]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - arch/i386/kernel/efi.c
powerpc: Fix various syscall/signal/swapcontext bugs
[linux-2.6.git] / arch / i386 / kernel / efi.c
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 1999 VA Linux Systems
7  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8  * Copyright (C) 1999-2002 Hewlett-Packard Co.
9  *      David Mosberger-Tang <davidm@hpl.hp.com>
10  *      Stephane Eranian <eranian@hpl.hp.com>
11  *
12  * All EFI Runtime Services are not implemented yet as EFI only
13  * supports physical mode addressing on SoftSDV. This is to be fixed
14  * in a future version.  --drummond 1999-07-20
15  *
16  * Implemented EFI runtime services and virtual mode calls.  --davidm
17  *
18  * Goutham Rao: <goutham.rao@intel.com>
19  *      Skip non-WB memory and ignore empty memory ranges.
20  */
21
22 #include <linux/config.h>
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/types.h>
27 #include <linux/time.h>
28 #include <linux/spinlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/ioport.h>
31 #include <linux/module.h>
32 #include <linux/efi.h>
33 #include <linux/kexec.h>
34
35 #include <asm/setup.h>
36 #include <asm/io.h>
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/desc.h>
41 #include <asm/tlbflush.h>
42
43 #define EFI_DEBUG       0
44 #define PFX             "EFI: "
45
46 extern efi_status_t asmlinkage efi_call_phys(void *, ...);
47
48 struct efi efi;
49 EXPORT_SYMBOL(efi);
50 static struct efi efi_phys;
51 struct efi_memory_map memmap;
52
53 /*
54  * We require an early boot_ioremap mapping mechanism initially
55  */
56 extern void * boot_ioremap(unsigned long, unsigned long);
57
58 /*
59  * To make EFI call EFI runtime service in physical addressing mode we need
60  * prelog/epilog before/after the invocation to disable interrupt, to
61  * claim EFI runtime service handler exclusively and to duplicate a memory in
62  * low memory space say 0 - 3G.
63  */
64
65 static unsigned long efi_rt_eflags;
66 static DEFINE_SPINLOCK(efi_rt_lock);
67 static pgd_t efi_bak_pg_dir_pointer[2];
68
69 static void efi_call_phys_prelog(void)
70 {
71         unsigned long cr4;
72         unsigned long temp;
73
74         spin_lock(&efi_rt_lock);
75         local_irq_save(efi_rt_eflags);
76
77         /*
78          * If I don't have PSE, I should just duplicate two entries in page
79          * directory. If I have PSE, I just need to duplicate one entry in
80          * page directory.
81          */
82         cr4 = read_cr4();
83
84         if (cr4 & X86_CR4_PSE) {
85                 efi_bak_pg_dir_pointer[0].pgd =
86                     swapper_pg_dir[pgd_index(0)].pgd;
87                 swapper_pg_dir[0].pgd =
88                     swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
89         } else {
90                 efi_bak_pg_dir_pointer[0].pgd =
91                     swapper_pg_dir[pgd_index(0)].pgd;
92                 efi_bak_pg_dir_pointer[1].pgd =
93                     swapper_pg_dir[pgd_index(0x400000)].pgd;
94                 swapper_pg_dir[pgd_index(0)].pgd =
95                     swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
96                 temp = PAGE_OFFSET + 0x400000;
97                 swapper_pg_dir[pgd_index(0x400000)].pgd =
98                     swapper_pg_dir[pgd_index(temp)].pgd;
99         }
100
101         /*
102          * After the lock is released, the original page table is restored.
103          */
104         local_flush_tlb();
105
106         per_cpu(cpu_gdt_descr, 0).address =
107                                  __pa(per_cpu(cpu_gdt_descr, 0).address);
108         load_gdt((struct Xgt_desc_struct *)__pa(&per_cpu(cpu_gdt_descr, 0)));
109 }
110
111 static void efi_call_phys_epilog(void)
112 {
113         unsigned long cr4;
114
115         per_cpu(cpu_gdt_descr, 0).address =
116                         (unsigned long)__va(per_cpu(cpu_gdt_descr, 0).address);
117         load_gdt((struct Xgt_desc_struct *)__va(&per_cpu(cpu_gdt_descr, 0)));
118
119         cr4 = read_cr4();
120
121         if (cr4 & X86_CR4_PSE) {
122                 swapper_pg_dir[pgd_index(0)].pgd =
123                     efi_bak_pg_dir_pointer[0].pgd;
124         } else {
125                 swapper_pg_dir[pgd_index(0)].pgd =
126                     efi_bak_pg_dir_pointer[0].pgd;
127                 swapper_pg_dir[pgd_index(0x400000)].pgd =
128                     efi_bak_pg_dir_pointer[1].pgd;
129         }
130
131         /*
132          * After the lock is released, the original page table is restored.
