Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-3.10.git] / drivers / net / ethernet / intel / e1000e / 82571.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82571EB Gigabit Ethernet Controller
31  * 82571EB Gigabit Ethernet Controller (Copper)
32  * 82571EB Gigabit Ethernet Controller (Fiber)
33  * 82571EB Dual Port Gigabit Mezzanine Adapter
34  * 82571EB Quad Port Gigabit Mezzanine Adapter
35  * 82571PT Gigabit PT Quad Port Server ExpressModule
36  * 82572EI Gigabit Ethernet Controller (Copper)
37  * 82572EI Gigabit Ethernet Controller (Fiber)
38  * 82572EI Gigabit Ethernet Controller
39  * 82573V Gigabit Ethernet Controller (Copper)
40  * 82573E Gigabit Ethernet Controller (Copper)
41  * 82573L Gigabit Ethernet Controller
42  * 82574L Gigabit Network Connection
43  * 82583V Gigabit Network Connection
44  */
45
46 #include "e1000.h"
47
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50                               (ID_LED_OFF1_ON2  <<  8) | \
51                               (ID_LED_DEF1_DEF2 <<  4) | \
52                               (ID_LED_DEF1_DEF2))
53
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55 #define AN_RETRY_COUNT          5 /* Autoneg Retry Count value */
56 #define E1000_BASE1000T_STATUS          10
57 #define E1000_IDLE_ERROR_COUNT_MASK     0xFF
58 #define E1000_RECEIVE_ERROR_COUNTER     21
59 #define E1000_RECEIVE_ERROR_MAX         0xFFFF
60
61 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
62
63 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
64 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
65 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
66 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
67 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
68                                       u16 words, u16 *data);
69 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
70 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
71 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
72 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
73 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
74 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
75 static s32 e1000_led_on_82574(struct e1000_hw *hw);
76 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
77 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
78 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
79 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
80 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
81 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
82 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
83
84 /**
85  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
86  *  @hw: pointer to the HW structure
87  **/
88 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
89 {
90         struct e1000_phy_info *phy = &hw->phy;
91         s32 ret_val;
92
93         if (hw->phy.media_type != e1000_media_type_copper) {
94                 phy->type = e1000_phy_none;
95                 return 0;
96         }
97
98         phy->addr                        = 1;
99         phy->autoneg_mask                = AUTONEG_ADVERTISE_SPEED_DEFAULT;
100         phy->reset_delay_us              = 100;
101
102         phy->ops.power_up                = e1000_power_up_phy_copper;
103         phy->ops.power_down              = e1000_power_down_phy_copper_82571;
104
105         switch (hw->mac.type) {
106         case e1000_82571:
107         case e1000_82572:
108                 phy->type                = e1000_phy_igp_2;
109                 break;
110         case e1000_82573:
111                 phy->type                = e1000_phy_m88;
112                 break;
113         case e1000_82574:
114         case e1000_82583:
115                 phy->type                = e1000_phy_bm;
116                 phy->ops.acquire = e1000_get_hw_semaphore_82574;
117                 phy->ops.release = e1000_put_hw_semaphore_82574;
118                 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
119                 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
120                 break;
121         default:
122                 return -E1000_ERR_PHY;
123                 break;
124         }
125
126         /* This can only be done after all function pointers are setup. */
127         ret_val = e1000_get_phy_id_82571(hw);
128         if (ret_val) {
129                 e_dbg("Error getting PHY ID\n");
130                 return ret_val;
131         }
132
133         /* Verify phy id */
134         switch (hw->mac.type) {
135         case e1000_82571:
136         case e1000_82572:
137                 if (phy->id != IGP01E1000_I_PHY_ID)
138                         ret_val = -E1000_ERR_PHY;
139                 break;
140         case e1000_82573:
141                 if (phy->id != M88E1111_I_PHY_ID)
142                         ret_val = -E1000_ERR_PHY;
143                 break;
144         case e1000_82574:
145         case e1000_82583:
146                 if (phy->id != BME1000_E_PHY_ID_R2)
147                         ret_val = -E1000_ERR_PHY;
148                 break;
149         default:
150                 ret_val = -E1000_ERR_PHY;
151                 break;
152         }
153
154         if (ret_val)
155                 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
156
157         return ret_val;
158 }
159
160 /**
161  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
162  *  @hw: pointer to the HW structure
163  **/
164 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
165 {
166         struct e1000_nvm_info *nvm = &hw->nvm;
167         u32 eecd = er32(EECD);
168         u16 size;
169
170         nvm->opcode_bits = 8;
171         nvm->delay_usec = 1;
172         switch (nvm->override) {
173         case e1000_nvm_override_spi_large:
174                 nvm->page_size = 32;
175                 nvm->address_bits = 16;
176                 break;
177         case e1000_nvm_override_spi_small:
178                 nvm->page_size = 8;
179                 nvm->address_bits = 8;
180                 break;
181         default:
182                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
183                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
184                 break;
185         }
186
187         switch (hw->mac.type) {
188         case e1000_82573:
189         case e1000_82574:
190         case e1000_82583:
191                 if (((eecd >> 15) & 0x3) == 0x3) {
192                         nvm->type = e1000_nvm_flash_hw;
193                         nvm->word_size = 2048;
194                         /*
195                          * Autonomous Flash update bit must be cleared due
196                          * to Flash update issue.
