]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-3.10.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the
18         Free Software Foundation, Inc.,
19         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23         Module: rt2x00lib
24         Abstract: rt2x00 generic device routines.
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36  * Utility functions.
37  */
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39                          struct ieee80211_vif *vif)
40 {
41         /*
42          * When in STA mode, bssidx is always 0 otherwise local_address[5]
43          * contains the bss number, see BSS_ID_MASK comments for details.
44          */
45         if (rt2x00dev->intf_sta_count)
46                 return 0;
47         return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50
51 /*
52  * Radio control handlers.
53  */
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56         int status;
57
58         /*
59          * Don't enable the radio twice.
60          * And check if the hardware button has been disabled.
61          */
62         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63                 return 0;
64
65         /*
66          * Initialize all data queues.
67          */
68         rt2x00queue_init_queues(rt2x00dev);
69
70         /*
71          * Enable radio.
72          */
73         status =
74             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75         if (status)
76                 return status;
77
78         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79
80         rt2x00leds_led_radio(rt2x00dev, true);
81         rt2x00led_led_activity(rt2x00dev, true);
82
83         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84
85         /*
86          * Enable queues.
87          */
88         rt2x00queue_start_queues(rt2x00dev);
89         rt2x00link_start_tuner(rt2x00dev);
90         rt2x00link_start_agc(rt2x00dev);
91         if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
92                 rt2x00link_start_vcocal(rt2x00dev);
93
94         /*
95          * Start watchdog monitoring.
96          */
97         rt2x00link_start_watchdog(rt2x00dev);
98
99         return 0;
100 }
101
102 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
103 {
104         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
105                 return;
106
107         /*
108          * Stop watchdog monitoring.
109          */
110         rt2x00link_stop_watchdog(rt2x00dev);
111
112         /*
113          * Stop all queues
114          */
115         rt2x00link_stop_agc(rt2x00dev);
116         if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
117                 rt2x00link_stop_vcocal(rt2x00dev);
118         rt2x00link_stop_tuner(rt2x00dev);
119         rt2x00queue_stop_queues(rt2x00dev);
120         rt2x00queue_flush_queues(rt2x00dev, true);
121
122         /*
123          * Disable radio.
124          */
125         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
126         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
127         rt2x00led_led_activity(rt2x00dev, false);
128         rt2x00leds_led_radio(rt2x00dev, false);
129 }
130
131 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
132                                           struct ieee80211_vif *vif)
133 {
134         struct rt2x00_dev *rt2x00dev = data;
135         struct rt2x00_intf *intf = vif_to_intf(vif);
136
137         /*
138          * It is possible the radio was disabled while the work had been
139          * scheduled. If that happens we should return here immediately,
140          * note that in the spinlock protected area above the delayed_flags
141          * have been cleared correctly.
142          */
143         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
144                 return;
145
146         if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
147                 rt2x00queue_update_beacon(rt2x00dev, vif);
148 }
149
150 static void rt2x00lib_intf_scheduled(struct work_struct *work)
151 {
152         struct rt2x00_dev *rt2x00dev =
153             container_of(work, struct rt2x00_dev, intf_work);
154
155         /*
156          * Iterate over each interface and perform the
157          * requested configurations.
158          */
159         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
160                                             rt2x00lib_intf_scheduled_iter,
161                                             rt2x00dev);
162 }
163
164 static void rt2x00lib_autowakeup(struct work_struct *work)
165 {
166         struct rt2x00_dev *rt2x00dev =
167             container_of(work, struct rt2x00_dev, autowakeup_work.work);
168
169         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
170                 return;
171
172         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
173                 ERROR(rt2x00dev, "Device failed to wakeup.\n");
174         clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
175 }
176
177 /*
178  * Interrupt context handlers.
179  */
180 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
181                                      struct ieee80211_vif *vif)
182 {
183         struct rt2x00_dev *rt2x00dev = data;
184         struct sk_buff *skb;
185
186         /*
187          * Only AP mode interfaces do broad- and multicast buffering
188          */
189         if (vif->type != NL80211_IFTYPE_AP)
190                 return;
191
192         /*
193          * Send out buffered broad- and multicast frames
194          */
195         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
196         while (skb) {
197                 rt2x00mac_tx(rt2x00dev->hw, skb);
198                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
199         }
200 }
201
202 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
203                                         struct ieee80211_vif *vif)
204 {
205         struct rt2x00_dev *rt2x00dev = data;
206
207         if (vif->type != NL80211_IFTYPE_AP &&
208             vif->type != NL80211_IFTYPE_ADHOC &&
209             vif->type != NL80211_IFTYPE_MESH_POINT &&
210             vif->type != NL80211_IFTYPE_WDS)
211                 return;
212
213         /*
214          * Update the beacon without locking. This is safe on PCI devices
215          * as they only update the beacon periodically here. This should
216          * never be called for USB devices.
