2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
58 #include "coalesced_mmio.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 DEFINE_RAW_SPINLOCK(kvm_lock);
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
85 struct dentry *kvm_debugfs_dir;
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
101 static bool largepages_enabled = true;
103 bool kvm_is_mmio_pfn(pfn_t pfn)
105 if (is_error_pfn(pfn))
108 if (pfn_valid(pfn)) {
110 struct page *tail = pfn_to_page(pfn);
111 struct page *head = compound_trans_head(tail);
112 reserved = PageReserved(head);
115 * "head" is not a dangling pointer
116 * (compound_trans_head takes care of that)
117 * but the hugepage may have been splitted
118 * from under us (and we may not hold a
119 * reference count on the head page so it can
120 * be reused before we run PageReferenced), so
121 * we've to check PageTail before returning
128 return PageReserved(tail);
135 * Switches to specified vcpu, until a matching vcpu_put()
137 void vcpu_load(struct kvm_vcpu *vcpu)
141 mutex_lock(&vcpu->mutex);
142 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
143 /* The thread running this VCPU changed. */
144 struct pid *oldpid = vcpu->pid;
145 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
146 rcu_assign_pointer(vcpu->pid, newpid);
151 preempt_notifier_register(&vcpu->preempt_notifier);
152 kvm_arch_vcpu_load(vcpu, cpu);
156 void vcpu_put(struct kvm_vcpu *vcpu)
159 kvm_arch_vcpu_put(vcpu);
160 preempt_notifier_unregister(&vcpu->preempt_notifier);
162 mutex_unlock(&vcpu->mutex);
165 static void ack_flush(void *_completed)
169 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
174 struct kvm_vcpu *vcpu;
176 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
179 kvm_for_each_vcpu(i, vcpu, kvm) {
180 kvm_make_request(req, vcpu);
183 /* Set ->requests bit before we read ->mode */
186 if (cpus != NULL && cpu != -1 && cpu != me &&
187 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
188 cpumask_set_cpu(cpu, cpus);
190 if (unlikely(cpus == NULL))
191 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
192 else if (!cpumask_empty(cpus))
193 smp_call_function_many(cpus, ack_flush, NULL, 1);
197 free_cpumask_var(cpus);
201 void kvm_flush_remote_tlbs(struct kvm *kvm)
203 long dirty_count = kvm->tlbs_dirty;
206 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
207 ++kvm->stat.remote_tlb_flush;
208 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
211 void kvm_reload_remote_mmus(struct kvm *kvm)
213 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
216 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
221 mutex_init(&vcpu->mutex);
226 init_waitqueue_head(&vcpu->wq);
227 kvm_async_pf_vcpu_init(vcpu);
229 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
234 vcpu->run = page_address(page);
236 kvm_vcpu_set_in_spin_loop(vcpu, false);
237 kvm_vcpu_set_dy_eligible(vcpu, false);
239 r = kvm_arch_vcpu_init(vcpu);
245 free_page((unsigned long)vcpu->run);
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
251 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
254 kvm_arch_vcpu_uninit(vcpu);
255 free_page((unsigned long)vcpu->run);
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
260 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
262 return container_of(mn, struct kvm, mmu_notifier);
265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
266 struct mm_struct *mm,
267 unsigned long address)
269 struct kvm *kvm = mmu_notifier_to_kvm(mn);
270 int need_tlb_flush, idx;
273 * When ->invalidate_page runs, the linux pte has been zapped
274 * already but the page is still allocated until
275 * ->invalidate_page returns. So if we increase the sequence
276 * here the kvm page fault will notice if the spte can't be
277 * established because the page is going to be freed. If
278 * instead the kvm page fault establishes the spte before
279 * ->invalidate_page runs, kvm_unmap_hva will release it
282 * The sequence increase only need to be seen at spin_unlock
283 * time, and not at spin_lock time.
285 * Increasing the sequence after the spin_unlock would be
286 * unsafe because the kvm page fault could then establish the
287 * pte after kvm_unmap_hva returned, without noticing the page
288 * is going to be freed.
290 idx = srcu_read_lock(&kvm->srcu);
291 spin_lock(&kvm->mmu_lock);
293 kvm->mmu_notifier_seq++;
294 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
295 /* we've to flush the tlb before the pages can be freed */
297 kvm_flush_remote_tlbs(kvm);
299 spin_unlock(&kvm->mmu_lock);
300 srcu_read_unlock(&kvm->srcu, idx);
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304 struct mm_struct *mm,
305 unsigned long address,
308 struct kvm *kvm = mmu_notifier_to_kvm(mn);
311 idx = srcu_read_lock(&kvm->srcu);
312 spin_lock(&kvm->mmu_lock);
313 kvm->mmu_notifier_seq++;
314 kvm_set_spte_hva(kvm, address, pte);
315 spin_unlock(&kvm->mmu_lock);
316 srcu_read_unlock(&kvm->srcu, idx);
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320 struct mm_struct *mm,
324 struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 int need_tlb_flush = 0, idx;
327 idx = srcu_read_lock(&kvm->srcu);
328 spin_lock(&kvm->mmu_lock);
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
334 kvm->mmu_notifier_count++;
335 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
336 need_tlb_flush |= kvm->tlbs_dirty;
337 /* we've to flush the tlb before the pages can be freed */
339 kvm_flush_remote_tlbs(kvm);
341 spin_unlock(&kvm->mmu_lock);
342 srcu_read_unlock(&kvm->srcu, idx);
345 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
346 struct mm_struct *mm,
350 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 spin_lock(&kvm->mmu_lock);
354 * This sequence increase will notify the kvm page fault that
355 * the page that is going to be mapped in the spte could have
358 kvm->mmu_notifier_seq++;
361 * The above sequence increase must be visible before the
362 * below count decrease, which is ensured by the smp_wmb above
363 * in conjunction with the smp_rmb in mmu_notifier_retry().