197                          */
198                         eecd &= ~E1000_EECD_AUPDEN;
199                         ew32(EECD, eecd);
200                         break;
201                 }
202                 /* Fall Through */
203         default:
204                 nvm->type = e1000_nvm_eeprom_spi;
205                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
206                                   E1000_EECD_SIZE_EX_SHIFT);
207                 /*
208                  * Added to a constant, "size" becomes the left-shift value
209                  * for setting word_size.
210                  */
211                 size += NVM_WORD_SIZE_BASE_SHIFT;
212
213                 /* EEPROM access above 16k is unsupported */
214                 if (size > 14)
215                         size = 14;
216                 nvm->word_size  = 1 << size;
217                 break;
218         }
219
220         /* Function Pointers */
221         switch (hw->mac.type) {
222         case e1000_82574:
223         case e1000_82583:
224                 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
225                 nvm->ops.release = e1000_put_hw_semaphore_82574;
226                 break;
227         default:
228                 break;
229         }
230
231         return 0;
232 }
233
234 /**
235  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
236  *  @hw: pointer to the HW structure
237  **/
238 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
239 {
240         struct e1000_mac_info *mac = &hw->mac;
241         u32 swsm = 0;
242         u32 swsm2 = 0;
243         bool force_clear_smbi = false;
244
245         /* Set media type and media-dependent function pointers */
246         switch (hw->adapter->pdev->device) {
247         case E1000_DEV_ID_82571EB_FIBER:
248         case E1000_DEV_ID_82572EI_FIBER:
249         case E1000_DEV_ID_82571EB_QUAD_FIBER:
250                 hw->phy.media_type = e1000_media_type_fiber;
251                 mac->ops.setup_physical_interface =
252                     e1000_setup_fiber_serdes_link_82571;
253                 mac->ops.check_for_link = e1000e_check_for_fiber_link;
254                 mac->ops.get_link_up_info =
255                     e1000e_get_speed_and_duplex_fiber_serdes;
256                 break;
257         case E1000_DEV_ID_82571EB_SERDES:
258         case E1000_DEV_ID_82571EB_SERDES_DUAL:
259         case E1000_DEV_ID_82571EB_SERDES_QUAD:
260         case E1000_DEV_ID_82572EI_SERDES:
261                 hw->phy.media_type = e1000_media_type_internal_serdes;
262                 mac->ops.setup_physical_interface =
263                     e1000_setup_fiber_serdes_link_82571;
264                 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
265                 mac->ops.get_link_up_info =
266                     e1000e_get_speed_and_duplex_fiber_serdes;
267                 break;
268         default:
269                 hw->phy.media_type = e1000_media_type_copper;
270                 mac->ops.setup_physical_interface =
271                     e1000_setup_copper_link_82571;
272                 mac->ops.check_for_link = e1000e_check_for_copper_link;
273                 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
274                 break;
275         }
276
277         /* Set mta register count */
278         mac->mta_reg_count = 128;
279         /* Set rar entry count */
280         mac->rar_entry_count = E1000_RAR_ENTRIES;
281         /* Adaptive IFS supported */
282         mac->adaptive_ifs = true;
283
284         /* MAC-specific function pointers */
285         switch (hw->mac.type) {
286         case e1000_82573:
287                 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
288                 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
289                 mac->ops.led_on = e1000e_led_on_generic;
290                 mac->ops.blink_led = e1000e_blink_led_generic;
291
292                 /* FWSM register */
293                 mac->has_fwsm = true;
294                 /*
295                  * ARC supported; valid only if manageability features are
296                  * enabled.
