]> nv-tegra.nvidia Code Review - linux-3.10.git/blobdiff - kernel/sched.c
[PATCH] scheduler cache-hot-autodetect
[linux-3.10.git] / kernel / sched.c
index 81b3a96ed2d09a79f7937503a88c3ced4c959953..98461de1ab651e642d81a69b8bac4850454b6e4f 100644 (file)
 #include <linux/smp_lock.h>
 #include <asm/mmu_context.h>
 #include <linux/interrupt.h>
+#include <linux/capability.h>
 #include <linux/completion.h>
 #include <linux/kernel_stat.h>
 #include <linux/security.h>
 #include <linux/notifier.h>
 #include <linux/profile.h>
 #include <linux/suspend.h>
+#include <linux/vmalloc.h>
 #include <linux/blkdev.h>
 #include <linux/delay.h>
 #include <linux/smp.h>
@@ -176,6 +178,13 @@ static unsigned int task_timeslice(task_t *p)
 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)      \
                                < (long long) (sd)->cache_hot_time)
 
+void __put_task_struct_cb(struct rcu_head *rhp)
+{
+       __put_task_struct(container_of(rhp, struct task_struct, rcu));
+}
+
+EXPORT_SYMBOL_GPL(__put_task_struct_cb);
+
 /*
  * These are the runqueue data structures:
  */
@@ -206,6 +215,7 @@ struct runqueue {
         */
        unsigned long nr_running;
 #ifdef CONFIG_SMP
+       unsigned long prio_bias;
        unsigned long cpu_load[3];
 #endif
        unsigned long long nr_switches;
@@ -294,6 +304,10 @@ static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
 
 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
 {
+#ifdef CONFIG_DEBUG_SPINLOCK
+       /* this is a valid case when another task releases the spinlock */
+       rq->lock.owner = current;
+#endif
        spin_unlock_irq(&rq->lock);
 }
 
@@ -655,13 +669,68 @@ static int effective_prio(task_t *p)
        return prio;
 }
 
+#ifdef CONFIG_SMP
+static inline void inc_prio_bias(runqueue_t *rq, int prio)
+{
+       rq->prio_bias += MAX_PRIO - prio;
+}
+
+static inline void dec_prio_bias(runqueue_t *rq, int prio)
+{
+       rq->prio_bias -= MAX_PRIO - prio;
+}
+
+static inline void inc_nr_running(task_t *p, runqueue_t *rq)
+{
+       rq->nr_running++;
+       if (rt_task(p)) {
+               if (p != rq->migration_thread)
+                       /*
+                        * The migration thread does the actual balancing. Do
+                        * not bias by its priority as the ultra high priority
+                        * will skew balancing adversely.
+                        */
+                       inc_prio_bias(rq, p->prio);
+       } else
+               inc_prio_bias(rq, p->static_prio);
+}
+
+static inline void dec_nr_running(task_t *p, runqueue_t *rq)
+{
+       rq->nr_running--;
+       if (rt_task(p)) {
+               if (p != rq->migration_thread)
+                       dec_prio_bias(rq, p->prio);
+       } else
+               dec_prio_bias(rq, p->static_prio);
+}
+#else
+static inline void inc_prio_bias(runqueue_t *rq, int prio)
+{
+}
+
+static inline void dec_prio_bias(runqueue_t *rq, int prio)
+{
+}
+
+static inline void inc_nr_running(task_t *p, runqueue_t *rq)
+{
+       rq->nr_running++;
+}
+
+static inline void dec_nr_running(task_t *p, runqueue_t *rq)
+{
+       rq->nr_running--;
+}
+#endif
+
 /*
  * __activate_task - move a task to the runqueue.
  */
 static inline void __activate_task(task_t *p, runqueue_t *rq)
 {
        enqueue_task(p, rq->active);
-       rq->nr_running++;
+       inc_nr_running(p, rq);
 }
 
 /*
@@ -670,7 +739,7 @@ static inline void __activate_task(task_t *p, runqueue_t *rq)
 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
 {
        enqueue_task_head(p, rq->active);
-       rq->nr_running++;
+       inc_nr_running(p, rq);
 }
 
 static int recalc_task_prio(task_t *p, unsigned long long now)
@@ -755,7 +824,8 @@ static void activate_task(task_t *p, runqueue_t *rq, int local)
        }
 #endif
 