365 kvm->mmu_notifier_count--;
366 spin_unlock(&kvm->mmu_lock);
368 BUG_ON(kvm->mmu_notifier_count < 0);
371 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
372 struct mm_struct *mm,
373 unsigned long address)
375 struct kvm *kvm = mmu_notifier_to_kvm(mn);
378 idx = srcu_read_lock(&kvm->srcu);
379 spin_lock(&kvm->mmu_lock);
381 young = kvm_age_hva(kvm, address);
383 kvm_flush_remote_tlbs(kvm);
385 spin_unlock(&kvm->mmu_lock);
386 srcu_read_unlock(&kvm->srcu, idx);
391 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
392 struct mm_struct *mm,
393 unsigned long address)
395 struct kvm *kvm = mmu_notifier_to_kvm(mn);
398 idx = srcu_read_lock(&kvm->srcu);
399 spin_lock(&kvm->mmu_lock);
400 young = kvm_test_age_hva(kvm, address);
401 spin_unlock(&kvm->mmu_lock);
402 srcu_read_unlock(&kvm->srcu, idx);
407 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
408 struct mm_struct *mm)
410 struct kvm *kvm = mmu_notifier_to_kvm(mn);
413 idx = srcu_read_lock(&kvm->srcu);
414 kvm_arch_flush_shadow(kvm);
415 srcu_read_unlock(&kvm->srcu, idx);
418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
419 .invalidate_page = kvm_mmu_notifier_invalidate_page,
420 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
421 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
422 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
423 .test_young = kvm_mmu_notifier_test_young,
424 .change_pte = kvm_mmu_notifier_change_pte,
425 .release = kvm_mmu_notifier_release,
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
430 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
431 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
434 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
436 static int kvm_init_mmu_notifier(struct kvm *kvm)
441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
443 static void kvm_init_memslots_id(struct kvm *kvm)
446 struct kvm_memslots *slots = kvm->memslots;
448 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
449 slots->id_to_index[i] = slots->memslots[i].id = i;
452 static struct kvm *kvm_create_vm(unsigned long type)
455 struct kvm *kvm = kvm_arch_alloc_vm();
458 return ERR_PTR(-ENOMEM);
460 r = kvm_arch_init_vm(kvm, type);
462 goto out_err_nodisable;
464 r = hardware_enable_all();
466 goto out_err_nodisable;
468 #ifdef CONFIG_HAVE_KVM_IRQCHIP
469 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
470 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
474 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
477 kvm_init_memslots_id(kvm);
478 if (init_srcu_struct(&kvm->srcu))
480 for (i = 0; i < KVM_NR_BUSES; i++) {
481 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
487 spin_lock_init(&kvm->mmu_lock);
488 kvm->mm = current->mm;
489 atomic_inc(&kvm->mm->mm_count);
490 kvm_eventfd_init(kvm);
491 mutex_init(&kvm->lock);
492 mutex_init(&kvm->irq_lock);
493 mutex_init(&kvm->slots_lock);
494 atomic_set(&kvm->users_count, 1);
496 r = kvm_init_mmu_notifier(kvm);
500 raw_spin_lock(&kvm_lock);
501 list_add(&kvm->vm_list, &vm_list);
502 raw_spin_unlock(&kvm_lock);
507 cleanup_srcu_struct(&kvm->srcu);
509 hardware_disable_all();
511 for (i = 0; i < KVM_NR_BUSES; i++)
512 kfree(kvm->buses[i]);
513 kfree(kvm->memslots);
514 kvm_arch_free_vm(kvm);
519 * Avoid using vmalloc for a small buffer.
520 * Should not be used when the size is statically known.
522 void *kvm_kvzalloc(unsigned long size)
524 if (size > PAGE_SIZE)
525 return vzalloc(size);
527 return kzalloc(size, GFP_KERNEL);
530 void kvm_kvfree(const void *addr)
532 if (is_vmalloc_addr(addr))
538 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
540 if (!memslot->dirty_bitmap)
543 kvm_kvfree(memslot->dirty_bitmap);
544 memslot->dirty_bitmap = NULL;
548 * Free any memory in @free but not in @dont.
550 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
551 struct kvm_memory_slot *dont)
553 if (!dont || free->rmap != dont->rmap)
556 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
557 kvm_destroy_dirty_bitmap(free);
559 kvm_arch_free_memslot(free, dont);
565 void kvm_free_physmem(struct kvm *kvm)
567 struct kvm_memslots *slots = kvm->memslots;
568 struct kvm_memory_slot *memslot;
570 kvm_for_each_memslot(memslot, slots)
571 kvm_free_physmem_slot(memslot, NULL);
573 kfree(kvm->memslots);
576 static void kvm_destroy_vm(struct kvm *kvm)
579 struct mm_struct *mm = kvm->mm;
581 kvm_arch_sync_events(kvm);
582 raw_spin_lock(&kvm_lock);
583 list_del(&kvm->vm_list);
584 raw_spin_unlock(&kvm_lock);
585 kvm_free_irq_routing(kvm);
586 for (i = 0; i < KVM_NR_BUSES; i++)
587 kvm_io_bus_destroy(kvm->buses[i]);
588 kvm_coalesced_mmio_free(kvm);
589 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
590 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
592 kvm_arch_flush_shadow(kvm);
594 kvm_arch_destroy_vm(kvm);
595 kvm_free_physmem(kvm);
596 cleanup_srcu_struct(&kvm->srcu);
597 kvm_arch_free_vm(kvm);
598 hardware_disable_all();
602 void kvm_get_kvm(struct kvm *kvm)
604 atomic_inc(&kvm->users_count);
606 EXPORT_SYMBOL_GPL(kvm_get_kvm);
608 void kvm_put_kvm(struct kvm *kvm)
610 if (atomic_dec_and_test(&kvm->users_count))
613 EXPORT_SYMBOL_GPL(kvm_put_kvm);
616 static int kvm_vm_release(struct inode *inode, struct file *filp)
618 struct kvm *kvm = filp->private_data;
620 kvm_irqfd_release(kvm);
627 * Allocation size is twice as large as the actual dirty bitmap size.
628 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
630 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
633 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
635 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
636 if (!memslot->dirty_bitmap)
639 #endif /* !CONFIG_S390 */
643 static int cmp_memslot(const void *slot1, const void *slot2)
645 struct kvm_memory_slot *s1, *s2;
647 s1 = (struct kvm_memory_slot *)slot1;
648 s2 = (struct kvm_memory_slot *)slot2;
650 if (s1->npages < s2->npages)
652 if (s1->npages > s2->npages)
659 * Sort the memslots base on its size, so the larger slots
660 * will get better fit.
662 static void sort_memslots(struct kvm_memslots *slots)
666 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
667 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
669 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
670 slots->id_to_index[slots->memslots[i].id] = i;
673 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
677 struct kvm_memory_slot *old = id_to_memslot(slots, id);
678 unsigned long npages = old->npages;
681 if (new->npages != npages)
682 sort_memslots(slots);
689 * Allocate some memory and give it an address in the guest physical address
692 * Discontiguous memory is allowed, mostly for framebuffers.
694 * Must be called holding mmap_sem for write.
