2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
133 #include "net-sysfs.h"
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
141 static DEFINE_SPINLOCK(ptype_lock);
142 static DEFINE_SPINLOCK(offload_lock);
143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
144 struct list_head ptype_all __read_mostly; /* Taps */
145 static struct list_head offload_base __read_mostly;
148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
153 * Writers must hold the rtnl semaphore while they loop through the
154 * dev_base_head list, and hold dev_base_lock for writing when they do the
155 * actual updates. This allows pure readers to access the list even
156 * while a writer is preparing to update it.
158 * To put it another way, dev_base_lock is held for writing only to
159 * protect against pure readers; the rtnl semaphore provides the
160 * protection against other writers.
162 * See, for example usages, register_netdevice() and
163 * unregister_netdevice(), which must be called with the rtnl
166 DEFINE_RWLOCK(dev_base_lock);
167 EXPORT_SYMBOL(dev_base_lock);
169 seqcount_t devnet_rename_seq;
171 static inline void dev_base_seq_inc(struct net *net)
173 while (++net->dev_base_seq == 0);
176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
188 static inline void rps_lock(struct softnet_data *sd)
191 spin_lock(&sd->input_pkt_queue.lock);
195 static inline void rps_unlock(struct softnet_data *sd)
198 spin_unlock(&sd->input_pkt_queue.lock);
202 /* Device list insertion */
203 static int list_netdevice(struct net_device *dev)
205 struct net *net = dev_net(dev);
209 write_lock_bh(&dev_base_lock);
210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
212 hlist_add_head_rcu(&dev->index_hlist,
213 dev_index_hash(net, dev->ifindex));
214 write_unlock_bh(&dev_base_lock);
216 dev_base_seq_inc(net);
221 /* Device list removal
222 * caller must respect a RCU grace period before freeing/reusing dev
224 static void unlist_netdevice(struct net_device *dev)
228 /* Unlink dev from the device chain */
229 write_lock_bh(&dev_base_lock);
230 list_del_rcu(&dev->dev_list);
231 hlist_del_rcu(&dev->name_hlist);
232 hlist_del_rcu(&dev->index_hlist);
233 write_unlock_bh(&dev_base_lock);
235 dev_base_seq_inc(dev_net(dev));
242 static RAW_NOTIFIER_HEAD(netdev_chain);
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
249 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
250 EXPORT_PER_CPU_SYMBOL(softnet_data);
252 #ifdef CONFIG_LOCKDEP
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
271 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
272 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
274 static const char *const netdev_lock_name[] =
275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
288 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
289 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
294 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 if (netdev_lock_type[i] == dev_type)
301 /* the last key is used by default */
302 return ARRAY_SIZE(netdev_lock_type) - 1;
305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 unsigned short dev_type)
310 i = netdev_lock_pos(dev_type);
311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 netdev_lock_name[i]);
315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
319 i = netdev_lock_pos(dev->type);
320 lockdep_set_class_and_name(&dev->addr_list_lock,
321 &netdev_addr_lock_key[i],
322 netdev_lock_name[i]);
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 /*******************************************************************************
336 Protocol management and registration routines
338 *******************************************************************************/
341 * Add a protocol ID to the list. Now that the input handler is
342 * smarter we can dispense with all the messy stuff that used to be
345 * BEWARE!!! Protocol handlers, mangling input packets,
346 * MUST BE last in hash buckets and checking protocol handlers
347 * MUST start from promiscuous ptype_all chain in net_bh.
348 * It is true now, do not change it.
349 * Explanation follows: if protocol handler, mangling packet, will
350 * be the first on list, it is not able to sense, that packet
351 * is cloned and should be copied-on-write, so that it will
352 * change it and subsequent readers will get broken packet.
356 static inline struct list_head *ptype_head(const struct packet_type *pt)
358 if (pt->type == htons(ETH_P_ALL))
361 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
365 * dev_add_pack - add packet handler
366 * @pt: packet type declaration
368 * Add a protocol handler to the networking stack. The passed &packet_type
369 * is linked into kernel lists and may not be freed until it has been
370 * removed from the kernel lists.
372 * This call does not sleep therefore it can not
373 * guarantee all CPU's that are in middle of receiving packets
374 * will see the new packet type (until the next received packet).
377 void dev_add_pack(struct packet_type *pt)
379 struct list_head *head = ptype_head(pt);
381 spin_lock(&ptype_lock);
382 list_add_rcu(&pt->list, head);
383 spin_unlock(&ptype_lock);
385 EXPORT_SYMBOL(dev_add_pack);
388 * __dev_remove_pack - remove packet handler
389 * @pt: packet type declaration
391 * Remove a protocol handler that was previously added to the kernel
392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
393 * from the kernel lists and can be freed or reused once this function
396 * The packet type might still be in use by receivers
397 * and must not be freed until after all the CPU's have gone
398 * through a quiescent state.
400 void __dev_remove_pack(struct packet_type *pt)
402 struct list_head *head = ptype_head(pt);
403 struct packet_type *pt1;
405 spin_lock(&ptype_lock);
407 list_for_each_entry(pt1, head, list) {
409 list_del_rcu(&pt->list);
414 pr_warn("dev_remove_pack: %p not found\n", pt);
416 spin_unlock(&ptype_lock);
418 EXPORT_SYMBOL(__dev_remove_pack);
421 * dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
429 * This call sleeps to guarantee that no CPU is looking at the packet
432 void dev_remove_pack(struct packet_type *pt)
434 __dev_remove_pack(pt);
438 EXPORT_SYMBOL(dev_remove_pack);
442 * dev_add_offload - register offload handlers
443 * @po: protocol offload declaration
445 * Add protocol offload handlers to the networking stack. The passed
446 * &proto_offload is linked into kernel lists and may not be freed until
447 * it has been removed from the kernel lists.
449 * This call does not sleep therefore it can not
450 * guarantee all CPU's that are in middle of receiving packets
451 * will see the new offload handlers (until the next received packet).
453 void dev_add_offload(struct packet_offload *po)
455 struct list_head *head = &offload_base;
457 spin_lock(&offload_lock);
458 list_add_rcu(&po->list, head);
459 spin_unlock(&offload_lock);
461 EXPORT_SYMBOL(dev_add_offload);
464 * __dev_remove_offload - remove offload handler
465 * @po: packet offload declaration
467 * Remove a protocol offload handler that was previously added to the
468 * kernel offload handlers by dev_add_offload(). The passed &offload_type
469 * is removed from the kernel lists and can be freed or reused once this
472 * The packet type might still be in use by receivers
473 * and must not be freed until after all the CPU's have gone
474 * through a quiescent state.
476 void __dev_remove_offload(struct packet_offload *po)
478 struct list_head *head = &offload_base;
479 struct packet_offload *po1;
481 spin_lock(&offload_lock);
483 list_for_each_entry(po1, head, list) {
485 list_del_rcu(&po->list);
490 pr_warn("dev_remove_offload: %p not found\n", po);
492 spin_unlock(&offload_lock);
494 EXPORT_SYMBOL(__dev_remove_offload);
497 * dev_remove_offload - remove packet offload handler
498 * @po: packet offload declaration
500 * Remove a packet offload handler that was previously added to the kernel
501 * offload handlers by dev_add_offload(). The passed &offload_type is
502 * removed from the kernel lists and can be freed or reused once this
505 * This call sleeps to guarantee that no CPU is looking at the packet
508 void dev_remove_offload(struct packet_offload *po)
510 __dev_remove_offload(po);
514 EXPORT_SYMBOL(dev_remove_offload);
516 /******************************************************************************
518 Device Boot-time Settings Routines
520 *******************************************************************************/
522 /* Boot time configuration table */
523 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
526 * netdev_boot_setup_add - add new setup entry
527 * @name: name of the device
528 * @map: configured settings for the device
530 * Adds new setup entry to the dev_boot_setup list. The function
531 * returns 0 on error and 1 on success. This is a generic routine to
534 static int netdev_boot_setup_add(char *name, struct ifmap *map)
536 struct netdev_boot_setup *s;
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
541 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
542 memset(s[i].name, 0, sizeof(s[i].name));
543 strlcpy(s[i].name, name, IFNAMSIZ);
544 memcpy(&s[i].map, map, sizeof(s[i].map));
549 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
553 * netdev_boot_setup_check - check boot time settings
554 * @dev: the netdevice
556 * Check boot time settings for the device.
557 * The found settings are set for the device to be used
558 * later in the device probing.
559 * Returns 0 if no settings found, 1 if they are.
561 int netdev_boot_setup_check(struct net_device *dev)
563 struct netdev_boot_setup *s = dev_boot_setup;
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
568 !strcmp(dev->name, s[i].name)) {
569 dev->irq = s[i].map.irq;
570 dev->base_addr = s[i].map.base_addr;
571 dev->mem_start = s[i].map.mem_start;
572 dev->mem_end = s[i].map.mem_end;
578 EXPORT_SYMBOL(netdev_boot_setup_check);
582 * netdev_boot_base - get address from boot time settings
583 * @prefix: prefix for network device
584 * @unit: id for network device
586 * Check boot time settings for the base address of device.
587 * The found settings are set for the device to be used
588 * later in the device probing.
589 * Returns 0 if no settings found.
591 unsigned long netdev_boot_base(const char *prefix, int unit)
593 const struct netdev_boot_setup *s = dev_boot_setup;
597 sprintf(name, "%s%d", prefix, unit);
600 * If device already registered then return base of 1
601 * to indicate not to probe for this interface
603 if (__dev_get_by_name(&init_net, name))
606 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
607 if (!strcmp(name, s[i].name))
608 return s[i].map.base_addr;
613 * Saves at boot time configured settings for any netdevice.
615 int __init netdev_boot_setup(char *str)
620 str = get_options(str, ARRAY_SIZE(ints), ints);
625 memset(&map, 0, sizeof(map));
629 map.base_addr = ints[2];
631 map.mem_start = ints[3];
633 map.mem_end = ints[4];
635 /* Add new entry to the list */
636 return netdev_boot_setup_add(str, &map);
639 __setup("netdev=", netdev_boot_setup);
641 /*******************************************************************************
643 Device Interface Subroutines
645 *******************************************************************************/
648 * __dev_get_by_name - find a device by its name
649 * @net: the applicable net namespace
650 * @name: name to find
652 * Find an interface by name. Must be called under RTNL semaphore
653 * or @dev_base_lock. If the name is found a pointer to the device
654 * is returned. If the name is not found then %NULL is returned. The
655 * reference counters are not incremented so the caller must be
656 * careful with locks.
659 struct net_device *__dev_get_by_name(struct net *net, const char *name)
661 struct net_device *dev;
662 struct hlist_head *head = dev_name_hash(net, name);
664 hlist_for_each_entry(dev, head, name_hlist)
665 if (!strncmp(dev->name, name, IFNAMSIZ))
670 EXPORT_SYMBOL(__dev_get_by_name);
673 * dev_get_by_name_rcu - find a device by its name
674 * @net: the applicable net namespace
675 * @name: name to find
677 * Find an interface by name.
678 * If the name is found a pointer to the device is returned.
679 * If the name is not found then %NULL is returned.
680 * The reference counters are not incremented so the caller must be
681 * careful with locks. The caller must hold RCU lock.
684 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
686 struct net_device *dev;
687 struct hlist_head *head = dev_name_hash(net, name);
689 hlist_for_each_entry_rcu(dev, head, name_hlist)
690 if (!strncmp(dev->name, name, IFNAMSIZ))
695 EXPORT_SYMBOL(dev_get_by_name_rcu);
698 * dev_get_by_name - find a device by its name
699 * @net: the applicable net namespace
700 * @name: name to find
702 * Find an interface by name. This can be called from any
703 * context and does its own locking. The returned handle has
704 * the usage count incremented and the caller must use dev_put() to
705 * release it when it is no longer needed. %NULL is returned if no
706 * matching device is found.
709 struct net_device *dev_get_by_name(struct net *net, const char *name)
711 struct net_device *dev;
714 dev = dev_get_by_name_rcu(net, name);
720 EXPORT_SYMBOL(dev_get_by_name);
723 * __dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
727 * Search for an interface by index. Returns %NULL if the device
728 * is not found or a pointer to the device. The device has not
729 * had its reference counter increased so the caller must be careful
730 * about locking. The caller must hold either the RTNL semaphore
734 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
736 struct net_device *dev;
737 struct hlist_head *head = dev_index_hash(net, ifindex);
739 hlist_for_each_entry(dev, head, index_hlist)
740 if (dev->ifindex == ifindex)
745 EXPORT_SYMBOL(__dev_get_by_index);
748 * dev_get_by_index_rcu - find a device by its ifindex
749 * @net: the applicable net namespace
750 * @ifindex: index of device
752 * Search for an interface by index. Returns %NULL if the device
753 * is not found or a pointer to the device. The device has not
754 * had its reference counter increased so the caller must be careful
755 * about locking. The caller must hold RCU lock.
758 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
760 struct net_device *dev;
761 struct hlist_head *head = dev_index_hash(net, ifindex);
763 hlist_for_each_entry_rcu(dev, head, index_hlist)
764 if (dev->ifindex == ifindex)
769 EXPORT_SYMBOL(dev_get_by_index_rcu);
773 * dev_get_by_index - find a device by its ifindex
774 * @net: the applicable net namespace
775 * @ifindex: index of device
777 * Search for an interface by index. Returns NULL if the device
778 * is not found or a pointer to the device. The device returned has
779 * had a reference added and the pointer is safe until the user calls
780 * dev_put to indicate they have finished with it.
783 struct net_device *dev_get_by_index(struct net *net, int ifindex)
785 struct net_device *dev;
788 dev = dev_get_by_index_rcu(net, ifindex);
794 EXPORT_SYMBOL(dev_get_by_index);
797 * dev_getbyhwaddr_rcu - find a device by its hardware address
798 * @net: the applicable net namespace
799 * @type: media type of device
800 * @ha: hardware address
802 * Search for an interface by MAC address. Returns NULL if the device
803 * is not found or a pointer to the device.
804 * The caller must hold RCU or RTNL.
805 * The returned device has not had its ref count increased
806 * and the caller must therefore be careful about locking
810 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
813 struct net_device *dev;
815 for_each_netdev_rcu(net, dev)
816 if (dev->type == type &&
817 !memcmp(dev->dev_addr, ha, dev->addr_len))
822 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
824 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
826 struct net_device *dev;
829 for_each_netdev(net, dev)
830 if (dev->type == type)
835 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
837 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
839 struct net_device *dev, *ret = NULL;
842 for_each_netdev_rcu(net, dev)
843 if (dev->type == type) {
851 EXPORT_SYMBOL(dev_getfirstbyhwtype);
854 * dev_get_by_flags_rcu - find any device with given flags
855 * @net: the applicable net namespace
856 * @if_flags: IFF_* values
857 * @mask: bitmask of bits in if_flags to check
859 * Search for any interface with the given flags. Returns NULL if a device
860 * is not found or a pointer to the device. Must be called inside
861 * rcu_read_lock(), and result refcount is unchanged.
864 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
867 struct net_device *dev, *ret;
870 for_each_netdev_rcu(net, dev) {
871 if (((dev->flags ^ if_flags) & mask) == 0) {
878 EXPORT_SYMBOL(dev_get_by_flags_rcu);
881 * dev_valid_name - check if name is okay for network device
884 * Network device names need to be valid file names to
885 * to allow sysfs to work. We also disallow any kind of
888 bool dev_valid_name(const char *name)
892 if (strlen(name) >= IFNAMSIZ)
894 if (!strcmp(name, ".") || !strcmp(name, ".."))
898 if (*name == '/' || isspace(*name))
904 EXPORT_SYMBOL(dev_valid_name);
907 * __dev_alloc_name - allocate a name for a device
908 * @net: network namespace to allocate the device name in
909 * @name: name format string
910 * @buf: scratch buffer and result name string
912 * Passed a format string - eg "lt%d" it will try and find a suitable
913 * id. It scans list of devices to build up a free map, then chooses
914 * the first empty slot. The caller must hold the dev_base or rtnl lock
915 * while allocating the name and adding the device in order to avoid
917 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
918 * Returns the number of the unit assigned or a negative errno code.