-       p->prio = recalc_task_prio(p, now);
+       if (!rt_task(p))
+               p->prio = recalc_task_prio(p, now);
 
        /*
         * This checks to make sure it's not an uninterruptible task
@@ -789,7 +859,7 @@ static void activate_task(task_t *p, runqueue_t *rq, int local)
  */
 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
 {
-       rq->nr_running--;
+       dec_nr_running(p, rq);
        dequeue_task(p, p->array);
        p->array = NULL;
 }
@@ -804,21 +874,28 @@ static void deactivate_task(struct task_struct *p, runqueue_t *rq)
 #ifdef CONFIG_SMP
 static void resched_task(task_t *p)
 {
-       int need_resched, nrpolling;
+       int cpu;
 
        assert_spin_locked(&task_rq(p)->lock);
 
-       /* minimise the chance of sending an interrupt to poll_idle() */
-       nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
-       need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
-       nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
+       if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
+               return;
+
+       set_tsk_thread_flag(p, TIF_NEED_RESCHED);
+
+       cpu = task_cpu(p);
+       if (cpu == smp_processor_id())
+               return;
 
-       if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
-               smp_send_reschedule(task_cpu(p));
+       /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
+       smp_mb();
+       if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
+               smp_send_reschedule(cpu);
 }
 #else
 static inline void resched_task(task_t *p)
 {
+       assert_spin_locked(&task_rq(p)->lock);
        set_tsk_need_resched(p);
 }
 #endif
@@ -926,27 +1003,61 @@ void kick_process(task_t *p)
  * We want to under-estimate the load of migration sources, to
  * balance conservatively.
  */
-static inline unsigned long source_load(int cpu, int type)
+static inline unsigned long __source_load(int cpu, int type, enum idle_type idle)
 {
        runqueue_t *rq = cpu_rq(cpu);
-       unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
+       unsigned long running = rq->nr_running;
+       unsigned long source_load, cpu_load = rq->cpu_load[type-1],
+               load_now = running * SCHED_LOAD_SCALE;
+
        if (type == 0)
-               return load_now;
+               source_load = load_now;
+       else
+               source_load = min(cpu_load, load_now);
+
+       if (running > 1 || (idle == NOT_IDLE && running))
+               /*
+                * If we are busy rebalancing the load is biased by
+                * priority to create 'nice' support across cpus. When
+                * idle rebalancing we should only bias the source_load if
+                * there is more than one task running on that queue to
+                * prevent idle rebalance from trying to pull tasks from a
+                * queue with only one running task.
+                */
+               source_load = source_load * rq->prio_bias / running;
 
-       return min(rq->cpu_load[type-1], load_now);
+       return source_load;
+}
+
+static inline unsigned long source_load(int cpu, int type)
+{
+       return __source_load(cpu, type, NOT_IDLE);
 }
 
 /*
  * Return a high guess at the load of a migration-target cpu
  */
-static inline unsigned long target_load(int cpu, int type)
+static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
 {
        runqueue_t *rq = cpu_rq(cpu);
-       unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
+       unsigned long running = rq->nr_running;
+       unsigned long target_load, cpu_load = rq->cpu_load[type-1],
+               load_now = running * SCHED_LOAD_SCALE;
+
        if (type == 0)
-               return load_now;
+               target_load = load_now;
+       else
+               target_load = max(cpu_load, load_now);
+
+       if (running > 1 || (idle == NOT_IDLE && running))
+               target_load = target_load * rq->prio_bias / running;
 
-       return max(rq->cpu_load[type-1], load_now);
+       return target_load;
+}
+
+static inline unsigned long target_load(int cpu, int type)
+{
+       return __target_load(cpu, type, NOT_IDLE);
 }
 