696 int __kvm_set_memory_region(struct kvm *kvm,
697 struct kvm_userspace_memory_region *mem,
702 unsigned long npages;
704 struct kvm_memory_slot *memslot;
705 struct kvm_memory_slot old, new;
706 struct kvm_memslots *slots, *old_memslots;
709 /* General sanity checks */
710 if (mem->memory_size & (PAGE_SIZE - 1))
712 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
714 /* We can read the guest memory with __xxx_user() later on. */
716 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
717 !access_ok(VERIFY_WRITE,
718 (void __user *)(unsigned long)mem->userspace_addr,
721 if (mem->slot >= KVM_MEM_SLOTS_NUM)
723 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
726 memslot = id_to_memslot(kvm->memslots, mem->slot);
727 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
728 npages = mem->memory_size >> PAGE_SHIFT;
731 if (npages > KVM_MEM_MAX_NR_PAGES)
735 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
737 new = old = *memslot;
740 new.base_gfn = base_gfn;
742 new.flags = mem->flags;
744 /* Disallow changing a memory slot's size. */
746 if (npages && old.npages && npages != old.npages)
749 /* Check for overlaps */
751 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
752 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
754 if (s == memslot || !s->npages)
756 if (!((base_gfn + npages <= s->base_gfn) ||
757 (base_gfn >= s->base_gfn + s->npages)))
761 /* Free page dirty bitmap if unneeded */
762 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
763 new.dirty_bitmap = NULL;
767 /* Allocate if a slot is being created */
768 if (npages && !old.npages) {
769 new.user_alloc = user_alloc;
770 new.userspace_addr = mem->userspace_addr;
772 new.rmap = vzalloc(npages * sizeof(*new.rmap));
775 #endif /* not defined CONFIG_S390 */
776 if (kvm_arch_create_memslot(&new, npages))
780 /* Allocate page dirty bitmap if needed */
781 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
782 if (kvm_create_dirty_bitmap(&new) < 0)
784 /* destroy any largepage mappings for dirty tracking */
788 struct kvm_memory_slot *slot;
791 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
795 slot = id_to_memslot(slots, mem->slot);
796 slot->flags |= KVM_MEMSLOT_INVALID;
798 update_memslots(slots, NULL);
800 old_memslots = kvm->memslots;
801 rcu_assign_pointer(kvm->memslots, slots);
802 synchronize_srcu_expedited(&kvm->srcu);
803 /* From this point no new shadow pages pointing to a deleted
804 * memslot will be created.
806 * validation of sp->gfn happens in:
807 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
808 * - kvm_is_visible_gfn (mmu_check_roots)
810 kvm_arch_flush_shadow(kvm);
814 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
818 /* map/unmap the pages in iommu page table */
820 r = kvm_iommu_map_pages(kvm, &new);
824 kvm_iommu_unmap_pages(kvm, &old);
827 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
832 /* actual memory is freed via old in kvm_free_physmem_slot below */
835 new.dirty_bitmap = NULL;
836 memset(&new.arch, 0, sizeof(new.arch));
839 update_memslots(slots, &new);
840 old_memslots = kvm->memslots;
841 rcu_assign_pointer(kvm->memslots, slots);
842 synchronize_srcu_expedited(&kvm->srcu);
844 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
847 * If the new memory slot is created, we need to clear all
850 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
851 kvm_arch_flush_shadow(kvm);
853 kvm_free_physmem_slot(&old, &new);
859 kvm_free_physmem_slot(&new, &old);
864 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
866 int kvm_set_memory_region(struct kvm *kvm,
867 struct kvm_userspace_memory_region *mem,
872 mutex_lock(&kvm->slots_lock);
873 r = __kvm_set_memory_region(kvm, mem, user_alloc);
874 mutex_unlock(&kvm->slots_lock);
877 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
879 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
881 kvm_userspace_memory_region *mem,
884 if (mem->slot >= KVM_MEMORY_SLOTS)
886 return kvm_set_memory_region(kvm, mem, user_alloc);
889 int kvm_get_dirty_log(struct kvm *kvm,
890 struct kvm_dirty_log *log, int *is_dirty)
892 struct kvm_memory_slot *memslot;
895 unsigned long any = 0;
898 if (log->slot >= KVM_MEMORY_SLOTS)
901 memslot = id_to_memslot(kvm->memslots, log->slot);
903 if (!memslot->dirty_bitmap)
906 n = kvm_dirty_bitmap_bytes(memslot);
908 for (i = 0; !any && i < n/sizeof(long); ++i)
909 any = memslot->dirty_bitmap[i];
912 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
923 bool kvm_largepages_enabled(void)
925 return largepages_enabled;
928 void kvm_disable_largepages(void)
930 largepages_enabled = false;
932 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
934 int is_error_page(struct page *page)
938 EXPORT_SYMBOL_GPL(is_error_page);
940 int is_error_pfn(pfn_t pfn)
942 return IS_ERR_VALUE(pfn);
944 EXPORT_SYMBOL_GPL(is_error_pfn);
946 static pfn_t get_bad_pfn(void)
951 pfn_t get_fault_pfn(void)
955 EXPORT_SYMBOL_GPL(get_fault_pfn);
957 static pfn_t get_hwpoison_pfn(void)
962 int is_hwpoison_pfn(pfn_t pfn)
964 return pfn == -EHWPOISON;
966 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
968 int is_noslot_pfn(pfn_t pfn)
970 return pfn == -ENOENT;
972 EXPORT_SYMBOL_GPL(is_noslot_pfn);
974 int is_invalid_pfn(pfn_t pfn)
976 return !is_noslot_pfn(pfn) && is_error_pfn(pfn);
978 EXPORT_SYMBOL_GPL(is_invalid_pfn);
980 struct page *get_bad_page(void)
982 return ERR_PTR(-ENOENT);
985 static inline unsigned long bad_hva(void)
990 int kvm_is_error_hva(unsigned long addr)
992 return addr == bad_hva();
994 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
996 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
998 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1000 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1002 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1004 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1006 if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
1007 memslot->flags & KVM_MEMSLOT_INVALID)
1012 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1014 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1016 struct vm_area_struct *vma;
1017 unsigned long addr, size;
1021 addr = gfn_to_hva(kvm, gfn);
1022 if (kvm_is_error_hva(addr))
1025 down_read(¤t->mm->mmap_sem);
1026 vma = find_vma(current->mm, addr);
1030 size = vma_kernel_pagesize(vma);
1033 up_read(¤t->mm->mmap_sem);
1038 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1041 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1045 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1047 return gfn_to_hva_memslot(slot, gfn);
1050 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1052 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1054 EXPORT_SYMBOL_GPL(gfn_to_hva);
1056 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1057 unsigned long start, int write, struct page **page)
1059 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1062 flags |= FOLL_WRITE;
1064 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1067 static inline int check_user_page_hwpoison(unsigned long addr)