921 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
925 const int max_netdevices = 8*PAGE_SIZE;
926 unsigned long *inuse;
927 struct net_device *d;
929 p = strnchr(name, IFNAMSIZ-1, '%');
932 * Verify the string as this thing may have come from
933 * the user. There must be either one "%d" and no other "%"
936 if (p[1] != 'd' || strchr(p + 2, '%'))
939 /* Use one page as a bit array of possible slots */
940 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
944 for_each_netdev(net, d) {
945 if (!sscanf(d->name, name, &i))
947 if (i < 0 || i >= max_netdevices)
950 /* avoid cases where sscanf is not exact inverse of printf */
951 snprintf(buf, IFNAMSIZ, name, i);
952 if (!strncmp(buf, d->name, IFNAMSIZ))
956 i = find_first_zero_bit(inuse, max_netdevices);
957 free_page((unsigned long) inuse);
961 snprintf(buf, IFNAMSIZ, name, i);
962 if (!__dev_get_by_name(net, buf))
965 /* It is possible to run out of possible slots
966 * when the name is long and there isn't enough space left
967 * for the digits, or if all bits are used.
973 * dev_alloc_name - allocate a name for a device
975 * @name: name format string
977 * Passed a format string - eg "lt%d" it will try and find a suitable
978 * id. It scans list of devices to build up a free map, then chooses
979 * the first empty slot. The caller must hold the dev_base or rtnl lock
980 * while allocating the name and adding the device in order to avoid
982 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
983 * Returns the number of the unit assigned or a negative errno code.
986 int dev_alloc_name(struct net_device *dev, const char *name)
992 BUG_ON(!dev_net(dev));
994 ret = __dev_alloc_name(net, name, buf);
996 strlcpy(dev->name, buf, IFNAMSIZ);
999 EXPORT_SYMBOL(dev_alloc_name);
1001 static int dev_alloc_name_ns(struct net *net,
1002 struct net_device *dev,
1008 ret = __dev_alloc_name(net, name, buf);
1010 strlcpy(dev->name, buf, IFNAMSIZ);
1014 static int dev_get_valid_name(struct net *net,
1015 struct net_device *dev,
1020 if (!dev_valid_name(name))
1023 if (strchr(name, '%'))
1024 return dev_alloc_name_ns(net, dev, name);
1025 else if (__dev_get_by_name(net, name))
1027 else if (dev->name != name)
1028 strlcpy(dev->name, name, IFNAMSIZ);
1034 * dev_change_name - change name of a device
1036 * @newname: name (or format string) must be at least IFNAMSIZ
1038 * Change name of a device, can pass format strings "eth%d".
1041 int dev_change_name(struct net_device *dev, const char *newname)
1043 char oldname[IFNAMSIZ];
1049 BUG_ON(!dev_net(dev));
1052 if (dev->flags & IFF_UP)
1055 write_seqcount_begin(&devnet_rename_seq);
1057 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1058 write_seqcount_end(&devnet_rename_seq);
1062 memcpy(oldname, dev->name, IFNAMSIZ);
1064 err = dev_get_valid_name(net, dev, newname);
1066 write_seqcount_end(&devnet_rename_seq);
1071 ret = device_rename(&dev->dev, dev->name);
1073 memcpy(dev->name, oldname, IFNAMSIZ);
1074 write_seqcount_end(&devnet_rename_seq);
1078 write_seqcount_end(&devnet_rename_seq);
1080 write_lock_bh(&dev_base_lock);
1081 hlist_del_rcu(&dev->name_hlist);
1082 write_unlock_bh(&dev_base_lock);
1086 write_lock_bh(&dev_base_lock);
1087 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1088 write_unlock_bh(&dev_base_lock);
1090 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1091 ret = notifier_to_errno(ret);
1094 /* err >= 0 after dev_alloc_name() or stores the first errno */
1097 write_seqcount_begin(&devnet_rename_seq);
1098 memcpy(dev->name, oldname, IFNAMSIZ);
1101 pr_err("%s: name change rollback failed: %d\n",
1110 * dev_set_alias - change ifalias of a device
1112 * @alias: name up to IFALIASZ
1113 * @len: limit of bytes to copy from info
1115 * Set ifalias for a device,
1117 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1123 if (len >= IFALIASZ)
1127 kfree(dev->ifalias);
1128 dev->ifalias = NULL;
1132 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1135 dev->ifalias = new_ifalias;
1137 strlcpy(dev->ifalias, alias, len+1);
1143 * netdev_features_change - device changes features
1144 * @dev: device to cause notification
1146 * Called to indicate a device has changed features.
1148 void netdev_features_change(struct net_device *dev)
1150 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1152 EXPORT_SYMBOL(netdev_features_change);
1155 * netdev_state_change - device changes state
1156 * @dev: device to cause notification
1158 * Called to indicate a device has changed state. This function calls
1159 * the notifier chains for netdev_chain and sends a NEWLINK message
1160 * to the routing socket.
1162 void netdev_state_change(struct net_device *dev)
1164 if (dev->flags & IFF_UP) {
1165 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1166 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1169 EXPORT_SYMBOL(netdev_state_change);
1172 * netdev_notify_peers - notify network peers about existence of @dev
1173 * @dev: network device
1175 * Generate traffic such that interested network peers are aware of
1176 * @dev, such as by generating a gratuitous ARP. This may be used when
1177 * a device wants to inform the rest of the network about some sort of
1178 * reconfiguration such as a failover event or virtual machine
1181 void netdev_notify_peers(struct net_device *dev)
1184 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1187 EXPORT_SYMBOL(netdev_notify_peers);
1189 static int __dev_open(struct net_device *dev)
1191 const struct net_device_ops *ops = dev->netdev_ops;
1196 if (!netif_device_present(dev))
1199 /* Block netpoll from trying to do any rx path servicing.
1200 * If we don't do this there is a chance ndo_poll_controller
1201 * or ndo_poll may be running while we open the device
1203 ret = netpoll_rx_disable(dev);
1207 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1208 ret = notifier_to_errno(ret);
1212 set_bit(__LINK_STATE_START, &dev->state);
1214 if (ops->ndo_validate_addr)
1215 ret = ops->ndo_validate_addr(dev);
1217 if (!ret && ops->ndo_open)
1218 ret = ops->ndo_open(dev);
1220 netpoll_rx_enable(dev);
1223 clear_bit(__LINK_STATE_START, &dev->state);
1225 dev->flags |= IFF_UP;
1226 net_dmaengine_get();
1227 dev_set_rx_mode(dev);
1229 add_device_randomness(dev->dev_addr, dev->addr_len);
1236 * dev_open - prepare an interface for use.
1237 * @dev: device to open
1239 * Takes a device from down to up state. The device's private open
1240 * function is invoked and then the multicast lists are loaded. Finally
1241 * the device is moved into the up state and a %NETDEV_UP message is
1242 * sent to the netdev notifier chain.
1244 * Calling this function on an active interface is a nop. On a failure
1245 * a negative errno code is returned.
1247 int dev_open(struct net_device *dev)
1251 if (dev->flags & IFF_UP)
1254 ret = __dev_open(dev);
1258 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1259 call_netdevice_notifiers(NETDEV_UP, dev);
1263 EXPORT_SYMBOL(dev_open);
1265 static int __dev_close_many(struct list_head *head)
1267 struct net_device *dev;
1272 list_for_each_entry(dev, head, unreg_list) {
1273 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1275 clear_bit(__LINK_STATE_START, &dev->state);
1277 /* Synchronize to scheduled poll. We cannot touch poll list, it
1278 * can be even on different cpu. So just clear netif_running().
1280 * dev->stop() will invoke napi_disable() on all of it's
1281 * napi_struct instances on this device.
1283 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1286 dev_deactivate_many(head);
1288 list_for_each_entry(dev, head, unreg_list) {
1289 const struct net_device_ops *ops = dev->netdev_ops;
1292 * Call the device specific close. This cannot fail.
1293 * Only if device is UP
1295 * We allow it to be called even after a DETACH hot-plug
1301 dev->flags &= ~IFF_UP;
1302 net_dmaengine_put();
1308 static int __dev_close(struct net_device *dev)
1313 /* Temporarily disable netpoll until the interface is down */
1314 retval = netpoll_rx_disable(dev);
1318 list_add(&dev->unreg_list, &single);
1319 retval = __dev_close_many(&single);
1322 netpoll_rx_enable(dev);
1326 static int dev_close_many(struct list_head *head)
1328 struct net_device *dev, *tmp;
1329 LIST_HEAD(tmp_list);
1331 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1332 if (!(dev->flags & IFF_UP))
1333 list_move(&dev->unreg_list, &tmp_list);
1335 __dev_close_many(head);
1337 list_for_each_entry(dev, head, unreg_list) {
1338 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1339 call_netdevice_notifiers(NETDEV_DOWN, dev);
1342 /* rollback_registered_many needs the complete original list */
1343 list_splice(&tmp_list, head);
1348 * dev_close - shutdown an interface.
1349 * @dev: device to shutdown
1351 * This function moves an active device into down state. A
1352 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1353 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1356 int dev_close(struct net_device *dev)
1359 if (dev->flags & IFF_UP) {
1362 /* Block netpoll rx while the interface is going down */
1363 ret = netpoll_rx_disable(dev);
1367 list_add(&dev->unreg_list, &single);
1368 dev_close_many(&single);
1371 netpoll_rx_enable(dev);
1375 EXPORT_SYMBOL(dev_close);
1379 * dev_disable_lro - disable Large Receive Offload on a device
1382 * Disable Large Receive Offload (LRO) on a net device. Must be
1383 * called under RTNL. This is needed if received packets may be
1384 * forwarded to another interface.
1386 void dev_disable_lro(struct net_device *dev)
1389 * If we're trying to disable lro on a vlan device
1390 * use the underlying physical device instead
1392 if (is_vlan_dev(dev))
1393 dev = vlan_dev_real_dev(dev);
1395 dev->wanted_features &= ~NETIF_F_LRO;
1396 netdev_update_features(dev);
1398 if (unlikely(dev->features & NETIF_F_LRO))
1399 netdev_WARN(dev, "failed to disable LRO!\n");
1401 EXPORT_SYMBOL(dev_disable_lro);
1404 static int dev_boot_phase = 1;
1407 * register_netdevice_notifier - register a network notifier block
1410 * Register a notifier to be called when network device events occur.
1411 * The notifier passed is linked into the kernel structures and must
1412 * not be reused until it has been unregistered. A negative errno code
1413 * is returned on a failure.
1415 * When registered all registration and up events are replayed
1416 * to the new notifier to allow device to have a race free
1417 * view of the network device list.
1420 int register_netdevice_notifier(struct notifier_block *nb)
1422 struct net_device *dev;
1423 struct net_device *last;
1428 err = raw_notifier_chain_register(&netdev_chain, nb);
1434 for_each_netdev(net, dev) {
1435 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1436 err = notifier_to_errno(err);
1440 if (!(dev->flags & IFF_UP))
1443 nb->notifier_call(nb, NETDEV_UP, dev);
1454 for_each_netdev(net, dev) {
1458 if (dev->flags & IFF_UP) {
1459 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1460 nb->notifier_call(nb, NETDEV_DOWN, dev);
1462 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1467 raw_notifier_chain_unregister(&netdev_chain, nb);
1470 EXPORT_SYMBOL(register_netdevice_notifier);
1473 * unregister_netdevice_notifier - unregister a network notifier block
1476 * Unregister a notifier previously registered by
1477 * register_netdevice_notifier(). The notifier is unlinked into the
1478 * kernel structures and may then be reused. A negative errno code
1479 * is returned on a failure.
1481 * After unregistering unregister and down device events are synthesized
1482 * for all devices on the device list to the removed notifier to remove
1483 * the need for special case cleanup code.
1486 int unregister_netdevice_notifier(struct notifier_block *nb)
1488 struct net_device *dev;
1493 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1498 for_each_netdev(net, dev) {
1499 if (dev->flags & IFF_UP) {
1500 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1501 nb->notifier_call(nb, NETDEV_DOWN, dev);
1503 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1510 EXPORT_SYMBOL(unregister_netdevice_notifier);
1513 * call_netdevice_notifiers - call all network notifier blocks
1514 * @val: value passed unmodified to notifier function
1515 * @dev: net_device pointer passed unmodified to notifier function
1517 * Call all network notifier blocks. Parameters and return value
1518 * are as for raw_notifier_call_chain().
1521 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1524 return raw_notifier_call_chain(&netdev_chain, val, dev);
1526 EXPORT_SYMBOL(call_netdevice_notifiers);
1528 static struct static_key netstamp_needed __read_mostly;
1529 #ifdef HAVE_JUMP_LABEL
1530 /* We are not allowed to call static_key_slow_dec() from irq context
1531 * If net_disable_timestamp() is called from irq context, defer the
1532 * static_key_slow_dec() calls.
1534 static atomic_t netstamp_needed_deferred;
1537 void net_enable_timestamp(void)
1539 #ifdef HAVE_JUMP_LABEL
1540 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1544 static_key_slow_dec(&netstamp_needed);
1548 static_key_slow_inc(&netstamp_needed);
1550 EXPORT_SYMBOL(net_enable_timestamp);
1552 void net_disable_timestamp(void)
1554 #ifdef HAVE_JUMP_LABEL
1555 if (in_interrupt()) {
1556 atomic_inc(&netstamp_needed_deferred);
1560 static_key_slow_dec(&netstamp_needed);
1562 EXPORT_SYMBOL(net_disable_timestamp);
1564 static inline void net_timestamp_set(struct sk_buff *skb)
1566 skb->tstamp.tv64 = 0;
1567 if (static_key_false(&netstamp_needed))
1568 __net_timestamp(skb);
1571 #define net_timestamp_check(COND, SKB) \
1572 if (static_key_false(&netstamp_needed)) { \
1573 if ((COND) && !(SKB)->tstamp.tv64) \
1574 __net_timestamp(SKB); \
1577 static inline bool is_skb_forwardable(struct net_device *dev,
1578 struct sk_buff *skb)
1582 if (!(dev->flags & IFF_UP))
1585 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1586 if (skb->len <= len)
1589 /* if TSO is enabled, we don't care about the length as the packet
1590 * could be forwarded without being segmented before
1592 if (skb_is_gso(skb))
1599 * dev_forward_skb - loopback an skb to another netif
1601 * @dev: destination network device
1602 * @skb: buffer to forward
1605 * NET_RX_SUCCESS (no congestion)
1606 * NET_RX_DROP (packet was dropped, but freed)
1608 * dev_forward_skb can be used for injecting an skb from the
1609 * start_xmit function of one device into the receive queue
1610 * of another device.
1612 * The receiving device may be in another namespace, so
1613 * we have to clear all information in the skb that could
1614 * impact namespace isolation.
1616 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1618 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1619 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1620 atomic_long_inc(&dev->rx_dropped);
1629 if (unlikely(!is_skb_forwardable(dev, skb))) {
1630 atomic_long_inc(&dev->rx_dropped);
1637 skb->tstamp.tv64 = 0;
1638 skb->pkt_type = PACKET_HOST;
1639 skb->protocol = eth_type_trans(skb, dev);
1643 return netif_rx(skb);
1645 EXPORT_SYMBOL_GPL(dev_forward_skb);
1647 static inline int deliver_skb(struct sk_buff *skb,
1648 struct packet_type *pt_prev,
1649 struct net_device *orig_dev)
1651 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1653 atomic_inc(&skb->users);
1654 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1657 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1659 if (!ptype->af_packet_priv || !skb->sk)
1662 if (ptype->id_match)
1663 return ptype->id_match(ptype, skb->sk);
1664 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1671 * Support routine. Sends outgoing frames to any network
1672 * taps currently in use.
1675 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1677 struct packet_type *ptype;
1678 struct sk_buff *skb2 = NULL;
1679 struct packet_type *pt_prev = NULL;
1682 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1683 /* Never send packets back to the socket
1684 * they originated from - MvS (miquels@drinkel.ow.org)
1686 if ((ptype->dev == dev || !ptype->dev) &&
1687 (!skb_loop_sk(ptype, skb))) {
1689 deliver_skb(skb2, pt_prev, skb->dev);
1694 skb2 = skb_clone(skb, GFP_ATOMIC);
1698 net_timestamp_set(skb2);
1700 /* skb->nh should be correctly
1701 set by sender, so that the second statement is
1702 just protection against buggy protocols.