 /*
@@ -1335,7 +1446,7 @@ void fastcall sched_fork(task_t *p, int clone_flags)
 #endif
 #ifdef CONFIG_PREEMPT
        /* Want to start with kernel preemption disabled. */
-       p->thread_info->preempt_count = 1;
+       task_thread_info(p)->preempt_count = 1;
 #endif
        /*
         * Share the timeslice between parent and child, thus the
@@ -1407,7 +1518,7 @@ void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
                                list_add_tail(&p->run_list, &current->run_list);
                                p->array = current->array;
                                p->array->nr_active++;
-                               rq->nr_running++;
+                               inc_nr_running(p, rq);
                        }
                        set_need_resched();
                } else
@@ -1464,7 +1575,7 @@ void fastcall sched_exit(task_t *p)
         * the sleep_avg of the parent as well.
         */
        rq = task_rq_lock(p->parent, &flags);
-       if (p->first_time_slice) {
+       if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
                p->parent->time_slice += p->time_slice;
                if (unlikely(p->parent->time_slice > task_timeslice(p)))
                        p->parent->time_slice = task_timeslice(p);
@@ -1529,10 +1640,6 @@ static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
         *              Manfred Spraul <manfred@colorfullife.com>
         */
        prev_task_flags = prev->flags;
-#ifdef CONFIG_DEBUG_SPINLOCK
-       /* this is a valid case when another task releases the spinlock */
-       rq->lock.owner = current;
-#endif
        finish_arch_switch(prev);
        finish_lock_switch(rq, prev);
        if (mm)
@@ -1756,9 +1863,9 @@ void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
               runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
 {
        dequeue_task(p, src_array);
-       src_rq->nr_running--;
+       dec_nr_running(p, src_rq);
        set_task_cpu(p, this_cpu);
-       this_rq->nr_running++;
+       inc_nr_running(p, this_rq);
        enqueue_task(p, this_array);
        p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
                                + this_rq->timestamp_last_tick;
@@ -1937,9 +2044,9 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
 
                        /* Bias balancing toward cpus of our domain */
                        if (local_group)
-                               load = target_load(i, load_idx);
+                               load = __target_load(i, load_idx, idle);
                        else
-                               load = source_load(i, load_idx);
+                               load = __source_load(i, load_idx, idle);
 
                        avg_load += load;
                }
@@ -2044,14 +2151,15 @@ out_balanced:
 /*
  * find_busiest_queue - find the busiest runqueue among the cpus in group.
  */
-static runqueue_t *find_busiest_queue(struct sched_group *group)
+static runqueue_t *find_busiest_queue(struct sched_group *group,
+       enum idle_type idle)
 {
        unsigned long load, max_load = 0;
        runqueue_t *busiest = NULL;
        int i;
 
        for_each_cpu_mask(i, group->cpumask) {
-               load = source_load(i, 0);
+               load = __source_load(i, 0, idle);
 
                if (load > max_load) {
                        max_load = load;
@@ -2095,7 +2203,7 @@ static int load_balance(int this_cpu, runqueue_t *this_rq,
                goto out_balanced;
        }
 
-       busiest = find_busiest_queue(group);
+       busiest = find_busiest_queue(group, idle);
        if (!busiest) {
                schedstat_inc(sd, lb_nobusyq[idle]);
                goto out_balanced;
@@ -2218,7 +2326,7 @@ static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
                goto out_balanced;
        }
 
-       busiest = find_busiest_queue(group);
+       busiest = find_busiest_queue(group, NEWLY_IDLE);
        if (!busiest) {
                schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
                goto out_balanced;
@@ -2511,8 +2619,6 @@ void account_system_time(struct task_struct *p, int hardirq_offset,
                cpustat->idle = cputime64_add(cpustat->idle, tmp);
        /* Account for system time used */
        acct_update_integrals(p);
-       /* Update rss highwater mark */
-       update_mem_hiwater(p);
 }
 
 /*
@@ -3453,8 +3559,10 @@ void set_user_nice(task_t *p, long nice)
                goto out_unlock;
        }
        array = p->array;
-       if (array)
+       if (array) {
                dequeue_task(p, array);
+               dec_prio_bias(rq, p->static_prio);
+       }
 
        old_prio = p->prio;
        new_prio = NICE_TO_PRIO(nice);
@@ -3464,6 +3572,7 @@ void set_user_nice(task_t *p, long nice)
 
        if (array) {
                enqueue_task(p, array);
+               inc_prio_bias(rq, p->static_prio);
                /*
                 * If the task increased its priority or is running and
                 * lowered its priority, then reschedule its CPU:
@@ -3565,8 +3674,6 @@ int idle_cpu(int cpu)
        return cpu_curr(cpu) == cpu_rq(cpu)->idle;
 }
 