217          */
218         WARN_ON(rt2x00_is_usb(rt2x00dev));
219         rt2x00queue_update_beacon_locked(rt2x00dev, vif);
220 }
221
222 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
223 {
224         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
225                 return;
226
227         /* send buffered bc/mc frames out for every bssid */
228         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
229                                                    rt2x00lib_bc_buffer_iter,
230                                                    rt2x00dev);
231         /*
232          * Devices with pre tbtt interrupt don't need to update the beacon
233          * here as they will fetch the next beacon directly prior to
234          * transmission.
235          */
236         if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
237                 return;
238
239         /* fetch next beacon */
240         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
241                                                    rt2x00lib_beaconupdate_iter,
242                                                    rt2x00dev);
243 }
244 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
245
246 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
247 {
248         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
249                 return;
250
251         /* fetch next beacon */
252         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
253                                                    rt2x00lib_beaconupdate_iter,
254                                                    rt2x00dev);
255 }
256 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
257
258 void rt2x00lib_dmastart(struct queue_entry *entry)
259 {
260         set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
261         rt2x00queue_index_inc(entry, Q_INDEX);
262 }
263 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
264
265 void rt2x00lib_dmadone(struct queue_entry *entry)
266 {
267         set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
268         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
269         rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
270 }
271 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
272
273 void rt2x00lib_txdone(struct queue_entry *entry,
274                       struct txdone_entry_desc *txdesc)
275 {
276         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
277         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
278         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
279         unsigned int header_length, i;
280         u8 rate_idx, rate_flags, retry_rates;
281         u8 skbdesc_flags = skbdesc->flags;
282         bool success;
283
284         /*
285          * Unmap the skb.
286          */
287         rt2x00queue_unmap_skb(entry);
288
289         /*
290          * Remove the extra tx headroom from the skb.
291          */
292         skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
293
294         /*
295          * Signal that the TX descriptor is no longer in the skb.
296          */
297         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
298
299         /*
300          * Determine the length of 802.11 header.
301          */
302         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
303
304         /*
305          * Remove L2 padding which was added during
306          */
307         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
308                 rt2x00queue_remove_l2pad(entry->skb, header_length);
309
310         /*
311          * If the IV/EIV data was stripped from the frame before it was
312          * passed to the hardware, we should now reinsert it again because
313          * mac80211 will expect the same data to be present it the
314          * frame as it was passed to us.
315          */
316         if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
317                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
318
319         /*
320          * Send frame to debugfs immediately, after this call is completed
321          * we are going to overwrite the skb->cb array.
322          */
323         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
324
325         /*
326          * Determine if the frame has been successfully transmitted.
327          */
328         success =
329             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
330             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
331
332         /*
333          * Update TX statistics.
334          */
335         rt2x00dev->link.qual.tx_success += success;
336         rt2x00dev->link.qual.tx_failed += !success;
337
338         rate_idx = skbdesc->tx_rate_idx;
339         rate_flags = skbdesc->tx_rate_flags;
340         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
341             (txdesc->retry + 1) : 1;
342
343         /*
344          * Initialize TX status
345          */
346         memset(&tx_info->status, 0, sizeof(tx_info->status));
347         tx_info->status.ack_signal = 0;
348
349         /*
350          * Frame was send with retries, hardware tried
351          * different rates to send out the frame, at each
352          * retry it lowered the rate 1 step except when the
353          * lowest rate was used.
354          */
355         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
356                 tx_info->status.rates[i].idx = rate_idx - i;
357                 tx_info->status.rates[i].flags = rate_flags;
358
359                 if (rate_idx - i == 0) {
360                         /*
361                          * The lowest rate (index 0) was used until the
362                          * number of max retries was reached.