1704 skb_reset_mac_header(skb2);
1706 if (skb_network_header(skb2) < skb2->data ||
1707 skb2->network_header > skb2->tail) {
1708 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1709 ntohs(skb2->protocol),
1711 skb_reset_network_header(skb2);
1714 skb2->transport_header = skb2->network_header;
1715 skb2->pkt_type = PACKET_OUTGOING;
1720 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1725 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1726 * @dev: Network device
1727 * @txq: number of queues available
1729 * If real_num_tx_queues is changed the tc mappings may no longer be
1730 * valid. To resolve this verify the tc mapping remains valid and if
1731 * not NULL the mapping. With no priorities mapping to this
1732 * offset/count pair it will no longer be used. In the worst case TC0
1733 * is invalid nothing can be done so disable priority mappings. If is
1734 * expected that drivers will fix this mapping if they can before
1735 * calling netif_set_real_num_tx_queues.
1737 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1740 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1742 /* If TC0 is invalidated disable TC mapping */
1743 if (tc->offset + tc->count > txq) {
1744 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1749 /* Invalidated prio to tc mappings set to TC0 */
1750 for (i = 1; i < TC_BITMASK + 1; i++) {
1751 int q = netdev_get_prio_tc_map(dev, i);
1753 tc = &dev->tc_to_txq[q];
1754 if (tc->offset + tc->count > txq) {
1755 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1757 netdev_set_prio_tc_map(dev, i, 0);
1763 static DEFINE_MUTEX(xps_map_mutex);
1764 #define xmap_dereference(P) \
1765 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1767 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1770 struct xps_map *map = NULL;
1774 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1776 for (pos = 0; map && pos < map->len; pos++) {
1777 if (map->queues[pos] == index) {
1779 map->queues[pos] = map->queues[--map->len];
1781 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1782 kfree_rcu(map, rcu);
1792 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1794 struct xps_dev_maps *dev_maps;
1796 bool active = false;
1798 mutex_lock(&xps_map_mutex);
1799 dev_maps = xmap_dereference(dev->xps_maps);
1804 for_each_possible_cpu(cpu) {
1805 for (i = index; i < dev->num_tx_queues; i++) {
1806 if (!remove_xps_queue(dev_maps, cpu, i))
1809 if (i == dev->num_tx_queues)
1814 RCU_INIT_POINTER(dev->xps_maps, NULL);
1815 kfree_rcu(dev_maps, rcu);
1818 for (i = index; i < dev->num_tx_queues; i++)
1819 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1823 mutex_unlock(&xps_map_mutex);
1826 static struct xps_map *expand_xps_map(struct xps_map *map,
1829 struct xps_map *new_map;
1830 int alloc_len = XPS_MIN_MAP_ALLOC;
1833 for (pos = 0; map && pos < map->len; pos++) {
1834 if (map->queues[pos] != index)
1839 /* Need to add queue to this CPU's existing map */
1841 if (pos < map->alloc_len)
1844 alloc_len = map->alloc_len * 2;
1847 /* Need to allocate new map to store queue on this CPU's map */
1848 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1853 for (i = 0; i < pos; i++)
1854 new_map->queues[i] = map->queues[i];
1855 new_map->alloc_len = alloc_len;
1861 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1863 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1864 struct xps_map *map, *new_map;
1865 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1866 int cpu, numa_node_id = -2;
1867 bool active = false;
1869 mutex_lock(&xps_map_mutex);
1871 dev_maps = xmap_dereference(dev->xps_maps);
1873 /* allocate memory for queue storage */
1874 for_each_online_cpu(cpu) {
1875 if (!cpumask_test_cpu(cpu, mask))
1879 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1880 if (!new_dev_maps) {
1881 mutex_unlock(&xps_map_mutex);
1885 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1888 map = expand_xps_map(map, cpu, index);
1892 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1896 goto out_no_new_maps;
1898 for_each_possible_cpu(cpu) {
1899 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1900 /* add queue to CPU maps */
1903 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1904 while ((pos < map->len) && (map->queues[pos] != index))
1907 if (pos == map->len)
1908 map->queues[map->len++] = index;
1910 if (numa_node_id == -2)
1911 numa_node_id = cpu_to_node(cpu);
1912 else if (numa_node_id != cpu_to_node(cpu))
1915 } else if (dev_maps) {
1916 /* fill in the new device map from the old device map */
1917 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1918 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1923 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1925 /* Cleanup old maps */
1927 for_each_possible_cpu(cpu) {
1928 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1929 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1930 if (map && map != new_map)
1931 kfree_rcu(map, rcu);
1934 kfree_rcu(dev_maps, rcu);
1937 dev_maps = new_dev_maps;
1941 /* update Tx queue numa node */
1942 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1943 (numa_node_id >= 0) ? numa_node_id :
1949 /* removes queue from unused CPUs */
1950 for_each_possible_cpu(cpu) {
1951 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1954 if (remove_xps_queue(dev_maps, cpu, index))
1958 /* free map if not active */
1960 RCU_INIT_POINTER(dev->xps_maps, NULL);
1961 kfree_rcu(dev_maps, rcu);
1965 mutex_unlock(&xps_map_mutex);
1969 /* remove any maps that we added */
1970 for_each_possible_cpu(cpu) {
1971 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1972 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1974 if (new_map && new_map != map)
1978 mutex_unlock(&xps_map_mutex);
1980 kfree(new_dev_maps);
1983 EXPORT_SYMBOL(netif_set_xps_queue);
1987 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1988 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1990 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1994 if (txq < 1 || txq > dev->num_tx_queues)
1997 if (dev->reg_state == NETREG_REGISTERED ||
1998 dev->reg_state == NETREG_UNREGISTERING) {
2001 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2007 netif_setup_tc(dev, txq);
2009 if (txq < dev->real_num_tx_queues) {
2010 qdisc_reset_all_tx_gt(dev, txq);
2012 netif_reset_xps_queues_gt(dev, txq);
2017 dev->real_num_tx_queues = txq;
2020 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2024 * netif_set_real_num_rx_queues - set actual number of RX queues used
2025 * @dev: Network device
2026 * @rxq: Actual number of RX queues
2028 * This must be called either with the rtnl_lock held or before
2029 * registration of the net device. Returns 0 on success, or a
2030 * negative error code. If called before registration, it always
2033 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2037 if (rxq < 1 || rxq > dev->num_rx_queues)
2040 if (dev->reg_state == NETREG_REGISTERED) {
2043 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2049 dev->real_num_rx_queues = rxq;
2052 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2056 * netif_get_num_default_rss_queues - default number of RSS queues
2058 * This routine should set an upper limit on the number of RSS queues
2059 * used by default by multiqueue devices.
2061 int netif_get_num_default_rss_queues(void)
2063 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2065 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2067 static inline void __netif_reschedule(struct Qdisc *q)
2069 struct softnet_data *sd;
2070 unsigned long flags;
2072 local_irq_save(flags);
2073 sd = &__get_cpu_var(softnet_data);
2074 q->next_sched = NULL;
2075 *sd->output_queue_tailp = q;
2076 sd->output_queue_tailp = &q->next_sched;
2077 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2078 local_irq_restore(flags);
2081 void __netif_schedule(struct Qdisc *q)
2083 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2084 __netif_reschedule(q);
2086 EXPORT_SYMBOL(__netif_schedule);
2088 void dev_kfree_skb_irq(struct sk_buff *skb)
2090 if (atomic_dec_and_test(&skb->users)) {
2091 struct softnet_data *sd;
2092 unsigned long flags;
2094 local_irq_save(flags);
2095 sd = &__get_cpu_var(softnet_data);
2096 skb->next = sd->completion_queue;
2097 sd->completion_queue = skb;
2098 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2099 local_irq_restore(flags);
2102 EXPORT_SYMBOL(dev_kfree_skb_irq);
2104 void dev_kfree_skb_any(struct sk_buff *skb)
2106 if (in_irq() || irqs_disabled())
2107 dev_kfree_skb_irq(skb);
2111 EXPORT_SYMBOL(dev_kfree_skb_any);
2115 * netif_device_detach - mark device as removed
2116 * @dev: network device
2118 * Mark device as removed from system and therefore no longer available.
2120 void netif_device_detach(struct net_device *dev)
2122 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2123 netif_running(dev)) {
2124 netif_tx_stop_all_queues(dev);
2127 EXPORT_SYMBOL(netif_device_detach);
2130 * netif_device_attach - mark device as attached
2131 * @dev: network device
2133 * Mark device as attached from system and restart if needed.
2135 void netif_device_attach(struct net_device *dev)
2137 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2138 netif_running(dev)) {
2139 netif_tx_wake_all_queues(dev);
2140 __netdev_watchdog_up(dev);
2143 EXPORT_SYMBOL(netif_device_attach);
2145 static void skb_warn_bad_offload(const struct sk_buff *skb)
2147 static const netdev_features_t null_features = 0;
2148 struct net_device *dev = skb->dev;
2149 const char *driver = "";
2151 if (dev && dev->dev.parent)
2152 driver = dev_driver_string(dev->dev.parent);
2154 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2155 "gso_type=%d ip_summed=%d\n",
2156 driver, dev ? &dev->features : &null_features,
2157 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2158 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2159 skb_shinfo(skb)->gso_type, skb->ip_summed);
2163 * Invalidate hardware checksum when packet is to be mangled, and
2164 * complete checksum manually on outgoing path.
2166 int skb_checksum_help(struct sk_buff *skb)
2169 int ret = 0, offset;
2171 if (skb->ip_summed == CHECKSUM_COMPLETE)
2172 goto out_set_summed;
2174 if (unlikely(skb_shinfo(skb)->gso_size)) {
2175 skb_warn_bad_offload(skb);
2179 /* Before computing a checksum, we should make sure no frag could
2180 * be modified by an external entity : checksum could be wrong.
2182 if (skb_has_shared_frag(skb)) {
2183 ret = __skb_linearize(skb);
2188 offset = skb_checksum_start_offset(skb);
2189 BUG_ON(offset >= skb_headlen(skb));
2190 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2192 offset += skb->csum_offset;
2193 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2195 if (skb_cloned(skb) &&
2196 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2197 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2202 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2204 skb->ip_summed = CHECKSUM_NONE;
2208 EXPORT_SYMBOL(skb_checksum_help);
2210 __be16 skb_network_protocol(struct sk_buff *skb)
2212 __be16 type = skb->protocol;
2213 int vlan_depth = ETH_HLEN;
2215 while (type == htons(ETH_P_8021Q)) {
2216 struct vlan_hdr *vh;
2218 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2221 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2222 type = vh->h_vlan_encapsulated_proto;
2223 vlan_depth += VLAN_HLEN;
2230 * skb_mac_gso_segment - mac layer segmentation handler.
2231 * @skb: buffer to segment
2232 * @features: features for the output path (see dev->features)
2234 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2235 netdev_features_t features)
2237 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2238 struct packet_offload *ptype;
2239 __be16 type = skb_network_protocol(skb);
2241 if (unlikely(!type))
2242 return ERR_PTR(-EINVAL);
2244 __skb_pull(skb, skb->mac_len);
2247 list_for_each_entry_rcu(ptype, &offload_base, list) {
2248 if (ptype->type == type && ptype->callbacks.gso_segment) {
2249 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2252 err = ptype->callbacks.gso_send_check(skb);
2253 segs = ERR_PTR(err);
2254 if (err || skb_gso_ok(skb, features))
2256 __skb_push(skb, (skb->data -
2257 skb_network_header(skb)));
2259 segs = ptype->callbacks.gso_segment(skb, features);
2265 __skb_push(skb, skb->data - skb_mac_header(skb));
2269 EXPORT_SYMBOL(skb_mac_gso_segment);
2272 /* openvswitch calls this on rx path, so we need a different check.
2274 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2277 return skb->ip_summed != CHECKSUM_PARTIAL;
2279 return skb->ip_summed == CHECKSUM_NONE;
2283 * __skb_gso_segment - Perform segmentation on skb.
2284 * @skb: buffer to segment
2285 * @features: features for the output path (see dev->features)
2286 * @tx_path: whether it is called in TX path
2288 * This function segments the given skb and returns a list of segments.
2290 * It may return NULL if the skb requires no segmentation. This is
2291 * only possible when GSO is used for verifying header integrity.
2293 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2294 netdev_features_t features, bool tx_path)
2296 if (unlikely(skb_needs_check(skb, tx_path))) {
2299 skb_warn_bad_offload(skb);
2301 if (skb_header_cloned(skb) &&
2302 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2303 return ERR_PTR(err);
2306 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2307 skb_reset_mac_header(skb);
2308 skb_reset_mac_len(skb);
2310 return skb_mac_gso_segment(skb, features);
2312 EXPORT_SYMBOL(__skb_gso_segment);
2314 /* Take action when hardware reception checksum errors are detected. */
2316 void netdev_rx_csum_fault(struct net_device *dev)
2318 if (net_ratelimit()) {
2319 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2323 EXPORT_SYMBOL(netdev_rx_csum_fault);
2326 /* Actually, we should eliminate this check as soon as we know, that:
2327 * 1. IOMMU is present and allows to map all the memory.
2328 * 2. No high memory really exists on this machine.
2331 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2333 #ifdef CONFIG_HIGHMEM
2335 if (!(dev->features & NETIF_F_HIGHDMA)) {
2336 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2337 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2338 if (PageHighMem(skb_frag_page(frag)))
2343 if (PCI_DMA_BUS_IS_PHYS) {
2344 struct device *pdev = dev->dev.parent;
2348 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2349 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2350 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2351 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2360 void (*destructor)(struct sk_buff *skb);
2363 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2365 static void dev_gso_skb_destructor(struct sk_buff *skb)
2367 struct dev_gso_cb *cb;
2370 struct sk_buff *nskb = skb->next;
2372 skb->next = nskb->next;
2375 } while (skb->next);
2377 cb = DEV_GSO_CB(skb);
2379 cb->destructor(skb);
2383 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2384 * @skb: buffer to segment
2385 * @features: device features as applicable to this skb
2387 * This function segments the given skb and stores the list of segments
2390 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2392 struct sk_buff *segs;
2394 segs = skb_gso_segment(skb, features);
2396 /* Verifying header integrity only. */
2401 return PTR_ERR(segs);
2404 DEV_GSO_CB(skb)->destructor = skb->destructor;
2405 skb->destructor = dev_gso_skb_destructor;
2410 static netdev_features_t harmonize_features(struct sk_buff *skb,
2411 __be16 protocol, netdev_features_t features)
2413 if (skb->ip_summed != CHECKSUM_NONE &&
2414 !can_checksum_protocol(features, protocol)) {
2415 features &= ~NETIF_F_ALL_CSUM;
2416 } else if (illegal_highdma(skb->dev, skb)) {
2417 features &= ~NETIF_F_SG;
2423 netdev_features_t netif_skb_features(struct sk_buff *skb)
2425 __be16 protocol = skb->protocol;
2426 netdev_features_t features = skb->dev->features;
2428 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2429 features &= ~NETIF_F_GSO_MASK;
2431 if (protocol == htons(ETH_P_8021Q)) {
2432 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2433 protocol = veh->h_vlan_encapsulated_proto;
2434 } else if (!vlan_tx_tag_present(skb)) {
2435 return harmonize_features(skb, protocol, features);
2438 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2440 if (protocol != htons(ETH_P_8021Q)) {
2441 return harmonize_features(skb, protocol, features);
2443 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2444 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2445 return harmonize_features(skb, protocol, features);
2448 EXPORT_SYMBOL(netif_skb_features);
2451 * Returns true if either:
2452 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2453 * 2. skb is fragmented and the device does not support SG.
2455 static inline int skb_needs_linearize(struct sk_buff *skb,
2458 return skb_is_nonlinear(skb) &&
2459 ((skb_has_frag_list(skb) &&
2460 !(features & NETIF_F_FRAGLIST)) ||
2461 (skb_shinfo(skb)->nr_frags &&
2462 !(features & NETIF_F_SG)));
2465 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2466 struct netdev_queue *txq)
2468 const struct net_device_ops *ops = dev->netdev_ops;
2469 int rc = NETDEV_TX_OK;
2470 unsigned int skb_len;
2472 if (likely(!skb->next)) {
2473 netdev_features_t features;
2476 * If device doesn't need skb->dst, release it right now while
2477 * its hot in this cpu cache
2479 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2482 features = netif_skb_features(skb);
2484 if (vlan_tx_tag_present(skb) &&
2485 !(features & NETIF_F_HW_VLAN_TX)) {
2486 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2493 /* If encapsulation offload request, verify we are testing
2494 * hardware encapsulation features instead of standard
2495 * features for the netdev
2497 if (skb->encapsulation)
2498 features &= dev->hw_enc_features;
2500 if (netif_needs_gso(skb, features)) {
2501 if (unlikely(dev_gso_segment(skb, features)))
2506 if (skb_needs_linearize(skb, features) &&
2507 __skb_linearize(skb))
2510 /* If packet is not checksummed and device does not
2511 * support checksumming for this protocol, complete
2512 * checksumming here.