-EXPORT_SYMBOL_GPL(idle_cpu);
-
 /**
  * idle_task - return the idle task for a given cpu.
  * @cpu: the processor in question.
@@ -3874,12 +3981,12 @@ asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  * method, such as ACPI for e.g.
  */
 
-cpumask_t cpu_present_map;
+cpumask_t cpu_present_map __read_mostly;
 EXPORT_SYMBOL(cpu_present_map);
 
 #ifndef CONFIG_SMP
-cpumask_t cpu_online_map = CPU_MASK_ALL;
-cpumask_t cpu_possible_map = CPU_MASK_ALL;
+cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
+cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
 #endif
 
 long sched_getaffinity(pid_t pid, cpumask_t *mask)
@@ -4229,10 +4336,10 @@ static void show_task(task_t *p)
 #endif
 #ifdef CONFIG_DEBUG_STACK_USAGE
        {
-               unsigned long *n = (unsigned long *) (p->thread_info+1);
+               unsigned long *n = end_of_stack(p);
                while (!*n)
                        n++;
-               free = (unsigned long) n - (unsigned long)(p->thread_info+1);
+               free = (unsigned long)n - (unsigned long)end_of_stack(p);
        }
 #endif
        printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
@@ -4281,6 +4388,7 @@ void show_state(void)
        } while_each_thread(g, p);
 
        read_unlock(&tasklist_lock);
+       mutex_debug_show_all_locks();
 }
 
 /**
@@ -4312,9 +4420,9 @@ void __devinit init_idle(task_t *idle, int cpu)
 
        /* Set the preempt count _outside_ the spinlocks! */
 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
-       idle->thread_info->preempt_count = (idle->lock_depth >= 0);
+       task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
 #else
-       idle->thread_info->preempt_count = 0;
+       task_thread_info(idle)->preempt_count = 0;
 #endif
 }
 
@@ -4682,7 +4790,8 @@ static int migration_call(struct notifier_block *nfb, unsigned long action,
 #ifdef CONFIG_HOTPLUG_CPU
        case CPU_UP_CANCELED:
                /* Unbind it from offline cpu so it can run.  Fall thru. */
-               kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
+               kthread_bind(cpu_rq(cpu)->migration_thread,
+                            any_online_cpu(cpu_online_map));
                kthread_stop(cpu_rq(cpu)->migration_thread);
                cpu_rq(cpu)->migration_thread = NULL;
                break;
@@ -4974,7 +5083,470 @@ static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
 
