3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118 #include <linux/memory.h>
119 #include <linux/prefetch.h>
121 #include <asm/cacheflush.h>
122 #include <asm/tlbflush.h>
123 #include <asm/page.h>
125 #include <trace/events/kmem.h>
127 #include "internal.h"
130 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
131 * 0 for faster, smaller code (especially in the critical paths).
133 * STATS - 1 to collect stats for /proc/slabinfo.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
139 #ifdef CONFIG_DEBUG_SLAB
142 #define FORCED_DEBUG 1
146 #define FORCED_DEBUG 0
149 /* Shouldn't this be in a header file somewhere? */
150 #define BYTES_PER_WORD sizeof(void *)
151 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
153 #ifndef ARCH_KMALLOC_FLAGS
154 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 * true if a page was allocated from pfmemalloc reserves for network-based
161 static bool pfmemalloc_active __read_mostly;
163 /* Legal flag mask for kmem_cache_create(). */
165 # define CREATE_MASK (SLAB_RED_ZONE | \
166 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
169 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
170 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
171 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
173 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
177 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
183 * Bufctl's are used for linking objs within a slab
186 * This implementation relies on "struct page" for locating the cache &
187 * slab an object belongs to.
188 * This allows the bufctl structure to be small (one int), but limits
189 * the number of objects a slab (not a cache) can contain when off-slab
190 * bufctls are used. The limit is the size of the largest general cache
191 * that does not use off-slab slabs.
192 * For 32bit archs with 4 kB pages, is this 56.
193 * This is not serious, as it is only for large objects, when it is unwise
194 * to have too many per slab.
195 * Note: This limit can be raised by introducing a general cache whose size
196 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
199 typedef unsigned int kmem_bufctl_t;
200 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
201 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
202 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
203 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
208 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
209 * arrange for kmem_freepages to be called via RCU. This is useful if
210 * we need to approach a kernel structure obliquely, from its address
211 * obtained without the usual locking. We can lock the structure to
212 * stabilize it and check it's still at the given address, only if we
213 * can be sure that the memory has not been meanwhile reused for some
214 * other kind of object (which our subsystem's lock might corrupt).
216 * rcu_read_lock before reading the address, then rcu_read_unlock after
217 * taking the spinlock within the structure expected at that address.
220 struct rcu_head head;
221 struct kmem_cache *cachep;
228 * Manages the objs in a slab. Placed either at the beginning of mem allocated
229 * for a slab, or allocated from an general cache.
230 * Slabs are chained into three list: fully used, partial, fully free slabs.
235 struct list_head list;
236 unsigned long colouroff;
237 void *s_mem; /* including colour offset */
238 unsigned int inuse; /* num of objs active in slab */
240 unsigned short nodeid;
242 struct slab_rcu __slab_cover_slab_rcu;
250 * - LIFO ordering, to hand out cache-warm objects from _alloc
251 * - reduce the number of linked list operations
252 * - reduce spinlock operations
254 * The limit is stored in the per-cpu structure to reduce the data cache
261 unsigned int batchcount;
262 unsigned int touched;
265 * Must have this definition in here for the proper
266 * alignment of array_cache. Also simplifies accessing
269 * Entries should not be directly dereferenced as
270 * entries belonging to slabs marked pfmemalloc will
271 * have the lower bits set SLAB_OBJ_PFMEMALLOC
275 #define SLAB_OBJ_PFMEMALLOC 1
276 static inline bool is_obj_pfmemalloc(void *objp)
278 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
281 static inline void set_obj_pfmemalloc(void **objp)
283 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
287 static inline void clear_obj_pfmemalloc(void **objp)
289 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
293 * bootstrap: The caches do not work without cpuarrays anymore, but the
294 * cpuarrays are allocated from the generic caches...
296 #define BOOT_CPUCACHE_ENTRIES 1
297 struct arraycache_init {
298 struct array_cache cache;
299 void *entries[BOOT_CPUCACHE_ENTRIES];
303 * The slab lists for all objects.
306 struct list_head slabs_partial; /* partial list first, better asm code */
307 struct list_head slabs_full;
308 struct list_head slabs_free;
309 unsigned long free_objects;
310 unsigned int free_limit;
311 unsigned int colour_next; /* Per-node cache coloring */
312 spinlock_t list_lock;
313 struct array_cache *shared; /* shared per node */
314 struct array_cache **alien; /* on other nodes */
315 unsigned long next_reap; /* updated without locking */
316 int free_touched; /* updated without locking */
320 * Need this for bootstrapping a per node allocator.
322 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
323 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
324 #define CACHE_CACHE 0
325 #define SIZE_AC MAX_NUMNODES
326 #define SIZE_L3 (2 * MAX_NUMNODES)
328 static int drain_freelist(struct kmem_cache *cache,
329 struct kmem_list3 *l3, int tofree);
330 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
332 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
333 static void cache_reap(struct work_struct *unused);
336 * This function must be completely optimized away if a constant is passed to
337 * it. Mostly the same as what is in linux/slab.h except it returns an index.
339 static __always_inline int index_of(const size_t size)
341 extern void __bad_size(void);
343 if (__builtin_constant_p(size)) {
351 #include <linux/kmalloc_sizes.h>
359 static int slab_early_init = 1;
361 #define INDEX_AC index_of(sizeof(struct arraycache_init))
362 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
364 static void kmem_list3_init(struct kmem_list3 *parent)
366 INIT_LIST_HEAD(&parent->slabs_full);
367 INIT_LIST_HEAD(&parent->slabs_partial);
368 INIT_LIST_HEAD(&parent->slabs_free);
369 parent->shared = NULL;
370 parent->alien = NULL;
371 parent->colour_next = 0;
372 spin_lock_init(&parent->list_lock);
373 parent->free_objects = 0;
374 parent->free_touched = 0;
377 #define MAKE_LIST(cachep, listp, slab, nodeid) \
379 INIT_LIST_HEAD(listp); \
380 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
383 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
385 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
386 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
387 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
390 #define CFLGS_OFF_SLAB (0x80000000UL)
391 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
393 #define BATCHREFILL_LIMIT 16
395 * Optimization question: fewer reaps means less probability for unnessary
396 * cpucache drain/refill cycles.
398 * OTOH the cpuarrays can contain lots of objects,
399 * which could lock up otherwise freeable slabs.
401 #define REAPTIMEOUT_CPUC (2*HZ)
402 #define REAPTIMEOUT_LIST3 (4*HZ)
405 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
406 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
407 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
408 #define STATS_INC_GROWN(x) ((x)->grown++)
409 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
410 #define STATS_SET_HIGH(x) \
412 if ((x)->num_active > (x)->high_mark) \
413 (x)->high_mark = (x)->num_active; \
415 #define STATS_INC_ERR(x) ((x)->errors++)
416 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
417 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
418 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
419 #define STATS_SET_FREEABLE(x, i) \
421 if ((x)->max_freeable < i) \
422 (x)->max_freeable = i; \
424 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
425 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
426 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
427 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
429 #define STATS_INC_ACTIVE(x) do { } while (0)
430 #define STATS_DEC_ACTIVE(x) do { } while (0)
431 #define STATS_INC_ALLOCED(x) do { } while (0)
432 #define STATS_INC_GROWN(x) do { } while (0)
433 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
434 #define STATS_SET_HIGH(x) do { } while (0)
435 #define STATS_INC_ERR(x) do { } while (0)
436 #define STATS_INC_NODEALLOCS(x) do { } while (0)
437 #define STATS_INC_NODEFREES(x) do { } while (0)
438 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
439 #define STATS_SET_FREEABLE(x, i) do { } while (0)
440 #define STATS_INC_ALLOCHIT(x) do { } while (0)
441 #define STATS_INC_ALLOCMISS(x) do { } while (0)
442 #define STATS_INC_FREEHIT(x) do { } while (0)
443 #define STATS_INC_FREEMISS(x) do { } while (0)
449 * memory layout of objects:
451 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
452 * the end of an object is aligned with the end of the real
453 * allocation. Catches writes behind the end of the allocation.
454 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
456 * cachep->obj_offset: The real object.
457 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
458 * cachep->size - 1* BYTES_PER_WORD: last caller address
459 * [BYTES_PER_WORD long]
461 static int obj_offset(struct kmem_cache *cachep)
463 return cachep->obj_offset;
466 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
468 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
469 return (unsigned long long*) (objp + obj_offset(cachep) -
470 sizeof(unsigned long long));
473 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
475 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
476 if (cachep->flags & SLAB_STORE_USER)
477 return (unsigned long long *)(objp + cachep->size -
478 sizeof(unsigned long long) -
480 return (unsigned long long *) (objp + cachep->size -
481 sizeof(unsigned long long));
484 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
486 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
487 return (void **)(objp + cachep->size - BYTES_PER_WORD);
492 #define obj_offset(x) 0
493 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
494 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
495 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
499 #ifdef CONFIG_TRACING
500 size_t slab_buffer_size(struct kmem_cache *cachep)
504 EXPORT_SYMBOL(slab_buffer_size);
508 * Do not go above this order unless 0 objects fit into the slab or
509 * overridden on the command line.
511 #define SLAB_MAX_ORDER_HI 1
512 #define SLAB_MAX_ORDER_LO 0
513 static int slab_max_order = SLAB_MAX_ORDER_LO;
514 static bool slab_max_order_set __initdata;
516 static inline struct kmem_cache *page_get_cache(struct page *page)
518 page = compound_head(page);
519 BUG_ON(!PageSlab(page));
520 return page->slab_cache;
523 static inline struct kmem_cache *virt_to_cache(const void *obj)
525 struct page *page = virt_to_head_page(obj);
526 return page->slab_cache;
529 static inline struct slab *virt_to_slab(const void *obj)
531 struct page *page = virt_to_head_page(obj);
533 VM_BUG_ON(!PageSlab(page));
534 return page->slab_page;
537 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
540 return slab->s_mem + cache->size * idx;
544 * We want to avoid an expensive divide : (offset / cache->size)
545 * Using the fact that size is a constant for a particular cache,
546 * we can replace (offset / cache->size) by
547 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
549 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
550 const struct slab *slab, void *obj)
552 u32 offset = (obj - slab->s_mem);
553 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
557 * These are the default caches for kmalloc. Custom caches can have other sizes.
559 struct cache_sizes malloc_sizes[] = {
560 #define CACHE(x) { .cs_size = (x) },
561 #include <linux/kmalloc_sizes.h>
565 EXPORT_SYMBOL(malloc_sizes);
567 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
573 static struct cache_names __initdata cache_names[] = {
574 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
575 #include <linux/kmalloc_sizes.h>
580 static struct arraycache_init initarray_cache __initdata =
581 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
582 static struct arraycache_init initarray_generic =
583 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
585 /* internal cache of cache description objs */
586 static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
587 static struct kmem_cache cache_cache = {
588 .nodelists = cache_cache_nodelists,
590 .limit = BOOT_CPUCACHE_ENTRIES,
592 .size = sizeof(struct kmem_cache),
593 .name = "kmem_cache",
596 #define BAD_ALIEN_MAGIC 0x01020304ul
598 #ifdef CONFIG_LOCKDEP
601 * Slab sometimes uses the kmalloc slabs to store the slab headers
602 * for other slabs "off slab".
603 * The locking for this is tricky in that it nests within the locks
604 * of all other slabs in a few places; to deal with this special
605 * locking we put on-slab caches into a separate lock-class.
607 * We set lock class for alien array caches which are up during init.
608 * The lock annotation will be lost if all cpus of a node goes down and
609 * then comes back up during hotplug
611 static struct lock_class_key on_slab_l3_key;
612 static struct lock_class_key on_slab_alc_key;
614 static struct lock_class_key debugobj_l3_key;
615 static struct lock_class_key debugobj_alc_key;
617 static void slab_set_lock_classes(struct kmem_cache *cachep,
618 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
621 struct array_cache **alc;
622 struct kmem_list3 *l3;
625 l3 = cachep->nodelists[q];
629 lockdep_set_class(&l3->list_lock, l3_key);
632 * FIXME: This check for BAD_ALIEN_MAGIC
633 * should go away when common slab code is taught to
634 * work even without alien caches.
635 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
636 * for alloc_alien_cache,
638 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
642 lockdep_set_class(&alc[r]->lock, alc_key);
646 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
648 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
651 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
655 for_each_online_node(node)
656 slab_set_debugobj_lock_classes_node(cachep, node);
659 static void init_node_lock_keys(int q)
661 struct cache_sizes *s = malloc_sizes;
666 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
667 struct kmem_list3 *l3;
669 l3 = s->cs_cachep->nodelists[q];
670 if (!l3 || OFF_SLAB(s->cs_cachep))
673 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
674 &on_slab_alc_key, q);
678 static inline void init_lock_keys(void)
683 init_node_lock_keys(node);
686 static void init_node_lock_keys(int q)
690 static inline void init_lock_keys(void)
694 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
698 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
703 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
705 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
707 return cachep->array[smp_processor_id()];
710 static inline struct kmem_cache *__find_general_cachep(size_t size,
713 struct cache_sizes *csizep = malloc_sizes;
716 /* This happens if someone tries to call
717 * kmem_cache_create(), or __kmalloc(), before
718 * the generic caches are initialized.