363                          */
364                         tx_info->status.rates[i].count = retry_rates - i;
365                         i++;
366                         break;
367                 }
368                 tx_info->status.rates[i].count = 1;
369         }
370         if (i < (IEEE80211_TX_MAX_RATES - 1))
371                 tx_info->status.rates[i].idx = -1; /* terminate */
372
373         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
374                 if (success)
375                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
376                 else
377                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
378         }
379
380         /*
381          * Every single frame has it's own tx status, hence report
382          * every frame as ampdu of size 1.
383          *
384          * TODO: if we can find out how many frames were aggregated
385          * by the hw we could provide the real ampdu_len to mac80211
386          * which would allow the rc algorithm to better decide on
387          * which rates are suitable.
388          */
389         if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
390             tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
391                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
392                 tx_info->status.ampdu_len = 1;
393                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
394                 /*
395                  * TODO: Need to tear down BA session here
396                  * if not successful.
397                  */
398         }
399
400         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
401                 if (success)
402                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
403                 else
404                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
405         }
406
407         /*
408          * Only send the status report to mac80211 when it's a frame
409          * that originated in mac80211. If this was a extra frame coming
410          * through a mac80211 library call (RTS/CTS) then we should not
411          * send the status report back.
412          */
413         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
414                 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
415                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
416                 else
417                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
418         } else
419                 dev_kfree_skb_any(entry->skb);
420
421         /*
422          * Make this entry available for reuse.
423          */
424         entry->skb = NULL;
425         entry->flags = 0;
426
427         rt2x00dev->ops->lib->clear_entry(entry);
428
429         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
430
431         /*
432          * If the data queue was below the threshold before the txdone
433          * handler we must make sure the packet queue in the mac80211 stack
434          * is reenabled when the txdone handler has finished. This has to be
435          * serialized with rt2x00mac_tx(), otherwise we can wake up queue
436          * before it was stopped.
437          */
438         spin_lock_bh(&entry->queue->tx_lock);
439         if (!rt2x00queue_threshold(entry->queue))
440                 rt2x00queue_unpause_queue(entry->queue);
441         spin_unlock_bh(&entry->queue->tx_lock);
442 }
443 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
444
445 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
446 {
447         struct txdone_entry_desc txdesc;
448
449         txdesc.flags = 0;
450         __set_bit(status, &txdesc.flags);
451         txdesc.retry = 0;
452
453         rt2x00lib_txdone(entry, &txdesc);
454 }
455 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
456
457 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
458 {
459         struct ieee80211_mgmt *mgmt = (void *)data;
460         u8 *pos, *end;
461
462         pos = (u8 *)mgmt->u.beacon.variable;
463         end = data + len;
464         while (pos < end) {
465                 if (pos + 2 + pos[1] > end)
466                         return NULL;
467
468                 if (pos[0] == ie)
469                         return pos;
470
471                 pos += 2 + pos[1];
472         }
473
474         return NULL;
475 }
476
477 static void rt2x00lib_sleep(struct work_struct *work)
478 {
479         struct rt2x00_dev *rt2x00dev =
480             container_of(work, struct rt2x00_dev, sleep_work);
481
482         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
483                 return;
484
485         /*
486          * Check again is powersaving is enabled, to prevent races from delayed
487          * work execution.
488          */
489         if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
490                 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
491                                  IEEE80211_CONF_CHANGE_PS);
492 }
493
494 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
495                                       struct sk_buff *skb,
496                                       struct rxdone_entry_desc *rxdesc)
497 {
498         struct ieee80211_hdr *hdr = (void *) skb->data;
499         struct ieee80211_tim_ie *tim_ie;
500         u8 *tim;
501         u8 tim_len;
502         bool cam;
503
504         /* If this is not a beacon, or if mac80211 has no powersaving
505          * configured, or if the device is already in powersaving mode
506          * we can exit now. */
507         if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
508                    !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
509                 return;
510
511         /* min. beacon length + FCS_LEN */
512         if (skb->len <= 40 + FCS_LEN)
513                 return;
514
515         /* and only beacons from the associated BSSID, please */
516         if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
517             !rt2x00dev->aid)
518                 return;
519
520         rt2x00dev->last_beacon = jiffies;
521
522         tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
523         if (!tim)
524                 return;
525
526         if (tim[1] < sizeof(*tim_ie))
527                 return;
528
529         tim_len = tim[1];
530         tim_ie = (struct ieee80211_tim_ie *) &tim[2];
531
532         /* Check whenever the PHY can be turned off again. */
533
534         /* 1. What about buffered unicast traffic for our AID? */
535         cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
536
537         /* 2. Maybe the AP wants to send multicast/broadcast data? */
538         cam |= (tim_ie->bitmap_ctrl & 0x01);
539
540         if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
541                 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
542 }
543
544 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
545                                         struct rxdone_entry_desc *rxdesc)
546 {
547         struct ieee80211_supported_band *sband;
548         const struct rt2x00_rate *rate;
549         unsigned int i;
550         int signal = rxdesc->signal;
551         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
552
553         switch (rxdesc->rate_mode) {
554         case RATE_MODE_CCK:
555         case RATE_MODE_OFDM:
556                 /*
557                  * For non-HT rates the MCS value needs to contain the
558                  * actually used rate modulation (CCK or OFDM).