 #define SD_NODES_PER_DOMAIN 16
 
+/*
+ * Self-tuning task migration cost measurement between source and target CPUs.
+ *
+ * This is done by measuring the cost of manipulating buffers of varying
+ * sizes. For a given buffer-size here are the steps that are taken:
+ *
+ * 1) the source CPU reads+dirties a shared buffer
+ * 2) the target CPU reads+dirties the same shared buffer
+ *
+ * We measure how long they take, in the following 4 scenarios:
+ *
+ *  - source: CPU1, target: CPU2 | cost1
+ *  - source: CPU2, target: CPU1 | cost2
+ *  - source: CPU1, target: CPU1 | cost3
+ *  - source: CPU2, target: CPU2 | cost4
+ *
+ * We then calculate the cost3+cost4-cost1-cost2 difference - this is
+ * the cost of migration.
+ *
+ * We then start off from a small buffer-size and iterate up to larger
+ * buffer sizes, in 5% steps - measuring each buffer-size separately, and
+ * doing a maximum search for the cost. (The maximum cost for a migration
+ * normally occurs when the working set size is around the effective cache
+ * size.)
+ */
+#define SEARCH_SCOPE           2
+#define MIN_CACHE_SIZE         (64*1024U)
+#define DEFAULT_CACHE_SIZE     (5*1024*1024U)
+#define ITERATIONS             2
+#define SIZE_THRESH            130
+#define COST_THRESH            130
+
+/*
+ * The migration cost is a function of 'domain distance'. Domain
+ * distance is the number of steps a CPU has to iterate down its
+ * domain tree to share a domain with the other CPU. The farther
+ * two CPUs are from each other, the larger the distance gets.
+ *
+ * Note that we use the distance only to cache measurement results,
+ * the distance value is not used numerically otherwise. When two
+ * CPUs have the same distance it is assumed that the migration
+ * cost is the same. (this is a simplification but quite practical)
+ */
+#define MAX_DOMAIN_DISTANCE 32
+
+static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
+               { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] = -1LL };
+
+/*
+ * Allow override of migration cost - in units of microseconds.
+ * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
+ * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
+ */
+static int __init migration_cost_setup(char *str)
+{
+       int ints[MAX_DOMAIN_DISTANCE+1], i;
+
+       str = get_options(str, ARRAY_SIZE(ints), ints);
+
+       printk("#ints: %d\n", ints[0]);
+       for (i = 1; i <= ints[0]; i++) {
+               migration_cost[i-1] = (unsigned long long)ints[i]*1000;
+               printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
+       }
+       return 1;
+}
+
+__setup ("migration_cost=", migration_cost_setup);
+
+/*
+ * Global multiplier (divisor) for migration-cutoff values,
+ * in percentiles. E.g. use a value of 150 to get 1.5 times
+ * longer cache-hot cutoff times.
+ *
+ * (We scale it from 100 to 128 to long long handling easier.)
+ */
+
+#define MIGRATION_FACTOR_SCALE 128
+
+static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
+
+static int __init setup_migration_factor(char *str)
+{
+       get_option(&str, &migration_factor);
+       migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
+       return 1;
+}
+
+__setup("migration_factor=", setup_migration_factor);
+
+/*
+ * Estimated distance of two CPUs, measured via the number of domains
+ * we have to pass for the two CPUs to be in the same span:
+ */
+static unsigned long domain_distance(int cpu1, int cpu2)
+{
+       unsigned long distance = 0;
+       struct sched_domain *sd;
+
+       for_each_domain(cpu1, sd) {
+               WARN_ON(!cpu_isset(cpu1, sd->span));
+               if (cpu_isset(cpu2, sd->span))
+                       return distance;
+               distance++;
+       }
+       if (distance >= MAX_DOMAIN_DISTANCE) {
+               WARN_ON(1);
+               distance = MAX_DOMAIN_DISTANCE-1;
+       }
+
+       return distance;
+}
+
+static unsigned int migration_debug;
+
+static int __init setup_migration_debug(char *str)
+{
+       get_option(&str, &migration_debug);
+       return 1;
+}
+
+__setup("migration_debug=", setup_migration_debug);
+
+/*
+ * Maximum cache-size that the scheduler should try to measure.
+ * Architectures with larger caches should tune this up during
+ * bootup. Gets used in the domain-setup code (i.e. during SMP
+ * bootup).
+ */
+unsigned int max_cache_size;
+
+static int __init setup_max_cache_size(char *str)
+{
+       get_option(&str, &max_cache_size);
+       return 1;
+}
+
+__setup("max_cache_size=", setup_max_cache_size);
+
+/*
+ * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
+ * is the operation that is timed, so we try to generate unpredictable
+ * cachemisses that still end up filling the L2 cache:
+ */
+static void touch_cache(void *__cache, unsigned long __size)
+{
+       unsigned long size = __size/sizeof(long), chunk1 = size/3,
+                       chunk2 = 2*size/3;
+       unsigned long *cache = __cache;
+       int i;
+
+       for (i = 0; i < size/6; i += 8) {
+               switch (i % 6) {
+                       case 0: cache[i]++;
+                       case 1: cache[size-1-i]++;
+                       case 2: cache[chunk1-i]++;
+                       case 3: cache[chunk1+i]++;
+                       case 4: cache[chunk2-i]++;
+                       case 5: cache[chunk2+i]++;
+               }
+       }
+}
+