720 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
723 return ZERO_SIZE_PTR;
725 while (size > csizep->cs_size)
729 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
730 * has cs_{dma,}cachep==NULL. Thus no special case
731 * for large kmalloc calls required.
733 #ifdef CONFIG_ZONE_DMA
734 if (unlikely(gfpflags & GFP_DMA))
735 return csizep->cs_dmacachep;
737 return csizep->cs_cachep;
740 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
742 return __find_general_cachep(size, gfpflags);
745 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
747 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
751 * Calculate the number of objects and left-over bytes for a given buffer size.
753 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
754 size_t align, int flags, size_t *left_over,
759 size_t slab_size = PAGE_SIZE << gfporder;
762 * The slab management structure can be either off the slab or
763 * on it. For the latter case, the memory allocated for a
767 * - One kmem_bufctl_t for each object
768 * - Padding to respect alignment of @align
769 * - @buffer_size bytes for each object
771 * If the slab management structure is off the slab, then the
772 * alignment will already be calculated into the size. Because
773 * the slabs are all pages aligned, the objects will be at the
774 * correct alignment when allocated.
776 if (flags & CFLGS_OFF_SLAB) {
778 nr_objs = slab_size / buffer_size;
780 if (nr_objs > SLAB_LIMIT)
781 nr_objs = SLAB_LIMIT;
784 * Ignore padding for the initial guess. The padding
785 * is at most @align-1 bytes, and @buffer_size is at
786 * least @align. In the worst case, this result will
787 * be one greater than the number of objects that fit
788 * into the memory allocation when taking the padding
791 nr_objs = (slab_size - sizeof(struct slab)) /
792 (buffer_size + sizeof(kmem_bufctl_t));
795 * This calculated number will be either the right
796 * amount, or one greater than what we want.
798 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
802 if (nr_objs > SLAB_LIMIT)
803 nr_objs = SLAB_LIMIT;
805 mgmt_size = slab_mgmt_size(nr_objs, align);
808 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
811 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
813 static void __slab_error(const char *function, struct kmem_cache *cachep,
816 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
817 function, cachep->name, msg);
822 * By default on NUMA we use alien caches to stage the freeing of
823 * objects allocated from other nodes. This causes massive memory
824 * inefficiencies when using fake NUMA setup to split memory into a
825 * large number of small nodes, so it can be disabled on the command
829 static int use_alien_caches __read_mostly = 1;
830 static int __init noaliencache_setup(char *s)
832 use_alien_caches = 0;
835 __setup("noaliencache", noaliencache_setup);
837 static int __init slab_max_order_setup(char *str)
839 get_option(&str, &slab_max_order);
840 slab_max_order = slab_max_order < 0 ? 0 :
841 min(slab_max_order, MAX_ORDER - 1);
842 slab_max_order_set = true;
846 __setup("slab_max_order=", slab_max_order_setup);
850 * Special reaping functions for NUMA systems called from cache_reap().
851 * These take care of doing round robin flushing of alien caches (containing
852 * objects freed on different nodes from which they were allocated) and the
853 * flushing of remote pcps by calling drain_node_pages.
855 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
857 static void init_reap_node(int cpu)
861 node = next_node(cpu_to_mem(cpu), node_online_map);
862 if (node == MAX_NUMNODES)
863 node = first_node(node_online_map);
865 per_cpu(slab_reap_node, cpu) = node;
868 static void next_reap_node(void)
870 int node = __this_cpu_read(slab_reap_node);
872 node = next_node(node, node_online_map);
873 if (unlikely(node >= MAX_NUMNODES))
874 node = first_node(node_online_map);
875 __this_cpu_write(slab_reap_node, node);
879 #define init_reap_node(cpu) do { } while (0)
880 #define next_reap_node(void) do { } while (0)
884 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
885 * via the workqueue/eventd.
886 * Add the CPU number into the expiration time to minimize the possibility of
887 * the CPUs getting into lockstep and contending for the global cache chain
890 static void __cpuinit start_cpu_timer(int cpu)
892 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
895 * When this gets called from do_initcalls via cpucache_init(),
896 * init_workqueues() has already run, so keventd will be setup
899 if (keventd_up() && reap_work->work.func == NULL) {
901 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
902 schedule_delayed_work_on(cpu, reap_work,
903 __round_jiffies_relative(HZ, cpu));
907 static struct array_cache *alloc_arraycache(int node, int entries,
908 int batchcount, gfp_t gfp)
910 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
911 struct array_cache *nc = NULL;
913 nc = kmalloc_node(memsize, gfp, node);
915 * The array_cache structures contain pointers to free object.
916 * However, when such objects are allocated or transferred to another
917 * cache the pointers are not cleared and they could be counted as
918 * valid references during a kmemleak scan. Therefore, kmemleak must
919 * not scan such objects.
921 kmemleak_no_scan(nc);
925 nc->batchcount = batchcount;
927 spin_lock_init(&nc->lock);
932 static inline bool is_slab_pfmemalloc(struct slab *slabp)
934 struct page *page = virt_to_page(slabp->s_mem);
936 return PageSlabPfmemalloc(page);
939 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
940 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
941 struct array_cache *ac)
943 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
947 if (!pfmemalloc_active)
950 spin_lock_irqsave(&l3->list_lock, flags);
951 list_for_each_entry(slabp, &l3->slabs_full, list)
952 if (is_slab_pfmemalloc(slabp))
955 list_for_each_entry(slabp, &l3->slabs_partial, list)
956 if (is_slab_pfmemalloc(slabp))
959 list_for_each_entry(slabp, &l3->slabs_free, list)
960 if (is_slab_pfmemalloc(slabp))
963 pfmemalloc_active = false;
965 spin_unlock_irqrestore(&l3->list_lock, flags);
968 static void *ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
969 gfp_t flags, bool force_refill)
972 void *objp = ac->entry[--ac->avail];
974 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
975 if (unlikely(is_obj_pfmemalloc(objp))) {
976 struct kmem_list3 *l3;
978 if (gfp_pfmemalloc_allowed(flags)) {
979 clear_obj_pfmemalloc(&objp);
983 /* The caller cannot use PFMEMALLOC objects, find another one */
984 for (i = 1; i < ac->avail; i++) {
985 /* If a !PFMEMALLOC object is found, swap them */
986 if (!is_obj_pfmemalloc(ac->entry[i])) {
988 ac->entry[i] = ac->entry[ac->avail];
989 ac->entry[ac->avail] = objp;
995 * If there are empty slabs on the slabs_free list and we are
996 * being forced to refill the cache, mark this one !pfmemalloc.
998 l3 = cachep->nodelists[numa_mem_id()];
999 if (!list_empty(&l3->slabs_free) && force_refill) {
1000 struct slab *slabp = virt_to_slab(objp);
1001 ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
1002 clear_obj_pfmemalloc(&objp);
1003 recheck_pfmemalloc_active(cachep, ac);
1007 /* No !PFMEMALLOC objects available */
1015 static void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1018 if (unlikely(pfmemalloc_active)) {
1019 /* Some pfmemalloc slabs exist, check if this is one */
1020 struct page *page = virt_to_page(objp);
1021 if (PageSlabPfmemalloc(page))
1022 set_obj_pfmemalloc(&objp);
1025 ac->entry[ac->avail++] = objp;
1029 * Transfer objects in one arraycache to another.
1030 * Locking must be handled by the caller.
1032 * Return the number of entries transferred.
1034 static int transfer_objects(struct array_cache *to,
1035 struct array_cache *from, unsigned int max)
1037 /* Figure out how many entries to transfer */
1038 int nr = min3(from->avail, max, to->limit - to->avail);
1043 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1044 sizeof(void *) *nr);
1053 #define drain_alien_cache(cachep, alien) do { } while (0)
1054 #define reap_alien(cachep, l3) do { } while (0)
1056 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1058 return (struct array_cache **)BAD_ALIEN_MAGIC;
1061 static inline void free_alien_cache(struct array_cache **ac_ptr)
1065 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1070 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1076 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1077 gfp_t flags, int nodeid)
1082 #else /* CONFIG_NUMA */
1084 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1085 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1087 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1089 struct array_cache **ac_ptr;
1090 int memsize = sizeof(void *) * nr_node_ids;
1095 ac_ptr = kzalloc_node(memsize, gfp, node);
1098 if (i == node || !node_online(i))
1100 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1102 for (i--; i >= 0; i--)
1112 static void free_alien_cache(struct array_cache **ac_ptr)
1123 static void __drain_alien_cache(struct kmem_cache *cachep,
1124 struct array_cache *ac, int node)
1126 struct kmem_list3 *rl3 = cachep->nodelists[node];
1129 spin_lock(&rl3->list_lock);
1131 * Stuff objects into the remote nodes shared array first.
1132 * That way we could avoid the overhead of putting the objects
1133 * into the free lists and getting them back later.
1136 transfer_objects(rl3->shared, ac, ac->limit);
1138 free_block(cachep, ac->entry, ac->avail, node);
1140 spin_unlock(&rl3->list_lock);
1145 * Called from cache_reap() to regularly drain alien caches round robin.
1147 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1149 int node = __this_cpu_read(slab_reap_node);
1152 struct array_cache *ac = l3->alien[node];
1154 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1155 __drain_alien_cache(cachep, ac, node);
1156 spin_unlock_irq(&ac->lock);
1161 static void drain_alien_cache(struct kmem_cache *cachep,
1162 struct array_cache **alien)
1165 struct array_cache *ac;
1166 unsigned long flags;
1168 for_each_online_node(i) {
1171 spin_lock_irqsave(&ac->lock, flags);
1172 __drain_alien_cache(cachep, ac, i);
1173 spin_unlock_irqrestore(&ac->lock, flags);
1178 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1180 struct slab *slabp = virt_to_slab(objp);
1181 int nodeid = slabp->nodeid;
1182 struct kmem_list3 *l3;
1183 struct array_cache *alien = NULL;
1186 node = numa_mem_id();
1189 * Make sure we are not freeing a object from another node to the array
1190 * cache on this cpu.
1192 if (likely(slabp->nodeid == node))
1195 l3 = cachep->nodelists[node];
1196 STATS_INC_NODEFREES(cachep);
1197 if (l3->alien && l3->alien[nodeid]) {
1198 alien = l3->alien[nodeid];
1199 spin_lock(&alien->lock);
1200 if (unlikely(alien->avail == alien->limit)) {
1201 STATS_INC_ACOVERFLOW(cachep);
1202 __drain_alien_cache(cachep, alien, nodeid);
1204 ac_put_obj(cachep, alien, objp);
1205 spin_unlock(&alien->lock);
1207 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1208 free_block(cachep, &objp, 1, nodeid);
1209 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1216 * Allocates and initializes nodelists for a node on each slab cache, used for
1217 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1218 * will be allocated off-node since memory is not yet online for the new node.
1219 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1222 * Must hold slab_mutex.
1224 static int init_cache_nodelists_node(int node)
1226 struct kmem_cache *cachep;
1227 struct kmem_list3 *l3;
1228 const int memsize = sizeof(struct kmem_list3);
1230 list_for_each_entry(cachep, &slab_caches, list) {
1232 * Set up the size64 kmemlist for cpu before we can
1233 * begin anything. Make sure some other cpu on this
1234 * node has not already allocated this
1236 if (!cachep->nodelists[node]) {
1237 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1240 kmem_list3_init(l3);
1241 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1242 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1245 * The l3s don't come and go as CPUs come and
1246 * go. slab_mutex is sufficient
1249 cachep->nodelists[node] = l3;
1252 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1253 cachep->nodelists[node]->free_limit =
1254 (1 + nr_cpus_node(node)) *
1255 cachep->batchcount + cachep->num;
1256 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1261 static void __cpuinit cpuup_canceled(long cpu)
1263 struct kmem_cache *cachep;
1264 struct kmem_list3 *l3 = NULL;
1265 int node = cpu_to_mem(cpu);
1266 const struct cpumask *mask = cpumask_of_node(node);
1268 list_for_each_entry(cachep, &slab_caches, list) {
1269 struct array_cache *nc;
1270 struct array_cache *shared;
1271 struct array_cache **alien;
1273 /* cpu is dead; no one can alloc from it. */
1274 nc = cachep->array[cpu];
1275 cachep->array[cpu] = NULL;
1276 l3 = cachep->nodelists[node];
1279 goto free_array_cache;
1281 spin_lock_irq(&l3->list_lock);
1283 /* Free limit for this kmem_list3 */
1284 l3->free_limit -= cachep->batchcount;
1286 free_block(cachep, nc->entry, nc->avail, node);
1288 if (!cpumask_empty(mask)) {
1289 spin_unlock_irq(&l3->list_lock);
1290 goto free_array_cache;
1293 shared = l3->shared;
1295 free_block(cachep, shared->entry,
1296 shared->avail, node);
1303 spin_unlock_irq(&l3->list_lock);
1307 drain_alien_cache(cachep, alien);
1308 free_alien_cache(alien);
1314 * In the previous loop, all the objects were freed to
1315 * the respective cache's slabs, now we can go ahead and
1316 * shrink each nodelist to its limit.