559                  */
560                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
561                         signal = RATE_MCS(rxdesc->rate_mode, signal);
562
563                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
564                 for (i = 0; i < sband->n_bitrates; i++) {
565                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
566                         if (((type == RXDONE_SIGNAL_PLCP) &&
567                              (rate->plcp == signal)) ||
568                             ((type == RXDONE_SIGNAL_BITRATE) &&
569                               (rate->bitrate == signal)) ||
570                             ((type == RXDONE_SIGNAL_MCS) &&
571                               (rate->mcs == signal))) {
572                                 return i;
573                         }
574                 }
575                 break;
576         case RATE_MODE_HT_MIX:
577         case RATE_MODE_HT_GREENFIELD:
578                 if (signal >= 0 && signal <= 76)
579                         return signal;
580                 break;
581         default:
582                 break;
583         }
584
585         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
586                 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
587                 rxdesc->rate_mode, signal, type);
588         return 0;
589 }
590
591 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
592 {
593         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
594         struct rxdone_entry_desc rxdesc;
595         struct sk_buff *skb;
596         struct ieee80211_rx_status *rx_status;
597         unsigned int header_length;
598         int rate_idx;
599
600         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
601             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
602                 goto submit_entry;
603
604         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
605                 goto submit_entry;
606
607         /*
608          * Allocate a new sk_buffer. If no new buffer available, drop the
609          * received frame and reuse the existing buffer.
610          */
611         skb = rt2x00queue_alloc_rxskb(entry, gfp);
612         if (!skb)
613                 goto submit_entry;
614
615         /*
616          * Unmap the skb.
617          */
618         rt2x00queue_unmap_skb(entry);
619
620         /*
621          * Extract the RXD details.
622          */
623         memset(&rxdesc, 0, sizeof(rxdesc));
624         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
625
626         /*
627          * Check for valid size in case we get corrupted descriptor from
628          * hardware.
629          */
630         if (unlikely(rxdesc.size == 0 ||
631                      rxdesc.size > entry->queue->data_size)) {
632                 WARNING(rt2x00dev, "Wrong frame size %d max %d.\n",
633                         rxdesc.size, entry->queue->data_size);
634                 dev_kfree_skb(entry->skb);
635                 goto renew_skb;
636         }
637
638         /*
639          * The data behind the ieee80211 header must be
640          * aligned on a 4 byte boundary.
641          */
642         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
643
644         /*
645          * Hardware might have stripped the IV/EIV/ICV data,
646          * in that case it is possible that the data was
647          * provided separately (through hardware descriptor)
648          * in which case we should reinsert the data into the frame.
649          */
650         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
651             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
652                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
653                                           &rxdesc);
654         else if (header_length &&
655                  (rxdesc.size > header_length) &&
656                  (rxdesc.dev_flags & RXDONE_L2PAD))
657                 rt2x00queue_remove_l2pad(entry->skb, header_length);
658
659         /* Trim buffer to correct size */
660         skb_trim(entry->skb, rxdesc.size);
661
662         /*
663          * Translate the signal to the correct bitrate index.
664          */
665         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
666         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
667             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
668                 rxdesc.flags |= RX_FLAG_HT;
669
670         /*
671          * Check if this is a beacon, and more frames have been
672          * buffered while we were in powersaving mode.
673          */
674         rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
675
676         /*
677          * Update extra components
678          */
679         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
680         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
681         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
682
683         /*
684          * Initialize RX status information, and send frame
685          * to mac80211.
