
2919 * as attempts to modify PMC[0-3] which are used
2920 * as status registers by the PMU
2922 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2923 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2926 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2928 * If the PMC is a monitor, then if the value is not the default:
2929 * - system-wide session: PMCx.pm=1 (privileged monitor)
2930 * - per-task : PMCx.pm=0 (user monitor)
2932 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2933 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2942 * enforce generation of overflow interrupt. Necessary on all
2945 value |= 1 << PMU_PMC_OI;
2947 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2948 flags |= PFM_REGFL_OVFL_NOTIFY;
2951 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2953 /* verify validity of smpl_pmds */
2954 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2955 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2959 /* verify validity of reset_pmds */
2960 if ((reset_pmds & impl_pmds) != reset_pmds) {
2961 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2965 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2966 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2969 /* eventid on non-counting monitors are ignored */
2973 * execute write checker, if any
2975 if (likely(expert_mode == 0 && wr_func)) {
2976 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2977 if (ret) goto error;
2982 * no error on this register
2984 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2987 * Now we commit the changes to the software state
2991 * update overflow information
2995 * full flag update each time a register is programmed
2997 ctx->ctx_pmds[cnum].flags = flags;
2999 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
3000 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
3001 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
3004 * Mark all PMDS to be accessed as used.
3006 * We do not keep track of PMC because we have to
3007 * systematically restore ALL of them.
3009 * We do not update the used_monitors mask, because
3010 * if we have not programmed them, then will be in
3011 * a quiescent state, therefore we will not need to
3012 * mask/restore then when context is MASKED.
3014 CTX_USED_PMD(ctx, reset_pmds);
3015 CTX_USED_PMD(ctx, smpl_pmds);
3017 * make sure we do not try to reset on
3018 * restart because we have established new values
3020 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3023 * Needed in case the user does not initialize the equivalent
3024 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3025 * possible leak here.
3027 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3030 * keep track of the monitor PMC that we are using.
3031 * we save the value of the pmc in ctx_pmcs[] and if
3032 * the monitoring is not stopped for the context we also
3033 * place it in the saved state area so that it will be
3034 * picked up later by the context switch code.
3036 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3038 * The value in th_pmcs[] may be modified on overflow, i.e., when
3039 * monitoring needs to be stopped.
3041 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3044 * update context state
3046 ctx->ctx_pmcs[cnum] = value;
3050 * write thread state
3052 if (is_system == 0) ctx->th_pmcs[cnum] = value;
3055 * write hardware register if we can
3057 if (can_access_pmu) {
3058 ia64_set_pmc(cnum, value);
3063 * per-task SMP only here
3065 * we are guaranteed that the task is not running on the other CPU,
3066 * we indicate that this PMD will need to be reloaded if the task
3067 * is rescheduled on the CPU it ran last on.
3069 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3074 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3080 ctx->ctx_all_pmcs[0],
3081 ctx->ctx_used_pmds[0],
3082 ctx->ctx_pmds[cnum].eventid,
3085 ctx->ctx_reload_pmcs[0],
3086 ctx->ctx_used_monitors[0],
3087 ctx->ctx_ovfl_regs[0]));
3091 * make sure the changes are visible
3093 if (can_access_pmu) ia64_srlz_d();
3097 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3102 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3104 struct task_struct *task;
3105 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3106 unsigned long value, hw_value, ovfl_mask;
3108 int i, can_access_pmu = 0, state;
3109 int is_counting, is_loaded, is_system, expert_mode;
3111 pfm_reg_check_t wr_func;
3114 state = ctx->ctx_state;
3115 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3116 is_system = ctx->ctx_fl_system;
3117 ovfl_mask = pmu_conf->ovfl_val;
3118 task = ctx->ctx_task;
3120 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3123 * on both UP and SMP, we can only write to the PMC when the task is
3124 * the owner of the local PMU.
3126 if (likely(is_loaded)) {
3128 * In system wide and when the context is loaded, access can only happen
3129 * when the caller is running on the CPU being monitored by the session.
3130 * It does not have to be the owner (ctx_task) of the context per se.