2514 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2515 if (skb->encapsulation)
2516 skb_set_inner_transport_header(skb,
2517 skb_checksum_start_offset(skb));
2519 skb_set_transport_header(skb,
2520 skb_checksum_start_offset(skb));
2521 if (!(features & NETIF_F_ALL_CSUM) &&
2522 skb_checksum_help(skb))
2527 if (!list_empty(&ptype_all))
2528 dev_queue_xmit_nit(skb, dev);
2531 rc = ops->ndo_start_xmit(skb, dev);
2532 trace_net_dev_xmit(skb, rc, dev, skb_len);
2533 if (rc == NETDEV_TX_OK)
2534 txq_trans_update(txq);
2540 struct sk_buff *nskb = skb->next;
2542 skb->next = nskb->next;
2546 * If device doesn't need nskb->dst, release it right now while
2547 * its hot in this cpu cache
2549 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2552 if (!list_empty(&ptype_all))
2553 dev_queue_xmit_nit(nskb, dev);
2555 skb_len = nskb->len;
2556 rc = ops->ndo_start_xmit(nskb, dev);
2557 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2558 if (unlikely(rc != NETDEV_TX_OK)) {
2559 if (rc & ~NETDEV_TX_MASK)
2560 goto out_kfree_gso_skb;
2561 nskb->next = skb->next;
2565 txq_trans_update(txq);
2566 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2567 return NETDEV_TX_BUSY;
2568 } while (skb->next);
2571 if (likely(skb->next == NULL))
2572 skb->destructor = DEV_GSO_CB(skb)->destructor;
2579 static void qdisc_pkt_len_init(struct sk_buff *skb)
2581 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2583 qdisc_skb_cb(skb)->pkt_len = skb->len;
2585 /* To get more precise estimation of bytes sent on wire,
2586 * we add to pkt_len the headers size of all segments
2588 if (shinfo->gso_size) {
2589 unsigned int hdr_len;
2590 u16 gso_segs = shinfo->gso_segs;
2592 /* mac layer + network layer */
2593 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2595 /* + transport layer */
2596 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2597 hdr_len += tcp_hdrlen(skb);
2599 hdr_len += sizeof(struct udphdr);
2601 if (shinfo->gso_type & SKB_GSO_DODGY)
2602 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2605 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2609 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2610 struct net_device *dev,
2611 struct netdev_queue *txq)
2613 spinlock_t *root_lock = qdisc_lock(q);
2617 qdisc_pkt_len_init(skb);
2618 qdisc_calculate_pkt_len(skb, q);
2620 * Heuristic to force contended enqueues to serialize on a
2621 * separate lock before trying to get qdisc main lock.
2622 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2623 * and dequeue packets faster.
2625 contended = qdisc_is_running(q);
2626 if (unlikely(contended))
2627 spin_lock(&q->busylock);
2629 spin_lock(root_lock);
2630 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2633 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2634 qdisc_run_begin(q)) {
2636 * This is a work-conserving queue; there are no old skbs
2637 * waiting to be sent out; and the qdisc is not running -
2638 * xmit the skb directly.
2640 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2643 qdisc_bstats_update(q, skb);
2645 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2646 if (unlikely(contended)) {
2647 spin_unlock(&q->busylock);
2654 rc = NET_XMIT_SUCCESS;
2657 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2658 if (qdisc_run_begin(q)) {
2659 if (unlikely(contended)) {
2660 spin_unlock(&q->busylock);
2666 spin_unlock(root_lock);
2667 if (unlikely(contended))
2668 spin_unlock(&q->busylock);
2672 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2673 static void skb_update_prio(struct sk_buff *skb)
2675 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2677 if (!skb->priority && skb->sk && map) {
2678 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2680 if (prioidx < map->priomap_len)
2681 skb->priority = map->priomap[prioidx];
2685 #define skb_update_prio(skb)
2688 static DEFINE_PER_CPU(int, xmit_recursion);
2689 #define RECURSION_LIMIT 10
2692 * dev_loopback_xmit - loop back @skb
2693 * @skb: buffer to transmit
2695 int dev_loopback_xmit(struct sk_buff *skb)
2697 skb_reset_mac_header(skb);
2698 __skb_pull(skb, skb_network_offset(skb));
2699 skb->pkt_type = PACKET_LOOPBACK;
2700 skb->ip_summed = CHECKSUM_UNNECESSARY;
2701 WARN_ON(!skb_dst(skb));
2706 EXPORT_SYMBOL(dev_loopback_xmit);
2709 * dev_queue_xmit - transmit a buffer
2710 * @skb: buffer to transmit
2712 * Queue a buffer for transmission to a network device. The caller must
2713 * have set the device and priority and built the buffer before calling
2714 * this function. The function can be called from an interrupt.
2716 * A negative errno code is returned on a failure. A success does not
2717 * guarantee the frame will be transmitted as it may be dropped due
2718 * to congestion or traffic shaping.
2720 * -----------------------------------------------------------------------------------
2721 * I notice this method can also return errors from the queue disciplines,
2722 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2725 * Regardless of the return value, the skb is consumed, so it is currently
2726 * difficult to retry a send to this method. (You can bump the ref count
2727 * before sending to hold a reference for retry if you are careful.)
2729 * When calling this method, interrupts MUST be enabled. This is because
2730 * the BH enable code must have IRQs enabled so that it will not deadlock.
2733 int dev_queue_xmit(struct sk_buff *skb)
2735 struct net_device *dev = skb->dev;
2736 struct netdev_queue *txq;
2740 skb_reset_mac_header(skb);
2742 /* Disable soft irqs for various locks below. Also
2743 * stops preemption for RCU.
2747 skb_update_prio(skb);
2749 txq = netdev_pick_tx(dev, skb);
2750 q = rcu_dereference_bh(txq->qdisc);
2752 #ifdef CONFIG_NET_CLS_ACT
2753 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2755 trace_net_dev_queue(skb);
2757 rc = __dev_xmit_skb(skb, q, dev, txq);
2761 /* The device has no queue. Common case for software devices:
2762 loopback, all the sorts of tunnels...
2764 Really, it is unlikely that netif_tx_lock protection is necessary
2765 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2767 However, it is possible, that they rely on protection
2770 Check this and shot the lock. It is not prone from deadlocks.
2771 Either shot noqueue qdisc, it is even simpler 8)
2773 if (dev->flags & IFF_UP) {
2774 int cpu = smp_processor_id(); /* ok because BHs are off */
2776 if (txq->xmit_lock_owner != cpu) {
2778 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2779 goto recursion_alert;
2781 HARD_TX_LOCK(dev, txq, cpu);
2783 if (!netif_xmit_stopped(txq)) {
2784 __this_cpu_inc(xmit_recursion);
2785 rc = dev_hard_start_xmit(skb, dev, txq);
2786 __this_cpu_dec(xmit_recursion);
2787 if (dev_xmit_complete(rc)) {
2788 HARD_TX_UNLOCK(dev, txq);
2792 HARD_TX_UNLOCK(dev, txq);
2793 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2796 /* Recursion is detected! It is possible,
2800 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2806 rcu_read_unlock_bh();
2811 rcu_read_unlock_bh();
2814 EXPORT_SYMBOL(dev_queue_xmit);
2817 /*=======================================================================
2819 =======================================================================*/
2821 int netdev_max_backlog __read_mostly = 1000;
2822 EXPORT_SYMBOL(netdev_max_backlog);
2824 int netdev_tstamp_prequeue __read_mostly = 1;
2825 int netdev_budget __read_mostly = 300;
2826 int weight_p __read_mostly = 64; /* old backlog weight */
2828 /* Called with irq disabled */
2829 static inline void ____napi_schedule(struct softnet_data *sd,
2830 struct napi_struct *napi)
2832 list_add_tail(&napi->poll_list, &sd->poll_list);
2833 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2838 /* One global table that all flow-based protocols share. */
2839 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2840 EXPORT_SYMBOL(rps_sock_flow_table);
2842 struct static_key rps_needed __read_mostly;
2844 static struct rps_dev_flow *
2845 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2846 struct rps_dev_flow *rflow, u16 next_cpu)
2848 if (next_cpu != RPS_NO_CPU) {
2849 #ifdef CONFIG_RFS_ACCEL
2850 struct netdev_rx_queue *rxqueue;
2851 struct rps_dev_flow_table *flow_table;
2852 struct rps_dev_flow *old_rflow;
2857 /* Should we steer this flow to a different hardware queue? */
2858 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2859 !(dev->features & NETIF_F_NTUPLE))
2861 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2862 if (rxq_index == skb_get_rx_queue(skb))
2865 rxqueue = dev->_rx + rxq_index;
2866 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2869 flow_id = skb->rxhash & flow_table->mask;
2870 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2871 rxq_index, flow_id);
2875 rflow = &flow_table->flows[flow_id];
2877 if (old_rflow->filter == rflow->filter)
2878 old_rflow->filter = RPS_NO_FILTER;
2882 per_cpu(softnet_data, next_cpu).input_queue_head;
2885 rflow->cpu = next_cpu;
2890 * get_rps_cpu is called from netif_receive_skb and returns the target
2891 * CPU from the RPS map of the receiving queue for a given skb.
2892 * rcu_read_lock must be held on entry.
2894 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2895 struct rps_dev_flow **rflowp)
2897 struct netdev_rx_queue *rxqueue;
2898 struct rps_map *map;
2899 struct rps_dev_flow_table *flow_table;
2900 struct rps_sock_flow_table *sock_flow_table;
2904 if (skb_rx_queue_recorded(skb)) {
2905 u16 index = skb_get_rx_queue(skb);
2906 if (unlikely(index >= dev->real_num_rx_queues)) {
2907 WARN_ONCE(dev->real_num_rx_queues > 1,
2908 "%s received packet on queue %u, but number "
2909 "of RX queues is %u\n",
2910 dev->name, index, dev->real_num_rx_queues);
2913 rxqueue = dev->_rx + index;
2917 map = rcu_dereference(rxqueue->rps_map);
2919 if (map->len == 1 &&
2920 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2921 tcpu = map->cpus[0];
2922 if (cpu_online(tcpu))
2926 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2930 skb_reset_network_header(skb);
2931 if (!skb_get_rxhash(skb))
2934 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2935 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2936 if (flow_table && sock_flow_table) {
2938 struct rps_dev_flow *rflow;
2940 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2943 next_cpu = sock_flow_table->ents[skb->rxhash &
2944 sock_flow_table->mask];
2947 * If the desired CPU (where last recvmsg was done) is
2948 * different from current CPU (one in the rx-queue flow
2949 * table entry), switch if one of the following holds:
2950 * - Current CPU is unset (equal to RPS_NO_CPU).
2951 * - Current CPU is offline.
2952 * - The current CPU's queue tail has advanced beyond the
2953 * last packet that was enqueued using this table entry.
2954 * This guarantees that all previous packets for the flow
2955 * have been dequeued, thus preserving in order delivery.
2957 if (unlikely(tcpu != next_cpu) &&
2958 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2959 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2960 rflow->last_qtail)) >= 0)) {
2962 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2965 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2973 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2975 if (cpu_online(tcpu)) {
2985 #ifdef CONFIG_RFS_ACCEL
2988 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2989 * @dev: Device on which the filter was set
2990 * @rxq_index: RX queue index
2991 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2992 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2994 * Drivers that implement ndo_rx_flow_steer() should periodically call
2995 * this function for each installed filter and remove the filters for
2996 * which it returns %true.
2998 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2999 u32 flow_id, u16 filter_id)
3001 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3002 struct rps_dev_flow_table *flow_table;
3003 struct rps_dev_flow *rflow;
3008 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3009 if (flow_table && flow_id <= flow_table->mask) {
3010 rflow = &flow_table->flows[flow_id];
3011 cpu = ACCESS_ONCE(rflow->cpu);
3012 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3013 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3014 rflow->last_qtail) <
3015 (int)(10 * flow_table->mask)))
3021 EXPORT_SYMBOL(rps_may_expire_flow);
3023 #endif /* CONFIG_RFS_ACCEL */
3025 /* Called from hardirq (IPI) context */
3026 static void rps_trigger_softirq(void *data)
3028 struct softnet_data *sd = data;
3030 ____napi_schedule(sd, &sd->backlog);
3034 #endif /* CONFIG_RPS */
3037 * Check if this softnet_data structure is another cpu one
3038 * If yes, queue it to our IPI list and return 1
3041 static int rps_ipi_queued(struct softnet_data *sd)
3044 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3047 sd->rps_ipi_next = mysd->rps_ipi_list;
3048 mysd->rps_ipi_list = sd;
3050 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3053 #endif /* CONFIG_RPS */
3058 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3059 * queue (may be a remote CPU queue).
3061 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3062 unsigned int *qtail)
3064 struct softnet_data *sd;
3065 unsigned long flags;
3067 sd = &per_cpu(softnet_data, cpu);
3069 local_irq_save(flags);
3072 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3073 if (skb_queue_len(&sd->input_pkt_queue)) {
3075 __skb_queue_tail(&sd->input_pkt_queue, skb);
3076 input_queue_tail_incr_save(sd, qtail);
3078 local_irq_restore(flags);
3079 return NET_RX_SUCCESS;
3082 /* Schedule NAPI for backlog device
3083 * We can use non atomic operation since we own the queue lock
3085 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3086 if (!rps_ipi_queued(sd))
3087 ____napi_schedule(sd, &sd->backlog);
3095 local_irq_restore(flags);
3097 atomic_long_inc(&skb->dev->rx_dropped);
3103 * netif_rx - post buffer to the network code
3104 * @skb: buffer to post
3106 * This function receives a packet from a device driver and queues it for
3107 * the upper (protocol) levels to process. It always succeeds. The buffer
3108 * may be dropped during processing for congestion control or by the
3112 * NET_RX_SUCCESS (no congestion)
3113 * NET_RX_DROP (packet was dropped)
3117 int netif_rx(struct sk_buff *skb)
3121 /* if netpoll wants it, pretend we never saw it */
3122 if (netpoll_rx(skb))
3125 net_timestamp_check(netdev_tstamp_prequeue, skb);
3127 trace_netif_rx(skb);
3129 if (static_key_false(&rps_needed)) {
3130 struct rps_dev_flow voidflow, *rflow = &voidflow;
3136 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3138 cpu = smp_processor_id();
3140 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3148 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3153 EXPORT_SYMBOL(netif_rx);
3155 int netif_rx_ni(struct sk_buff *skb)
3160 err = netif_rx(skb);
3161 if (local_softirq_pending())
3167 EXPORT_SYMBOL(netif_rx_ni);
3169 static void net_tx_action(struct softirq_action *h)
3171 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3173 if (sd->completion_queue) {
3174 struct sk_buff *clist;
3176 local_irq_disable();
3177 clist = sd->completion_queue;
3178 sd->completion_queue = NULL;
3182 struct sk_buff *skb = clist;
3183 clist = clist->next;
3185 WARN_ON(atomic_read(&skb->users));
3186 trace_kfree_skb(skb, net_tx_action);
3191 if (sd->output_queue) {
3194 local_irq_disable();
3195 head = sd->output_queue;
3196 sd->output_queue = NULL;
3197 sd->output_queue_tailp = &sd->output_queue;
3201 struct Qdisc *q = head;
3202 spinlock_t *root_lock;
3204 head = head->next_sched;
3206 root_lock = qdisc_lock(q);
3207 if (spin_trylock(root_lock)) {
3208 smp_mb__before_clear_bit();
3209 clear_bit(__QDISC_STATE_SCHED,
3212 spin_unlock(root_lock);
3214 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3216 __netif_reschedule(q);
3218 smp_mb__before_clear_bit();
3219 clear_bit(__QDISC_STATE_SCHED,
3227 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3228 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3229 /* This hook is defined here for ATM LANE */
3230 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3231 unsigned char *addr) __read_mostly;
3232 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3235 #ifdef CONFIG_NET_CLS_ACT
3236 /* TODO: Maybe we should just force sch_ingress to be compiled in
3237 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3238 * a compare and 2 stores extra right now if we dont have it on
3239 * but have CONFIG_NET_CLS_ACT
3240 * NOTE: This doesn't stop any functionality; if you dont have
3241 * the ingress scheduler, you just can't add policies on ingress.