686          */
687         rx_status = IEEE80211_SKB_RXCB(entry->skb);
688         rx_status->mactime = rxdesc.timestamp;
689         rx_status->band = rt2x00dev->curr_band;
690         rx_status->freq = rt2x00dev->curr_freq;
691         rx_status->rate_idx = rate_idx;
692         rx_status->signal = rxdesc.rssi;
693         rx_status->flag = rxdesc.flags;
694         rx_status->antenna = rt2x00dev->link.ant.active.rx;
695
696         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
697
698 renew_skb:
699         /*
700          * Replace the skb with the freshly allocated one.
701          */
702         entry->skb = skb;
703
704 submit_entry:
705         entry->flags = 0;
706         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
707         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
708             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
709                 rt2x00dev->ops->lib->clear_entry(entry);
710 }
711 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
712
713 /*
714  * Driver initialization handlers.
715  */
716 const struct rt2x00_rate rt2x00_supported_rates[12] = {
717         {
718                 .flags = DEV_RATE_CCK,
719                 .bitrate = 10,
720                 .ratemask = BIT(0),
721                 .plcp = 0x00,
722                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
723         },
724         {
725                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
726                 .bitrate = 20,
727                 .ratemask = BIT(1),
728                 .plcp = 0x01,
729                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
730         },
731         {
732                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
733                 .bitrate = 55,
734                 .ratemask = BIT(2),
735                 .plcp = 0x02,
736                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
737         },
738         {
739                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
740                 .bitrate = 110,
741                 .ratemask = BIT(3),
742                 .plcp = 0x03,
743                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
744         },
745         {
746                 .flags = DEV_RATE_OFDM,
747                 .bitrate = 60,
748                 .ratemask = BIT(4),
749                 .plcp = 0x0b,
750                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
751         },
752         {
753                 .flags = DEV_RATE_OFDM,
754                 .bitrate = 90,
755                 .ratemask = BIT(5),
756                 .plcp = 0x0f,
757                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
758         },
759         {
760                 .flags = DEV_RATE_OFDM,
761                 .bitrate = 120,
762                 .ratemask = BIT(6),
763                 .plcp = 0x0a,
764                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
765         },
766         {
767                 .flags = DEV_RATE_OFDM,
768                 .bitrate = 180,
769                 .ratemask = BIT(7),
770                 .plcp = 0x0e,
771                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
772         },
773         {
774                 .flags = DEV_RATE_OFDM,
775                 .bitrate = 240,
776                 .ratemask = BIT(8),
777                 .plcp = 0x09,
778                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
779         },
780         {
781                 .flags = DEV_RATE_OFDM,
782                 .bitrate = 360,
783                 .ratemask = BIT(9),
784                 .plcp = 0x0d,
785                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
786         },
787         {
788                 .flags = DEV_RATE_OFDM,
789                 .bitrate = 480,
790                 .ratemask = BIT(10),
791                 .plcp = 0x08,
792                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
793         },
794         {
795                 .flags = DEV_RATE_OFDM,
796                 .bitrate = 540,
797                 .ratemask = BIT(11),
798                 .plcp = 0x0c,
799                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
800         },
801 };
802
803 static void rt2x00lib_channel(struct ieee80211_channel *entry,
804                               const int channel, const int tx_power,
805                               const int value)
806 {
807         /* XXX: this assumption about the band is wrong for 802.11j */
808         entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
809         entry->center_freq = ieee80211_channel_to_frequency(channel,
810                                                             entry->band);
811         entry->hw_value = value;
812         entry->max_power = tx_power;
813         entry->max_antenna_gain = 0xff;
814 }
815
816 static void rt2x00lib_rate(struct ieee80211_rate *entry,
817                            const u16 index, const struct rt2x00_rate *rate)
818 {
819         entry->flags = 0;
820         entry->bitrate = rate->bitrate;
821         entry->hw_value = index;
822         entry->hw_value_short = index;
823
824         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
825                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
826 }
827
828 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
829                                     struct hw_mode_spec *spec)
830 {
831         struct ieee80211_hw *hw = rt2x00dev->hw;
832         struct ieee80211_channel *channels;
833         struct ieee80211_rate *rates;
834         unsigned int num_rates;
835         unsigned int i;
836
837         num_rates = 0;
838         if (spec->supported_rates & SUPPORT_RATE_CCK)
839                 num_rates += 4;
840         if (spec->supported_rates & SUPPORT_RATE_OFDM)
841                 num_rates += 8;
842
843         channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
844         if (!channels)
845                 return -ENOMEM;
846
847         rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
848         if (!rates)
849                 goto exit_free_channels;
850
851         /*
852          * Initialize Rate list.