1069 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1071 rc = __get_user_pages(current, current->mm, addr, 1,
1072 flags, NULL, NULL, NULL);
1073 return rc == -EHWPOISON;
1076 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1077 bool write_fault, bool *writable)
1079 struct page *page[1];
1083 /* we can do it either atomically or asynchronously, not both */
1084 BUG_ON(atomic && async);
1086 BUG_ON(!write_fault && !writable);
1091 if (atomic || async)
1092 npages = __get_user_pages_fast(addr, 1, 1, page);
1094 if (unlikely(npages != 1) && !atomic) {
1098 *writable = write_fault;
1101 down_read(¤t->mm->mmap_sem);
1102 npages = get_user_page_nowait(current, current->mm,
1103 addr, write_fault, page);
1104 up_read(¤t->mm->mmap_sem);
1106 npages = get_user_pages_fast(addr, 1, write_fault,
1109 /* map read fault as writable if possible */
1110 if (unlikely(!write_fault) && npages == 1) {
1111 struct page *wpage[1];
1113 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1123 if (unlikely(npages != 1)) {
1124 struct vm_area_struct *vma;
1127 return get_fault_pfn();
1129 down_read(¤t->mm->mmap_sem);
1130 if (npages == -EHWPOISON ||
1131 (!async && check_user_page_hwpoison(addr))) {
1132 up_read(¤t->mm->mmap_sem);
1133 return get_hwpoison_pfn();
1136 vma = find_vma_intersection(current->mm, addr, addr+1);
1139 pfn = get_fault_pfn();
1140 else if ((vma->vm_flags & VM_PFNMAP)) {
1141 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1143 BUG_ON(!kvm_is_mmio_pfn(pfn));
1145 if (async && (vma->vm_flags & VM_WRITE))
1147 pfn = get_fault_pfn();
1149 up_read(¤t->mm->mmap_sem);
1151 pfn = page_to_pfn(page[0]);
1156 pfn_t hva_to_pfn_atomic(unsigned long addr)
1158 return hva_to_pfn(addr, true, NULL, true, NULL);
1160 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1162 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1163 bool write_fault, bool *writable)
1170 addr = gfn_to_hva(kvm, gfn);
1171 if (kvm_is_error_hva(addr))
1172 return get_bad_pfn();
1174 return hva_to_pfn(addr, atomic, async, write_fault, writable);
1177 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1179 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1181 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1183 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1184 bool write_fault, bool *writable)
1186 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1188 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1190 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1192 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1194 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1196 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1199 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1201 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1203 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1205 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1206 return hva_to_pfn(addr, false, NULL, true, NULL);
1209 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1215 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1216 if (kvm_is_error_hva(addr))
1219 if (entry < nr_pages)
1222 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1224 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1226 static struct page *kvm_pfn_to_page(pfn_t pfn)
1228 WARN_ON(kvm_is_mmio_pfn(pfn));
1230 if (is_error_pfn(pfn) || kvm_is_mmio_pfn(pfn))
1231 return get_bad_page();
1233 return pfn_to_page(pfn);
1236 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1240 pfn = gfn_to_pfn(kvm, gfn);
1242 return kvm_pfn_to_page(pfn);
1245 EXPORT_SYMBOL_GPL(gfn_to_page);
1247 void kvm_release_page_clean(struct page *page)
1249 if (!is_error_page(page))
1250 kvm_release_pfn_clean(page_to_pfn(page));
1252 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1254 void kvm_release_pfn_clean(pfn_t pfn)
1256 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1257 put_page(pfn_to_page(pfn));
1259 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1261 void kvm_release_page_dirty(struct page *page)
1263 WARN_ON(is_error_page(page));
1265 kvm_release_pfn_dirty(page_to_pfn(page));
1267 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1269 void kvm_release_pfn_dirty(pfn_t pfn)
1271 kvm_set_pfn_dirty(pfn);
1272 kvm_release_pfn_clean(pfn);
1274 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1276 void kvm_set_page_dirty(struct page *page)
1278 kvm_set_pfn_dirty(page_to_pfn(page));
1280 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1282 void kvm_set_pfn_dirty(pfn_t pfn)
1284 if (!kvm_is_mmio_pfn(pfn)) {
1285 struct page *page = pfn_to_page(pfn);
1286 if (!PageReserved(page))
1290 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1292 void kvm_set_pfn_accessed(pfn_t pfn)
1294 if (!kvm_is_mmio_pfn(pfn))
1295 mark_page_accessed(pfn_to_page(pfn));
1297 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1299 void kvm_get_pfn(pfn_t pfn)
1301 if (!kvm_is_mmio_pfn(pfn))
1302 get_page(pfn_to_page(pfn));
1304 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1306 static int next_segment(unsigned long len, int offset)
1308 if (len > PAGE_SIZE - offset)
1309 return PAGE_SIZE - offset;
1314 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1320 addr = gfn_to_hva(kvm, gfn);
1321 if (kvm_is_error_hva(addr))
1323 r = __copy_from_user(data, (void __user *)addr + offset, len);
1328 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1330 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1332 gfn_t gfn = gpa >> PAGE_SHIFT;
1334 int offset = offset_in_page(gpa);
1337 while ((seg = next_segment(len, offset)) != 0) {
1338 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1348 EXPORT_SYMBOL_GPL(kvm_read_guest);
1350 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1355 gfn_t gfn = gpa >> PAGE_SHIFT;
1356 int offset = offset_in_page(gpa);
1358 addr = gfn_to_hva(kvm, gfn);
1359 if (kvm_is_error_hva(addr))
1361 pagefault_disable();
1362 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1368 EXPORT_SYMBOL(kvm_read_guest_atomic);
1370 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1371 int offset, int len)
1376 addr = gfn_to_hva(kvm, gfn);
1377 if (kvm_is_error_hva(addr))
1379 r = __copy_to_user((void __user *)addr + offset, data, len);
1382 mark_page_dirty(kvm, gfn);
1385 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1387 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1390 gfn_t gfn = gpa >> PAGE_SHIFT;
1392 int offset = offset_in_page(gpa);
1395 while ((seg = next_segment(len, offset)) != 0) {
1396 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1407 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1410 struct kvm_memslots *slots = kvm_memslots(kvm);
1411 int offset = offset_in_page(gpa);
1412 gfn_t gfn = gpa >> PAGE_SHIFT;
1415 ghc->generation = slots->generation;
1416 ghc->memslot = gfn_to_memslot(kvm, gfn);
1417 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1418 if (!kvm_is_error_hva(ghc->hva))