297                  */
298                 mac->arc_subsystem_valid = !!(er32(FWSM) &
299                                               E1000_FWSM_MODE_MASK);
300                 break;
301         case e1000_82574:
302         case e1000_82583:
303                 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
304                 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
305                 mac->ops.led_on = e1000_led_on_82574;
306                 break;
307         default:
308                 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
309                 mac->ops.led_on = e1000e_led_on_generic;
310                 mac->ops.blink_led = e1000e_blink_led_generic;
311
312                 /* FWSM register */
313                 mac->has_fwsm = true;
314                 break;
315         }
316
317         /*
318          * Ensure that the inter-port SWSM.SMBI lock bit is clear before
319          * first NVM or PHY access. This should be done for single-port
320          * devices, and for one port only on dual-port devices so that
321          * for those devices we can still use the SMBI lock to synchronize
322          * inter-port accesses to the PHY & NVM.
323          */
324         switch (hw->mac.type) {
325         case e1000_82571:
326         case e1000_82572:
327                 swsm2 = er32(SWSM2);
328
329                 if (!(swsm2 & E1000_SWSM2_LOCK)) {
330                         /* Only do this for the first interface on this card */
331                         ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
332                         force_clear_smbi = true;
333                 } else {
334                         force_clear_smbi = false;
335                 }
336                 break;
337         default:
338                 force_clear_smbi = true;
339                 break;
340         }
341
342         if (force_clear_smbi) {
343                 /* Make sure SWSM.SMBI is clear */
344                 swsm = er32(SWSM);
345                 if (swsm & E1000_SWSM_SMBI) {
346                         /* This bit should not be set on a first interface, and
347                          * indicates that the bootagent or EFI code has
348                          * improperly left this bit enabled
349                          */
350                         e_dbg("Please update your 82571 Bootagent\n");
351                 }
352                 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
353         }
354
355         /*
356          * Initialize device specific counter of SMBI acquisition
357          * timeouts.
358          */
359          hw->dev_spec.e82571.smb_counter = 0;
360
361         return 0;
362 }
363
364 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
365 {
366         struct e1000_hw *hw = &adapter->hw;
367         static int global_quad_port_a; /* global port a indication */
368         struct pci_dev *pdev = adapter->pdev;
369         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
370         s32 rc;
371
372         rc = e1000_init_mac_params_82571(hw);
373         if (rc)
374                 return rc;
375
376         rc = e1000_init_nvm_params_82571(hw);
377         if (rc)
378                 return rc;
379
380         rc = e1000_init_phy_params_82571(hw);
381         if (rc)
382                 return rc;
383
384         /* tag quad port adapters first, it's used below */
385         switch (pdev->device) {
386         case E1000_DEV_ID_82571EB_QUAD_COPPER:
387         case E1000_DEV_ID_82571EB_QUAD_FIBER:
388         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
389         case E1000_DEV_ID_82571PT_QUAD_COPPER:
390                 adapter->flags |= FLAG_IS_QUAD_PORT;
391                 /* mark the first port */
392                 if (global_quad_port_a == 0)
393                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
394                 /* Reset for multiple quad port adapters */
395                 global_quad_port_a++;
396                 if (global_quad_port_a == 4)
397                         global_quad_port_a = 0;
398                 break;
399         default:
400                 break;
401         }
402
403         switch (adapter->hw.mac.type) {
404         case e1000_82571:
405                 /* these dual ports don't have WoL on port B at all */
406                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
407                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
408                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
409                     (is_port_b))
410                         adapter->flags &= ~FLAG_HAS_WOL;
411                 /* quad ports only support WoL on port A */
412                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
413                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
414                         adapter->flags &= ~FLAG_HAS_WOL;
415                 /* Does not support WoL on any port */
416                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
417                         adapter->flags &= ~FLAG_HAS_WOL;
418                 break;
419         case e1000_82573:
420                 if (pdev->device == E1000_DEV_ID_82573L) {
421                         adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
422                         adapter->max_hw_frame_size = DEFAULT_JUMBO;
423                 }
424                 break;
425         default:
426                 break;
427         }
428
429         return 0;
430 }
431
432 /**
433  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
434  *  @hw: pointer to the HW structure
435  *
436  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
437  *  revision in the hardware structure.