853          */
854         for (i = 0; i < num_rates; i++)
855                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
856
857         /*
858          * Initialize Channel list.
859          */
860         for (i = 0; i < spec->num_channels; i++) {
861                 rt2x00lib_channel(&channels[i],
862                                   spec->channels[i].channel,
863                                   spec->channels_info[i].max_power, i);
864         }
865
866         /*
867          * Intitialize 802.11b, 802.11g
868          * Rates: CCK, OFDM.
869          * Channels: 2.4 GHz
870          */
871         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
872                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
873                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
874                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
875                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
876                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
877                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
878                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
879                        &spec->ht, sizeof(spec->ht));
880         }
881
882         /*
883          * Intitialize 802.11a
884          * Rates: OFDM.
885          * Channels: OFDM, UNII, HiperLAN2.
886          */
887         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
888                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
889                     spec->num_channels - 14;
890                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
891                     num_rates - 4;
892                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
893                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
894                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
895                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
896                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
897                        &spec->ht, sizeof(spec->ht));
898         }
899
900         return 0;
901
902  exit_free_channels:
903         kfree(channels);
904         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
905         return -ENOMEM;
906 }
907
908 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
909 {
910         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
911                 ieee80211_unregister_hw(rt2x00dev->hw);
912
913         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
914                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
915                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
916                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
917                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
918         }
919
920         kfree(rt2x00dev->spec.channels_info);
921 }
922
923 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
924 {
925         struct hw_mode_spec *spec = &rt2x00dev->spec;
926         int status;
927
928         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
929                 return 0;
930
931         /*
932          * Initialize HW modes.
933          */
934         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
935         if (status)
936                 return status;
937
938         /*
939          * Initialize HW fields.
940          */
941         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
942
943         /*
944          * Initialize extra TX headroom required.
945          */
946         rt2x00dev->hw->extra_tx_headroom =
947                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
948                       rt2x00dev->ops->extra_tx_headroom);
949
950         /*
951          * Take TX headroom required for alignment into account.
952          */
953         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
954                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
955         else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
956                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
957
958         /*
959          * Tell mac80211 about the size of our private STA structure.
960          */
961         rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
962
963         /*
964          * Allocate tx status FIFO for driver use.
965          */
966         if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
967                 /*
968                  * Allocate the txstatus fifo. In the worst case the tx
969                  * status fifo has to hold the tx status of all entries
970                  * in all tx queues. Hence, calculate the kfifo size as
971                  * tx_queues * entry_num and round up to the nearest
972                  * power of 2.
973                  */
974                 int kfifo_size =
975                         roundup_pow_of_two(rt2x00dev->ops->tx_queues *
976                                            rt2x00dev->ops->tx->entry_num *
977                                            sizeof(u32));
978
979                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
980                                      GFP_KERNEL);
981                 if (status)
982                         return status;
983         }
984
985         /*
986          * Initialize tasklets if used by the driver. Tasklets are
987          * disabled until the interrupts are turned on. The driver
988          * has to handle that.
989          */
990 #define RT2X00_TASKLET_INIT(taskletname) \
991         if (rt2x00dev->ops->lib->taskletname) { \
992                 tasklet_init(&rt2x00dev->taskletname, \
993                              rt2x00dev->ops->lib->taskletname, \
994                              (unsigned long)rt2x00dev); \
995         }
996
997         RT2X00_TASKLET_INIT(txstatus_tasklet);
998         RT2X00_TASKLET_INIT(pretbtt_tasklet);
999         RT2X00_TASKLET_INIT(tbtt_tasklet);
1000         RT2X00_TASKLET_INIT(rxdone_tasklet);
1001         RT2X00_TASKLET_INIT(autowake_tasklet);
1002
1003 #undef RT2X00_TASKLET_INIT
1004
1005         /*
1006          * Register HW.
1007          */
1008         status = ieee80211_register_hw(rt2x00dev->hw);
1009         if (status)
1010                 return status;
1011
1012         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1013
1014         return 0;
1015 }
1016
1017 /*
1018  * Initialization/uninitialization handlers.
1019  */
1020 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1021 {
1022         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1023                 return;
1024
1025         /*
1026          * Unregister extra components.
1027          */
1028         rt2x00rfkill_unregister(rt2x00dev);
1029
1030         /*
1031          * Allow the HW to uninitialize.
1032          */
1033         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1034
1035         /*
1036          * Free allocated queue entries.