3244 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3246 struct net_device *dev = skb->dev;
3247 u32 ttl = G_TC_RTTL(skb->tc_verd);
3248 int result = TC_ACT_OK;
3251 if (unlikely(MAX_RED_LOOP < ttl++)) {
3252 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3253 skb->skb_iif, dev->ifindex);
3257 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3258 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3261 if (q != &noop_qdisc) {
3262 spin_lock(qdisc_lock(q));
3263 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3264 result = qdisc_enqueue_root(skb, q);
3265 spin_unlock(qdisc_lock(q));
3271 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3272 struct packet_type **pt_prev,
3273 int *ret, struct net_device *orig_dev)
3275 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3277 if (!rxq || rxq->qdisc == &noop_qdisc)
3281 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3285 switch (ing_filter(skb, rxq)) {
3299 * netdev_rx_handler_register - register receive handler
3300 * @dev: device to register a handler for
3301 * @rx_handler: receive handler to register
3302 * @rx_handler_data: data pointer that is used by rx handler
3304 * Register a receive hander for a device. This handler will then be
3305 * called from __netif_receive_skb. A negative errno code is returned
3308 * The caller must hold the rtnl_mutex.
3310 * For a general description of rx_handler, see enum rx_handler_result.
3312 int netdev_rx_handler_register(struct net_device *dev,
3313 rx_handler_func_t *rx_handler,
3314 void *rx_handler_data)
3318 if (dev->rx_handler)
3321 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3322 rcu_assign_pointer(dev->rx_handler, rx_handler);
3326 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3329 * netdev_rx_handler_unregister - unregister receive handler
3330 * @dev: device to unregister a handler from
3332 * Unregister a receive handler from a device.
3334 * The caller must hold the rtnl_mutex.
3336 void netdev_rx_handler_unregister(struct net_device *dev)
3340 RCU_INIT_POINTER(dev->rx_handler, NULL);
3341 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3343 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3346 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3347 * the special handling of PFMEMALLOC skbs.
3349 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3351 switch (skb->protocol) {
3352 case __constant_htons(ETH_P_ARP):
3353 case __constant_htons(ETH_P_IP):
3354 case __constant_htons(ETH_P_IPV6):
3355 case __constant_htons(ETH_P_8021Q):
3362 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3364 struct packet_type *ptype, *pt_prev;
3365 rx_handler_func_t *rx_handler;
3366 struct net_device *orig_dev;
3367 struct net_device *null_or_dev;
3368 bool deliver_exact = false;
3369 int ret = NET_RX_DROP;
3372 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3374 trace_netif_receive_skb(skb);
3376 /* if we've gotten here through NAPI, check netpoll */
3377 if (netpoll_receive_skb(skb))
3380 orig_dev = skb->dev;
3382 skb_reset_network_header(skb);
3383 if (!skb_transport_header_was_set(skb))
3384 skb_reset_transport_header(skb);
3385 skb_reset_mac_len(skb);
3392 skb->skb_iif = skb->dev->ifindex;
3394 __this_cpu_inc(softnet_data.processed);
3396 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3397 skb = vlan_untag(skb);
3402 #ifdef CONFIG_NET_CLS_ACT
3403 if (skb->tc_verd & TC_NCLS) {
3404 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3412 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3413 if (!ptype->dev || ptype->dev == skb->dev) {
3415 ret = deliver_skb(skb, pt_prev, orig_dev);
3421 #ifdef CONFIG_NET_CLS_ACT
3422 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3428 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3431 if (vlan_tx_tag_present(skb)) {
3433 ret = deliver_skb(skb, pt_prev, orig_dev);
3436 if (vlan_do_receive(&skb))
3438 else if (unlikely(!skb))
3442 rx_handler = rcu_dereference(skb->dev->rx_handler);
3445 ret = deliver_skb(skb, pt_prev, orig_dev);
3448 switch (rx_handler(&skb)) {
3449 case RX_HANDLER_CONSUMED:
3450 ret = NET_RX_SUCCESS;
3452 case RX_HANDLER_ANOTHER:
3454 case RX_HANDLER_EXACT:
3455 deliver_exact = true;
3456 case RX_HANDLER_PASS:
3463 if (vlan_tx_nonzero_tag_present(skb))
3464 skb->pkt_type = PACKET_OTHERHOST;
3466 /* deliver only exact match when indicated */
3467 null_or_dev = deliver_exact ? skb->dev : NULL;
3469 type = skb->protocol;
3470 list_for_each_entry_rcu(ptype,
3471 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3472 if (ptype->type == type &&
3473 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3474 ptype->dev == orig_dev)) {
3476 ret = deliver_skb(skb, pt_prev, orig_dev);
3482 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3485 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3488 atomic_long_inc(&skb->dev->rx_dropped);
3490 /* Jamal, now you will not able to escape explaining
3491 * me how you were going to use this. :-)
3502 static int __netif_receive_skb(struct sk_buff *skb)
3506 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3507 unsigned long pflags = current->flags;
3510 * PFMEMALLOC skbs are special, they should
3511 * - be delivered to SOCK_MEMALLOC sockets only
3512 * - stay away from userspace
3513 * - have bounded memory usage
3515 * Use PF_MEMALLOC as this saves us from propagating the allocation
3516 * context down to all allocation sites.
3518 current->flags |= PF_MEMALLOC;
3519 ret = __netif_receive_skb_core(skb, true);
3520 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3522 ret = __netif_receive_skb_core(skb, false);
3528 * netif_receive_skb - process receive buffer from network
3529 * @skb: buffer to process
3531 * netif_receive_skb() is the main receive data processing function.
3532 * It always succeeds. The buffer may be dropped during processing
3533 * for congestion control or by the protocol layers.
3535 * This function may only be called from softirq context and interrupts
3536 * should be enabled.
3538 * Return values (usually ignored):
3539 * NET_RX_SUCCESS: no congestion
3540 * NET_RX_DROP: packet was dropped
3542 int netif_receive_skb(struct sk_buff *skb)
3544 net_timestamp_check(netdev_tstamp_prequeue, skb);
3546 if (skb_defer_rx_timestamp(skb))
3547 return NET_RX_SUCCESS;
3550 if (static_key_false(&rps_needed)) {
3551 struct rps_dev_flow voidflow, *rflow = &voidflow;
3556 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3559 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3566 return __netif_receive_skb(skb);
3568 EXPORT_SYMBOL(netif_receive_skb);
3570 /* Network device is going away, flush any packets still pending
3571 * Called with irqs disabled.
3573 static void flush_backlog(void *arg)
3575 struct net_device *dev = arg;
3576 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3577 struct sk_buff *skb, *tmp;
3580 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3581 if (skb->dev == dev) {
3582 __skb_unlink(skb, &sd->input_pkt_queue);
3584 input_queue_head_incr(sd);
3589 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3590 if (skb->dev == dev) {
3591 __skb_unlink(skb, &sd->process_queue);
3593 input_queue_head_incr(sd);
3598 static int napi_gro_complete(struct sk_buff *skb)
3600 struct packet_offload *ptype;
3601 __be16 type = skb->protocol;
3602 struct list_head *head = &offload_base;
3605 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3607 if (NAPI_GRO_CB(skb)->count == 1) {
3608 skb_shinfo(skb)->gso_size = 0;
3613 list_for_each_entry_rcu(ptype, head, list) {
3614 if (ptype->type != type || !ptype->callbacks.gro_complete)
3617 err = ptype->callbacks.gro_complete(skb);
3623 WARN_ON(&ptype->list == head);
3625 return NET_RX_SUCCESS;
3629 return netif_receive_skb(skb);
3632 /* napi->gro_list contains packets ordered by age.
3633 * youngest packets at the head of it.
3634 * Complete skbs in reverse order to reduce latencies.
3636 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3638 struct sk_buff *skb, *prev = NULL;
3640 /* scan list and build reverse chain */
3641 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3646 for (skb = prev; skb; skb = prev) {
3649 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3653 napi_gro_complete(skb);
3657 napi->gro_list = NULL;
3659 EXPORT_SYMBOL(napi_gro_flush);
3661 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3664 unsigned int maclen = skb->dev->hard_header_len;
3666 for (p = napi->gro_list; p; p = p->next) {
3667 unsigned long diffs;
3669 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3670 diffs |= p->vlan_tci ^ skb->vlan_tci;
3671 if (maclen == ETH_HLEN)
3672 diffs |= compare_ether_header(skb_mac_header(p),
3673 skb_gro_mac_header(skb));
3675 diffs = memcmp(skb_mac_header(p),
3676 skb_gro_mac_header(skb),
3678 NAPI_GRO_CB(p)->same_flow = !diffs;
3679 NAPI_GRO_CB(p)->flush = 0;
3683 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3685 struct sk_buff **pp = NULL;
3686 struct packet_offload *ptype;
3687 __be16 type = skb->protocol;
3688 struct list_head *head = &offload_base;
3690 enum gro_result ret;
3692 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3695 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3698 gro_list_prepare(napi, skb);
3701 list_for_each_entry_rcu(ptype, head, list) {
3702 if (ptype->type != type || !ptype->callbacks.gro_receive)
3705 skb_set_network_header(skb, skb_gro_offset(skb));
3706 skb_reset_mac_len(skb);
3707 NAPI_GRO_CB(skb)->same_flow = 0;
3708 NAPI_GRO_CB(skb)->flush = 0;
3709 NAPI_GRO_CB(skb)->free = 0;
3711 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3716 if (&ptype->list == head)
3719 same_flow = NAPI_GRO_CB(skb)->same_flow;
3720 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3723 struct sk_buff *nskb = *pp;
3727 napi_gro_complete(nskb);
3734 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3738 NAPI_GRO_CB(skb)->count = 1;
3739 NAPI_GRO_CB(skb)->age = jiffies;
3740 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3741 skb->next = napi->gro_list;
3742 napi->gro_list = skb;
3746 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3747 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3749 BUG_ON(skb->end - skb->tail < grow);
3751 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3754 skb->data_len -= grow;
3756 skb_shinfo(skb)->frags[0].page_offset += grow;
3757 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3759 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3760 skb_frag_unref(skb, 0);
3761 memmove(skb_shinfo(skb)->frags,
3762 skb_shinfo(skb)->frags + 1,
3763 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3776 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3780 if (netif_receive_skb(skb))
3788 case GRO_MERGED_FREE:
3789 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3790 kmem_cache_free(skbuff_head_cache, skb);
3803 static void skb_gro_reset_offset(struct sk_buff *skb)
3805 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3806 const skb_frag_t *frag0 = &pinfo->frags[0];
3808 NAPI_GRO_CB(skb)->data_offset = 0;
3809 NAPI_GRO_CB(skb)->frag0 = NULL;
3810 NAPI_GRO_CB(skb)->frag0_len = 0;
3812 if (skb->mac_header == skb->tail &&
3814 !PageHighMem(skb_frag_page(frag0))) {
3815 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3816 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3820 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3822 skb_gro_reset_offset(skb);
3824 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3826 EXPORT_SYMBOL(napi_gro_receive);
3828 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3830 __skb_pull(skb, skb_headlen(skb));
3831 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3832 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3834 skb->dev = napi->dev;
3840 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3842 struct sk_buff *skb = napi->skb;
3845 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3851 EXPORT_SYMBOL(napi_get_frags);
3853 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3859 skb->protocol = eth_type_trans(skb, skb->dev);
3861 if (ret == GRO_HELD)
3862 skb_gro_pull(skb, -ETH_HLEN);
3863 else if (netif_receive_skb(skb))
3868 case GRO_MERGED_FREE:
3869 napi_reuse_skb(napi, skb);
3879 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3881 struct sk_buff *skb = napi->skb;
3888 skb_reset_mac_header(skb);
3889 skb_gro_reset_offset(skb);
3891 off = skb_gro_offset(skb);
3892 hlen = off + sizeof(*eth);
3893 eth = skb_gro_header_fast(skb, off);
3894 if (skb_gro_header_hard(skb, hlen)) {
3895 eth = skb_gro_header_slow(skb, hlen, off);
3896 if (unlikely(!eth)) {
3897 napi_reuse_skb(napi, skb);
3903 skb_gro_pull(skb, sizeof(*eth));
3906 * This works because the only protocols we care about don't require
3907 * special handling. We'll fix it up properly at the end.
3909 skb->protocol = eth->h_proto;
3915 gro_result_t napi_gro_frags(struct napi_struct *napi)
3917 struct sk_buff *skb = napi_frags_skb(napi);
3922 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3924 EXPORT_SYMBOL(napi_gro_frags);
3927 * net_rps_action sends any pending IPI's for rps.
3928 * Note: called with local irq disabled, but exits with local irq enabled.
3930 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3933 struct softnet_data *remsd = sd->rps_ipi_list;
3936 sd->rps_ipi_list = NULL;
3940 /* Send pending IPI's to kick RPS processing on remote cpus. */
3942 struct softnet_data *next = remsd->rps_ipi_next;
3944 if (cpu_online(remsd->cpu))
3945 __smp_call_function_single(remsd->cpu,
3954 static int process_backlog(struct napi_struct *napi, int quota)
3957 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3960 /* Check if we have pending ipi, its better to send them now,
3961 * not waiting net_rx_action() end.
3963 if (sd->rps_ipi_list) {
3964 local_irq_disable();
3965 net_rps_action_and_irq_enable(sd);
3968 napi->weight = weight_p;
3969 local_irq_disable();
3970 while (work < quota) {
3971 struct sk_buff *skb;
3974 while ((skb = __skb_dequeue(&sd->process_queue))) {
3976 __netif_receive_skb(skb);
3977 local_irq_disable();
3978 input_queue_head_incr(sd);
3979 if (++work >= quota) {
3986 qlen = skb_queue_len(&sd->input_pkt_queue);
3988 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3989 &sd->process_queue);
3991 if (qlen < quota - work) {
3993 * Inline a custom version of __napi_complete().
3994 * only current cpu owns and manipulates this napi,
3995 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3996 * we can use a plain write instead of clear_bit(),
3997 * and we dont need an smp_mb() memory barrier.
3999 list_del(&napi->poll_list);
4002 quota = work + qlen;
4012 * __napi_schedule - schedule for receive
4013 * @n: entry to schedule
4015 * The entry's receive function will be scheduled to run
4017 void __napi_schedule(struct napi_struct *n)
4019 unsigned long flags;
4021 local_irq_save(flags);
4022 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4023 local_irq_restore(flags);
4025 EXPORT_SYMBOL(__napi_schedule);
4027 void __napi_complete(struct napi_struct *n)
4029 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4030 BUG_ON(n->gro_list);
4032 list_del(&n->poll_list);
4033 smp_mb__before_clear_bit();
4034 clear_bit(NAPI_STATE_SCHED, &n->state);
4036 EXPORT_SYMBOL(__napi_complete);
4038 void napi_complete(struct napi_struct *n)
4040 unsigned long flags;
4043 * don't let napi dequeue from the cpu poll list
4044 * just in case its running on a different cpu
4046 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4049 napi_gro_flush(n, false);
4050 local_irq_save(flags);
4052 local_irq_restore(flags);
4054 EXPORT_SYMBOL(napi_complete);
4056 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4057 int (*poll)(struct napi_struct *, int), int weight)
4059 INIT_LIST_HEAD(&napi->poll_list);
4060 napi->gro_count = 0;
4061 napi->gro_list = NULL;
4064 if (weight > NAPI_POLL_WEIGHT)
4065 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4067 napi->weight = weight;
4068 list_add(&napi->dev_list, &dev->napi_list);
4070 #ifdef CONFIG_NETPOLL
4071 spin_lock_init(&napi->poll_lock);
4072 napi->poll_owner = -1;
4074 set_bit(NAPI_STATE_SCHED, &napi->state);
4076 EXPORT_SYMBOL(netif_napi_add);
4078 void netif_napi_del(struct napi_struct *napi)
4080 struct sk_buff *skb, *next;
4082 list_del_init(&napi->dev_list);
4083 napi_free_frags(napi);
4085 for (skb = napi->gro_list; skb; skb = next) {
4091 napi->gro_list = NULL;
4092 napi->gro_count = 0;
4094 EXPORT_SYMBOL(netif_napi_del);
4096 static void net_rx_action(struct softirq_action *h)
4098 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4099 unsigned long time_limit = jiffies + 2;
4100 int budget = netdev_budget;
4103 local_irq_disable();
4105 while (!list_empty(&sd->poll_list)) {
4106 struct napi_struct *n;
4109 /* If softirq window is exhuasted then punt.