+/*
+ * Measure the cache-cost of one task migration. Returns in units of nsec.
+ */
+static unsigned long long measure_one(void *cache, unsigned long size,
+                                     int source, int target)
+{
+       cpumask_t mask, saved_mask;
+       unsigned long long t0, t1, t2, t3, cost;
+
+       saved_mask = current->cpus_allowed;
+
+       /*
+        * Flush source caches to RAM and invalidate them:
+        */
+       sched_cacheflush();
+
+       /*
+        * Migrate to the source CPU:
+        */
+       mask = cpumask_of_cpu(source);
+       set_cpus_allowed(current, mask);
+       WARN_ON(smp_processor_id() != source);
+
+       /*
+        * Dirty the working set:
+        */
+       t0 = sched_clock();
+       touch_cache(cache, size);
+       t1 = sched_clock();
+
+       /*
+        * Migrate to the target CPU, dirty the L2 cache and access
+        * the shared buffer. (which represents the working set
+        * of a migrated task.)
+        */
+       mask = cpumask_of_cpu(target);
+       set_cpus_allowed(current, mask);
+       WARN_ON(smp_processor_id() != target);
+
+       t2 = sched_clock();
+       touch_cache(cache, size);
+       t3 = sched_clock();
+
+       cost = t1-t0 + t3-t2;
+
+       if (migration_debug >= 2)
+               printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
+                       source, target, t1-t0, t1-t0, t3-t2, cost);
+       /*
+        * Flush target caches to RAM and invalidate them:
+        */
+       sched_cacheflush();
+
+       set_cpus_allowed(current, saved_mask);
+
+       return cost;
+}
+
+/*
+ * Measure a series of task migrations and return the average
+ * result. Since this code runs early during bootup the system
+ * is 'undisturbed' and the average latency makes sense.
+ *
+ * The algorithm in essence auto-detects the relevant cache-size,
+ * so it will properly detect different cachesizes for different
+ * cache-hierarchies, depending on how the CPUs are connected.
+ *
+ * Architectures can prime the upper limit of the search range via
+ * max_cache_size, otherwise the search range defaults to 20MB...64K.
+ */
+static unsigned long long
+measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
+{
+       unsigned long long cost1, cost2;
+       int i;
+
+       /*
+        * Measure the migration cost of 'size' bytes, over an
+        * average of 10 runs:
+        *
+        * (We perturb the cache size by a small (0..4k)
+        *  value to compensate size/alignment related artifacts.
+        *  We also subtract the cost of the operation done on
+        *  the same CPU.)
+        */
+       cost1 = 0;
+
+       /*
+        * dry run, to make sure we start off cache-cold on cpu1,
+        * and to get any vmalloc pagefaults in advance:
+        */
+       measure_one(cache, size, cpu1, cpu2);
+       for (i = 0; i < ITERATIONS; i++)
+               cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
+
+       measure_one(cache, size, cpu2, cpu1);
+       for (i = 0; i < ITERATIONS; i++)
+               cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
+
+       /*
+        * (We measure the non-migrating [cached] cost on both
+        *  cpu1 and cpu2, to handle CPUs with different speeds)
+        */
+       cost2 = 0;
+
+       measure_one(cache, size, cpu1, cpu1);
+       for (i = 0; i < ITERATIONS; i++)
+               cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
+
+       measure_one(cache, size, cpu2, cpu2);
+       for (i = 0; i < ITERATIONS; i++)
+               cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
+
+       /*
+        * Get the per-iteration migration cost:
+        */
+       do_div(cost1, 2*ITERATIONS);
+       do_div(cost2, 2*ITERATIONS);
+
+       return cost1 - cost2;
+}
+
+static unsigned long long measure_migration_cost(int cpu1, int cpu2)
+{
+       unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
+       unsigned int max_size, size, size_found = 0;
+       long long cost = 0, prev_cost;
+       void *cache;
+
+       /*
+        * Search from max_cache_size*5 down to 64K - the real relevant
+        * cachesize has to lie somewhere inbetween.
+        */
+       if (max_cache_size) {
+               max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
+               size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
+       } else {
+               /*
+                * Since we have no estimation about the relevant
+                * search range
+                */
+               max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
+               size = MIN_CACHE_SIZE;
+       }
+
+       if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
+               printk("cpu %d and %d not both online!\n", cpu1, cpu2);
+               return 0;
+       }
+
+       /*
+        * Allocate the working set:
+        */
+       cache = vmalloc(max_size);
+       if (!cache) {
+               printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
+               return 1000000; // return 1 msec on very small boxen
+       }
+
+       while (size <= max_size) {
+               prev_cost = cost;
+               cost = measure_cost(cpu1, cpu2, cache, size);
+
+               /*
+                * Update the max:
+                */
+               if (cost > 0) {
+                       if (max_cost < cost) {