1425 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1427 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1428 void *data, unsigned long len)
1430 struct kvm_memslots *slots = kvm_memslots(kvm);
1433 if (slots->generation != ghc->generation)
1434 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1436 if (kvm_is_error_hva(ghc->hva))
1439 r = __copy_to_user((void __user *)ghc->hva, data, len);
1442 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1446 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1448 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1449 void *data, unsigned long len)
1451 struct kvm_memslots *slots = kvm_memslots(kvm);
1454 if (slots->generation != ghc->generation)
1455 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1457 if (kvm_is_error_hva(ghc->hva))
1460 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1466 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1468 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1470 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1473 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1475 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1477 gfn_t gfn = gpa >> PAGE_SHIFT;
1479 int offset = offset_in_page(gpa);
1482 while ((seg = next_segment(len, offset)) != 0) {
1483 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1492 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1494 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1497 if (memslot && memslot->dirty_bitmap) {
1498 unsigned long rel_gfn = gfn - memslot->base_gfn;
1500 /* TODO: introduce set_bit_le() and use it */
1501 test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap);
1505 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1507 struct kvm_memory_slot *memslot;
1509 memslot = gfn_to_memslot(kvm, gfn);
1510 mark_page_dirty_in_slot(kvm, memslot, gfn);
1514 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1516 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1521 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1523 if (kvm_arch_vcpu_runnable(vcpu)) {
1524 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1527 if (kvm_cpu_has_pending_timer(vcpu))
1529 if (signal_pending(current))
1535 finish_wait(&vcpu->wq, &wait);
1540 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1542 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1545 int cpu = vcpu->cpu;
1546 wait_queue_head_t *wqp;
1548 wqp = kvm_arch_vcpu_wq(vcpu);
1549 if (waitqueue_active(wqp)) {
1550 wake_up_interruptible(wqp);
1551 ++vcpu->stat.halt_wakeup;
1555 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1556 if (kvm_arch_vcpu_should_kick(vcpu))
1557 smp_send_reschedule(cpu);
1560 #endif /* !CONFIG_S390 */
1562 void kvm_resched(struct kvm_vcpu *vcpu)
1564 if (!need_resched())
1568 EXPORT_SYMBOL_GPL(kvm_resched);
1570 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1573 struct task_struct *task = NULL;
1576 pid = rcu_dereference(target->pid);
1578 task = get_pid_task(target->pid, PIDTYPE_PID);
1582 if (task->flags & PF_VCPU) {
1583 put_task_struct(task);
1586 if (yield_to(task, 1)) {
1587 put_task_struct(task);
1590 put_task_struct(task);
1593 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1595 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1597 * Helper that checks whether a VCPU is eligible for directed yield.
1598 * Most eligible candidate to yield is decided by following heuristics:
1600 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1601 * (preempted lock holder), indicated by @in_spin_loop.
1602 * Set at the beiginning and cleared at the end of interception/PLE handler.
1604 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1605 * chance last time (mostly it has become eligible now since we have probably
1606 * yielded to lockholder in last iteration. This is done by toggling
1607 * @dy_eligible each time a VCPU checked for eligibility.)
1609 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1610 * to preempted lock-holder could result in wrong VCPU selection and CPU
1611 * burning. Giving priority for a potential lock-holder increases lock
1614 * Since algorithm is based on heuristics, accessing another VCPU data without
1615 * locking does not harm. It may result in trying to yield to same VCPU, fail
1616 * and continue with next VCPU and so on.
1618 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1622 eligible = !vcpu->spin_loop.in_spin_loop ||
1623 (vcpu->spin_loop.in_spin_loop &&
1624 vcpu->spin_loop.dy_eligible);
1626 if (vcpu->spin_loop.in_spin_loop)
1627 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1632 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1634 struct kvm *kvm = me->kvm;
1635 struct kvm_vcpu *vcpu;
1636 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1641 kvm_vcpu_set_in_spin_loop(me, true);
1643 * We boost the priority of a VCPU that is runnable but not
1644 * currently running, because it got preempted by something
1645 * else and called schedule in __vcpu_run. Hopefully that
1646 * VCPU is holding the lock that we need and will release it.
1647 * We approximate round-robin by starting at the last boosted VCPU.
1649 for (pass = 0; pass < 2 && !yielded; pass++) {
1650 kvm_for_each_vcpu(i, vcpu, kvm) {
1651 if (!pass && i <= last_boosted_vcpu) {
1652 i = last_boosted_vcpu;
1654 } else if (pass && i > last_boosted_vcpu)
1658 if (waitqueue_active(&vcpu->wq))
1660 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1662 if (kvm_vcpu_yield_to(vcpu)) {
1663 kvm->last_boosted_vcpu = i;
1669 kvm_vcpu_set_in_spin_loop(me, false);
1671 /* Ensure vcpu is not eligible during next spinloop */
1672 kvm_vcpu_set_dy_eligible(me, false);
1674 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1676 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1678 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1681 if (vmf->pgoff == 0)
1682 page = virt_to_page(vcpu->run);
1684 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1685 page = virt_to_page(vcpu->arch.pio_data);
1687 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1688 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1689 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1692 return kvm_arch_vcpu_fault(vcpu, vmf);
1698 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1699 .fault = kvm_vcpu_fault,
1702 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1704 vma->vm_ops = &kvm_vcpu_vm_ops;
1708 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1710 struct kvm_vcpu *vcpu = filp->private_data;
1712 kvm_put_kvm(vcpu->kvm);
1716 static struct file_operations kvm_vcpu_fops = {
1717 .release = kvm_vcpu_release,
1718 .unlocked_ioctl = kvm_vcpu_ioctl,
1719 #ifdef CONFIG_COMPAT
1720 .compat_ioctl = kvm_vcpu_compat_ioctl,
1722 .mmap = kvm_vcpu_mmap,
1723 .llseek = noop_llseek,
1727 * Allocates an inode for the vcpu.
1729 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1731 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1735 * Creates some virtual cpus. Good luck creating more than one.