1037          */
1038         rt2x00queue_uninitialize(rt2x00dev);
1039 }
1040
1041 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1042 {
1043         int status;
1044
1045         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1046                 return 0;
1047
1048         /*
1049          * Allocate all queue entries.
1050          */
1051         status = rt2x00queue_initialize(rt2x00dev);
1052         if (status)
1053                 return status;
1054
1055         /*
1056          * Initialize the device.
1057          */
1058         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1059         if (status) {
1060                 rt2x00queue_uninitialize(rt2x00dev);
1061                 return status;
1062         }
1063
1064         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1065
1066         return 0;
1067 }
1068
1069 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1070 {
1071         int retval;
1072
1073         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1074                 return 0;
1075
1076         /*
1077          * If this is the first interface which is added,
1078          * we should load the firmware now.
1079          */
1080         retval = rt2x00lib_load_firmware(rt2x00dev);
1081         if (retval)
1082                 return retval;
1083
1084         /*
1085          * Initialize the device.
1086          */
1087         retval = rt2x00lib_initialize(rt2x00dev);
1088         if (retval)
1089                 return retval;
1090
1091         rt2x00dev->intf_ap_count = 0;
1092         rt2x00dev->intf_sta_count = 0;
1093         rt2x00dev->intf_associated = 0;
1094
1095         /* Enable the radio */
1096         retval = rt2x00lib_enable_radio(rt2x00dev);
1097         if (retval)
1098                 return retval;
1099
1100         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1101
1102         return 0;
1103 }
1104
1105 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1106 {
1107         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1108                 return;
1109
1110         /*
1111          * Perhaps we can add something smarter here,
1112          * but for now just disabling the radio should do.
1113          */
1114         rt2x00lib_disable_radio(rt2x00dev);
1115
1116         rt2x00dev->intf_ap_count = 0;
1117         rt2x00dev->intf_sta_count = 0;
1118         rt2x00dev->intf_associated = 0;
1119 }
1120
1121 /*
1122  * driver allocation handlers.
1123  */
1124 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1125 {
1126         int retval = -ENOMEM;
1127
1128         /*
1129          * Allocate the driver data memory, if necessary.
1130          */
1131         if (rt2x00dev->ops->drv_data_size > 0) {
1132                 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1133                                               GFP_KERNEL);
1134                 if (!rt2x00dev->drv_data) {
1135                         retval = -ENOMEM;
1136                         goto exit;
1137                 }
1138         }
1139
1140         spin_lock_init(&rt2x00dev->irqmask_lock);
1141         mutex_init(&rt2x00dev->csr_mutex);
1142
1143         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1144
1145         /*
1146          * Make room for rt2x00_intf inside the per-interface
1147          * structure ieee80211_vif.
1148          */
1149         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1150
1151         /*
1152          * Determine which operating modes are supported, all modes
1153          * which require beaconing, depend on the availability of
1154          * beacon entries.
1155          */
1156         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1157         if (rt2x00dev->ops->bcn->entry_num > 0)
1158                 rt2x00dev->hw->wiphy->interface_modes |=
1159                     BIT(NL80211_IFTYPE_ADHOC) |
1160                     BIT(NL80211_IFTYPE_AP) |
1161                     BIT(NL80211_IFTYPE_MESH_POINT) |
1162                     BIT(NL80211_IFTYPE_WDS);
1163
1164         rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1165
1166         /*
1167          * Initialize work.
1168          */
1169         rt2x00dev->workqueue =
1170             alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1171         if (!rt2x00dev->workqueue) {
1172                 retval = -ENOMEM;
1173                 goto exit;
1174         }
1175
1176         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1177         INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1178         INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1179
1180         /*
1181          * Let the driver probe the device to detect the capabilities.
1182          */
1183         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1184         if (retval) {
1185                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1186                 goto exit;
1187         }
1188
1189         /*
1190          * Allocate queue array.
1191          */
1192         retval = rt2x00queue_allocate(rt2x00dev);
1193         if (retval)
1194                 goto exit;
1195
1196         /*
1197          * Initialize ieee80211 structure.
1198          */
1199         retval = rt2x00lib_probe_hw(rt2x00dev);
1200         if (retval) {
1201                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1202                 goto exit;
1203         }
1204
1205         /*
1206          * Register extra components.