1318 list_for_each_entry(cachep, &slab_caches, list) {
1319 l3 = cachep->nodelists[node];
1322 drain_freelist(cachep, l3, l3->free_objects);
1326 static int __cpuinit cpuup_prepare(long cpu)
1328 struct kmem_cache *cachep;
1329 struct kmem_list3 *l3 = NULL;
1330 int node = cpu_to_mem(cpu);
1334 * We need to do this right in the beginning since
1335 * alloc_arraycache's are going to use this list.
1336 * kmalloc_node allows us to add the slab to the right
1337 * kmem_list3 and not this cpu's kmem_list3
1339 err = init_cache_nodelists_node(node);
1344 * Now we can go ahead with allocating the shared arrays and
1347 list_for_each_entry(cachep, &slab_caches, list) {
1348 struct array_cache *nc;
1349 struct array_cache *shared = NULL;
1350 struct array_cache **alien = NULL;
1352 nc = alloc_arraycache(node, cachep->limit,
1353 cachep->batchcount, GFP_KERNEL);
1356 if (cachep->shared) {
1357 shared = alloc_arraycache(node,
1358 cachep->shared * cachep->batchcount,
1359 0xbaadf00d, GFP_KERNEL);
1365 if (use_alien_caches) {
1366 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1373 cachep->array[cpu] = nc;
1374 l3 = cachep->nodelists[node];
1377 spin_lock_irq(&l3->list_lock);
1380 * We are serialised from CPU_DEAD or
1381 * CPU_UP_CANCELLED by the cpucontrol lock
1383 l3->shared = shared;
1392 spin_unlock_irq(&l3->list_lock);
1394 free_alien_cache(alien);
1395 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1396 slab_set_debugobj_lock_classes_node(cachep, node);
1398 init_node_lock_keys(node);
1402 cpuup_canceled(cpu);
1406 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1407 unsigned long action, void *hcpu)
1409 long cpu = (long)hcpu;
1413 case CPU_UP_PREPARE:
1414 case CPU_UP_PREPARE_FROZEN:
1415 mutex_lock(&slab_mutex);
1416 err = cpuup_prepare(cpu);
1417 mutex_unlock(&slab_mutex);
1420 case CPU_ONLINE_FROZEN:
1421 start_cpu_timer(cpu);
1423 #ifdef CONFIG_HOTPLUG_CPU
1424 case CPU_DOWN_PREPARE:
1425 case CPU_DOWN_PREPARE_FROZEN:
1427 * Shutdown cache reaper. Note that the slab_mutex is
1428 * held so that if cache_reap() is invoked it cannot do
1429 * anything expensive but will only modify reap_work
1430 * and reschedule the timer.
1432 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1433 /* Now the cache_reaper is guaranteed to be not running. */
1434 per_cpu(slab_reap_work, cpu).work.func = NULL;
1436 case CPU_DOWN_FAILED:
1437 case CPU_DOWN_FAILED_FROZEN:
1438 start_cpu_timer(cpu);
1441 case CPU_DEAD_FROZEN:
1443 * Even if all the cpus of a node are down, we don't free the
1444 * kmem_list3 of any cache. This to avoid a race between
1445 * cpu_down, and a kmalloc allocation from another cpu for
1446 * memory from the node of the cpu going down. The list3
1447 * structure is usually allocated from kmem_cache_create() and
1448 * gets destroyed at kmem_cache_destroy().
1452 case CPU_UP_CANCELED:
1453 case CPU_UP_CANCELED_FROZEN:
1454 mutex_lock(&slab_mutex);
1455 cpuup_canceled(cpu);
1456 mutex_unlock(&slab_mutex);
1459 return notifier_from_errno(err);
1462 static struct notifier_block __cpuinitdata cpucache_notifier = {
1463 &cpuup_callback, NULL, 0
1466 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1468 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1469 * Returns -EBUSY if all objects cannot be drained so that the node is not
1472 * Must hold slab_mutex.
1474 static int __meminit drain_cache_nodelists_node(int node)
1476 struct kmem_cache *cachep;
1479 list_for_each_entry(cachep, &slab_caches, list) {
1480 struct kmem_list3 *l3;
1482 l3 = cachep->nodelists[node];
1486 drain_freelist(cachep, l3, l3->free_objects);
1488 if (!list_empty(&l3->slabs_full) ||
1489 !list_empty(&l3->slabs_partial)) {
1497 static int __meminit slab_memory_callback(struct notifier_block *self,
1498 unsigned long action, void *arg)
1500 struct memory_notify *mnb = arg;
1504 nid = mnb->status_change_nid;
1509 case MEM_GOING_ONLINE:
1510 mutex_lock(&slab_mutex);
1511 ret = init_cache_nodelists_node(nid);
1512 mutex_unlock(&slab_mutex);
1514 case MEM_GOING_OFFLINE:
1515 mutex_lock(&slab_mutex);
1516 ret = drain_cache_nodelists_node(nid);
1517 mutex_unlock(&slab_mutex);
1521 case MEM_CANCEL_ONLINE:
1522 case MEM_CANCEL_OFFLINE:
1526 return notifier_from_errno(ret);
1528 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1531 * swap the static kmem_list3 with kmalloced memory
1533 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1536 struct kmem_list3 *ptr;
1538 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1541 memcpy(ptr, list, sizeof(struct kmem_list3));
1543 * Do not assume that spinlocks can be initialized via memcpy:
1545 spin_lock_init(&ptr->list_lock);
1547 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1548 cachep->nodelists[nodeid] = ptr;
1552 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1553 * size of kmem_list3.
1555 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1559 for_each_online_node(node) {
1560 cachep->nodelists[node] = &initkmem_list3[index + node];
1561 cachep->nodelists[node]->next_reap = jiffies +
1563 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1568 * Initialisation. Called after the page allocator have been initialised and
1569 * before smp_init().
1571 void __init kmem_cache_init(void)
1574 struct cache_sizes *sizes;
1575 struct cache_names *names;
1580 if (num_possible_nodes() == 1)
1581 use_alien_caches = 0;
1583 for (i = 0; i < NUM_INIT_LISTS; i++) {
1584 kmem_list3_init(&initkmem_list3[i]);
1585 if (i < MAX_NUMNODES)
1586 cache_cache.nodelists[i] = NULL;
1588 set_up_list3s(&cache_cache, CACHE_CACHE);
1591 * Fragmentation resistance on low memory - only use bigger
1592 * page orders on machines with more than 32MB of memory if
1593 * not overridden on the command line.
1595 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1596 slab_max_order = SLAB_MAX_ORDER_HI;
1598 /* Bootstrap is tricky, because several objects are allocated
1599 * from caches that do not exist yet:
1600 * 1) initialize the cache_cache cache: it contains the struct
1601 * kmem_cache structures of all caches, except cache_cache itself:
1602 * cache_cache is statically allocated.
1603 * Initially an __init data area is used for the head array and the
1604 * kmem_list3 structures, it's replaced with a kmalloc allocated
1605 * array at the end of the bootstrap.
1606 * 2) Create the first kmalloc cache.
1607 * The struct kmem_cache for the new cache is allocated normally.
1608 * An __init data area is used for the head array.
1609 * 3) Create the remaining kmalloc caches, with minimally sized
1611 * 4) Replace the __init data head arrays for cache_cache and the first
1612 * kmalloc cache with kmalloc allocated arrays.
1613 * 5) Replace the __init data for kmem_list3 for cache_cache and
1614 * the other cache's with kmalloc allocated memory.
1615 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1618 node = numa_mem_id();
1620 /* 1) create the cache_cache */
1621 INIT_LIST_HEAD(&slab_caches);
1622 list_add(&cache_cache.list, &slab_caches);
1623 cache_cache.colour_off = cache_line_size();
1624 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1625 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1628 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1630 cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1631 nr_node_ids * sizeof(struct kmem_list3 *);
1632 cache_cache.object_size = cache_cache.size;
1633 cache_cache.size = ALIGN(cache_cache.size,
1635 cache_cache.reciprocal_buffer_size =
1636 reciprocal_value(cache_cache.size);
1638 for (order = 0; order < MAX_ORDER; order++) {
1639 cache_estimate(order, cache_cache.size,
1640 cache_line_size(), 0, &left_over, &cache_cache.num);
1641 if (cache_cache.num)
1644 BUG_ON(!cache_cache.num);
1645 cache_cache.gfporder = order;
1646 cache_cache.colour = left_over / cache_cache.colour_off;
1647 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1648 sizeof(struct slab), cache_line_size());
1650 /* 2+3) create the kmalloc caches */
1651 sizes = malloc_sizes;
1652 names = cache_names;
1655 * Initialize the caches that provide memory for the array cache and the
1656 * kmem_list3 structures first. Without this, further allocations will
1660 sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
1661 sizes[INDEX_AC].cs_size,
1662 ARCH_KMALLOC_MINALIGN,
1663 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1666 if (INDEX_AC != INDEX_L3) {
1667 sizes[INDEX_L3].cs_cachep =
1668 __kmem_cache_create(names[INDEX_L3].name,
1669 sizes[INDEX_L3].cs_size,
1670 ARCH_KMALLOC_MINALIGN,
1671 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1675 slab_early_init = 0;
1677 while (sizes->cs_size != ULONG_MAX) {
1679 * For performance, all the general caches are L1 aligned.
1680 * This should be particularly beneficial on SMP boxes, as it
1681 * eliminates "false sharing".
1682 * Note for systems short on memory removing the alignment will
1683 * allow tighter packing of the smaller caches.
1685 if (!sizes->cs_cachep) {
1686 sizes->cs_cachep = __kmem_cache_create(names->name,
1688 ARCH_KMALLOC_MINALIGN,
1689 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1692 #ifdef CONFIG_ZONE_DMA
1693 sizes->cs_dmacachep = __kmem_cache_create(
1696 ARCH_KMALLOC_MINALIGN,
1697 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1704 /* 4) Replace the bootstrap head arrays */
1706 struct array_cache *ptr;
1708 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1710 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1711 memcpy(ptr, cpu_cache_get(&cache_cache),
1712 sizeof(struct arraycache_init));
1714 * Do not assume that spinlocks can be initialized via memcpy:
1716 spin_lock_init(&ptr->lock);
1718 cache_cache.array[smp_processor_id()] = ptr;
1720 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1722 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1723 != &initarray_generic.cache);
1724 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1725 sizeof(struct arraycache_init));
1727 * Do not assume that spinlocks can be initialized via memcpy:
1729 spin_lock_init(&ptr->lock);
1731 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1734 /* 5) Replace the bootstrap kmem_list3's */
1738 for_each_online_node(nid) {
1739 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1741 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1742 &initkmem_list3[SIZE_AC + nid], nid);
1744 if (INDEX_AC != INDEX_L3) {
1745 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1746 &initkmem_list3[SIZE_L3 + nid], nid);
1754 void __init kmem_cache_init_late(void)
1756 struct kmem_cache *cachep;
1760 /* Annotate slab for lockdep -- annotate the malloc caches */
1763 /* 6) resize the head arrays to their final sizes */
1764 mutex_lock(&slab_mutex);
1765 list_for_each_entry(cachep, &slab_caches, list)
1766 if (enable_cpucache(cachep, GFP_NOWAIT))
1768 mutex_unlock(&slab_mutex);
1774 * Register a cpu startup notifier callback that initializes
1775 * cpu_cache_get for all new cpus
1777 register_cpu_notifier(&cpucache_notifier);
1781 * Register a memory hotplug callback that initializes and frees
1784 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1788 * The reap timers are started later, with a module init call: That part
1789 * of the kernel is not yet operational.
1793 static int __init cpucache_init(void)
1798 * Register the timers that return unneeded pages to the page allocator
1800 for_each_online_cpu(cpu)
1801 start_cpu_timer(cpu);
1807 __initcall(cpucache_init);
1809 static noinline void
1810 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1812 struct kmem_list3 *l3;
1814 unsigned long flags;
1818 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1820 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1821 cachep->name, cachep->size, cachep->gfporder);
1823 for_each_online_node(node) {
1824 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1825 unsigned long active_slabs = 0, num_slabs = 0;
1827 l3 = cachep->nodelists[node];
1831 spin_lock_irqsave(&l3->list_lock, flags);
1832 list_for_each_entry(slabp, &l3->slabs_full, list) {
1833 active_objs += cachep->num;
1836 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1837 active_objs += slabp->inuse;
1840 list_for_each_entry(slabp, &l3->slabs_free, list)
1843 free_objects += l3->free_objects;
1844 spin_unlock_irqrestore(&l3->list_lock, flags);
1846 num_slabs += active_slabs;
1847 num_objs = num_slabs * cachep->num;
1849 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1850 node, active_slabs, num_slabs, active_objs, num_objs,
1856 * Interface to system's page allocator. No need to hold the cache-lock.