1737 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1740 struct kvm_vcpu *vcpu, *v;
1742 vcpu = kvm_arch_vcpu_create(kvm, id);
1744 return PTR_ERR(vcpu);
1746 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1748 r = kvm_arch_vcpu_setup(vcpu);
1752 mutex_lock(&kvm->lock);
1753 if (!kvm_vcpu_compatible(vcpu)) {
1755 goto unlock_vcpu_destroy;
1757 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1759 goto unlock_vcpu_destroy;
1762 kvm_for_each_vcpu(r, v, kvm)
1763 if (v->vcpu_id == id) {
1765 goto unlock_vcpu_destroy;
1768 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1770 /* Now it's all set up, let userspace reach it */
1772 r = create_vcpu_fd(vcpu);
1775 goto unlock_vcpu_destroy;
1778 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1780 atomic_inc(&kvm->online_vcpus);
1782 mutex_unlock(&kvm->lock);
1785 unlock_vcpu_destroy:
1786 mutex_unlock(&kvm->lock);
1788 kvm_arch_vcpu_destroy(vcpu);
1792 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1795 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1796 vcpu->sigset_active = 1;
1797 vcpu->sigset = *sigset;
1799 vcpu->sigset_active = 0;
1803 static long kvm_vcpu_ioctl(struct file *filp,
1804 unsigned int ioctl, unsigned long arg)
1806 struct kvm_vcpu *vcpu = filp->private_data;
1807 void __user *argp = (void __user *)arg;
1809 struct kvm_fpu *fpu = NULL;
1810 struct kvm_sregs *kvm_sregs = NULL;
1812 if (vcpu->kvm->mm != current->mm)
1815 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1817 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1818 * so vcpu_load() would break it.
1820 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1821 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1831 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1832 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1834 case KVM_GET_REGS: {
1835 struct kvm_regs *kvm_regs;
1838 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1841 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1845 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1852 case KVM_SET_REGS: {
1853 struct kvm_regs *kvm_regs;
1856 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1857 if (IS_ERR(kvm_regs)) {
1858 r = PTR_ERR(kvm_regs);
1861 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1869 case KVM_GET_SREGS: {
1870 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1874 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1878 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1883 case KVM_SET_SREGS: {
1884 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1885 if (IS_ERR(kvm_sregs)) {
1886 r = PTR_ERR(kvm_sregs);
1889 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1895 case KVM_GET_MP_STATE: {
1896 struct kvm_mp_state mp_state;
1898 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1902 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1907 case KVM_SET_MP_STATE: {
1908 struct kvm_mp_state mp_state;
1911 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1913 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1919 case KVM_TRANSLATE: {
1920 struct kvm_translation tr;
1923 if (copy_from_user(&tr, argp, sizeof tr))
1925 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1929 if (copy_to_user(argp, &tr, sizeof tr))
1934 case KVM_SET_GUEST_DEBUG: {
1935 struct kvm_guest_debug dbg;
1938 if (copy_from_user(&dbg, argp, sizeof dbg))
1940 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1946 case KVM_SET_SIGNAL_MASK: {
1947 struct kvm_signal_mask __user *sigmask_arg = argp;
1948 struct kvm_signal_mask kvm_sigmask;
1949 sigset_t sigset, *p;
1954 if (copy_from_user(&kvm_sigmask, argp,
1955 sizeof kvm_sigmask))
1958 if (kvm_sigmask.len != sizeof sigset)
1961 if (copy_from_user(&sigset, sigmask_arg->sigset,
1966 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1970 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1974 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1978 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1984 fpu = memdup_user(argp, sizeof(*fpu));
1989 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1996 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2005 #ifdef CONFIG_COMPAT
2006 static long kvm_vcpu_compat_ioctl(struct file *filp,
2007 unsigned int ioctl, unsigned long arg)
2009 struct kvm_vcpu *vcpu = filp->private_data;
2010 void __user *argp = compat_ptr(arg);
2013 if (vcpu->kvm->mm != current->mm)
2017 case KVM_SET_SIGNAL_MASK: {
2018 struct kvm_signal_mask __user *sigmask_arg = argp;
2019 struct kvm_signal_mask kvm_sigmask;
2020 compat_sigset_t csigset;
2025 if (copy_from_user(&kvm_sigmask, argp,
2026 sizeof kvm_sigmask))
2029 if (kvm_sigmask.len != sizeof csigset)
2032 if (copy_from_user(&csigset, sigmask_arg->sigset,
2036 sigset_from_compat(&sigset, &csigset);
2037 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2041 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2049 static long kvm_vm_ioctl(struct file *filp,
2050 unsigned int ioctl, unsigned long arg)
2052 struct kvm *kvm = filp->private_data;
2053 void __user *argp = (void __user *)arg;
2056 if (kvm->mm != current->mm)
2059 case KVM_CREATE_VCPU:
2060 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2064 case KVM_SET_USER_MEMORY_REGION: {
2065 struct kvm_userspace_memory_region kvm_userspace_mem;
2068 if (copy_from_user(&kvm_userspace_mem, argp,
2069 sizeof kvm_userspace_mem))
2072 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2077 case KVM_GET_DIRTY_LOG: {
2078 struct kvm_dirty_log log;
2081 if (copy_from_user(&log, argp, sizeof log))
2083 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2088 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2089 case KVM_REGISTER_COALESCED_MMIO: {
2090 struct kvm_coalesced_mmio_zone zone;
2092 if (copy_from_user(&zone, argp, sizeof zone))
2094 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2100 case KVM_UNREGISTER_COALESCED_MMIO: {
2101 struct kvm_coalesced_mmio_zone zone;
2103 if (copy_from_user(&zone, argp, sizeof zone))
2105 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2113 struct kvm_irqfd data;
2116 if (copy_from_user(&data, argp, sizeof data))
2118 r = kvm_irqfd(kvm, &data);
2121 case KVM_IOEVENTFD: {
2122 struct kvm_ioeventfd data;
2125 if (copy_from_user(&data, argp, sizeof data))
2127 r = kvm_ioeventfd(kvm, &data);