4110 * Allow this to run for 2 jiffies since which will allow
4111 * an average latency of 1.5/HZ.
4113 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4118 /* Even though interrupts have been re-enabled, this
4119 * access is safe because interrupts can only add new
4120 * entries to the tail of this list, and only ->poll()
4121 * calls can remove this head entry from the list.
4123 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4125 have = netpoll_poll_lock(n);
4129 /* This NAPI_STATE_SCHED test is for avoiding a race
4130 * with netpoll's poll_napi(). Only the entity which
4131 * obtains the lock and sees NAPI_STATE_SCHED set will
4132 * actually make the ->poll() call. Therefore we avoid
4133 * accidentally calling ->poll() when NAPI is not scheduled.
4136 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4137 work = n->poll(n, weight);
4141 WARN_ON_ONCE(work > weight);
4145 local_irq_disable();
4147 /* Drivers must not modify the NAPI state if they
4148 * consume the entire weight. In such cases this code
4149 * still "owns" the NAPI instance and therefore can
4150 * move the instance around on the list at-will.
4152 if (unlikely(work == weight)) {
4153 if (unlikely(napi_disable_pending(n))) {
4156 local_irq_disable();
4159 /* flush too old packets
4160 * If HZ < 1000, flush all packets.
4163 napi_gro_flush(n, HZ >= 1000);
4164 local_irq_disable();
4166 list_move_tail(&n->poll_list, &sd->poll_list);
4170 netpoll_poll_unlock(have);
4173 net_rps_action_and_irq_enable(sd);
4175 #ifdef CONFIG_NET_DMA
4177 * There may not be any more sk_buffs coming right now, so push
4178 * any pending DMA copies to hardware
4180 dma_issue_pending_all();
4187 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4191 struct netdev_upper {
4192 struct net_device *dev;
4194 struct list_head list;
4195 struct rcu_head rcu;
4196 struct list_head search_list;
4199 static void __append_search_uppers(struct list_head *search_list,
4200 struct net_device *dev)
4202 struct netdev_upper *upper;
4204 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4205 /* check if this upper is not already in search list */
4206 if (list_empty(&upper->search_list))
4207 list_add_tail(&upper->search_list, search_list);
4211 static bool __netdev_search_upper_dev(struct net_device *dev,
4212 struct net_device *upper_dev)
4214 LIST_HEAD(search_list);
4215 struct netdev_upper *upper;
4216 struct netdev_upper *tmp;
4219 __append_search_uppers(&search_list, dev);
4220 list_for_each_entry(upper, &search_list, search_list) {
4221 if (upper->dev == upper_dev) {
4225 __append_search_uppers(&search_list, upper->dev);
4227 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4228 INIT_LIST_HEAD(&upper->search_list);
4232 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4233 struct net_device *upper_dev)
4235 struct netdev_upper *upper;
4237 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4238 if (upper->dev == upper_dev)
4245 * netdev_has_upper_dev - Check if device is linked to an upper device
4247 * @upper_dev: upper device to check
4249 * Find out if a device is linked to specified upper device and return true
4250 * in case it is. Note that this checks only immediate upper device,
4251 * not through a complete stack of devices. The caller must hold the RTNL lock.
4253 bool netdev_has_upper_dev(struct net_device *dev,
4254 struct net_device *upper_dev)
4258 return __netdev_find_upper(dev, upper_dev);
4260 EXPORT_SYMBOL(netdev_has_upper_dev);
4263 * netdev_has_any_upper_dev - Check if device is linked to some device
4266 * Find out if a device is linked to an upper device and return true in case
4267 * it is. The caller must hold the RTNL lock.
4269 bool netdev_has_any_upper_dev(struct net_device *dev)
4273 return !list_empty(&dev->upper_dev_list);
4275 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4278 * netdev_master_upper_dev_get - Get master upper device
4281 * Find a master upper device and return pointer to it or NULL in case
4282 * it's not there. The caller must hold the RTNL lock.
4284 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4286 struct netdev_upper *upper;
4290 if (list_empty(&dev->upper_dev_list))
4293 upper = list_first_entry(&dev->upper_dev_list,
4294 struct netdev_upper, list);
4295 if (likely(upper->master))
4299 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4302 * netdev_master_upper_dev_get_rcu - Get master upper device
4305 * Find a master upper device and return pointer to it or NULL in case
4306 * it's not there. The caller must hold the RCU read lock.
4308 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4310 struct netdev_upper *upper;
4312 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4313 struct netdev_upper, list);
4314 if (upper && likely(upper->master))
4318 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4320 static int __netdev_upper_dev_link(struct net_device *dev,
4321 struct net_device *upper_dev, bool master)
4323 struct netdev_upper *upper;
4327 if (dev == upper_dev)
4330 /* To prevent loops, check if dev is not upper device to upper_dev. */
4331 if (__netdev_search_upper_dev(upper_dev, dev))
4334 if (__netdev_find_upper(dev, upper_dev))
4337 if (master && netdev_master_upper_dev_get(dev))
4340 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4344 upper->dev = upper_dev;
4345 upper->master = master;
4346 INIT_LIST_HEAD(&upper->search_list);
4348 /* Ensure that master upper link is always the first item in list. */
4350 list_add_rcu(&upper->list, &dev->upper_dev_list);
4352 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4353 dev_hold(upper_dev);
4359 * netdev_upper_dev_link - Add a link to the upper device
4361 * @upper_dev: new upper device
4363 * Adds a link to device which is upper to this one. The caller must hold
4364 * the RTNL lock. On a failure a negative errno code is returned.
4365 * On success the reference counts are adjusted and the function
4368 int netdev_upper_dev_link(struct net_device *dev,
4369 struct net_device *upper_dev)
4371 return __netdev_upper_dev_link(dev, upper_dev, false);
4373 EXPORT_SYMBOL(netdev_upper_dev_link);
4376 * netdev_master_upper_dev_link - Add a master link to the upper device
4378 * @upper_dev: new upper device
4380 * Adds a link to device which is upper to this one. In this case, only
4381 * one master upper device can be linked, although other non-master devices
4382 * might be linked as well. The caller must hold the RTNL lock.
4383 * On a failure a negative errno code is returned. On success the reference
4384 * counts are adjusted and the function returns zero.
4386 int netdev_master_upper_dev_link(struct net_device *dev,
4387 struct net_device *upper_dev)
4389 return __netdev_upper_dev_link(dev, upper_dev, true);
4391 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4394 * netdev_upper_dev_unlink - Removes a link to upper device
4396 * @upper_dev: new upper device
4398 * Removes a link to device which is upper to this one. The caller must hold
4401 void netdev_upper_dev_unlink(struct net_device *dev,
4402 struct net_device *upper_dev)
4404 struct netdev_upper *upper;
4408 upper = __netdev_find_upper(dev, upper_dev);
4411 list_del_rcu(&upper->list);
4413 kfree_rcu(upper, rcu);
4415 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4417 static void dev_change_rx_flags(struct net_device *dev, int flags)
4419 const struct net_device_ops *ops = dev->netdev_ops;
4421 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4422 ops->ndo_change_rx_flags(dev, flags);
4425 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4427 unsigned int old_flags = dev->flags;
4433 dev->flags |= IFF_PROMISC;
4434 dev->promiscuity += inc;
4435 if (dev->promiscuity == 0) {
4438 * If inc causes overflow, untouch promisc and return error.
4441 dev->flags &= ~IFF_PROMISC;
4443 dev->promiscuity -= inc;
4444 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4449 if (dev->flags != old_flags) {
4450 pr_info("device %s %s promiscuous mode\n",
4452 dev->flags & IFF_PROMISC ? "entered" : "left");
4453 if (audit_enabled) {
4454 current_uid_gid(&uid, &gid);
4455 audit_log(current->audit_context, GFP_ATOMIC,
4456 AUDIT_ANOM_PROMISCUOUS,
4457 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4458 dev->name, (dev->flags & IFF_PROMISC),
4459 (old_flags & IFF_PROMISC),
4460 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4461 from_kuid(&init_user_ns, uid),
4462 from_kgid(&init_user_ns, gid),
4463 audit_get_sessionid(current));
4466 dev_change_rx_flags(dev, IFF_PROMISC);
4472 * dev_set_promiscuity - update promiscuity count on a device
4476 * Add or remove promiscuity from a device. While the count in the device
4477 * remains above zero the interface remains promiscuous. Once it hits zero
4478 * the device reverts back to normal filtering operation. A negative inc
4479 * value is used to drop promiscuity on the device.
4480 * Return 0 if successful or a negative errno code on error.
4482 int dev_set_promiscuity(struct net_device *dev, int inc)
4484 unsigned int old_flags = dev->flags;
4487 err = __dev_set_promiscuity(dev, inc);
4490 if (dev->flags != old_flags)
4491 dev_set_rx_mode(dev);
4494 EXPORT_SYMBOL(dev_set_promiscuity);
4497 * dev_set_allmulti - update allmulti count on a device
4501 * Add or remove reception of all multicast frames to a device. While the
4502 * count in the device remains above zero the interface remains listening
4503 * to all interfaces. Once it hits zero the device reverts back to normal
4504 * filtering operation. A negative @inc value is used to drop the counter
4505 * when releasing a resource needing all multicasts.
4506 * Return 0 if successful or a negative errno code on error.
4509 int dev_set_allmulti(struct net_device *dev, int inc)
4511 unsigned int old_flags = dev->flags;
4515 dev->flags |= IFF_ALLMULTI;
4516 dev->allmulti += inc;
4517 if (dev->allmulti == 0) {
4520 * If inc causes overflow, untouch allmulti and return error.
4523 dev->flags &= ~IFF_ALLMULTI;
4525 dev->allmulti -= inc;
4526 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4531 if (dev->flags ^ old_flags) {
4532 dev_change_rx_flags(dev, IFF_ALLMULTI);
4533 dev_set_rx_mode(dev);
4537 EXPORT_SYMBOL(dev_set_allmulti);
4540 * Upload unicast and multicast address lists to device and
4541 * configure RX filtering. When the device doesn't support unicast
4542 * filtering it is put in promiscuous mode while unicast addresses
4545 void __dev_set_rx_mode(struct net_device *dev)
4547 const struct net_device_ops *ops = dev->netdev_ops;
4549 /* dev_open will call this function so the list will stay sane. */
4550 if (!(dev->flags&IFF_UP))
4553 if (!netif_device_present(dev))
4556 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4557 /* Unicast addresses changes may only happen under the rtnl,
4558 * therefore calling __dev_set_promiscuity here is safe.
4560 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4561 __dev_set_promiscuity(dev, 1);
4562 dev->uc_promisc = true;
4563 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4564 __dev_set_promiscuity(dev, -1);
4565 dev->uc_promisc = false;
4569 if (ops->ndo_set_rx_mode)
4570 ops->ndo_set_rx_mode(dev);
4573 void dev_set_rx_mode(struct net_device *dev)
4575 netif_addr_lock_bh(dev);
4576 __dev_set_rx_mode(dev);
4577 netif_addr_unlock_bh(dev);
4581 * dev_get_flags - get flags reported to userspace
4584 * Get the combination of flag bits exported through APIs to userspace.
4586 unsigned int dev_get_flags(const struct net_device *dev)
4590 flags = (dev->flags & ~(IFF_PROMISC |
4595 (dev->gflags & (IFF_PROMISC |
4598 if (netif_running(dev)) {
4599 if (netif_oper_up(dev))
4600 flags |= IFF_RUNNING;
4601 if (netif_carrier_ok(dev))
4602 flags |= IFF_LOWER_UP;
4603 if (netif_dormant(dev))
4604 flags |= IFF_DORMANT;
4609 EXPORT_SYMBOL(dev_get_flags);
4611 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4613 unsigned int old_flags = dev->flags;
4619 * Set the flags on our device.
4622 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4623 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4625 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4629 * Load in the correct multicast list now the flags have changed.
4632 if ((old_flags ^ flags) & IFF_MULTICAST)
4633 dev_change_rx_flags(dev, IFF_MULTICAST);
4635 dev_set_rx_mode(dev);
4638 * Have we downed the interface. We handle IFF_UP ourselves
4639 * according to user attempts to set it, rather than blindly
4644 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4645 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4648 dev_set_rx_mode(dev);
4651 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4652 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4654 dev->gflags ^= IFF_PROMISC;
4655 dev_set_promiscuity(dev, inc);
4658 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4659 is important. Some (broken) drivers set IFF_PROMISC, when
4660 IFF_ALLMULTI is requested not asking us and not reporting.
4662 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4663 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4665 dev->gflags ^= IFF_ALLMULTI;
4666 dev_set_allmulti(dev, inc);
4672 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4674 unsigned int changes = dev->flags ^ old_flags;
4676 if (changes & IFF_UP) {
4677 if (dev->flags & IFF_UP)
4678 call_netdevice_notifiers(NETDEV_UP, dev);
4680 call_netdevice_notifiers(NETDEV_DOWN, dev);
4683 if (dev->flags & IFF_UP &&
4684 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4685 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4689 * dev_change_flags - change device settings
4691 * @flags: device state flags
4693 * Change settings on device based state flags. The flags are
4694 * in the userspace exported format.
4696 int dev_change_flags(struct net_device *dev, unsigned int flags)
4699 unsigned int changes, old_flags = dev->flags;
4701 ret = __dev_change_flags(dev, flags);
4705 changes = old_flags ^ dev->flags;
4707 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4709 __dev_notify_flags(dev, old_flags);
4712 EXPORT_SYMBOL(dev_change_flags);
4715 * dev_set_mtu - Change maximum transfer unit
4717 * @new_mtu: new transfer unit
4719 * Change the maximum transfer size of the network device.
4721 int dev_set_mtu(struct net_device *dev, int new_mtu)
4723 const struct net_device_ops *ops = dev->netdev_ops;
4726 if (new_mtu == dev->mtu)
4729 /* MTU must be positive. */
4733 if (!netif_device_present(dev))
4737 if (ops->ndo_change_mtu)
4738 err = ops->ndo_change_mtu(dev, new_mtu);
4743 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4746 EXPORT_SYMBOL(dev_set_mtu);
4749 * dev_set_group - Change group this device belongs to
4751 * @new_group: group this device should belong to
4753 void dev_set_group(struct net_device *dev, int new_group)
4755 dev->group = new_group;
4757 EXPORT_SYMBOL(dev_set_group);
4760 * dev_set_mac_address - Change Media Access Control Address
4764 * Change the hardware (MAC) address of the device
4766 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4768 const struct net_device_ops *ops = dev->netdev_ops;
4771 if (!ops->ndo_set_mac_address)
4773 if (sa->sa_family != dev->type)
4775 if (!netif_device_present(dev))
4777 err = ops->ndo_set_mac_address(dev, sa);
4780 dev->addr_assign_type = NET_ADDR_SET;
4781 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4782 add_device_randomness(dev->dev_addr, dev->addr_len);
4785 EXPORT_SYMBOL(dev_set_mac_address);
4788 * dev_change_carrier - Change device carrier
4790 * @new_carrier: new value
4792 * Change device carrier
4794 int dev_change_carrier(struct net_device *dev, bool new_carrier)
4796 const struct net_device_ops *ops = dev->netdev_ops;
4798 if (!ops->ndo_change_carrier)
4800 if (!netif_device_present(dev))
4802 return ops->ndo_change_carrier(dev, new_carrier);
4804 EXPORT_SYMBOL(dev_change_carrier);
4807 * dev_new_index - allocate an ifindex
4808 * @net: the applicable net namespace
4810 * Returns a suitable unique value for a new device interface
4811 * number. The caller must hold the rtnl semaphore or the
4812 * dev_base_lock to be sure it remains unique.