1207          */
1208         rt2x00link_register(rt2x00dev);
1209         rt2x00leds_register(rt2x00dev);
1210         rt2x00debug_register(rt2x00dev);
1211         rt2x00rfkill_register(rt2x00dev);
1212
1213         return 0;
1214
1215 exit:
1216         rt2x00lib_remove_dev(rt2x00dev);
1217
1218         return retval;
1219 }
1220 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1221
1222 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1223 {
1224         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1225
1226         /*
1227          * Disable radio.
1228          */
1229         rt2x00lib_disable_radio(rt2x00dev);
1230
1231         /*
1232          * Stop all work.
1233          */
1234         cancel_work_sync(&rt2x00dev->intf_work);
1235         cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1236         cancel_work_sync(&rt2x00dev->sleep_work);
1237         if (rt2x00_is_usb(rt2x00dev)) {
1238                 hrtimer_cancel(&rt2x00dev->txstatus_timer);
1239                 cancel_work_sync(&rt2x00dev->rxdone_work);
1240                 cancel_work_sync(&rt2x00dev->txdone_work);
1241         }
1242         if (rt2x00dev->workqueue)
1243                 destroy_workqueue(rt2x00dev->workqueue);
1244
1245         /*
1246          * Free the tx status fifo.
1247          */
1248         kfifo_free(&rt2x00dev->txstatus_fifo);
1249
1250         /*
1251          * Kill the tx status tasklet.
1252          */
1253         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1254         tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1255         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1256         tasklet_kill(&rt2x00dev->rxdone_tasklet);
1257         tasklet_kill(&rt2x00dev->autowake_tasklet);
1258
1259         /*
1260          * Uninitialize device.
1261          */
1262         rt2x00lib_uninitialize(rt2x00dev);
1263
1264         /*
1265          * Free extra components
1266          */
1267         rt2x00debug_deregister(rt2x00dev);
1268         rt2x00leds_unregister(rt2x00dev);
1269
1270         /*
1271          * Free ieee80211_hw memory.
1272          */
1273         rt2x00lib_remove_hw(rt2x00dev);
1274
1275         /*
1276          * Free firmware image.
1277          */
1278         rt2x00lib_free_firmware(rt2x00dev);
1279
1280         /*
1281          * Free queue structures.
1282          */
1283         rt2x00queue_free(rt2x00dev);
1284
1285         /*
1286          * Free the driver data.
1287          */
1288         if (rt2x00dev->drv_data)
1289                 kfree(rt2x00dev->drv_data);
1290 }
1291 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1292
1293 /*
1294  * Device state handlers
1295  */
1296 #ifdef CONFIG_PM
1297 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1298 {
1299         NOTICE(rt2x00dev, "Going to sleep.\n");
1300
1301         /*
1302          * Prevent mac80211 from accessing driver while suspended.
1303          */
1304         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1305                 return 0;
1306
1307         /*
1308          * Cleanup as much as possible.
1309          */
1310         rt2x00lib_uninitialize(rt2x00dev);
1311
1312         /*
1313          * Suspend/disable extra components.
1314          */
1315         rt2x00leds_suspend(rt2x00dev);
1316         rt2x00debug_deregister(rt2x00dev);
1317
1318         /*
1319          * Set device mode to sleep for power management,
1320          * on some hardware this call seems to consistently fail.
1321          * From the specifications it is hard to tell why it fails,
1322          * and if this is a "bad thing".
1323          * Overall it is safe to just ignore the failure and
1324          * continue suspending. The only downside is that the
1325          * device will not be in optimal power save mode, but with
1326          * the radio and the other components already disabled the
1327          * device is as good as disabled.
1328          */
1329         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1330                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1331                         "continue suspending.\n");
1332
1333         return 0;
1334 }
1335 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1336
1337 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1338 {
1339         NOTICE(rt2x00dev, "Waking up.\n");
1340
1341         /*
1342          * Restore/enable extra components.
1343          */
1344         rt2x00debug_register(rt2x00dev);
1345         rt2x00leds_resume(rt2x00dev);
1346
1347         /*
1348          * We are ready again to receive requests from mac80211.
1349          */
1350         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1351
1352         return 0;
1353 }
1354 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1355 #endif /* CONFIG_PM */
1356
1357 /*
1358  * rt2x00lib module information.
1359  */
1360 MODULE_AUTHOR(DRV_PROJECT);
1361 MODULE_VERSION(DRV_VERSION);
1362 MODULE_DESCRIPTION("rt2x00 library");
1363 MODULE_LICENSE("GPL");