3132 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3133 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3136 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3138 expert_mode = pfm_sysctl.expert_mode;
3140 for (i = 0; i < count; i++, req++) {
3142 cnum = req->reg_num;
3143 value = req->reg_value;
3145 if (!PMD_IS_IMPL(cnum)) {
3146 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3149 is_counting = PMD_IS_COUNTING(cnum);
3150 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3153 * execute write checker, if any
3155 if (unlikely(expert_mode == 0 && wr_func)) {
3156 unsigned long v = value;
3158 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3159 if (ret) goto abort_mission;
3166 * no error on this register
3168 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3171 * now commit changes to software state
3176 * update virtualized (64bits) counter
3180 * write context state
3182 ctx->ctx_pmds[cnum].lval = value;
3185 * when context is load we use the split value
3188 hw_value = value & ovfl_mask;
3189 value = value & ~ovfl_mask;
3193 * update reset values (not just for counters)
3195 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3196 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3199 * update randomization parameters (not just for counters)
3201 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3202 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3205 * update context value
3207 ctx->ctx_pmds[cnum].val = value;
3210 * Keep track of what we use
3212 * We do not keep track of PMC because we have to
3213 * systematically restore ALL of them.
3215 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3218 * mark this PMD register used as well
3220 CTX_USED_PMD(ctx, RDEP(cnum));
3223 * make sure we do not try to reset on
3224 * restart because we have established new values
3226 if (is_counting && state == PFM_CTX_MASKED) {
3227 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3232 * write thread state
3234 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3237 * write hardware register if we can
3239 if (can_access_pmu) {
3240 ia64_set_pmd(cnum, hw_value);
3244 * we are guaranteed that the task is not running on the other CPU,
3245 * we indicate that this PMD will need to be reloaded if the task
3246 * is rescheduled on the CPU it ran last on.
3248 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3253 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3254 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3260 ctx->ctx_pmds[cnum].val,
3261 ctx->ctx_pmds[cnum].short_reset,
3262 ctx->ctx_pmds[cnum].long_reset,
3263 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3264 ctx->ctx_pmds[cnum].seed,
3265 ctx->ctx_pmds[cnum].mask,
3266 ctx->ctx_used_pmds[0],
3267 ctx->ctx_pmds[cnum].reset_pmds[0],
3268 ctx->ctx_reload_pmds[0],
3269 ctx->ctx_all_pmds[0],
3270 ctx->ctx_ovfl_regs[0]));
3274 * make changes visible
3276 if (can_access_pmu) ia64_srlz_d();
3282 * for now, we have only one possibility for error
3284 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3289 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3290 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3291 * interrupt is delivered during the call, it will be kept pending until we leave, making
3292 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3293 * guaranteed to return consistent data to the user, it may simply be old. It is not
3294 * trivial to treat the overflow while inside the call because you may end up in
3295 * some module sampling buffer code causing deadlocks.
3298 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3300 struct task_struct *task;
3301 unsigned long val = 0UL, lval, ovfl_mask, sval;
3302 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3303 unsigned int cnum, reg_flags = 0;
3304 int i, can_access_pmu = 0, state;
3305 int is_loaded, is_system, is_counting, expert_mode;
3307 pfm_reg_check_t rd_func;
3310 * access is possible when loaded only for
3311 * self-monitoring tasks or in UP mode
3314 state = ctx->ctx_state;
3315 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3316 is_system = ctx->ctx_fl_system;
3317 ovfl_mask = pmu_conf->ovfl_val;
3318 task = ctx->ctx_task;
3320 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3322 if (likely(is_loaded)) {
3324 * In system wide and when the context is loaded, access can only happen
3325 * when the caller is running on the CPU being monitored by the session.
3326 * It does not have to be the owner (ctx_task) of the context per se.
3328 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3329 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3333 * this can be true when not self-monitoring only in UP
3335 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3337 if (can_access_pmu) ia64_srlz_d();
3339 expert_mode = pfm_sysctl.expert_mode;
3341 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3347 * on both UP and SMP, we can only read the PMD from the hardware register when
3348 * the task is the owner of the local PMU.
3351 for (i = 0; i < count; i++, req++) {