4814 static int dev_new_index(struct net *net)
4816 int ifindex = net->ifindex;
4820 if (!__dev_get_by_index(net, ifindex))
4821 return net->ifindex = ifindex;
4825 /* Delayed registration/unregisteration */
4826 static LIST_HEAD(net_todo_list);
4828 static void net_set_todo(struct net_device *dev)
4830 list_add_tail(&dev->todo_list, &net_todo_list);
4833 static void rollback_registered_many(struct list_head *head)
4835 struct net_device *dev, *tmp;
4837 BUG_ON(dev_boot_phase);
4840 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4841 /* Some devices call without registering
4842 * for initialization unwind. Remove those
4843 * devices and proceed with the remaining.
4845 if (dev->reg_state == NETREG_UNINITIALIZED) {
4846 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
4850 list_del(&dev->unreg_list);
4853 dev->dismantle = true;
4854 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4857 /* If device is running, close it first. */
4858 dev_close_many(head);
4860 list_for_each_entry(dev, head, unreg_list) {
4861 /* And unlink it from device chain. */
4862 unlist_netdevice(dev);
4864 dev->reg_state = NETREG_UNREGISTERING;
4869 list_for_each_entry(dev, head, unreg_list) {
4870 /* Shutdown queueing discipline. */
4874 /* Notify protocols, that we are about to destroy
4875 this device. They should clean all the things.
4877 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4879 if (!dev->rtnl_link_ops ||
4880 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4881 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4884 * Flush the unicast and multicast chains
4889 if (dev->netdev_ops->ndo_uninit)
4890 dev->netdev_ops->ndo_uninit(dev);
4892 /* Notifier chain MUST detach us all upper devices. */
4893 WARN_ON(netdev_has_any_upper_dev(dev));
4895 /* Remove entries from kobject tree */
4896 netdev_unregister_kobject(dev);
4898 /* Remove XPS queueing entries */
4899 netif_reset_xps_queues_gt(dev, 0);
4905 list_for_each_entry(dev, head, unreg_list)
4909 static void rollback_registered(struct net_device *dev)
4913 list_add(&dev->unreg_list, &single);
4914 rollback_registered_many(&single);
4918 static netdev_features_t netdev_fix_features(struct net_device *dev,
4919 netdev_features_t features)
4921 /* Fix illegal checksum combinations */
4922 if ((features & NETIF_F_HW_CSUM) &&
4923 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4924 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
4925 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4928 /* TSO requires that SG is present as well. */
4929 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
4930 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
4931 features &= ~NETIF_F_ALL_TSO;
4934 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
4935 !(features & NETIF_F_IP_CSUM)) {
4936 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
4937 features &= ~NETIF_F_TSO;
4938 features &= ~NETIF_F_TSO_ECN;
4941 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
4942 !(features & NETIF_F_IPV6_CSUM)) {
4943 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
4944 features &= ~NETIF_F_TSO6;
4947 /* TSO ECN requires that TSO is present as well. */
4948 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
4949 features &= ~NETIF_F_TSO_ECN;
4951 /* Software GSO depends on SG. */
4952 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
4953 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
4954 features &= ~NETIF_F_GSO;
4957 /* UFO needs SG and checksumming */
4958 if (features & NETIF_F_UFO) {
4959 /* maybe split UFO into V4 and V6? */
4960 if (!((features & NETIF_F_GEN_CSUM) ||
4961 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
4962 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4964 "Dropping NETIF_F_UFO since no checksum offload features.\n");
4965 features &= ~NETIF_F_UFO;
4968 if (!(features & NETIF_F_SG)) {
4970 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
4971 features &= ~NETIF_F_UFO;
4978 int __netdev_update_features(struct net_device *dev)
4980 netdev_features_t features;
4985 features = netdev_get_wanted_features(dev);
4987 if (dev->netdev_ops->ndo_fix_features)
4988 features = dev->netdev_ops->ndo_fix_features(dev, features);
4990 /* driver might be less strict about feature dependencies */
4991 features = netdev_fix_features(dev, features);
4993 if (dev->features == features)
4996 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
4997 &dev->features, &features);
4999 if (dev->netdev_ops->ndo_set_features)
5000 err = dev->netdev_ops->ndo_set_features(dev, features);
5002 if (unlikely(err < 0)) {
5004 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5005 err, &features, &dev->features);
5010 dev->features = features;
5016 * netdev_update_features - recalculate device features
5017 * @dev: the device to check
5019 * Recalculate dev->features set and send notifications if it
5020 * has changed. Should be called after driver or hardware dependent
5021 * conditions might have changed that influence the features.
5023 void netdev_update_features(struct net_device *dev)
5025 if (__netdev_update_features(dev))
5026 netdev_features_change(dev);
5028 EXPORT_SYMBOL(netdev_update_features);
5031 * netdev_change_features - recalculate device features
5032 * @dev: the device to check
5034 * Recalculate dev->features set and send notifications even
5035 * if they have not changed. Should be called instead of
5036 * netdev_update_features() if also dev->vlan_features might
5037 * have changed to allow the changes to be propagated to stacked
5040 void netdev_change_features(struct net_device *dev)
5042 __netdev_update_features(dev);
5043 netdev_features_change(dev);
5045 EXPORT_SYMBOL(netdev_change_features);
5048 * netif_stacked_transfer_operstate - transfer operstate
5049 * @rootdev: the root or lower level device to transfer state from
5050 * @dev: the device to transfer operstate to
5052 * Transfer operational state from root to device. This is normally
5053 * called when a stacking relationship exists between the root
5054 * device and the device(a leaf device).
5056 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5057 struct net_device *dev)
5059 if (rootdev->operstate == IF_OPER_DORMANT)
5060 netif_dormant_on(dev);
5062 netif_dormant_off(dev);
5064 if (netif_carrier_ok(rootdev)) {
5065 if (!netif_carrier_ok(dev))
5066 netif_carrier_on(dev);
5068 if (netif_carrier_ok(dev))
5069 netif_carrier_off(dev);
5072 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5075 static int netif_alloc_rx_queues(struct net_device *dev)
5077 unsigned int i, count = dev->num_rx_queues;
5078 struct netdev_rx_queue *rx;
5082 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5088 for (i = 0; i < count; i++)
5094 static void netdev_init_one_queue(struct net_device *dev,
5095 struct netdev_queue *queue, void *_unused)
5097 /* Initialize queue lock */
5098 spin_lock_init(&queue->_xmit_lock);
5099 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5100 queue->xmit_lock_owner = -1;
5101 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5104 dql_init(&queue->dql, HZ);
5108 static int netif_alloc_netdev_queues(struct net_device *dev)
5110 unsigned int count = dev->num_tx_queues;
5111 struct netdev_queue *tx;
5115 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5121 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5122 spin_lock_init(&dev->tx_global_lock);
5128 * register_netdevice - register a network device
5129 * @dev: device to register
5131 * Take a completed network device structure and add it to the kernel
5132 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5133 * chain. 0 is returned on success. A negative errno code is returned
5134 * on a failure to set up the device, or if the name is a duplicate.
5136 * Callers must hold the rtnl semaphore. You may want
5137 * register_netdev() instead of this.
5140 * The locking appears insufficient to guarantee two parallel registers
5141 * will not get the same name.
5144 int register_netdevice(struct net_device *dev)
5147 struct net *net = dev_net(dev);
5149 BUG_ON(dev_boot_phase);
5154 /* When net_device's are persistent, this will be fatal. */
5155 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5158 spin_lock_init(&dev->addr_list_lock);
5159 netdev_set_addr_lockdep_class(dev);
5163 ret = dev_get_valid_name(net, dev, dev->name);
5167 /* Init, if this function is available */
5168 if (dev->netdev_ops->ndo_init) {
5169 ret = dev->netdev_ops->ndo_init(dev);
5177 if (((dev->hw_features | dev->features) & NETIF_F_HW_VLAN_FILTER) &&
5178 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5179 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5180 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5187 dev->ifindex = dev_new_index(net);
5188 else if (__dev_get_by_index(net, dev->ifindex))
5191 if (dev->iflink == -1)
5192 dev->iflink = dev->ifindex;
5194 /* Transfer changeable features to wanted_features and enable
5195 * software offloads (GSO and GRO).
5197 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5198 dev->features |= NETIF_F_SOFT_FEATURES;
5199 dev->wanted_features = dev->features & dev->hw_features;
5201 /* Turn on no cache copy if HW is doing checksum */
5202 if (!(dev->flags & IFF_LOOPBACK)) {
5203 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5204 if (dev->features & NETIF_F_ALL_CSUM) {
5205 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5206 dev->features |= NETIF_F_NOCACHE_COPY;
5210 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5212 dev->vlan_features |= NETIF_F_HIGHDMA;
5214 /* Make NETIF_F_SG inheritable to tunnel devices.
5216 dev->hw_enc_features |= NETIF_F_SG;
5218 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5219 ret = notifier_to_errno(ret);
5223 ret = netdev_register_kobject(dev);
5226 dev->reg_state = NETREG_REGISTERED;
5228 __netdev_update_features(dev);
5231 * Default initial state at registry is that the
5232 * device is present.
5235 set_bit(__LINK_STATE_PRESENT, &dev->state);
5237 linkwatch_init_dev(dev);
5239 dev_init_scheduler(dev);
5241 list_netdevice(dev);
5242 add_device_randomness(dev->dev_addr, dev->addr_len);
5244 /* If the device has permanent device address, driver should
5245 * set dev_addr and also addr_assign_type should be set to
5246 * NET_ADDR_PERM (default value).
5248 if (dev->addr_assign_type == NET_ADDR_PERM)
5249 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5251 /* Notify protocols, that a new device appeared. */
5252 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5253 ret = notifier_to_errno(ret);
5255 rollback_registered(dev);
5256 dev->reg_state = NETREG_UNREGISTERED;
5259 * Prevent userspace races by waiting until the network
5260 * device is fully setup before sending notifications.
5262 if (!dev->rtnl_link_ops ||
5263 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5264 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5270 if (dev->netdev_ops->ndo_uninit)
5271 dev->netdev_ops->ndo_uninit(dev);
5274 EXPORT_SYMBOL(register_netdevice);
5277 * init_dummy_netdev - init a dummy network device for NAPI
5278 * @dev: device to init
5280 * This takes a network device structure and initialize the minimum
5281 * amount of fields so it can be used to schedule NAPI polls without
5282 * registering a full blown interface. This is to be used by drivers
5283 * that need to tie several hardware interfaces to a single NAPI
5284 * poll scheduler due to HW limitations.
5286 int init_dummy_netdev(struct net_device *dev)
5288 /* Clear everything. Note we don't initialize spinlocks
5289 * are they aren't supposed to be taken by any of the
5290 * NAPI code and this dummy netdev is supposed to be
5291 * only ever used for NAPI polls
5293 memset(dev, 0, sizeof(struct net_device));
5295 /* make sure we BUG if trying to hit standard
5296 * register/unregister code path
5298 dev->reg_state = NETREG_DUMMY;
5300 /* NAPI wants this */
5301 INIT_LIST_HEAD(&dev->napi_list);
5303 /* a dummy interface is started by default */
5304 set_bit(__LINK_STATE_PRESENT, &dev->state);
5305 set_bit(__LINK_STATE_START, &dev->state);
5307 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5308 * because users of this 'device' dont need to change
5314 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5318 * register_netdev - register a network device
5319 * @dev: device to register
5321 * Take a completed network device structure and add it to the kernel
5322 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5323 * chain. 0 is returned on success. A negative errno code is returned
5324 * on a failure to set up the device, or if the name is a duplicate.
5326 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5327 * and expands the device name if you passed a format string to
5330 int register_netdev(struct net_device *dev)
5335 err = register_netdevice(dev);
5339 EXPORT_SYMBOL(register_netdev);
5341 int netdev_refcnt_read(const struct net_device *dev)
5345 for_each_possible_cpu(i)
5346 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5349 EXPORT_SYMBOL(netdev_refcnt_read);
5352 * netdev_wait_allrefs - wait until all references are gone.
5353 * @dev: target net_device
5355 * This is called when unregistering network devices.
5357 * Any protocol or device that holds a reference should register
5358 * for netdevice notification, and cleanup and put back the
5359 * reference if they receive an UNREGISTER event.
5360 * We can get stuck here if buggy protocols don't correctly
5363 static void netdev_wait_allrefs(struct net_device *dev)
5365 unsigned long rebroadcast_time, warning_time;
5368 linkwatch_forget_dev(dev);
5370 rebroadcast_time = warning_time = jiffies;
5371 refcnt = netdev_refcnt_read(dev);
5373 while (refcnt != 0) {
5374 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5377 /* Rebroadcast unregister notification */
5378 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5384 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5385 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5387 /* We must not have linkwatch events
5388 * pending on unregister. If this
5389 * happens, we simply run the queue
5390 * unscheduled, resulting in a noop
5393 linkwatch_run_queue();
5398 rebroadcast_time = jiffies;
5403 refcnt = netdev_refcnt_read(dev);
5405 if (time_after(jiffies, warning_time + 10 * HZ)) {
5406 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5408 warning_time = jiffies;
5417 * register_netdevice(x1);
5418 * register_netdevice(x2);
5420 * unregister_netdevice(y1);
5421 * unregister_netdevice(y2);
5427 * We are invoked by rtnl_unlock().
5428 * This allows us to deal with problems:
5429 * 1) We can delete sysfs objects which invoke hotplug
5430 * without deadlocking with linkwatch via keventd.
5431 * 2) Since we run with the RTNL semaphore not held, we can sleep
5432 * safely in order to wait for the netdev refcnt to drop to zero.
5434 * We must not return until all unregister events added during
5435 * the interval the lock was held have been completed.
5437 void netdev_run_todo(void)
5439 struct list_head list;
5441 /* Snapshot list, allow later requests */
5442 list_replace_init(&net_todo_list, &list);
5447 /* Wait for rcu callbacks to finish before next phase */
5448 if (!list_empty(&list))
5451 while (!list_empty(&list)) {
5452 struct net_device *dev
5453 = list_first_entry(&list, struct net_device, todo_list);
5454 list_del(&dev->todo_list);
5457 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5460 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5461 pr_err("network todo '%s' but state %d\n",
5462 dev->name, dev->reg_state);
5467 dev->reg_state = NETREG_UNREGISTERED;
5469 on_each_cpu(flush_backlog, dev, 1);
5471 netdev_wait_allrefs(dev);
5474 BUG_ON(netdev_refcnt_read(dev));
5475 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5476 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5477 WARN_ON(dev->dn_ptr);
5479 if (dev->destructor)
5480 dev->destructor(dev);
5482 /* Free network device */
5483 kobject_put(&dev->dev.kobj);
5487 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5488 * fields in the same order, with only the type differing.
5490 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5491 const struct net_device_stats *netdev_stats)
5493 #if BITS_PER_LONG == 64
5494 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5495 memcpy(stats64, netdev_stats, sizeof(*stats64));
5497 size_t i, n = sizeof(*stats64) / sizeof(u64);
5498 const unsigned long *src = (const unsigned long *)netdev_stats;
5499 u64 *dst = (u64 *)stats64;
5501 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5502 sizeof(*stats64) / sizeof(u64));
5503 for (i = 0; i < n; i++)
5507 EXPORT_SYMBOL(netdev_stats_to_stats64);
5510 * dev_get_stats - get network device statistics
5511 * @dev: device to get statistics from
5512 * @storage: place to store stats
5514 * Get network statistics from device. Return @storage.
5515 * The device driver may provide its own method by setting
5516 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5517 * otherwise the internal statistics structure is used.