438  **/
439 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
440 {
441         struct e1000_phy_info *phy = &hw->phy;
442         s32 ret_val;
443         u16 phy_id = 0;
444
445         switch (hw->mac.type) {
446         case e1000_82571:
447         case e1000_82572:
448                 /*
449                  * The 82571 firmware may still be configuring the PHY.
450                  * In this case, we cannot access the PHY until the
451                  * configuration is done.  So we explicitly set the
452                  * PHY ID.
453                  */
454                 phy->id = IGP01E1000_I_PHY_ID;
455                 break;
456         case e1000_82573:
457                 return e1000e_get_phy_id(hw);
458                 break;
459         case e1000_82574:
460         case e1000_82583:
461                 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
462                 if (ret_val)
463                         return ret_val;
464
465                 phy->id = (u32)(phy_id << 16);
466                 udelay(20);
467                 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
468                 if (ret_val)
469                         return ret_val;
470
471                 phy->id |= (u32)(phy_id);
472                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
473                 break;
474         default:
475                 return -E1000_ERR_PHY;
476                 break;
477         }
478
479         return 0;
480 }
481
482 /**
483  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
484  *  @hw: pointer to the HW structure
485  *
486  *  Acquire the HW semaphore to access the PHY or NVM
487  **/
488 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
489 {
490         u32 swsm;
491         s32 sw_timeout = hw->nvm.word_size + 1;
492         s32 fw_timeout = hw->nvm.word_size + 1;
493         s32 i = 0;
494
495         /*
496          * If we have timedout 3 times on trying to acquire
497          * the inter-port SMBI semaphore, there is old code
498          * operating on the other port, and it is not
499          * releasing SMBI. Modify the number of times that
500          * we try for the semaphore to interwork with this
501          * older code.
502          */
503         if (hw->dev_spec.e82571.smb_counter > 2)
504                 sw_timeout = 1;
505
506         /* Get the SW semaphore */
507         while (i < sw_timeout) {
508                 swsm = er32(SWSM);
509                 if (!(swsm & E1000_SWSM_SMBI))
510                         break;
511
512                 udelay(50);
513                 i++;
514         }
515
516         if (i == sw_timeout) {
517                 e_dbg("Driver can't access device - SMBI bit is set.\n");
518                 hw->dev_spec.e82571.smb_counter++;
519         }
520         /* Get the FW semaphore. */
521         for (i = 0; i < fw_timeout; i++) {
522                 swsm = er32(SWSM);
523                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
524
525                 /* Semaphore acquired if bit latched */
526                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
527                         break;
528
529                 udelay(50);
530         }
531
532         if (i == fw_timeout) {
533                 /* Release semaphores */
534                 e1000_put_hw_semaphore_82571(hw);
535                 e_dbg("Driver can't access the NVM\n");
536                 return -E1000_ERR_NVM;
537         }
538
539         return 0;
540 }
541
542 /**
543  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
544  *  @hw: pointer to the HW structure
545  *
546  *  Release hardware semaphore used to access the PHY or NVM
547  **/
548 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
549 {
550         u32 swsm;
551
552         swsm = er32(SWSM);
553         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
554         ew32(SWSM, swsm);
555 }
556 /**
557  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
558  *  @hw: pointer to the HW structure
559  *
560  *  Acquire the HW semaphore during reset.