2130 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2131 case KVM_SET_BOOT_CPU_ID:
2133 mutex_lock(&kvm->lock);
2134 if (atomic_read(&kvm->online_vcpus) != 0)
2137 kvm->bsp_vcpu_id = arg;
2138 mutex_unlock(&kvm->lock);
2141 #ifdef CONFIG_HAVE_KVM_MSI
2142 case KVM_SIGNAL_MSI: {
2146 if (copy_from_user(&msi, argp, sizeof msi))
2148 r = kvm_send_userspace_msi(kvm, &msi);
2152 #ifdef __KVM_HAVE_IRQ_LINE
2153 case KVM_IRQ_LINE_STATUS:
2154 case KVM_IRQ_LINE: {
2155 struct kvm_irq_level irq_event;
2158 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2161 r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
2166 if (ioctl == KVM_IRQ_LINE_STATUS) {
2167 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2176 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2178 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2184 #ifdef CONFIG_COMPAT
2185 struct compat_kvm_dirty_log {
2189 compat_uptr_t dirty_bitmap; /* one bit per page */
2194 static long kvm_vm_compat_ioctl(struct file *filp,
2195 unsigned int ioctl, unsigned long arg)
2197 struct kvm *kvm = filp->private_data;
2200 if (kvm->mm != current->mm)
2203 case KVM_GET_DIRTY_LOG: {
2204 struct compat_kvm_dirty_log compat_log;
2205 struct kvm_dirty_log log;
2208 if (copy_from_user(&compat_log, (void __user *)arg,
2209 sizeof(compat_log)))
2211 log.slot = compat_log.slot;
2212 log.padding1 = compat_log.padding1;
2213 log.padding2 = compat_log.padding2;
2214 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2216 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2222 r = kvm_vm_ioctl(filp, ioctl, arg);
2230 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2232 struct page *page[1];
2235 gfn_t gfn = vmf->pgoff;
2236 struct kvm *kvm = vma->vm_file->private_data;
2238 addr = gfn_to_hva(kvm, gfn);
2239 if (kvm_is_error_hva(addr))
2240 return VM_FAULT_SIGBUS;
2242 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2244 if (unlikely(npages != 1))
2245 return VM_FAULT_SIGBUS;
2247 vmf->page = page[0];
2251 static const struct vm_operations_struct kvm_vm_vm_ops = {
2252 .fault = kvm_vm_fault,
2255 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2257 vma->vm_ops = &kvm_vm_vm_ops;
2261 static struct file_operations kvm_vm_fops = {
2262 .release = kvm_vm_release,
2263 .unlocked_ioctl = kvm_vm_ioctl,
2264 #ifdef CONFIG_COMPAT
2265 .compat_ioctl = kvm_vm_compat_ioctl,
2267 .mmap = kvm_vm_mmap,
2268 .llseek = noop_llseek,
2271 static int kvm_dev_ioctl_create_vm(unsigned long type)
2276 kvm = kvm_create_vm(type);
2278 return PTR_ERR(kvm);
2279 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2280 r = kvm_coalesced_mmio_init(kvm);
2286 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2293 static long kvm_dev_ioctl_check_extension_generic(long arg)
2296 case KVM_CAP_USER_MEMORY:
2297 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2298 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2299 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2300 case KVM_CAP_SET_BOOT_CPU_ID:
2302 case KVM_CAP_INTERNAL_ERROR_DATA:
2303 #ifdef CONFIG_HAVE_KVM_MSI
2304 case KVM_CAP_SIGNAL_MSI:
2307 #ifdef KVM_CAP_IRQ_ROUTING
2308 case KVM_CAP_IRQ_ROUTING:
2309 return KVM_MAX_IRQ_ROUTES;
2314 return kvm_dev_ioctl_check_extension(arg);
2317 static long kvm_dev_ioctl(struct file *filp,
2318 unsigned int ioctl, unsigned long arg)
2323 case KVM_GET_API_VERSION:
2327 r = KVM_API_VERSION;
2330 r = kvm_dev_ioctl_create_vm(arg);
2332 case KVM_CHECK_EXTENSION:
2333 r = kvm_dev_ioctl_check_extension_generic(arg);
2335 case KVM_GET_VCPU_MMAP_SIZE:
2339 r = PAGE_SIZE; /* struct kvm_run */
2341 r += PAGE_SIZE; /* pio data page */
2343 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2344 r += PAGE_SIZE; /* coalesced mmio ring page */
2347 case KVM_TRACE_ENABLE:
2348 case KVM_TRACE_PAUSE:
2349 case KVM_TRACE_DISABLE:
2353 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2359 static struct file_operations kvm_chardev_ops = {
2360 .unlocked_ioctl = kvm_dev_ioctl,
2361 .compat_ioctl = kvm_dev_ioctl,
2362 .llseek = noop_llseek,
2365 static struct miscdevice kvm_dev = {
2371 static void hardware_enable_nolock(void *junk)
2373 int cpu = raw_smp_processor_id();
2376 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2379 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2381 r = kvm_arch_hardware_enable(NULL);
2384 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2385 atomic_inc(&hardware_enable_failed);
2386 printk(KERN_INFO "kvm: enabling virtualization on "
2387 "CPU%d failed\n", cpu);
2391 static void hardware_enable(void *junk)
2393 raw_spin_lock(&kvm_lock);
2394 hardware_enable_nolock(junk);
2395 raw_spin_unlock(&kvm_lock);
2398 static void hardware_disable_nolock(void *junk)
2400 int cpu = raw_smp_processor_id();
2402 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2404 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2405 kvm_arch_hardware_disable(NULL);
2408 static void hardware_disable(void *junk)
2410 raw_spin_lock(&kvm_lock);
2411 hardware_disable_nolock(junk);
2412 raw_spin_unlock(&kvm_lock);
2415 static void hardware_disable_all_nolock(void)
2417 BUG_ON(!kvm_usage_count);
2420 if (!kvm_usage_count)
2421 on_each_cpu(hardware_disable_nolock, NULL, 1);
2424 static void hardware_disable_all(void)
2426 raw_spin_lock(&kvm_lock);
2427 hardware_disable_all_nolock();
2428 raw_spin_unlock(&kvm_lock);
2431 static int hardware_enable_all(void)
2435 raw_spin_lock(&kvm_lock);
2438 if (kvm_usage_count == 1) {
2439 atomic_set(&hardware_enable_failed, 0);
2440 on_each_cpu(hardware_enable_nolock, NULL, 1);
2442 if (atomic_read(&hardware_enable_failed)) {
2443 hardware_disable_all_nolock();
2448 raw_spin_unlock(&kvm_lock);
2453 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2458 if (!kvm_usage_count)
2461 val &= ~CPU_TASKS_FROZEN;
2464 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2466 hardware_disable(NULL);
2469 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2471 hardware_enable(NULL);
2478 asmlinkage void kvm_spurious_fault(void)
2480 /* Fault while not rebooting. We want the trace. */
2483 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2485 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2489 * Some (well, at least mine) BIOSes hang on reboot if
2492 * And Intel TXT required VMX off for all cpu when system shutdown.