5519 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5520 struct rtnl_link_stats64 *storage)
5522 const struct net_device_ops *ops = dev->netdev_ops;
5524 if (ops->ndo_get_stats64) {
5525 memset(storage, 0, sizeof(*storage));
5526 ops->ndo_get_stats64(dev, storage);
5527 } else if (ops->ndo_get_stats) {
5528 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5530 netdev_stats_to_stats64(storage, &dev->stats);
5532 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5535 EXPORT_SYMBOL(dev_get_stats);
5537 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5539 struct netdev_queue *queue = dev_ingress_queue(dev);
5541 #ifdef CONFIG_NET_CLS_ACT
5544 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5547 netdev_init_one_queue(dev, queue, NULL);
5548 queue->qdisc = &noop_qdisc;
5549 queue->qdisc_sleeping = &noop_qdisc;
5550 rcu_assign_pointer(dev->ingress_queue, queue);
5555 static const struct ethtool_ops default_ethtool_ops;
5557 void netdev_set_default_ethtool_ops(struct net_device *dev,
5558 const struct ethtool_ops *ops)
5560 if (dev->ethtool_ops == &default_ethtool_ops)
5561 dev->ethtool_ops = ops;
5563 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5566 * alloc_netdev_mqs - allocate network device
5567 * @sizeof_priv: size of private data to allocate space for
5568 * @name: device name format string
5569 * @setup: callback to initialize device
5570 * @txqs: the number of TX subqueues to allocate
5571 * @rxqs: the number of RX subqueues to allocate
5573 * Allocates a struct net_device with private data area for driver use
5574 * and performs basic initialization. Also allocates subquue structs
5575 * for each queue on the device.
5577 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5578 void (*setup)(struct net_device *),
5579 unsigned int txqs, unsigned int rxqs)
5581 struct net_device *dev;
5583 struct net_device *p;
5585 BUG_ON(strlen(name) >= sizeof(dev->name));
5588 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5594 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5599 alloc_size = sizeof(struct net_device);
5601 /* ensure 32-byte alignment of private area */
5602 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5603 alloc_size += sizeof_priv;
5605 /* ensure 32-byte alignment of whole construct */
5606 alloc_size += NETDEV_ALIGN - 1;
5608 p = kzalloc(alloc_size, GFP_KERNEL);
5612 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5613 dev->padded = (char *)dev - (char *)p;
5615 dev->pcpu_refcnt = alloc_percpu(int);
5616 if (!dev->pcpu_refcnt)
5619 if (dev_addr_init(dev))
5625 dev_net_set(dev, &init_net);
5627 dev->gso_max_size = GSO_MAX_SIZE;
5628 dev->gso_max_segs = GSO_MAX_SEGS;
5630 INIT_LIST_HEAD(&dev->napi_list);
5631 INIT_LIST_HEAD(&dev->unreg_list);
5632 INIT_LIST_HEAD(&dev->link_watch_list);
5633 INIT_LIST_HEAD(&dev->upper_dev_list);
5634 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5637 dev->num_tx_queues = txqs;
5638 dev->real_num_tx_queues = txqs;
5639 if (netif_alloc_netdev_queues(dev))
5643 dev->num_rx_queues = rxqs;
5644 dev->real_num_rx_queues = rxqs;
5645 if (netif_alloc_rx_queues(dev))
5649 strcpy(dev->name, name);
5650 dev->group = INIT_NETDEV_GROUP;
5651 if (!dev->ethtool_ops)
5652 dev->ethtool_ops = &default_ethtool_ops;
5660 free_percpu(dev->pcpu_refcnt);
5670 EXPORT_SYMBOL(alloc_netdev_mqs);
5673 * free_netdev - free network device
5676 * This function does the last stage of destroying an allocated device
5677 * interface. The reference to the device object is released.
5678 * If this is the last reference then it will be freed.
5680 void free_netdev(struct net_device *dev)
5682 struct napi_struct *p, *n;
5684 release_net(dev_net(dev));
5691 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5693 /* Flush device addresses */
5694 dev_addr_flush(dev);
5696 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5699 free_percpu(dev->pcpu_refcnt);
5700 dev->pcpu_refcnt = NULL;
5702 /* Compatibility with error handling in drivers */
5703 if (dev->reg_state == NETREG_UNINITIALIZED) {
5704 kfree((char *)dev - dev->padded);
5708 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5709 dev->reg_state = NETREG_RELEASED;
5711 /* will free via device release */
5712 put_device(&dev->dev);
5714 EXPORT_SYMBOL(free_netdev);
5717 * synchronize_net - Synchronize with packet receive processing
5719 * Wait for packets currently being received to be done.
5720 * Does not block later packets from starting.
5722 void synchronize_net(void)
5725 if (rtnl_is_locked())
5726 synchronize_rcu_expedited();
5730 EXPORT_SYMBOL(synchronize_net);
5733 * unregister_netdevice_queue - remove device from the kernel
5737 * This function shuts down a device interface and removes it
5738 * from the kernel tables.
5739 * If head not NULL, device is queued to be unregistered later.
5741 * Callers must hold the rtnl semaphore. You may want
5742 * unregister_netdev() instead of this.
5745 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5750 list_move_tail(&dev->unreg_list, head);
5752 rollback_registered(dev);
5753 /* Finish processing unregister after unlock */
5757 EXPORT_SYMBOL(unregister_netdevice_queue);
5760 * unregister_netdevice_many - unregister many devices
5761 * @head: list of devices
5763 void unregister_netdevice_many(struct list_head *head)
5765 struct net_device *dev;
5767 if (!list_empty(head)) {
5768 rollback_registered_many(head);
5769 list_for_each_entry(dev, head, unreg_list)
5773 EXPORT_SYMBOL(unregister_netdevice_many);
5776 * unregister_netdev - remove device from the kernel
5779 * This function shuts down a device interface and removes it
5780 * from the kernel tables.
5782 * This is just a wrapper for unregister_netdevice that takes
5783 * the rtnl semaphore. In general you want to use this and not
5784 * unregister_netdevice.
5786 void unregister_netdev(struct net_device *dev)
5789 unregister_netdevice(dev);
5792 EXPORT_SYMBOL(unregister_netdev);
5795 * dev_change_net_namespace - move device to different nethost namespace
5797 * @net: network namespace
5798 * @pat: If not NULL name pattern to try if the current device name
5799 * is already taken in the destination network namespace.
5801 * This function shuts down a device interface and moves it
5802 * to a new network namespace. On success 0 is returned, on
5803 * a failure a netagive errno code is returned.
5805 * Callers must hold the rtnl semaphore.
5808 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5814 /* Don't allow namespace local devices to be moved. */
5816 if (dev->features & NETIF_F_NETNS_LOCAL)
5819 /* Ensure the device has been registrered */
5820 if (dev->reg_state != NETREG_REGISTERED)
5823 /* Get out if there is nothing todo */
5825 if (net_eq(dev_net(dev), net))
5828 /* Pick the destination device name, and ensure
5829 * we can use it in the destination network namespace.
5832 if (__dev_get_by_name(net, dev->name)) {
5833 /* We get here if we can't use the current device name */
5836 if (dev_get_valid_name(net, dev, pat) < 0)
5841 * And now a mini version of register_netdevice unregister_netdevice.
5844 /* If device is running close it first. */
5847 /* And unlink it from device chain */
5849 unlist_netdevice(dev);
5853 /* Shutdown queueing discipline. */
5856 /* Notify protocols, that we are about to destroy
5857 this device. They should clean all the things.
5859 Note that dev->reg_state stays at NETREG_REGISTERED.
5860 This is wanted because this way 8021q and macvlan know
5861 the device is just moving and can keep their slaves up.
5863 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5865 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5866 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5869 * Flush the unicast and multicast chains
5874 /* Send a netdev-removed uevent to the old namespace */
5875 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
5877 /* Actually switch the network namespace */
5878 dev_net_set(dev, net);
5880 /* If there is an ifindex conflict assign a new one */
5881 if (__dev_get_by_index(net, dev->ifindex)) {
5882 int iflink = (dev->iflink == dev->ifindex);
5883 dev->ifindex = dev_new_index(net);
5885 dev->iflink = dev->ifindex;
5888 /* Send a netdev-add uevent to the new namespace */
5889 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
5891 /* Fixup kobjects */
5892 err = device_rename(&dev->dev, dev->name);
5895 /* Add the device back in the hashes */
5896 list_netdevice(dev);
5898 /* Notify protocols, that a new device appeared. */
5899 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5902 * Prevent userspace races by waiting until the network
5903 * device is fully setup before sending notifications.
5905 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5912 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5914 static int dev_cpu_callback(struct notifier_block *nfb,
5915 unsigned long action,
5918 struct sk_buff **list_skb;
5919 struct sk_buff *skb;
5920 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5921 struct softnet_data *sd, *oldsd;
5923 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5926 local_irq_disable();
5927 cpu = smp_processor_id();
5928 sd = &per_cpu(softnet_data, cpu);
5929 oldsd = &per_cpu(softnet_data, oldcpu);
5931 /* Find end of our completion_queue. */
5932 list_skb = &sd->completion_queue;
5934 list_skb = &(*list_skb)->next;
5935 /* Append completion queue from offline CPU. */
5936 *list_skb = oldsd->completion_queue;
5937 oldsd->completion_queue = NULL;
5939 /* Append output queue from offline CPU. */
5940 if (oldsd->output_queue) {
5941 *sd->output_queue_tailp = oldsd->output_queue;
5942 sd->output_queue_tailp = oldsd->output_queue_tailp;
5943 oldsd->output_queue = NULL;
5944 oldsd->output_queue_tailp = &oldsd->output_queue;
5946 /* Append NAPI poll list from offline CPU. */
5947 if (!list_empty(&oldsd->poll_list)) {
5948 list_splice_init(&oldsd->poll_list, &sd->poll_list);
5949 raise_softirq_irqoff(NET_RX_SOFTIRQ);
5952 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5955 /* Process offline CPU's input_pkt_queue */
5956 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5958 input_queue_head_incr(oldsd);
5960 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5962 input_queue_head_incr(oldsd);
5970 * netdev_increment_features - increment feature set by one
5971 * @all: current feature set
5972 * @one: new feature set
5973 * @mask: mask feature set
5975 * Computes a new feature set after adding a device with feature set
5976 * @one to the master device with current feature set @all. Will not
5977 * enable anything that is off in @mask. Returns the new feature set.
5979 netdev_features_t netdev_increment_features(netdev_features_t all,
5980 netdev_features_t one, netdev_features_t mask)
5982 if (mask & NETIF_F_GEN_CSUM)
5983 mask |= NETIF_F_ALL_CSUM;
5984 mask |= NETIF_F_VLAN_CHALLENGED;
5986 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
5987 all &= one | ~NETIF_F_ALL_FOR_ALL;
5989 /* If one device supports hw checksumming, set for all. */
5990 if (all & NETIF_F_GEN_CSUM)
5991 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
5995 EXPORT_SYMBOL(netdev_increment_features);
5997 static struct hlist_head *netdev_create_hash(void)
6000 struct hlist_head *hash;
6002 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6004 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6005 INIT_HLIST_HEAD(&hash[i]);
6010 /* Initialize per network namespace state */
6011 static int __net_init netdev_init(struct net *net)
6013 if (net != &init_net)
6014 INIT_LIST_HEAD(&net->dev_base_head);
6016 net->dev_name_head = netdev_create_hash();
6017 if (net->dev_name_head == NULL)
6020 net->dev_index_head = netdev_create_hash();
6021 if (net->dev_index_head == NULL)
6027 kfree(net->dev_name_head);
6033 * netdev_drivername - network driver for the device
6034 * @dev: network device
6036 * Determine network driver for device.
6038 const char *netdev_drivername(const struct net_device *dev)
6040 const struct device_driver *driver;
6041 const struct device *parent;
6042 const char *empty = "";
6044 parent = dev->dev.parent;
6048 driver = parent->driver;
6049 if (driver && driver->name)
6050 return driver->name;
6054 static int __netdev_printk(const char *level, const struct net_device *dev,
6055 struct va_format *vaf)
6059 if (dev && dev->dev.parent) {
6060 r = dev_printk_emit(level[1] - '0',
6063 dev_driver_string(dev->dev.parent),
6064 dev_name(dev->dev.parent),
6065 netdev_name(dev), vaf);
6067 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6069 r = printk("%s(NULL net_device): %pV", level, vaf);
6075 int netdev_printk(const char *level, const struct net_device *dev,
6076 const char *format, ...)
6078 struct va_format vaf;
6082 va_start(args, format);
6087 r = __netdev_printk(level, dev, &vaf);
6093 EXPORT_SYMBOL(netdev_printk);
6095 #define define_netdev_printk_level(func, level) \
6096 int func(const struct net_device *dev, const char *fmt, ...) \
6099 struct va_format vaf; \
6102 va_start(args, fmt); \
6107 r = __netdev_printk(level, dev, &vaf); \
6113 EXPORT_SYMBOL(func);
6115 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6116 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6117 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6118 define_netdev_printk_level(netdev_err, KERN_ERR);
6119 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6120 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6121 define_netdev_printk_level(netdev_info, KERN_INFO);
6123 static void __net_exit netdev_exit(struct net *net)
6125 kfree(net->dev_name_head);
6126 kfree(net->dev_index_head);
6129 static struct pernet_operations __net_initdata netdev_net_ops = {
6130 .init = netdev_init,
6131 .exit = netdev_exit,
6134 static void __net_exit default_device_exit(struct net *net)
6136 struct net_device *dev, *aux;
6138 * Push all migratable network devices back to the
6139 * initial network namespace
6142 for_each_netdev_safe(net, dev, aux) {
6144 char fb_name[IFNAMSIZ];
6146 /* Ignore unmoveable devices (i.e. loopback) */
6147 if (dev->features & NETIF_F_NETNS_LOCAL)
6150 /* Leave virtual devices for the generic cleanup */
6151 if (dev->rtnl_link_ops)
6154 /* Push remaining network devices to init_net */
6155 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6156 err = dev_change_net_namespace(dev, &init_net, fb_name);
6158 pr_emerg("%s: failed to move %s to init_net: %d\n",
6159 __func__, dev->name, err);
6166 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6168 /* At exit all network devices most be removed from a network
6169 * namespace. Do this in the reverse order of registration.
6170 * Do this across as many network namespaces as possible to
6171 * improve batching efficiency.
6173 struct net_device *dev;
6175 LIST_HEAD(dev_kill_list);
6178 list_for_each_entry(net, net_list, exit_list) {
6179 for_each_netdev_reverse(net, dev) {
6180 if (dev->rtnl_link_ops)
6181 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6183 unregister_netdevice_queue(dev, &dev_kill_list);
6186 unregister_netdevice_many(&dev_kill_list);
6187 list_del(&dev_kill_list);
6191 static struct pernet_operations __net_initdata default_device_ops = {
6192 .exit = default_device_exit,
6193 .exit_batch = default_device_exit_batch,
6197 * Initialize the DEV module. At boot time this walks the device list and
6198 * unhooks any devices that fail to initialise (normally hardware not
6199 * present) and leaves us with a valid list of present and active devices.
6204 * This is called single threaded during boot, so no need
6205 * to take the rtnl semaphore.
6207 static int __init net_dev_init(void)
6209 int i, rc = -ENOMEM;
6211 BUG_ON(!dev_boot_phase);
6213 if (dev_proc_init())
6216 if (netdev_kobject_init())
6219 INIT_LIST_HEAD(&ptype_all);
6220 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6221 INIT_LIST_HEAD(&ptype_base[i]);
6223 INIT_LIST_HEAD(&offload_base);
6225 if (register_pernet_subsys(&netdev_net_ops))
6229 * Initialise the packet receive queues.
6232 for_each_possible_cpu(i) {
6233 struct softnet_data *sd = &per_cpu(softnet_data, i);
6235 memset(sd, 0, sizeof(*sd));
6236 skb_queue_head_init(&sd->input_pkt_queue);
6237 skb_queue_head_init(&sd->process_queue);
6238 sd->completion_queue = NULL;
6239 INIT_LIST_HEAD(&sd->poll_list);
6240 sd->output_queue = NULL;
6241 sd->output_queue_tailp = &sd->output_queue;
6243 sd->csd.func = rps_trigger_softirq;
6249 sd->backlog.poll = process_backlog;
6250 sd->backlog.weight = weight_p;
6251 sd->backlog.gro_list = NULL;
6252 sd->backlog.gro_count = 0;
6257 /* The loopback device is special if any other network devices
6258 * is present in a network namespace the loopback device must
6259 * be present. Since we now dynamically allocate and free the
6260 * loopback device ensure this invariant is maintained by
6261 * keeping the loopback device as the first device on the
6262 * list of network devices. Ensuring the loopback devices
6263 * is the first device that appears and the last network device
6266 if (register_pernet_device(&loopback_net_ops))
6269 if (register_pernet_device(&default_device_ops))
6272 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6273 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6275 hotcpu_notifier(dev_cpu_callback, 0);
6282 subsys_initcall(net_dev_init);