1858 * If we requested dmaable memory, we will get it. Even if we
1859 * did not request dmaable memory, we might get it, but that
1860 * would be relatively rare and ignorable.
1862 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1870 * Nommu uses slab's for process anonymous memory allocations, and thus
1871 * requires __GFP_COMP to properly refcount higher order allocations
1873 flags |= __GFP_COMP;
1876 flags |= cachep->allocflags;
1877 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1878 flags |= __GFP_RECLAIMABLE;
1880 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1882 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1883 slab_out_of_memory(cachep, flags, nodeid);
1887 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1888 if (unlikely(page->pfmemalloc))
1889 pfmemalloc_active = true;
1891 nr_pages = (1 << cachep->gfporder);
1892 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1893 add_zone_page_state(page_zone(page),
1894 NR_SLAB_RECLAIMABLE, nr_pages);
1896 add_zone_page_state(page_zone(page),
1897 NR_SLAB_UNRECLAIMABLE, nr_pages);
1898 for (i = 0; i < nr_pages; i++) {
1899 __SetPageSlab(page + i);
1901 if (page->pfmemalloc)
1902 SetPageSlabPfmemalloc(page + i);
1905 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1906 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1909 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1911 kmemcheck_mark_unallocated_pages(page, nr_pages);
1914 return page_address(page);
1918 * Interface to system's page release.
1920 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1922 unsigned long i = (1 << cachep->gfporder);
1923 struct page *page = virt_to_page(addr);
1924 const unsigned long nr_freed = i;
1926 kmemcheck_free_shadow(page, cachep->gfporder);
1928 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1929 sub_zone_page_state(page_zone(page),
1930 NR_SLAB_RECLAIMABLE, nr_freed);
1932 sub_zone_page_state(page_zone(page),
1933 NR_SLAB_UNRECLAIMABLE, nr_freed);
1935 BUG_ON(!PageSlab(page));
1936 __ClearPageSlabPfmemalloc(page);
1937 __ClearPageSlab(page);
1940 if (current->reclaim_state)
1941 current->reclaim_state->reclaimed_slab += nr_freed;
1942 free_pages((unsigned long)addr, cachep->gfporder);
1945 static void kmem_rcu_free(struct rcu_head *head)
1947 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1948 struct kmem_cache *cachep = slab_rcu->cachep;
1950 kmem_freepages(cachep, slab_rcu->addr);
1951 if (OFF_SLAB(cachep))
1952 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1957 #ifdef CONFIG_DEBUG_PAGEALLOC
1958 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1959 unsigned long caller)
1961 int size = cachep->object_size;
1963 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1965 if (size < 5 * sizeof(unsigned long))
1968 *addr++ = 0x12345678;
1970 *addr++ = smp_processor_id();
1971 size -= 3 * sizeof(unsigned long);
1973 unsigned long *sptr = &caller;
1974 unsigned long svalue;
1976 while (!kstack_end(sptr)) {
1978 if (kernel_text_address(svalue)) {
1980 size -= sizeof(unsigned long);
1981 if (size <= sizeof(unsigned long))
1987 *addr++ = 0x87654321;
1991 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1993 int size = cachep->object_size;
1994 addr = &((char *)addr)[obj_offset(cachep)];
1996 memset(addr, val, size);
1997 *(unsigned char *)(addr + size - 1) = POISON_END;
2000 static void dump_line(char *data, int offset, int limit)
2003 unsigned char error = 0;
2006 printk(KERN_ERR "%03x: ", offset);
2007 for (i = 0; i < limit; i++) {
2008 if (data[offset + i] != POISON_FREE) {
2009 error = data[offset + i];
2013 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2014 &data[offset], limit, 1);
2016 if (bad_count == 1) {
2017 error ^= POISON_FREE;
2018 if (!(error & (error - 1))) {
2019 printk(KERN_ERR "Single bit error detected. Probably "
2022 printk(KERN_ERR "Run memtest86+ or a similar memory "
2025 printk(KERN_ERR "Run a memory test tool.\n");
2034 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
2039 if (cachep->flags & SLAB_RED_ZONE) {
2040 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
2041 *dbg_redzone1(cachep, objp),
2042 *dbg_redzone2(cachep, objp));
2045 if (cachep->flags & SLAB_STORE_USER) {
2046 printk(KERN_ERR "Last user: [<%p>]",
2047 *dbg_userword(cachep, objp));
2048 print_symbol("(%s)",
2049 (unsigned long)*dbg_userword(cachep, objp));
2052 realobj = (char *)objp + obj_offset(cachep);
2053 size = cachep->object_size;
2054 for (i = 0; i < size && lines; i += 16, lines--) {
2057 if (i + limit > size)
2059 dump_line(realobj, i, limit);
2063 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
2069 realobj = (char *)objp + obj_offset(cachep);
2070 size = cachep->object_size;
2072 for (i = 0; i < size; i++) {
2073 char exp = POISON_FREE;
2076 if (realobj[i] != exp) {
2082 "Slab corruption (%s): %s start=%p, len=%d\n",
2083 print_tainted(), cachep->name, realobj, size);
2084 print_objinfo(cachep, objp, 0);
2086 /* Hexdump the affected line */
2089 if (i + limit > size)
2091 dump_line(realobj, i, limit);
2094 /* Limit to 5 lines */
2100 /* Print some data about the neighboring objects, if they
2103 struct slab *slabp = virt_to_slab(objp);
2106 objnr = obj_to_index(cachep, slabp, objp);
2108 objp = index_to_obj(cachep, slabp, objnr - 1);
2109 realobj = (char *)objp + obj_offset(cachep);
2110 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
2112 print_objinfo(cachep, objp, 2);
2114 if (objnr + 1 < cachep->num) {
2115 objp = index_to_obj(cachep, slabp, objnr + 1);
2116 realobj = (char *)objp + obj_offset(cachep);
2117 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
2119 print_objinfo(cachep, objp, 2);
2126 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2129 for (i = 0; i < cachep->num; i++) {
2130 void *objp = index_to_obj(cachep, slabp, i);
2132 if (cachep->flags & SLAB_POISON) {
2133 #ifdef CONFIG_DEBUG_PAGEALLOC
2134 if (cachep->size % PAGE_SIZE == 0 &&
2136 kernel_map_pages(virt_to_page(objp),
2137 cachep->size / PAGE_SIZE, 1);
2139 check_poison_obj(cachep, objp);
2141 check_poison_obj(cachep, objp);
2144 if (cachep->flags & SLAB_RED_ZONE) {
2145 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2146 slab_error(cachep, "start of a freed object "
2148 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2149 slab_error(cachep, "end of a freed object "
2155 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2161 * slab_destroy - destroy and release all objects in a slab
2162 * @cachep: cache pointer being destroyed
2163 * @slabp: slab pointer being destroyed
2165 * Destroy all the objs in a slab, and release the mem back to the system.
2166 * Before calling the slab must have been unlinked from the cache. The
2167 * cache-lock is not held/needed.
2169 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2171 void *addr = slabp->s_mem - slabp->colouroff;
2173 slab_destroy_debugcheck(cachep, slabp);
2174 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2175 struct slab_rcu *slab_rcu;
2177 slab_rcu = (struct slab_rcu *)slabp;
2178 slab_rcu->cachep = cachep;
2179 slab_rcu->addr = addr;
2180 call_rcu(&slab_rcu->head, kmem_rcu_free);
2182 kmem_freepages(cachep, addr);
2183 if (OFF_SLAB(cachep))
2184 kmem_cache_free(cachep->slabp_cache, slabp);
2188 static void __kmem_cache_destroy(struct kmem_cache *cachep)
2191 struct kmem_list3 *l3;
2193 for_each_online_cpu(i)
2194 kfree(cachep->array[i]);
2196 /* NUMA: free the list3 structures */
2197 for_each_online_node(i) {
2198 l3 = cachep->nodelists[i];
2201 free_alien_cache(l3->alien);
2205 kmem_cache_free(&cache_cache, cachep);
2210 * calculate_slab_order - calculate size (page order) of slabs
2211 * @cachep: pointer to the cache that is being created
2212 * @size: size of objects to be created in this cache.
2213 * @align: required alignment for the objects.
2214 * @flags: slab allocation flags
2216 * Also calculates the number of objects per slab.
2218 * This could be made much more intelligent. For now, try to avoid using
2219 * high order pages for slabs. When the gfp() functions are more friendly
2220 * towards high-order requests, this should be changed.
2222 static size_t calculate_slab_order(struct kmem_cache *cachep,
2223 size_t size, size_t align, unsigned long flags)
2225 unsigned long offslab_limit;
2226 size_t left_over = 0;
2229 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2233 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2237 if (flags & CFLGS_OFF_SLAB) {
2239 * Max number of objs-per-slab for caches which
2240 * use off-slab slabs. Needed to avoid a possible
2241 * looping condition in cache_grow().
2243 offslab_limit = size - sizeof(struct slab);
2244 offslab_limit /= sizeof(kmem_bufctl_t);
2246 if (num > offslab_limit)
2250 /* Found something acceptable - save it away */
2252 cachep->gfporder = gfporder;
2253 left_over = remainder;
2256 * A VFS-reclaimable slab tends to have most allocations
2257 * as GFP_NOFS and we really don't want to have to be allocating
2258 * higher-order pages when we are unable to shrink dcache.
2260 if (flags & SLAB_RECLAIM_ACCOUNT)
2264 * Large number of objects is good, but very large slabs are
2265 * currently bad for the gfp()s.
2267 if (gfporder >= slab_max_order)
2271 * Acceptable internal fragmentation?
2273 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2279 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2281 if (slab_state >= FULL)
2282 return enable_cpucache(cachep, gfp);
2284 if (slab_state == DOWN) {
2286 * Note: the first kmem_cache_create must create the cache
2287 * that's used by kmalloc(24), otherwise the creation of
2288 * further caches will BUG().
2290 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2293 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2294 * the first cache, then we need to set up all its list3s,
2295 * otherwise the creation of further caches will BUG().
2297 set_up_list3s(cachep, SIZE_AC);
2298 if (INDEX_AC == INDEX_L3)
2299 slab_state = PARTIAL_L3;
2301 slab_state = PARTIAL_ARRAYCACHE;
2303 cachep->array[smp_processor_id()] =
2304 kmalloc(sizeof(struct arraycache_init), gfp);
2306 if (slab_state == PARTIAL_ARRAYCACHE) {
2307 set_up_list3s(cachep, SIZE_L3);
2308 slab_state = PARTIAL_L3;
2311 for_each_online_node(node) {
2312 cachep->nodelists[node] =
2313 kmalloc_node(sizeof(struct kmem_list3),
2315 BUG_ON(!cachep->nodelists[node]);
2316 kmem_list3_init(cachep->nodelists[node]);
2320 cachep->nodelists[numa_mem_id()]->next_reap =
2321 jiffies + REAPTIMEOUT_LIST3 +
2322 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2324 cpu_cache_get(cachep)->avail = 0;
2325 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2326 cpu_cache_get(cachep)->batchcount = 1;
2327 cpu_cache_get(cachep)->touched = 0;
2328 cachep->batchcount = 1;
2329 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2334 * __kmem_cache_create - Create a cache.
2335 * @name: A string which is used in /proc/slabinfo to identify this cache.
2336 * @size: The size of objects to be created in this cache.
2337 * @align: The required alignment for the objects.
2338 * @flags: SLAB flags
2339 * @ctor: A constructor for the objects.
2341 * Returns a ptr to the cache on success, NULL on failure.
2342 * Cannot be called within a int, but can be interrupted.
2343 * The @ctor is run when new pages are allocated by the cache.
2345 * @name must be valid until the cache is destroyed. This implies that
2346 * the module calling this has to destroy the cache before getting unloaded.
2350 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2351 * to catch references to uninitialised memory.
2353 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2354 * for buffer overruns.
2356 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2357 * cacheline. This can be beneficial if you're counting cycles as closely
2361 __kmem_cache_create (const char *name, size_t size, size_t align,
2362 unsigned long flags, void (*ctor)(void *))
2364 size_t left_over, slab_size, ralign;
2365 struct kmem_cache *cachep = NULL;
2371 * Enable redzoning and last user accounting, except for caches with
2372 * large objects, if the increased size would increase the object size
2373 * above the next power of two: caches with object sizes just above a
2374 * power of two have a significant amount of internal fragmentation.