133          */
134         local_flush_tlb();
135
136         local_irq_restore(efi_rt_eflags);
137         spin_unlock(&efi_rt_lock);
138 }
139
140 static efi_status_t
141 phys_efi_set_virtual_address_map(unsigned long memory_map_size,
142                                  unsigned long descriptor_size,
143                                  u32 descriptor_version,
144                                  efi_memory_desc_t *virtual_map)
145 {
146         efi_status_t status;
147
148         efi_call_phys_prelog();
149         status = efi_call_phys(efi_phys.set_virtual_address_map,
150                                      memory_map_size, descriptor_size,
151                                      descriptor_version, virtual_map);
152         efi_call_phys_epilog();
153         return status;
154 }
155
156 static efi_status_t
157 phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
158 {
159         efi_status_t status;
160
161         efi_call_phys_prelog();
162         status = efi_call_phys(efi_phys.get_time, tm, tc);
163         efi_call_phys_epilog();
164         return status;
165 }
166
167 inline int efi_set_rtc_mmss(unsigned long nowtime)
168 {
169         int real_seconds, real_minutes;
170         efi_status_t    status;
171         efi_time_t      eft;
172         efi_time_cap_t  cap;
173
174         spin_lock(&efi_rt_lock);
175         status = efi.get_time(&eft, &cap);
176         spin_unlock(&efi_rt_lock);
177         if (status != EFI_SUCCESS)
178                 panic("Ooops, efitime: can't read time!\n");
179         real_seconds = nowtime % 60;
180         real_minutes = nowtime / 60;
181
182         if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
183                 real_minutes += 30;
184         real_minutes %= 60;
185
186         eft.minute = real_minutes;
187         eft.second = real_seconds;
188
189         if (status != EFI_SUCCESS) {
190                 printk("Ooops: efitime: can't read time!\n");
191                 return -1;
192         }
193         return 0;
194 }
195 /*
196  * This should only be used during kernel init and before runtime
197  * services have been remapped, therefore, we'll need to call in physical
198  * mode.  Note, this call isn't used later, so mark it __init.
199  */
200 inline unsigned long __init efi_get_time(void)
201 {
202         efi_status_t status;
203         efi_time_t eft;
204         efi_time_cap_t cap;
205
206         status = phys_efi_get_time(&eft, &cap);
207         if (status != EFI_SUCCESS)
208                 printk("Oops: efitime: can't read time status: 0x%lx\n",status);
209
210         return mktime(eft.year, eft.month, eft.day, eft.hour,
211                         eft.minute, eft.second);
212 }
213
214 int is_available_memory(efi_memory_desc_t * md)
215 {
216         if (!(md->attribute & EFI_MEMORY_WB))
217                 return 0;
218
219         switch (md->type) {
220                 case EFI_LOADER_CODE:
221                 case EFI_LOADER_DATA:
222                 case EFI_BOOT_SERVICES_CODE:
223                 case EFI_BOOT_SERVICES_DATA:
224                 case EFI_CONVENTIONAL_MEMORY:
225                         return 1;
226         }
227         return 0;
228 }
229
230 /*
231  * We need to map the EFI memory map again after paging_init().
232  */
233 void __init efi_map_memmap(void)
234 {
235         memmap.map = NULL;
236
237         memmap.map = bt_ioremap((unsigned long) memmap.phys_map,
238                         (memmap.nr_map * memmap.desc_size));
239         if (memmap.map == NULL)
240                 printk(KERN_ERR PFX "Could not remap the EFI memmap!\n");
241
242         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
243 }
244
245 #if EFI_DEBUG
246 static void __init print_efi_memmap(void)
247 {
248         efi_memory_desc_t *md;
249         void *p;
250         int i;
251
252         for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) {
253                 md = p;
254                 printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, "
255                         "range=[0x%016llx-0x%016llx) (%lluMB)\n",
256                         i, md->type, md->attribute, md->phys_addr,
257                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
258                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
259         }
260 }
261 #endif  /*  EFI_DEBUG  */
262
263 /*
264  * Walks the EFI memory map and calls CALLBACK once for each EFI
265  * memory descriptor that has memory that is available for kernel use.