2494 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2495 kvm_rebooting = true;
2496 on_each_cpu(hardware_disable_nolock, NULL, 1);
2500 static struct notifier_block kvm_reboot_notifier = {
2501 .notifier_call = kvm_reboot,
2505 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2509 for (i = 0; i < bus->dev_count; i++) {
2510 struct kvm_io_device *pos = bus->range[i].dev;
2512 kvm_iodevice_destructor(pos);
2517 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2519 const struct kvm_io_range *r1 = p1;
2520 const struct kvm_io_range *r2 = p2;
2522 if (r1->addr < r2->addr)
2524 if (r1->addr + r1->len > r2->addr + r2->len)
2529 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2530 gpa_t addr, int len)
2532 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2538 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2539 kvm_io_bus_sort_cmp, NULL);
2544 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2545 gpa_t addr, int len)
2547 struct kvm_io_range *range, key;
2550 key = (struct kvm_io_range) {
2555 range = bsearch(&key, bus->range, bus->dev_count,
2556 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2560 off = range - bus->range;
2562 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2568 /* kvm_io_bus_write - called under kvm->slots_lock */
2569 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2570 int len, const void *val)
2573 struct kvm_io_bus *bus;
2574 struct kvm_io_range range;
2576 range = (struct kvm_io_range) {
2581 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2582 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2586 while (idx < bus->dev_count &&
2587 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2588 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2596 /* kvm_io_bus_read - called under kvm->slots_lock */
2597 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2601 struct kvm_io_bus *bus;
2602 struct kvm_io_range range;
2604 range = (struct kvm_io_range) {
2609 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2610 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2614 while (idx < bus->dev_count &&
2615 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2616 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2624 /* Caller must hold slots_lock. */
2625 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2626 int len, struct kvm_io_device *dev)
2628 struct kvm_io_bus *new_bus, *bus;
2630 bus = kvm->buses[bus_idx];
2631 if (bus->dev_count > NR_IOBUS_DEVS - 1)
2634 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2635 sizeof(struct kvm_io_range)), GFP_KERNEL);
2638 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2639 sizeof(struct kvm_io_range)));
2640 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2641 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2642 synchronize_srcu_expedited(&kvm->srcu);
2648 /* Caller must hold slots_lock. */
2649 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2650 struct kvm_io_device *dev)
2653 struct kvm_io_bus *new_bus, *bus;
2655 bus = kvm->buses[bus_idx];
2657 for (i = 0; i < bus->dev_count; i++)
2658 if (bus->range[i].dev == dev) {
2666 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2667 sizeof(struct kvm_io_range)), GFP_KERNEL);
2671 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2672 new_bus->dev_count--;
2673 memcpy(new_bus->range + i, bus->range + i + 1,
2674 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2676 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2677 synchronize_srcu_expedited(&kvm->srcu);
2682 static struct notifier_block kvm_cpu_notifier = {
2683 .notifier_call = kvm_cpu_hotplug,
2686 static int vm_stat_get(void *_offset, u64 *val)
2688 unsigned offset = (long)_offset;
2692 raw_spin_lock(&kvm_lock);
2693 list_for_each_entry(kvm, &vm_list, vm_list)
2694 *val += *(u32 *)((void *)kvm + offset);
2695 raw_spin_unlock(&kvm_lock);
2699 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2701 static int vcpu_stat_get(void *_offset, u64 *val)
2703 unsigned offset = (long)_offset;
2705 struct kvm_vcpu *vcpu;
2709 raw_spin_lock(&kvm_lock);
2710 list_for_each_entry(kvm, &vm_list, vm_list)
2711 kvm_for_each_vcpu(i, vcpu, kvm)
2712 *val += *(u32 *)((void *)vcpu + offset);
2714 raw_spin_unlock(&kvm_lock);
2718 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2720 static const struct file_operations *stat_fops[] = {
2721 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2722 [KVM_STAT_VM] = &vm_stat_fops,
2725 static int kvm_init_debug(void)
2728 struct kvm_stats_debugfs_item *p;
2730 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2731 if (kvm_debugfs_dir == NULL)
2734 for (p = debugfs_entries; p->name; ++p) {
2735 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2736 (void *)(long)p->offset,
2737 stat_fops[p->kind]);
2738 if (p->dentry == NULL)
2745 debugfs_remove_recursive(kvm_debugfs_dir);
2750 static void kvm_exit_debug(void)
2752 struct kvm_stats_debugfs_item *p;
2754 for (p = debugfs_entries; p->name; ++p)
2755 debugfs_remove(p->dentry);
2756 debugfs_remove(kvm_debugfs_dir);
2759 static int kvm_suspend(void)
2761 if (kvm_usage_count)
2762 hardware_disable_nolock(NULL);
2766 static void kvm_resume(void)
2768 if (kvm_usage_count) {
2769 WARN_ON(raw_spin_is_locked(&kvm_lock));
2770 hardware_enable_nolock(NULL);
2774 static struct syscore_ops kvm_syscore_ops = {
2775 .suspend = kvm_suspend,
2776 .resume = kvm_resume,
2780 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2782 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2785 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2787 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2789 kvm_arch_vcpu_load(vcpu, cpu);
2792 static void kvm_sched_out(struct preempt_notifier *pn,
2793 struct task_struct *next)
2795 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2797 kvm_arch_vcpu_put(vcpu);
2800 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2801 struct module *module)
2806 r = kvm_arch_init(opaque);
2810 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2815 r = kvm_arch_hardware_setup();
2819 for_each_online_cpu(cpu) {
2820 smp_call_function_single(cpu,
2821 kvm_arch_check_processor_compat,
2827 r = register_cpu_notifier(&kvm_cpu_notifier);
2830 register_reboot_notifier(&kvm_reboot_notifier);
2832 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2834 vcpu_align = __alignof__(struct kvm_vcpu);
2835 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2837 if (!kvm_vcpu_cache) {
2842 r = kvm_async_pf_init();
2846 kvm_chardev_ops.owner = module;
2847 kvm_vm_fops.owner = module;
2848 kvm_vcpu_fops.owner = module;
2850 r = misc_register(&kvm_dev);
2852 printk(KERN_ERR "kvm: misc device register failed\n");
2856 register_syscore_ops(&kvm_syscore_ops);
2858 kvm_preempt_ops.sched_in = kvm_sched_in;
2859 kvm_preempt_ops.sched_out = kvm_sched_out;
2861 r = kvm_init_debug();
2863 printk(KERN_ERR "kvm: create debugfs files failed\n");
2870 unregister_syscore_ops(&kvm_syscore_ops);
2872 kvm_async_pf_deinit();
2874 kmem_cache_destroy(kvm_vcpu_cache);
2876 unregister_reboot_notifier(&kvm_reboot_notifier);
2877 unregister_cpu_notifier(&kvm_cpu_notifier);
2880 kvm_arch_hardware_unsetup();
2882 free_cpumask_var(cpus_hardware_enabled);
2888 EXPORT_SYMBOL_GPL(kvm_init);
2893 misc_deregister(&kvm_dev);
2894 kmem_cache_destroy(kvm_vcpu_cache);
2895 kvm_async_pf_deinit();
2896 unregister_syscore_ops(&kvm_syscore_ops);
2897 unregister_reboot_notifier(&kvm_reboot_notifier);
2898 unregister_cpu_notifier(&kvm_cpu_notifier);
2899 on_each_cpu(hardware_disable_nolock, NULL, 1);
2900 kvm_arch_hardware_unsetup();
2902 free_cpumask_var(cpus_hardware_enabled);
2904 EXPORT_SYMBOL_GPL(kvm_exit);