2376 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2377 2 * sizeof(unsigned long long)))
2378 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2379 if (!(flags & SLAB_DESTROY_BY_RCU))
2380 flags |= SLAB_POISON;
2382 if (flags & SLAB_DESTROY_BY_RCU)
2383 BUG_ON(flags & SLAB_POISON);
2386 * Always checks flags, a caller might be expecting debug support which
2389 BUG_ON(flags & ~CREATE_MASK);
2392 * Check that size is in terms of words. This is needed to avoid
2393 * unaligned accesses for some archs when redzoning is used, and makes
2394 * sure any on-slab bufctl's are also correctly aligned.
2396 if (size & (BYTES_PER_WORD - 1)) {
2397 size += (BYTES_PER_WORD - 1);
2398 size &= ~(BYTES_PER_WORD - 1);
2401 /* calculate the final buffer alignment: */
2403 /* 1) arch recommendation: can be overridden for debug */
2404 if (flags & SLAB_HWCACHE_ALIGN) {
2406 * Default alignment: as specified by the arch code. Except if
2407 * an object is really small, then squeeze multiple objects into
2410 ralign = cache_line_size();
2411 while (size <= ralign / 2)
2414 ralign = BYTES_PER_WORD;
2418 * Redzoning and user store require word alignment or possibly larger.
2419 * Note this will be overridden by architecture or caller mandated
2420 * alignment if either is greater than BYTES_PER_WORD.
2422 if (flags & SLAB_STORE_USER)
2423 ralign = BYTES_PER_WORD;
2425 if (flags & SLAB_RED_ZONE) {
2426 ralign = REDZONE_ALIGN;
2427 /* If redzoning, ensure that the second redzone is suitably
2428 * aligned, by adjusting the object size accordingly. */
2429 size += REDZONE_ALIGN - 1;
2430 size &= ~(REDZONE_ALIGN - 1);
2433 /* 2) arch mandated alignment */
2434 if (ralign < ARCH_SLAB_MINALIGN) {
2435 ralign = ARCH_SLAB_MINALIGN;
2437 /* 3) caller mandated alignment */
2438 if (ralign < align) {
2441 /* disable debug if necessary */
2442 if (ralign > __alignof__(unsigned long long))
2443 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2449 if (slab_is_available())
2454 /* Get cache's description obj. */
2455 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2459 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2460 cachep->object_size = size;
2461 cachep->align = align;
2465 * Both debugging options require word-alignment which is calculated
2468 if (flags & SLAB_RED_ZONE) {
2469 /* add space for red zone words */
2470 cachep->obj_offset += sizeof(unsigned long long);
2471 size += 2 * sizeof(unsigned long long);
2473 if (flags & SLAB_STORE_USER) {
2474 /* user store requires one word storage behind the end of
2475 * the real object. But if the second red zone needs to be
2476 * aligned to 64 bits, we must allow that much space.
2478 if (flags & SLAB_RED_ZONE)
2479 size += REDZONE_ALIGN;
2481 size += BYTES_PER_WORD;
2483 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2484 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2485 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2486 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2493 * Determine if the slab management is 'on' or 'off' slab.
2494 * (bootstrapping cannot cope with offslab caches so don't do
2495 * it too early on. Always use on-slab management when
2496 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2498 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2499 !(flags & SLAB_NOLEAKTRACE))
2501 * Size is large, assume best to place the slab management obj
2502 * off-slab (should allow better packing of objs).
2504 flags |= CFLGS_OFF_SLAB;
2506 size = ALIGN(size, align);
2508 left_over = calculate_slab_order(cachep, size, align, flags);
2512 "kmem_cache_create: couldn't create cache %s.\n", name);
2513 kmem_cache_free(&cache_cache, cachep);
2516 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2517 + sizeof(struct slab), align);
2520 * If the slab has been placed off-slab, and we have enough space then
2521 * move it on-slab. This is at the expense of any extra colouring.
2523 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2524 flags &= ~CFLGS_OFF_SLAB;
2525 left_over -= slab_size;
2528 if (flags & CFLGS_OFF_SLAB) {
2529 /* really off slab. No need for manual alignment */
2531 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2533 #ifdef CONFIG_PAGE_POISONING
2534 /* If we're going to use the generic kernel_map_pages()
2535 * poisoning, then it's going to smash the contents of
2536 * the redzone and userword anyhow, so switch them off.
2538 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2539 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2543 cachep->colour_off = cache_line_size();
2544 /* Offset must be a multiple of the alignment. */
2545 if (cachep->colour_off < align)
2546 cachep->colour_off = align;
2547 cachep->colour = left_over / cachep->colour_off;
2548 cachep->slab_size = slab_size;
2549 cachep->flags = flags;
2550 cachep->allocflags = 0;
2551 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2552 cachep->allocflags |= GFP_DMA;
2553 cachep->size = size;
2554 cachep->reciprocal_buffer_size = reciprocal_value(size);
2556 if (flags & CFLGS_OFF_SLAB) {
2557 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2559 * This is a possibility for one of the malloc_sizes caches.
2560 * But since we go off slab only for object size greater than
2561 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2562 * this should not happen at all.
2563 * But leave a BUG_ON for some lucky dude.
2565 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2567 cachep->ctor = ctor;
2568 cachep->name = name;
2570 if (setup_cpu_cache(cachep, gfp)) {
2571 __kmem_cache_destroy(cachep);
2575 if (flags & SLAB_DEBUG_OBJECTS) {
2577 * Would deadlock through slab_destroy()->call_rcu()->
2578 * debug_object_activate()->kmem_cache_alloc().
2580 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2582 slab_set_debugobj_lock_classes(cachep);
2585 /* cache setup completed, link it into the list */
2586 list_add(&cachep->list, &slab_caches);
2591 static void check_irq_off(void)
2593 BUG_ON(!irqs_disabled());
2596 static void check_irq_on(void)
2598 BUG_ON(irqs_disabled());
2601 static void check_spinlock_acquired(struct kmem_cache *cachep)
2605 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2609 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2613 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2618 #define check_irq_off() do { } while(0)
2619 #define check_irq_on() do { } while(0)
2620 #define check_spinlock_acquired(x) do { } while(0)
2621 #define check_spinlock_acquired_node(x, y) do { } while(0)
2624 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2625 struct array_cache *ac,
2626 int force, int node);
2628 static void do_drain(void *arg)
2630 struct kmem_cache *cachep = arg;
2631 struct array_cache *ac;
2632 int node = numa_mem_id();
2635 ac = cpu_cache_get(cachep);
2636 spin_lock(&cachep->nodelists[node]->list_lock);
2637 free_block(cachep, ac->entry, ac->avail, node);
2638 spin_unlock(&cachep->nodelists[node]->list_lock);
2642 static void drain_cpu_caches(struct kmem_cache *cachep)
2644 struct kmem_list3 *l3;
2647 on_each_cpu(do_drain, cachep, 1);
2649 for_each_online_node(node) {
2650 l3 = cachep->nodelists[node];
2651 if (l3 && l3->alien)
2652 drain_alien_cache(cachep, l3->alien);
2655 for_each_online_node(node) {
2656 l3 = cachep->nodelists[node];
2658 drain_array(cachep, l3, l3->shared, 1, node);
2663 * Remove slabs from the list of free slabs.
2664 * Specify the number of slabs to drain in tofree.
2666 * Returns the actual number of slabs released.
2668 static int drain_freelist(struct kmem_cache *cache,
2669 struct kmem_list3 *l3, int tofree)
2671 struct list_head *p;
2676 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2678 spin_lock_irq(&l3->list_lock);
2679 p = l3->slabs_free.prev;
2680 if (p == &l3->slabs_free) {
2681 spin_unlock_irq(&l3->list_lock);
2685 slabp = list_entry(p, struct slab, list);
2687 BUG_ON(slabp->inuse);
2689 list_del(&slabp->list);
2691 * Safe to drop the lock. The slab is no longer linked
2694 l3->free_objects -= cache->num;
2695 spin_unlock_irq(&l3->list_lock);
2696 slab_destroy(cache, slabp);
2703 /* Called with slab_mutex held to protect against cpu hotplug */
2704 static int __cache_shrink(struct kmem_cache *cachep)
2707 struct kmem_list3 *l3;
2709 drain_cpu_caches(cachep);
2712 for_each_online_node(i) {
2713 l3 = cachep->nodelists[i];
2717 drain_freelist(cachep, l3, l3->free_objects);
2719 ret += !list_empty(&l3->slabs_full) ||
2720 !list_empty(&l3->slabs_partial);
2722 return (ret ? 1 : 0);
2726 * kmem_cache_shrink - Shrink a cache.
2727 * @cachep: The cache to shrink.
2729 * Releases as many slabs as possible for a cache.
2730 * To help debugging, a zero exit status indicates all slabs were released.
2732 int kmem_cache_shrink(struct kmem_cache *cachep)
2735 BUG_ON(!cachep || in_interrupt());
2738 mutex_lock(&slab_mutex);
2739 ret = __cache_shrink(cachep);
2740 mutex_unlock(&slab_mutex);
2744 EXPORT_SYMBOL(kmem_cache_shrink);
2747 * kmem_cache_destroy - delete a cache
2748 * @cachep: the cache to destroy
2750 * Remove a &struct kmem_cache object from the slab cache.
2752 * It is expected this function will be called by a module when it is
2753 * unloaded. This will remove the cache completely, and avoid a duplicate
2754 * cache being allocated each time a module is loaded and unloaded, if the
2755 * module doesn't have persistent in-kernel storage across loads and unloads.
2757 * The cache must be empty before calling this function.
2759 * The caller must guarantee that no one will allocate memory from the cache
2760 * during the kmem_cache_destroy().
2762 void kmem_cache_destroy(struct kmem_cache *cachep)
2764 BUG_ON(!cachep || in_interrupt());
2766 /* Find the cache in the chain of caches. */
2768 mutex_lock(&slab_mutex);
2770 * the chain is never empty, cache_cache is never destroyed
2772 list_del(&cachep->list);
2773 if (__cache_shrink(cachep)) {
2774 slab_error(cachep, "Can't free all objects");
2775 list_add(&cachep->list, &slab_caches);
2776 mutex_unlock(&slab_mutex);
2781 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2784 __kmem_cache_destroy(cachep);
2785 mutex_unlock(&slab_mutex);
2788 EXPORT_SYMBOL(kmem_cache_destroy);
2791 * Get the memory for a slab management obj.
2792 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2793 * always come from malloc_sizes caches. The slab descriptor cannot
2794 * come from the same cache which is getting created because,
2795 * when we are searching for an appropriate cache for these
2796 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2797 * If we are creating a malloc_sizes cache here it would not be visible to
2798 * kmem_find_general_cachep till the initialization is complete.
2799 * Hence we cannot have slabp_cache same as the original cache.
2801 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2802 int colour_off, gfp_t local_flags,
2807 if (OFF_SLAB(cachep)) {
2808 /* Slab management obj is off-slab. */
2809 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2810 local_flags, nodeid);
2812 * If the first object in the slab is leaked (it's allocated
2813 * but no one has a reference to it), we want to make sure
2814 * kmemleak does not treat the ->s_mem pointer as a reference
2815 * to the object. Otherwise we will not report the leak.
2817 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2822 slabp = objp + colour_off;
2823 colour_off += cachep->slab_size;
2826 slabp->colouroff = colour_off;
2827 slabp->s_mem = objp + colour_off;
2828 slabp->nodeid = nodeid;
2833 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2835 return (kmem_bufctl_t *) (slabp + 1);
2838 static void cache_init_objs(struct kmem_cache *cachep,
2843 for (i = 0; i < cachep->num; i++) {
2844 void *objp = index_to_obj(cachep, slabp, i);
2846 /* need to poison the objs? */
2847 if (cachep->flags & SLAB_POISON)
2848 poison_obj(cachep, objp, POISON_FREE);
2849 if (cachep->flags & SLAB_STORE_USER)
2850 *dbg_userword(cachep, objp) = NULL;
2852 if (cachep->flags & SLAB_RED_ZONE) {
2853 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2854 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2857 * Constructors are not allowed to allocate memory from the same
2858 * cache which they are a constructor for. Otherwise, deadlock.
2859 * They must also be threaded.
2861 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2862 cachep->ctor(objp + obj_offset(cachep));
2864 if (cachep->flags & SLAB_RED_ZONE) {
2865 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2866 slab_error(cachep, "constructor overwrote the"
2867 " end of an object");
2868 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2869 slab_error(cachep, "constructor overwrote the"
2870 " start of an object");
2872 if ((cachep->size % PAGE_SIZE) == 0 &&
2873 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2874 kernel_map_pages(virt_to_page(objp),
2875 cachep->size / PAGE_SIZE, 0);
2880 slab_bufctl(slabp)[i] = i + 1;
2882 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2885 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2887 if (CONFIG_ZONE_DMA_FLAG) {
2888 if (flags & GFP_DMA)
2889 BUG_ON(!(cachep->allocflags & GFP_DMA));
2891 BUG_ON(cachep->allocflags & GFP_DMA);
2895 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2898 void *objp = index_to_obj(cachep, slabp, slabp->free);
2902 next = slab_bufctl(slabp)[slabp->free];
2904 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2905 WARN_ON(slabp->nodeid != nodeid);
2912 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2913 void *objp, int nodeid)
2915 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2918 /* Verify that the slab belongs to the intended node */
2919 WARN_ON(slabp->nodeid != nodeid);
2921 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2922 printk(KERN_ERR "slab: double free detected in cache "
2923 "'%s', objp %p\n", cachep->name, objp);
2927 slab_bufctl(slabp)[objnr] = slabp->free;
2928 slabp->free = objnr;
2933 * Map pages beginning at addr to the given cache and slab. This is required
2934 * for the slab allocator to be able to lookup the cache and slab of a
2935 * virtual address for kfree, ksize, and slab debugging.