266  */
267 void efi_memmap_walk(efi_freemem_callback_t callback, void *arg)
268 {
269         int prev_valid = 0;
270         struct range {
271                 unsigned long start;
272                 unsigned long end;
273         } prev, curr;
274         efi_memory_desc_t *md;
275         unsigned long start, end;
276         void *p;
277
278         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
279                 md = p;
280
281                 if ((md->num_pages == 0) || (!is_available_memory(md)))
282                         continue;
283
284                 curr.start = md->phys_addr;
285                 curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
286
287                 if (!prev_valid) {
288                         prev = curr;
289                         prev_valid = 1;
290                 } else {
291                         if (curr.start < prev.start)
292                                 printk(KERN_INFO PFX "Unordered memory map\n");
293                         if (prev.end == curr.start)
294                                 prev.end = curr.end;
295                         else {
296                                 start =
297                                     (unsigned long) (PAGE_ALIGN(prev.start));
298                                 end = (unsigned long) (prev.end & PAGE_MASK);
299                                 if ((end > start)
300                                     && (*callback) (start, end, arg) < 0)
301                                         return;
302                                 prev = curr;
303                         }
304                 }
305         }
306         if (prev_valid) {
307                 start = (unsigned long) PAGE_ALIGN(prev.start);
308                 end = (unsigned long) (prev.end & PAGE_MASK);
309                 if (end > start)
310                         (*callback) (start, end, arg);
311         }
312 }
313
314 void __init efi_init(void)
315 {
316         efi_config_table_t *config_tables;
317         efi_runtime_services_t *runtime;
318         efi_char16_t *c16;
319         char vendor[100] = "unknown";
320         unsigned long num_config_tables;
321         int i = 0;
322
323         memset(&efi, 0, sizeof(efi) );
324         memset(&efi_phys, 0, sizeof(efi_phys));
325
326         efi_phys.systab = EFI_SYSTAB;
327         memmap.phys_map = EFI_MEMMAP;
328         memmap.nr_map = EFI_MEMMAP_SIZE/EFI_MEMDESC_SIZE;
329         memmap.desc_version = EFI_MEMDESC_VERSION;
330         memmap.desc_size = EFI_MEMDESC_SIZE;
331
332         efi.systab = (efi_system_table_t *)
333                 boot_ioremap((unsigned long) efi_phys.systab,
334                         sizeof(efi_system_table_t));
335         /*
336          * Verify the EFI Table
337          */
338         if (efi.systab == NULL)
339                 printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n");
340         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
341                 printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n");
342         if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
343                 printk(KERN_ERR PFX
344                        "Warning: EFI system table major version mismatch: "
345                        "got %d.%02d, expected %d.%02d\n",
346                        efi.systab->hdr.revision >> 16,
347                        efi.systab->hdr.revision & 0xffff,
348                        EFI_SYSTEM_TABLE_REVISION >> 16,
349                        EFI_SYSTEM_TABLE_REVISION & 0xffff);
350         /*
351          * Grab some details from the system table
352          */
353         num_config_tables = efi.systab->nr_tables;
354         config_tables = (efi_config_table_t *)efi.systab->tables;
355         runtime = efi.systab->runtime;
356
357         /*
358          * Show what we know for posterity
359          */
360         c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2);
361         if (c16) {
362                 for (i = 0; i < sizeof(vendor) && *c16; ++i)
363                         vendor[i] = *c16++;
364                 vendor[i] = '\0';
365         } else
366                 printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
367
368         printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n",
369                efi.systab->hdr.revision >> 16,
370                efi.systab->hdr.revision & 0xffff, vendor);
371
372         /*
373          * Let's see what config tables the firmware passed to us.