561  *
562  **/
563 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
564 {
565         u32 extcnf_ctrl;
566         s32 i = 0;
567
568         extcnf_ctrl = er32(EXTCNF_CTRL);
569         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
570         do {
571                 ew32(EXTCNF_CTRL, extcnf_ctrl);
572                 extcnf_ctrl = er32(EXTCNF_CTRL);
573
574                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
575                         break;
576
577                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
578
579                 usleep_range(2000, 4000);
580                 i++;
581         } while (i < MDIO_OWNERSHIP_TIMEOUT);
582
583         if (i == MDIO_OWNERSHIP_TIMEOUT) {
584                 /* Release semaphores */
585                 e1000_put_hw_semaphore_82573(hw);
586                 e_dbg("Driver can't access the PHY\n");
587                 return -E1000_ERR_PHY;
588         }
589
590         return 0;
591 }
592
593 /**
594  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
595  *  @hw: pointer to the HW structure
596  *
597  *  Release hardware semaphore used during reset.
598  *
599  **/
600 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
601 {
602         u32 extcnf_ctrl;
603
604         extcnf_ctrl = er32(EXTCNF_CTRL);
605         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
606         ew32(EXTCNF_CTRL, extcnf_ctrl);
607 }
608
609 static DEFINE_MUTEX(swflag_mutex);
610
611 /**
612  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
613  *  @hw: pointer to the HW structure
614  *
615  *  Acquire the HW semaphore to access the PHY or NVM.
616  *
617  **/
618 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
619 {
620         s32 ret_val;
621
622         mutex_lock(&swflag_mutex);
623         ret_val = e1000_get_hw_semaphore_82573(hw);
624         if (ret_val)
625                 mutex_unlock(&swflag_mutex);
626         return ret_val;
627 }
628
629 /**
630  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
631  *  @hw: pointer to the HW structure
632  *
633  *  Release hardware semaphore used to access the PHY or NVM
634  *
635  **/
636 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
637 {
638         e1000_put_hw_semaphore_82573(hw);
639         mutex_unlock(&swflag_mutex);
640 }
641
642 /**
643  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
644  *  @hw: pointer to the HW structure
645  *  @active: true to enable LPLU, false to disable
646  *
647  *  Sets the LPLU D0 state according to the active flag.
648  *  LPLU will not be activated unless the
649  *  device autonegotiation advertisement meets standards of
650  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
651  *  This is a function pointer entry point only called by
652  *  PHY setup routines.
653  **/
654 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
655 {
656         u16 data = er32(POEMB);
657
658         if (active)
659                 data |= E1000_PHY_CTRL_D0A_LPLU;
660         else
661                 data &= ~E1000_PHY_CTRL_D0A_LPLU;
662
663         ew32(POEMB, data);
664         return 0;
665 }
666
667 /**
668  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
669  *  @hw: pointer to the HW structure
670  *  @active: boolean used to enable/disable lplu
671  *
672  *  The low power link up (lplu) state is set to the power management level D3
673  *  when active is true, else clear lplu for D3. LPLU
674  *  is used during Dx states where the power conservation is most important.
675  *  During driver activity, SmartSpeed should be enabled so performance is
676  *  maintained.
677  **/
678 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
679 {
680         u16 data = er32(POEMB);
681
682         if (!active) {
683                 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
684         } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
685                    (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
686                    (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
687                 data |= E1000_PHY_CTRL_NOND0A_LPLU;
688         }
689
690         ew32(POEMB, data);
691         return 0;
692 }
693
694 /**
695  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
696  *  @hw: pointer to the HW structure
697  *
698  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
699  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
700  *  for EEPROM access grant bit.  If the access grant bit is not set, release
701  *  hardware semaphore.
702  **/
703 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
704 {
705         s32 ret_val;
706
707         ret_val = e1000_get_hw_semaphore_82571(hw);
708         if (ret_val)
709                 return ret_val;
710
711         switch (hw->mac.type) {
712         case e1000_82573:
713                 break;
714         default:
715                 ret_val = e1000e_acquire_nvm(hw);
716                 break;
717         }
718
719         if (ret_val)
720                 e1000_put_hw_semaphore_82571(hw);
721
722         return ret_val;
723 }
724
725 /**
726  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
727  *  @hw: pointer to the HW structure
728  *
729  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
730  **/
731 static void e1000_release_nvm_82571(struct e1000_hw *hw)
732 {
733         e1000e_release_nvm(hw);
734         e1000_put_hw_semaphore_82571(hw);
735 }
736
737 /**
738  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
739  *  @hw: pointer to the HW structure
740  *  @offset: offset within the EEPROM to be written to
741  *  @words: number of words to write
742  *  @data: 16 bit word(s) to be written to the EEPROM
743  *
744  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
745  *
746  *  If e1000e_update_nvm_checksum is not called after this function, the
747  *  EEPROM will most likely contain an invalid checksum.