2937 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2943 page = virt_to_page(addr);
2946 if (likely(!PageCompound(page)))
2947 nr_pages <<= cache->gfporder;
2950 page->slab_cache = cache;
2951 page->slab_page = slab;
2953 } while (--nr_pages);
2957 * Grow (by 1) the number of slabs within a cache. This is called by
2958 * kmem_cache_alloc() when there are no active objs left in a cache.
2960 static int cache_grow(struct kmem_cache *cachep,
2961 gfp_t flags, int nodeid, void *objp)
2966 struct kmem_list3 *l3;
2969 * Be lazy and only check for valid flags here, keeping it out of the
2970 * critical path in kmem_cache_alloc().
2972 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2973 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2975 /* Take the l3 list lock to change the colour_next on this node */
2977 l3 = cachep->nodelists[nodeid];
2978 spin_lock(&l3->list_lock);
2980 /* Get colour for the slab, and cal the next value. */
2981 offset = l3->colour_next;
2983 if (l3->colour_next >= cachep->colour)
2984 l3->colour_next = 0;
2985 spin_unlock(&l3->list_lock);
2987 offset *= cachep->colour_off;
2989 if (local_flags & __GFP_WAIT)
2993 * The test for missing atomic flag is performed here, rather than
2994 * the more obvious place, simply to reduce the critical path length
2995 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2996 * will eventually be caught here (where it matters).
2998 kmem_flagcheck(cachep, flags);
3001 * Get mem for the objs. Attempt to allocate a physical page from
3005 objp = kmem_getpages(cachep, local_flags, nodeid);
3009 /* Get slab management. */
3010 slabp = alloc_slabmgmt(cachep, objp, offset,
3011 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
3015 slab_map_pages(cachep, slabp, objp);
3017 cache_init_objs(cachep, slabp);
3019 if (local_flags & __GFP_WAIT)
3020 local_irq_disable();
3022 spin_lock(&l3->list_lock);
3024 /* Make slab active. */
3025 list_add_tail(&slabp->list, &(l3->slabs_free));
3026 STATS_INC_GROWN(cachep);
3027 l3->free_objects += cachep->num;
3028 spin_unlock(&l3->list_lock);
3031 kmem_freepages(cachep, objp);
3033 if (local_flags & __GFP_WAIT)
3034 local_irq_disable();
3041 * Perform extra freeing checks:
3042 * - detect bad pointers.
3043 * - POISON/RED_ZONE checking
3045 static void kfree_debugcheck(const void *objp)
3047 if (!virt_addr_valid(objp)) {
3048 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
3049 (unsigned long)objp);
3054 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
3056 unsigned long long redzone1, redzone2;
3058 redzone1 = *dbg_redzone1(cache, obj);
3059 redzone2 = *dbg_redzone2(cache, obj);
3064 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3067 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3068 slab_error(cache, "double free detected");
3070 slab_error(cache, "memory outside object was overwritten");
3072 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3073 obj, redzone1, redzone2);
3076 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
3083 BUG_ON(virt_to_cache(objp) != cachep);
3085 objp -= obj_offset(cachep);
3086 kfree_debugcheck(objp);
3087 page = virt_to_head_page(objp);
3089 slabp = page->slab_page;
3091 if (cachep->flags & SLAB_RED_ZONE) {
3092 verify_redzone_free(cachep, objp);
3093 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3094 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3096 if (cachep->flags & SLAB_STORE_USER)
3097 *dbg_userword(cachep, objp) = caller;
3099 objnr = obj_to_index(cachep, slabp, objp);
3101 BUG_ON(objnr >= cachep->num);
3102 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3104 #ifdef CONFIG_DEBUG_SLAB_LEAK
3105 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3107 if (cachep->flags & SLAB_POISON) {
3108 #ifdef CONFIG_DEBUG_PAGEALLOC
3109 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3110 store_stackinfo(cachep, objp, (unsigned long)caller);
3111 kernel_map_pages(virt_to_page(objp),
3112 cachep->size / PAGE_SIZE, 0);
3114 poison_obj(cachep, objp, POISON_FREE);
3117 poison_obj(cachep, objp, POISON_FREE);
3123 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3128 /* Check slab's freelist to see if this obj is there. */
3129 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3131 if (entries > cachep->num || i >= cachep->num)
3134 if (entries != cachep->num - slabp->inuse) {
3136 printk(KERN_ERR "slab: Internal list corruption detected in "
3137 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3138 cachep->name, cachep->num, slabp, slabp->inuse,
3140 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3141 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3147 #define kfree_debugcheck(x) do { } while(0)
3148 #define cache_free_debugcheck(x,objp,z) (objp)
3149 #define check_slabp(x,y) do { } while(0)
3152 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3156 struct kmem_list3 *l3;
3157 struct array_cache *ac;
3161 node = numa_mem_id();
3162 if (unlikely(force_refill))
3165 ac = cpu_cache_get(cachep);
3166 batchcount = ac->batchcount;
3167 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3169 * If there was little recent activity on this cache, then
3170 * perform only a partial refill. Otherwise we could generate
3173 batchcount = BATCHREFILL_LIMIT;
3175 l3 = cachep->nodelists[node];
3177 BUG_ON(ac->avail > 0 || !l3);
3178 spin_lock(&l3->list_lock);
3180 /* See if we can refill from the shared array */
3181 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3182 l3->shared->touched = 1;
3186 while (batchcount > 0) {
3187 struct list_head *entry;
3189 /* Get slab alloc is to come from. */
3190 entry = l3->slabs_partial.next;
3191 if (entry == &l3->slabs_partial) {
3192 l3->free_touched = 1;
3193 entry = l3->slabs_free.next;
3194 if (entry == &l3->slabs_free)
3198 slabp = list_entry(entry, struct slab, list);
3199 check_slabp(cachep, slabp);
3200 check_spinlock_acquired(cachep);
3203 * The slab was either on partial or free list so
3204 * there must be at least one object available for
3207 BUG_ON(slabp->inuse >= cachep->num);
3209 while (slabp->inuse < cachep->num && batchcount--) {
3210 STATS_INC_ALLOCED(cachep);
3211 STATS_INC_ACTIVE(cachep);
3212 STATS_SET_HIGH(cachep);
3214 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3217 check_slabp(cachep, slabp);
3219 /* move slabp to correct slabp list: */
3220 list_del(&slabp->list);
3221 if (slabp->free == BUFCTL_END)
3222 list_add(&slabp->list, &l3->slabs_full);
3224 list_add(&slabp->list, &l3->slabs_partial);
3228 l3->free_objects -= ac->avail;
3230 spin_unlock(&l3->list_lock);
3232 if (unlikely(!ac->avail)) {
3235 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3237 /* cache_grow can reenable interrupts, then ac could change. */
3238 ac = cpu_cache_get(cachep);
3240 /* no objects in sight? abort */
3241 if (!x && (ac->avail == 0 || force_refill))
3244 if (!ac->avail) /* objects refilled by interrupt? */
3249 return ac_get_obj(cachep, ac, flags, force_refill);
3252 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3255 might_sleep_if(flags & __GFP_WAIT);
3257 kmem_flagcheck(cachep, flags);
3262 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3263 gfp_t flags, void *objp, void *caller)
3267 if (cachep->flags & SLAB_POISON) {
3268 #ifdef CONFIG_DEBUG_PAGEALLOC
3269 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3270 kernel_map_pages(virt_to_page(objp),
3271 cachep->size / PAGE_SIZE, 1);
3273 check_poison_obj(cachep, objp);
3275 check_poison_obj(cachep, objp);
3277 poison_obj(cachep, objp, POISON_INUSE);
3279 if (cachep->flags & SLAB_STORE_USER)
3280 *dbg_userword(cachep, objp) = caller;
3282 if (cachep->flags & SLAB_RED_ZONE) {
3283 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3284 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3285 slab_error(cachep, "double free, or memory outside"
3286 " object was overwritten");
3288 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3289 objp, *dbg_redzone1(cachep, objp),
3290 *dbg_redzone2(cachep, objp));
3292 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3293 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3295 #ifdef CONFIG_DEBUG_SLAB_LEAK
3300 slabp = virt_to_head_page(objp)->slab_page;
3301 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3302 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3305 objp += obj_offset(cachep);
3306 if (cachep->ctor && cachep->flags & SLAB_POISON)
3308 if (ARCH_SLAB_MINALIGN &&
3309 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3310 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3311 objp, (int)ARCH_SLAB_MINALIGN);
3316 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3319 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3321 if (cachep == &cache_cache)
3324 return should_failslab(cachep->object_size, flags, cachep->flags);
3327 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3330 struct array_cache *ac;
3331 bool force_refill = false;
3335 ac = cpu_cache_get(cachep);
3336 if (likely(ac->avail)) {
3338 objp = ac_get_obj(cachep, ac, flags, false);
3341 * Allow for the possibility all avail objects are not allowed
3342 * by the current flags
3345 STATS_INC_ALLOCHIT(cachep);
3348 force_refill = true;
3351 STATS_INC_ALLOCMISS(cachep);
3352 objp = cache_alloc_refill(cachep, flags, force_refill);
3354 * the 'ac' may be updated by cache_alloc_refill(),
3355 * and kmemleak_erase() requires its correct value.
3357 ac = cpu_cache_get(cachep);
3361 * To avoid a false negative, if an object that is in one of the
3362 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3363 * treat the array pointers as a reference to the object.
3366 kmemleak_erase(&ac->entry[ac->avail]);
3372 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3374 * If we are in_interrupt, then process context, including cpusets and
3375 * mempolicy, may not apply and should not be used for allocation policy.
3377 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3379 int nid_alloc, nid_here;
3381 if (in_interrupt() || (flags & __GFP_THISNODE))
3383 nid_alloc = nid_here = numa_mem_id();
3384 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3385 nid_alloc = cpuset_slab_spread_node();
3386 else if (current->mempolicy)
3387 nid_alloc = slab_node();
3388 if (nid_alloc != nid_here)
3389 return ____cache_alloc_node(cachep, flags, nid_alloc);
3394 * Fallback function if there was no memory available and no objects on a
3395 * certain node and fall back is permitted. First we scan all the
3396 * available nodelists for available objects. If that fails then we
3397 * perform an allocation without specifying a node. This allows the page
3398 * allocator to do its reclaim / fallback magic. We then insert the
3399 * slab into the proper nodelist and then allocate from it.
3401 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3403 struct zonelist *zonelist;
3407 enum zone_type high_zoneidx = gfp_zone(flags);
3410 unsigned int cpuset_mems_cookie;
3412 if (flags & __GFP_THISNODE)
3415 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3418 cpuset_mems_cookie = get_mems_allowed();
3419 zonelist = node_zonelist(slab_node(), flags);
3423 * Look through allowed nodes for objects available
3424 * from existing per node queues.
3426 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3427 nid = zone_to_nid(zone);
3429 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3430 cache->nodelists[nid] &&
3431 cache->nodelists[nid]->free_objects) {
3432 obj = ____cache_alloc_node(cache,
3433 flags | GFP_THISNODE, nid);
3441 * This allocation will be performed within the constraints
3442 * of the current cpuset / memory policy requirements.
3443 * We may trigger various forms of reclaim on the allowed
3444 * set and go into memory reserves if necessary.
3446 if (local_flags & __GFP_WAIT)
3448 kmem_flagcheck(cache, flags);
3449 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3450 if (local_flags & __GFP_WAIT)
3451 local_irq_disable();
3454 * Insert into the appropriate per node queues
3456 nid = page_to_nid(virt_to_page(obj));
3457 if (cache_grow(cache, flags, nid, obj)) {
3458 obj = ____cache_alloc_node(cache,
3459 flags | GFP_THISNODE, nid);
3462 * Another processor may allocate the
3463 * objects in the slab since we are
3464 * not holding any locks.