374          */
375         config_tables = (efi_config_table_t *)
376                                 boot_ioremap((unsigned long) config_tables,
377                                 num_config_tables * sizeof(efi_config_table_t));
378
379         if (config_tables == NULL)
380                 printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n");
381
382         for (i = 0; i < num_config_tables; i++) {
383                 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
384                         efi.mps = (void *)config_tables[i].table;
385                         printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table);
386                 } else
387                     if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
388                         efi.acpi20 = __va(config_tables[i].table);
389                         printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table);
390                 } else
391                     if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
392                         efi.acpi = __va(config_tables[i].table);
393                         printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table);
394                 } else
395                     if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
396                         efi.smbios = (void *) config_tables[i].table;
397                         printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table);
398                 } else
399                     if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
400                         efi.hcdp = (void *)config_tables[i].table;
401                         printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table);
402                 } else
403                     if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) {
404                         efi.uga = (void *)config_tables[i].table;
405                         printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table);
406                 }
407         }
408         printk("\n");
409
410         /*
411          * Check out the runtime services table. We need to map
412          * the runtime services table so that we can grab the physical
413          * address of several of the EFI runtime functions, needed to
414          * set the firmware into virtual mode.
415          */
416
417         runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long)
418                                                 runtime,
419                                                 sizeof(efi_runtime_services_t));
420         if (runtime != NULL) {
421                 /*
422                  * We will only need *early* access to the following
423                  * two EFI runtime services before set_virtual_address_map
424                  * is invoked.
425                  */
426                 efi_phys.get_time = (efi_get_time_t *) runtime->get_time;
427                 efi_phys.set_virtual_address_map =
428                         (efi_set_virtual_address_map_t *)
429                                 runtime->set_virtual_address_map;
430         } else
431                 printk(KERN_ERR PFX "Could not map the runtime service table!\n");
432
433         /* Map the EFI memory map for use until paging_init() */
434         memmap.map = boot_ioremap((unsigned long) EFI_MEMMAP, EFI_MEMMAP_SIZE);
435         if (memmap.map == NULL)
436                 printk(KERN_ERR PFX "Could not map the EFI memory map!\n");
437
438         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
439
440 #if EFI_DEBUG
441         print_efi_memmap();
442 #endif
443 }
444
445 static inline void __init check_range_for_systab(efi_memory_desc_t *md)
446 {
447         if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) &&
448                 ((unsigned long)efi_phys.systab < md->phys_addr +
449                 ((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) {
450                 unsigned long addr;
451
452                 addr = md->virt_addr - md->phys_addr +
453                         (unsigned long)efi_phys.systab;
454                 efi.systab = (efi_system_table_t *)addr;
455         }
456 }
457
458 /*
459  * This function will switch the EFI runtime services to virtual mode.
460  * Essentially, look through the EFI memmap and map every region that
461  * has the runtime attribute bit set in its memory descriptor and update
462  * that memory descriptor with the virtual address obtained from ioremap().
463  * This enables the runtime services to be called without having to
464  * thunk back into physical mode for every invocation.
465  */
466
467 void __init efi_enter_virtual_mode(void)
468 {
469         efi_memory_desc_t *md;
470         efi_status_t status;
471         void *p;
472
473         efi.systab = NULL;
474
475         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
476                 md = p;
477
478                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
479                         continue;
480
481                 md->virt_addr = (unsigned long)ioremap(md->phys_addr,
482                         md->num_pages << EFI_PAGE_SHIFT);
483                 if (!(unsigned long)md->virt_addr) {
484                         printk(KERN_ERR PFX "ioremap of 0x%lX failed\n",
485                                 (unsigned long)md->phys_addr);
486                 }
487                 /* update the virtual address of the EFI system table */
488                 check_range_for_systab(md);
489         }
490
491         if (!efi.systab)
492                 BUG();
493
494         status = phys_efi_set_virtual_address_map(
495                         memmap.desc_size * memmap.nr_map,
496                         memmap.desc_size,
497                         memmap.desc_version,
498                         memmap.phys_map);
499
500         if (status != EFI_SUCCESS) {
501                 printk (KERN_ALERT "You are screwed! "
502                         "Unable to switch EFI into virtual mode "
503                         "(status=%lx)\n", status);
504                 panic("EFI call to SetVirtualAddressMap() failed!");
505         }
506
507         /*
508          * Now that EFI is in virtual mode, update the function
509          * pointers in the runtime service table to the new virtual addresses.