+                               max_cost = cost;
+                               size_found = size;
+                       }
+               }
+               /*
+                * Calculate average fluctuation, we use this to prevent
+                * noise from triggering an early break out of the loop:
+                */
+               fluct = abs(cost - prev_cost);
+               avg_fluct = (avg_fluct + fluct)/2;
+
+               if (migration_debug)
+                       printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
+                               cpu1, cpu2, size,
+                               (long)cost / 1000000,
+                               ((long)cost / 100000) % 10,
+                               (long)max_cost / 1000000,
+                               ((long)max_cost / 100000) % 10,
+                               domain_distance(cpu1, cpu2),
+                               cost, avg_fluct);
+
+               /*
+                * If we iterated at least 20% past the previous maximum,
+                * and the cost has dropped by more than 20% already,
+                * (taking fluctuations into account) then we assume to
+                * have found the maximum and break out of the loop early:
+                */
+               if (size_found && (size*100 > size_found*SIZE_THRESH))
+                       if (cost+avg_fluct <= 0 ||
+                               max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
+
+                               if (migration_debug)
+                                       printk("-> found max.\n");
+                               break;
+                       }
+               /*
+                * Increase the cachesize in 5% steps:
+                */
+               size = size * 20 / 19;
+       }
+
+       if (migration_debug)
+               printk("[%d][%d] working set size found: %d, cost: %Ld\n",
+                       cpu1, cpu2, size_found, max_cost);
+
+       vfree(cache);
+
+       /*
+        * A task is considered 'cache cold' if at least 2 times
+        * the worst-case cost of migration has passed.
+        *
+        * (this limit is only listened to if the load-balancing
+        * situation is 'nice' - if there is a large imbalance we
+        * ignore it for the sake of CPU utilization and
+        * processing fairness.)
+        */
+       return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
+}
+
+static void calibrate_migration_costs(const cpumask_t *cpu_map)
+{
+       int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
+       unsigned long j0, j1, distance, max_distance = 0;
+       struct sched_domain *sd;
+
+       j0 = jiffies;
+
+       /*
+        * First pass - calculate the cacheflush times:
+        */
+       for_each_cpu_mask(cpu1, *cpu_map) {
+               for_each_cpu_mask(cpu2, *cpu_map) {
+                       if (cpu1 == cpu2)
+                               continue;
+                       distance = domain_distance(cpu1, cpu2);
+                       max_distance = max(max_distance, distance);
+                       /*
+                        * No result cached yet?
+                        */
+                       if (migration_cost[distance] == -1LL)
+                               migration_cost[distance] =
+                                       measure_migration_cost(cpu1, cpu2);
+               }
+       }
+       /*
+        * Second pass - update the sched domain hierarchy with
+        * the new cache-hot-time estimations:
+        */
+       for_each_cpu_mask(cpu, *cpu_map) {
+               distance = 0;
+               for_each_domain(cpu, sd) {
+                       sd->cache_hot_time = migration_cost[distance];
+                       distance++;
+               }
+       }
+       /*
+        * Print the matrix:
+        */
+       if (migration_debug)
+               printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
+                       max_cache_size,
+#ifdef CONFIG_X86
+                       cpu_khz/1000
+#else
+                       -1
+#endif
+               );
+       printk("migration_cost=");
+       for (distance = 0; distance <= max_distance; distance++) {
+               if (distance)
+                       printk(",");
+               printk("%ld", (long)migration_cost[distance] / 1000);
+       }
+       printk("\n");
+       j1 = jiffies;
+       if (migration_debug)
+               printk("migration: %ld seconds\n", (j1-j0)/HZ);
+
+       /*
+        * Move back to the original CPU. NUMA-Q gets confused
+        * if we migrate to another quad during bootup.
+        */
+       if (raw_smp_processor_id() != orig_cpu) {
+               cpumask_t mask = cpumask_of_cpu(orig_cpu),
+                       saved_mask = current->cpus_allowed;
+
+               set_cpus_allowed(current, mask);
+               set_cpus_allowed(current, saved_mask);
+       }
+}
+
 #ifdef CONFIG_NUMA
+
 /**
  * find_next_best_node - find the next node to include in a sched_domain
  * @node: node whose sched_domain we're building
@@ -5340,6 +5912,10 @@ next_sg:
 #endif
                cpu_attach_domain(sd, i);
        }
+       /*
+        * Tune cache-hot values:
+        */
+       calibrate_migration_costs(cpu_map);
 }
 /*
  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.