3468 /* cache_grow already freed obj */
3474 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3480 * A interface to enable slab creation on nodeid
3482 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3485 struct list_head *entry;
3487 struct kmem_list3 *l3;
3491 l3 = cachep->nodelists[nodeid];
3496 spin_lock(&l3->list_lock);
3497 entry = l3->slabs_partial.next;
3498 if (entry == &l3->slabs_partial) {
3499 l3->free_touched = 1;
3500 entry = l3->slabs_free.next;
3501 if (entry == &l3->slabs_free)
3505 slabp = list_entry(entry, struct slab, list);
3506 check_spinlock_acquired_node(cachep, nodeid);
3507 check_slabp(cachep, slabp);
3509 STATS_INC_NODEALLOCS(cachep);
3510 STATS_INC_ACTIVE(cachep);
3511 STATS_SET_HIGH(cachep);
3513 BUG_ON(slabp->inuse == cachep->num);
3515 obj = slab_get_obj(cachep, slabp, nodeid);
3516 check_slabp(cachep, slabp);
3518 /* move slabp to correct slabp list: */
3519 list_del(&slabp->list);
3521 if (slabp->free == BUFCTL_END)
3522 list_add(&slabp->list, &l3->slabs_full);
3524 list_add(&slabp->list, &l3->slabs_partial);
3526 spin_unlock(&l3->list_lock);
3530 spin_unlock(&l3->list_lock);
3531 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3535 return fallback_alloc(cachep, flags);
3542 * kmem_cache_alloc_node - Allocate an object on the specified node
3543 * @cachep: The cache to allocate from.
3544 * @flags: See kmalloc().
3545 * @nodeid: node number of the target node.
3546 * @caller: return address of caller, used for debug information
3548 * Identical to kmem_cache_alloc but it will allocate memory on the given
3549 * node, which can improve the performance for cpu bound structures.
3551 * Fallback to other node is possible if __GFP_THISNODE is not set.
3553 static __always_inline void *
3554 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3557 unsigned long save_flags;
3559 int slab_node = numa_mem_id();
3561 flags &= gfp_allowed_mask;
3563 lockdep_trace_alloc(flags);
3565 if (slab_should_failslab(cachep, flags))
3568 cache_alloc_debugcheck_before(cachep, flags);
3569 local_irq_save(save_flags);
3571 if (nodeid == NUMA_NO_NODE)
3574 if (unlikely(!cachep->nodelists[nodeid])) {
3575 /* Node not bootstrapped yet */
3576 ptr = fallback_alloc(cachep, flags);
3580 if (nodeid == slab_node) {
3582 * Use the locally cached objects if possible.
3583 * However ____cache_alloc does not allow fallback
3584 * to other nodes. It may fail while we still have
3585 * objects on other nodes available.
3587 ptr = ____cache_alloc(cachep, flags);
3591 /* ___cache_alloc_node can fall back to other nodes */
3592 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3594 local_irq_restore(save_flags);
3595 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3596 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3600 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3602 if (unlikely((flags & __GFP_ZERO) && ptr))
3603 memset(ptr, 0, cachep->object_size);
3608 static __always_inline void *
3609 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3613 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3614 objp = alternate_node_alloc(cache, flags);
3618 objp = ____cache_alloc(cache, flags);
3621 * We may just have run out of memory on the local node.
3622 * ____cache_alloc_node() knows how to locate memory on other nodes
3625 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3632 static __always_inline void *
3633 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3635 return ____cache_alloc(cachep, flags);
3638 #endif /* CONFIG_NUMA */
3640 static __always_inline void *
3641 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3643 unsigned long save_flags;
3646 flags &= gfp_allowed_mask;
3648 lockdep_trace_alloc(flags);
3650 if (slab_should_failslab(cachep, flags))
3653 cache_alloc_debugcheck_before(cachep, flags);
3654 local_irq_save(save_flags);
3655 objp = __do_cache_alloc(cachep, flags);
3656 local_irq_restore(save_flags);
3657 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3658 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3663 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3665 if (unlikely((flags & __GFP_ZERO) && objp))
3666 memset(objp, 0, cachep->object_size);
3672 * Caller needs to acquire correct kmem_list's list_lock
3674 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3678 struct kmem_list3 *l3;
3680 for (i = 0; i < nr_objects; i++) {
3684 clear_obj_pfmemalloc(&objpp[i]);
3687 slabp = virt_to_slab(objp);
3688 l3 = cachep->nodelists[node];
3689 list_del(&slabp->list);
3690 check_spinlock_acquired_node(cachep, node);
3691 check_slabp(cachep, slabp);
3692 slab_put_obj(cachep, slabp, objp, node);
3693 STATS_DEC_ACTIVE(cachep);
3695 check_slabp(cachep, slabp);
3697 /* fixup slab chains */
3698 if (slabp->inuse == 0) {
3699 if (l3->free_objects > l3->free_limit) {
3700 l3->free_objects -= cachep->num;
3701 /* No need to drop any previously held
3702 * lock here, even if we have a off-slab slab
3703 * descriptor it is guaranteed to come from
3704 * a different cache, refer to comments before
3707 slab_destroy(cachep, slabp);
3709 list_add(&slabp->list, &l3->slabs_free);
3712 /* Unconditionally move a slab to the end of the
3713 * partial list on free - maximum time for the
3714 * other objects to be freed, too.
3716 list_add_tail(&slabp->list, &l3->slabs_partial);
3721 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3724 struct kmem_list3 *l3;
3725 int node = numa_mem_id();
3727 batchcount = ac->batchcount;
3729 BUG_ON(!batchcount || batchcount > ac->avail);
3732 l3 = cachep->nodelists[node];
3733 spin_lock(&l3->list_lock);
3735 struct array_cache *shared_array = l3->shared;
3736 int max = shared_array->limit - shared_array->avail;
3738 if (batchcount > max)
3740 memcpy(&(shared_array->entry[shared_array->avail]),
3741 ac->entry, sizeof(void *) * batchcount);
3742 shared_array->avail += batchcount;
3747 free_block(cachep, ac->entry, batchcount, node);
3752 struct list_head *p;
3754 p = l3->slabs_free.next;
3755 while (p != &(l3->slabs_free)) {
3758 slabp = list_entry(p, struct slab, list);
3759 BUG_ON(slabp->inuse);
3764 STATS_SET_FREEABLE(cachep, i);
3767 spin_unlock(&l3->list_lock);
3768 ac->avail -= batchcount;
3769 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3773 * Release an obj back to its cache. If the obj has a constructed state, it must
3774 * be in this state _before_ it is released. Called with disabled ints.
3776 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3779 struct array_cache *ac = cpu_cache_get(cachep);
3782 kmemleak_free_recursive(objp, cachep->flags);
3783 objp = cache_free_debugcheck(cachep, objp, caller);
3785 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3788 * Skip calling cache_free_alien() when the platform is not numa.
3789 * This will avoid cache misses that happen while accessing slabp (which
3790 * is per page memory reference) to get nodeid. Instead use a global
3791 * variable to skip the call, which is mostly likely to be present in
3794 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3797 if (likely(ac->avail < ac->limit)) {
3798 STATS_INC_FREEHIT(cachep);
3800 STATS_INC_FREEMISS(cachep);
3801 cache_flusharray(cachep, ac);
3804 ac_put_obj(cachep, ac, objp);
3808 * kmem_cache_alloc - Allocate an object
3809 * @cachep: The cache to allocate from.
3810 * @flags: See kmalloc().
3812 * Allocate an object from this cache. The flags are only relevant
3813 * if the cache has no available objects.
3815 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3817 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3819 trace_kmem_cache_alloc(_RET_IP_, ret,
3820 cachep->object_size, cachep->size, flags);
3824 EXPORT_SYMBOL(kmem_cache_alloc);
3826 #ifdef CONFIG_TRACING
3828 kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3832 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3834 trace_kmalloc(_RET_IP_, ret,
3835 size, slab_buffer_size(cachep), flags);
3838 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3842 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3844 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3845 __builtin_return_address(0));
3847 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3848 cachep->object_size, cachep->size,
3853 EXPORT_SYMBOL(kmem_cache_alloc_node);
3855 #ifdef CONFIG_TRACING
3856 void *kmem_cache_alloc_node_trace(size_t size,
3857 struct kmem_cache *cachep,
3863 ret = __cache_alloc_node(cachep, flags, nodeid,
3864 __builtin_return_address(0));
3865 trace_kmalloc_node(_RET_IP_, ret,
3866 size, slab_buffer_size(cachep),
3870 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3873 static __always_inline void *
3874 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3876 struct kmem_cache *cachep;
3878 cachep = kmem_find_general_cachep(size, flags);
3879 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3881 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3884 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3885 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3887 return __do_kmalloc_node(size, flags, node,
3888 __builtin_return_address(0));
3890 EXPORT_SYMBOL(__kmalloc_node);
3892 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3893 int node, unsigned long caller)
3895 return __do_kmalloc_node(size, flags, node, (void *)caller);
3897 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3899 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3901 return __do_kmalloc_node(size, flags, node, NULL);
3903 EXPORT_SYMBOL(__kmalloc_node);
3904 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3905 #endif /* CONFIG_NUMA */
3908 * __do_kmalloc - allocate memory
3909 * @size: how many bytes of memory are required.
3910 * @flags: the type of memory to allocate (see kmalloc).
3911 * @caller: function caller for debug tracking of the caller
3913 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3916 struct kmem_cache *cachep;
3919 /* If you want to save a few bytes .text space: replace
3921 * Then kmalloc uses the uninlined functions instead of the inline
3924 cachep = __find_general_cachep(size, flags);
3925 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3927 ret = __cache_alloc(cachep, flags, caller);
3929 trace_kmalloc((unsigned long) caller, ret,
3930 size, cachep->size, flags);
3936 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3937 void *__kmalloc(size_t size, gfp_t flags)
3939 return __do_kmalloc(size, flags, __builtin_return_address(0));
3941 EXPORT_SYMBOL(__kmalloc);
3943 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3945 return __do_kmalloc(size, flags, (void *)caller);
3947 EXPORT_SYMBOL(__kmalloc_track_caller);
3950 void *__kmalloc(size_t size, gfp_t flags)
3952 return __do_kmalloc(size, flags, NULL);
3954 EXPORT_SYMBOL(__kmalloc);
3958 * kmem_cache_free - Deallocate an object
3959 * @cachep: The cache the allocation was from.
3960 * @objp: The previously allocated object.
3962 * Free an object which was previously allocated from this
3965 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3967 unsigned long flags;
3969 local_irq_save(flags);
3970 debug_check_no_locks_freed(objp, cachep->object_size);
3971 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3972 debug_check_no_obj_freed(objp, cachep->object_size);
3973 __cache_free(cachep, objp, __builtin_return_address(0));
3974 local_irq_restore(flags);
3976 trace_kmem_cache_free(_RET_IP_, objp);
3978 EXPORT_SYMBOL(kmem_cache_free);
3981 * kfree - free previously allocated memory
3982 * @objp: pointer returned by kmalloc.
3984 * If @objp is NULL, no operation is performed.
3986 * Don't free memory not originally allocated by kmalloc()
3987 * or you will run into trouble.
3989 void kfree(const void *objp)
3991 struct kmem_cache *c;
3992 unsigned long flags;
3994 trace_kfree(_RET_IP_, objp);
3996 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3998 local_irq_save(flags);
3999 kfree_debugcheck(objp);
4000 c = virt_to_cache(objp);
4001 debug_check_no_locks_freed(objp, c->object_size);
4003 debug_check_no_obj_freed(objp, c->object_size);
4004 __cache_free(c, (void *)objp, __builtin_return_address(0));
4005 local_irq_restore(flags);
4007 EXPORT_SYMBOL(kfree);
4009 unsigned int kmem_cache_size(struct kmem_cache *cachep)
4011 return cachep->object_size;
4013 EXPORT_SYMBOL(kmem_cache_size);
4016 * This initializes kmem_list3 or resizes various caches for all nodes.