510          */
511
512         efi.get_time = (efi_get_time_t *) efi.systab->runtime->get_time;
513         efi.set_time = (efi_set_time_t *) efi.systab->runtime->set_time;
514         efi.get_wakeup_time = (efi_get_wakeup_time_t *)
515                                         efi.systab->runtime->get_wakeup_time;
516         efi.set_wakeup_time = (efi_set_wakeup_time_t *)
517                                         efi.systab->runtime->set_wakeup_time;
518         efi.get_variable = (efi_get_variable_t *)
519                                         efi.systab->runtime->get_variable;
520         efi.get_next_variable = (efi_get_next_variable_t *)
521                                         efi.systab->runtime->get_next_variable;
522         efi.set_variable = (efi_set_variable_t *)
523                                         efi.systab->runtime->set_variable;
524         efi.get_next_high_mono_count = (efi_get_next_high_mono_count_t *)
525                                         efi.systab->runtime->get_next_high_mono_count;
526         efi.reset_system = (efi_reset_system_t *)
527                                         efi.systab->runtime->reset_system;
528 }
529
530 void __init
531 efi_initialize_iomem_resources(struct resource *code_resource,
532                                struct resource *data_resource)
533 {
534         struct resource *res;
535         efi_memory_desc_t *md;
536         void *p;
537
538         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
539                 md = p;
540
541                 if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >
542                     0x100000000ULL)
543                         continue;
544                 res = alloc_bootmem_low(sizeof(struct resource));
545                 switch (md->type) {
546                 case EFI_RESERVED_TYPE:
547                         res->name = "Reserved Memory";
548                         break;
549                 case EFI_LOADER_CODE:
550                         res->name = "Loader Code";
551                         break;
552                 case EFI_LOADER_DATA:
553                         res->name = "Loader Data";
554                         break;
555                 case EFI_BOOT_SERVICES_DATA:
556                         res->name = "BootServices Data";
557                         break;
558                 case EFI_BOOT_SERVICES_CODE:
559                         res->name = "BootServices Code";
560                         break;
561                 case EFI_RUNTIME_SERVICES_CODE:
562                         res->name = "Runtime Service Code";
563                         break;
564                 case EFI_RUNTIME_SERVICES_DATA:
565                         res->name = "Runtime Service Data";
566                         break;
567                 case EFI_CONVENTIONAL_MEMORY:
568                         res->name = "Conventional Memory";
569                         break;
570                 case EFI_UNUSABLE_MEMORY:
571                         res->name = "Unusable Memory";
572                         break;
573                 case EFI_ACPI_RECLAIM_MEMORY:
574                         res->name = "ACPI Reclaim";
575                         break;
576                 case EFI_ACPI_MEMORY_NVS:
577                         res->name = "ACPI NVS";
578                         break;
579                 case EFI_MEMORY_MAPPED_IO:
580                         res->name = "Memory Mapped IO";
581                         break;
582                 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
583                         res->name = "Memory Mapped IO Port Space";
584                         break;
585                 default:
586                         res->name = "Reserved";
587                         break;
588                 }
589                 res->start = md->phys_addr;
590                 res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1);
591                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
592                 if (request_resource(&iomem_resource, res) < 0)
593                         printk(KERN_ERR PFX "Failed to allocate res %s : 0x%lx-0x%lx\n",
594                                 res->name, res->start, res->end);
595                 /*
596                  * We don't know which region contains kernel data so we try
597                  * it repeatedly and let the resource manager test it.
598                  */
599                 if (md->type == EFI_CONVENTIONAL_MEMORY) {
600                         request_resource(res, code_resource);
601                         request_resource(res, data_resource);
602 #ifdef CONFIG_KEXEC
603                         request_resource(res, &crashk_res);
604 #endif
605                 }
606         }
607 }
608
609 /*
610  * Convenience functions to obtain memory types and attributes
611  */
612
613 u32 efi_mem_type(unsigned long phys_addr)
614 {
615         efi_memory_desc_t *md;
616         void *p;
617
618         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
619                 md = p;
620                 if ((md->phys_addr <= phys_addr) && (phys_addr <
621                         (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
622                         return md->type;
623         }
624         return 0;
625 }
626
627 u64 efi_mem_attributes(unsigned long phys_addr)
628 {
629         efi_memory_desc_t *md;
630         void *p;
631
632         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
633                 md = p;
634                 if ((md->phys_addr <= phys_addr) && (phys_addr <
635                         (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
636                         return md->attribute;
637         }
638         return 0;
639 }