4018 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
4021 struct kmem_list3 *l3;
4022 struct array_cache *new_shared;
4023 struct array_cache **new_alien = NULL;
4025 for_each_online_node(node) {
4027 if (use_alien_caches) {
4028 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
4034 if (cachep->shared) {
4035 new_shared = alloc_arraycache(node,
4036 cachep->shared*cachep->batchcount,
4039 free_alien_cache(new_alien);
4044 l3 = cachep->nodelists[node];
4046 struct array_cache *shared = l3->shared;
4048 spin_lock_irq(&l3->list_lock);
4051 free_block(cachep, shared->entry,
4052 shared->avail, node);
4054 l3->shared = new_shared;
4056 l3->alien = new_alien;
4059 l3->free_limit = (1 + nr_cpus_node(node)) *
4060 cachep->batchcount + cachep->num;
4061 spin_unlock_irq(&l3->list_lock);
4063 free_alien_cache(new_alien);
4066 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
4068 free_alien_cache(new_alien);
4073 kmem_list3_init(l3);
4074 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
4075 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4076 l3->shared = new_shared;
4077 l3->alien = new_alien;
4078 l3->free_limit = (1 + nr_cpus_node(node)) *
4079 cachep->batchcount + cachep->num;
4080 cachep->nodelists[node] = l3;
4085 if (!cachep->list.next) {
4086 /* Cache is not active yet. Roll back what we did */
4089 if (cachep->nodelists[node]) {
4090 l3 = cachep->nodelists[node];
4093 free_alien_cache(l3->alien);
4095 cachep->nodelists[node] = NULL;
4103 struct ccupdate_struct {
4104 struct kmem_cache *cachep;
4105 struct array_cache *new[0];
4108 static void do_ccupdate_local(void *info)
4110 struct ccupdate_struct *new = info;
4111 struct array_cache *old;
4114 old = cpu_cache_get(new->cachep);
4116 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4117 new->new[smp_processor_id()] = old;
4120 /* Always called with the slab_mutex held */
4121 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4122 int batchcount, int shared, gfp_t gfp)
4124 struct ccupdate_struct *new;
4127 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4132 for_each_online_cpu(i) {
4133 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4136 for (i--; i >= 0; i--)
4142 new->cachep = cachep;
4144 on_each_cpu(do_ccupdate_local, (void *)new, 1);
4147 cachep->batchcount = batchcount;
4148 cachep->limit = limit;
4149 cachep->shared = shared;
4151 for_each_online_cpu(i) {
4152 struct array_cache *ccold = new->new[i];
4155 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4156 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4157 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4161 return alloc_kmemlist(cachep, gfp);
4164 /* Called with slab_mutex held always */
4165 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4171 * The head array serves three purposes:
4172 * - create a LIFO ordering, i.e. return objects that are cache-warm
4173 * - reduce the number of spinlock operations.
4174 * - reduce the number of linked list operations on the slab and
4175 * bufctl chains: array operations are cheaper.
4176 * The numbers are guessed, we should auto-tune as described by
4179 if (cachep->size > 131072)
4181 else if (cachep->size > PAGE_SIZE)
4183 else if (cachep->size > 1024)
4185 else if (cachep->size > 256)
4191 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4192 * allocation behaviour: Most allocs on one cpu, most free operations
4193 * on another cpu. For these cases, an efficient object passing between
4194 * cpus is necessary. This is provided by a shared array. The array
4195 * replaces Bonwick's magazine layer.
4196 * On uniprocessor, it's functionally equivalent (but less efficient)
4197 * to a larger limit. Thus disabled by default.
4200 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4205 * With debugging enabled, large batchcount lead to excessively long
4206 * periods with disabled local interrupts. Limit the batchcount
4211 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4213 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4214 cachep->name, -err);
4219 * Drain an array if it contains any elements taking the l3 lock only if
4220 * necessary. Note that the l3 listlock also protects the array_cache
4221 * if drain_array() is used on the shared array.
4223 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4224 struct array_cache *ac, int force, int node)
4228 if (!ac || !ac->avail)
4230 if (ac->touched && !force) {
4233 spin_lock_irq(&l3->list_lock);
4235 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4236 if (tofree > ac->avail)
4237 tofree = (ac->avail + 1) / 2;
4238 free_block(cachep, ac->entry, tofree, node);
4239 ac->avail -= tofree;
4240 memmove(ac->entry, &(ac->entry[tofree]),
4241 sizeof(void *) * ac->avail);
4243 spin_unlock_irq(&l3->list_lock);
4248 * cache_reap - Reclaim memory from caches.
4249 * @w: work descriptor
4251 * Called from workqueue/eventd every few seconds.
4253 * - clear the per-cpu caches for this CPU.
4254 * - return freeable pages to the main free memory pool.
4256 * If we cannot acquire the cache chain mutex then just give up - we'll try
4257 * again on the next iteration.
4259 static void cache_reap(struct work_struct *w)
4261 struct kmem_cache *searchp;
4262 struct kmem_list3 *l3;
4263 int node = numa_mem_id();
4264 struct delayed_work *work = to_delayed_work(w);
4266 if (!mutex_trylock(&slab_mutex))
4267 /* Give up. Setup the next iteration. */
4270 list_for_each_entry(searchp, &slab_caches, list) {
4274 * We only take the l3 lock if absolutely necessary and we
4275 * have established with reasonable certainty that
4276 * we can do some work if the lock was obtained.
4278 l3 = searchp->nodelists[node];
4280 reap_alien(searchp, l3);
4282 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4285 * These are racy checks but it does not matter
4286 * if we skip one check or scan twice.
4288 if (time_after(l3->next_reap, jiffies))
4291 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4293 drain_array(searchp, l3, l3->shared, 0, node);
4295 if (l3->free_touched)
4296 l3->free_touched = 0;
4300 freed = drain_freelist(searchp, l3, (l3->free_limit +
4301 5 * searchp->num - 1) / (5 * searchp->num));
4302 STATS_ADD_REAPED(searchp, freed);
4308 mutex_unlock(&slab_mutex);
4311 /* Set up the next iteration */
4312 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4315 #ifdef CONFIG_SLABINFO
4317 static void print_slabinfo_header(struct seq_file *m)
4320 * Output format version, so at least we can change it
4321 * without _too_ many complaints.
4324 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4326 seq_puts(m, "slabinfo - version: 2.1\n");
4328 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4329 "<objperslab> <pagesperslab>");
4330 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4331 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4333 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4334 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4335 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4340 static void *s_start(struct seq_file *m, loff_t *pos)
4344 mutex_lock(&slab_mutex);
4346 print_slabinfo_header(m);
4348 return seq_list_start(&slab_caches, *pos);
4351 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4353 return seq_list_next(p, &slab_caches, pos);
4356 static void s_stop(struct seq_file *m, void *p)
4358 mutex_unlock(&slab_mutex);
4361 static int s_show(struct seq_file *m, void *p)
4363 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4365 unsigned long active_objs;
4366 unsigned long num_objs;
4367 unsigned long active_slabs = 0;
4368 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4372 struct kmem_list3 *l3;
4376 for_each_online_node(node) {
4377 l3 = cachep->nodelists[node];
4382 spin_lock_irq(&l3->list_lock);
4384 list_for_each_entry(slabp, &l3->slabs_full, list) {
4385 if (slabp->inuse != cachep->num && !error)
4386 error = "slabs_full accounting error";
4387 active_objs += cachep->num;
4390 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4391 if (slabp->inuse == cachep->num && !error)
4392 error = "slabs_partial inuse accounting error";
4393 if (!slabp->inuse && !error)
4394 error = "slabs_partial/inuse accounting error";
4395 active_objs += slabp->inuse;
4398 list_for_each_entry(slabp, &l3->slabs_free, list) {
4399 if (slabp->inuse && !error)
4400 error = "slabs_free/inuse accounting error";
4403 free_objects += l3->free_objects;
4405 shared_avail += l3->shared->avail;
4407 spin_unlock_irq(&l3->list_lock);
4409 num_slabs += active_slabs;
4410 num_objs = num_slabs * cachep->num;
4411 if (num_objs - active_objs != free_objects && !error)
4412 error = "free_objects accounting error";
4414 name = cachep->name;
4416 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4418 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4419 name, active_objs, num_objs, cachep->size,
4420 cachep->num, (1 << cachep->gfporder));
4421 seq_printf(m, " : tunables %4u %4u %4u",
4422 cachep->limit, cachep->batchcount, cachep->shared);
4423 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4424 active_slabs, num_slabs, shared_avail);
4427 unsigned long high = cachep->high_mark;
4428 unsigned long allocs = cachep->num_allocations;
4429 unsigned long grown = cachep->grown;
4430 unsigned long reaped = cachep->reaped;
4431 unsigned long errors = cachep->errors;
4432 unsigned long max_freeable = cachep->max_freeable;
4433 unsigned long node_allocs = cachep->node_allocs;
4434 unsigned long node_frees = cachep->node_frees;
4435 unsigned long overflows = cachep->node_overflow;
4437 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4438 "%4lu %4lu %4lu %4lu %4lu",
4439 allocs, high, grown,
4440 reaped, errors, max_freeable, node_allocs,
4441 node_frees, overflows);
4445 unsigned long allochit = atomic_read(&cachep->allochit);
4446 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4447 unsigned long freehit = atomic_read(&cachep->freehit);
4448 unsigned long freemiss = atomic_read(&cachep->freemiss);
4450 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4451 allochit, allocmiss, freehit, freemiss);
4459 * slabinfo_op - iterator that generates /proc/slabinfo
4468 * num-pages-per-slab
4469 * + further values on SMP and with statistics enabled
4472 static const struct seq_operations slabinfo_op = {
4479 #define MAX_SLABINFO_WRITE 128
4481 * slabinfo_write - Tuning for the slab allocator
4483 * @buffer: user buffer
4484 * @count: data length
4487 static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4488 size_t count, loff_t *ppos)
4490 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4491 int limit, batchcount, shared, res;
4492 struct kmem_cache *cachep;
4494 if (count > MAX_SLABINFO_WRITE)
4496 if (copy_from_user(&kbuf, buffer, count))
4498 kbuf[MAX_SLABINFO_WRITE] = '\0';
4500 tmp = strchr(kbuf, ' ');
4505 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4508 /* Find the cache in the chain of caches. */
4509 mutex_lock(&slab_mutex);
4511 list_for_each_entry(cachep, &slab_caches, list) {
4512 if (!strcmp(cachep->name, kbuf)) {
4513 if (limit < 1 || batchcount < 1 ||
4514 batchcount > limit || shared < 0) {
4517 res = do_tune_cpucache(cachep, limit,
4524 mutex_unlock(&slab_mutex);
4530 static int slabinfo_open(struct inode *inode, struct file *file)
4532 return seq_open(file, &slabinfo_op);
4535 static const struct file_operations proc_slabinfo_operations = {
4536 .open = slabinfo_open,
4538 .write = slabinfo_write,
4539 .llseek = seq_lseek,
4540 .release = seq_release,
4543 #ifdef CONFIG_DEBUG_SLAB_LEAK
4545 static void *leaks_start(struct seq_file *m, loff_t *pos)
4547 mutex_lock(&slab_mutex);
4548 return seq_list_start(&slab_caches, *pos);
4551 static inline int add_caller(unsigned long *n, unsigned long v)
4561 unsigned long *q = p + 2 * i;
4575 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4581 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4587 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4588 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4590 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4595 static void show_symbol(struct seq_file *m, unsigned long address)
4597 #ifdef CONFIG_KALLSYMS
4598 unsigned long offset, size;
4599 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4601 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4602 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4604 seq_printf(m, " [%s]", modname);
4608 seq_printf(m, "%p", (void *)address);
4611 static int leaks_show(struct seq_file *m, void *p)
4613 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4615 struct kmem_list3 *l3;
4617 unsigned long *n = m->private;
4621 if (!(cachep->flags & SLAB_STORE_USER))
4623 if (!(cachep->flags & SLAB_RED_ZONE))
4626 /* OK, we can do it */
4630 for_each_online_node(node) {
4631 l3 = cachep->nodelists[node];
4636 spin_lock_irq(&l3->list_lock);
4638 list_for_each_entry(slabp, &l3->slabs_full, list)
4639 handle_slab(n, cachep, slabp);
4640 list_for_each_entry(slabp, &l3->slabs_partial, list)
4641 handle_slab(n, cachep, slabp);
4642 spin_unlock_irq(&l3->list_lock);
4644 name = cachep->name;
4646 /* Increase the buffer size */
4647 mutex_unlock(&slab_mutex);
4648 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4650 /* Too bad, we are really out */
4652 mutex_lock(&slab_mutex);
4655 *(unsigned long *)m->private = n[0] * 2;
4657 mutex_lock(&slab_mutex);
4658 /* Now make sure this entry will be retried */
4662 for (i = 0; i < n[1]; i++) {
4663 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4664 show_symbol(m, n[2*i+2]);
4671 static const struct seq_operations slabstats_op = {
4672 .start = leaks_start,
4678 static int slabstats_open(struct inode *inode, struct file *file)
4680 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4683 ret = seq_open(file, &slabstats_op);
4685 struct seq_file *m = file->private_data;
4686 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4695 static const struct file_operations proc_slabstats_operations = {
4696 .open = slabstats_open,
4698 .llseek = seq_lseek,
4699 .release = seq_release_private,
4703 static int __init slab_proc_init(void)
4705 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4706 #ifdef CONFIG_DEBUG_SLAB_LEAK
4707 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4711 module_init(slab_proc_init);
4715 * ksize - get the actual amount of memory allocated for a given object
4716 * @objp: Pointer to the object
4718 * kmalloc may internally round up allocations and return more memory
4719 * than requested. ksize() can be used to determine the actual amount of
4720 * memory allocated. The caller may use this additional memory, even though
4721 * a smaller amount of memory was initially specified with the kmalloc call.
4722 * The caller must guarantee that objp points to a valid object previously
4723 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4724 * must not be freed during the duration of the call.
4726 size_t ksize(const void *objp)
4729 if (unlikely(objp == ZERO_SIZE_PTR))
4732 return virt_to_cache(objp)->object_size;
4734 EXPORT_SYMBOL(ksize);