748  **/
749 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
750                                  u16 *data)
751 {
752         s32 ret_val;
753
754         switch (hw->mac.type) {
755         case e1000_82573:
756         case e1000_82574:
757         case e1000_82583:
758                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
759                 break;
760         case e1000_82571:
761         case e1000_82572:
762                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
763                 break;
764         default:
765                 ret_val = -E1000_ERR_NVM;
766                 break;
767         }
768
769         return ret_val;
770 }
771
772 /**
773  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
774  *  @hw: pointer to the HW structure
775  *
776  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
777  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
778  *  value to the EEPROM.
779  **/
780 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
781 {
782         u32 eecd;
783         s32 ret_val;
784         u16 i;
785
786         ret_val = e1000e_update_nvm_checksum_generic(hw);
787         if (ret_val)
788                 return ret_val;
789
790         /*
791          * If our nvm is an EEPROM, then we're done
792          * otherwise, commit the checksum to the flash NVM.
793          */
794         if (hw->nvm.type != e1000_nvm_flash_hw)
795                 return 0;
796
797         /* Check for pending operations. */
798         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
799                 usleep_range(1000, 2000);
800                 if (!(er32(EECD) & E1000_EECD_FLUPD))
801                         break;
802         }
803
804         if (i == E1000_FLASH_UPDATES)
805                 return -E1000_ERR_NVM;
806
807         /* Reset the firmware if using STM opcode. */
808         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
809                 /*
810                  * The enabling of and the actual reset must be done
811                  * in two write cycles.
812                  */
813                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
814                 e1e_flush();
815                 ew32(HICR, E1000_HICR_FW_RESET);
816         }
817
818         /* Commit the write to flash */
819         eecd = er32(EECD) | E1000_EECD_FLUPD;
820         ew32(EECD, eecd);
821
822         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
823                 usleep_range(1000, 2000);
824                 if (!(er32(EECD) & E1000_EECD_FLUPD))
825                         break;
826         }
827
828         if (i == E1000_FLASH_UPDATES)
829                 return -E1000_ERR_NVM;
830
831         return 0;
832 }
833
834 /**
835  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
836  *  @hw: pointer to the HW structure
837  *
838  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
839  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
840  **/
841 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
842 {
843         if (hw->nvm.type == e1000_nvm_flash_hw)
844                 e1000_fix_nvm_checksum_82571(hw);
845
846         return e1000e_validate_nvm_checksum_generic(hw);
847 }
848
849 /**
850  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
851  *  @hw: pointer to the HW structure
852  *  @offset: offset within the EEPROM to be written to
853  *  @words: number of words to write
854  *  @data: 16 bit word(s) to be written to the EEPROM
855  *
856  *  After checking for invalid values, poll the EEPROM to ensure the previous
857  *  command has completed before trying to write the next word.  After write
858  *  poll for completion.
859  *
860  *  If e1000e_update_nvm_checksum is not called after this function, the
861  *  EEPROM will most likely contain an invalid checksum.
862  **/
863 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
864                                       u16 words, u16 *data)
865 {
866         struct e1000_nvm_info *nvm = &hw->nvm;
867         u32 i, eewr = 0;
868         s32 ret_val = 0;
869
870         /*
871          * A check for invalid values:  offset too large, too many words,
872          * and not enough words.
873          */
874         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
875             (words == 0)) {
876                 e_dbg("nvm parameter(s) out of bounds\n");
877                 return -E1000_ERR_NVM;
878         }
879
880         for (i = 0; i < words; i++) {
881                 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
882                        ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
883                        E1000_NVM_RW_REG_START;
884
885                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
886                 if (ret_val)
887                         break;
888
889                 ew32(EEWR, eewr);
890
891                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
892                 if (ret_val)
893                         break;
894         }
895
896         return ret_val;
897 }
898
899 /**
900  *  e1000_get_cfg_done_82571 - Poll for configuration done
901  *  @hw: pointer to the HW structure
902  *
903  *  Reads the management control register for the config done bit to be set.
904  **/
905 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
906 {
907         s32 timeout = PHY_CFG_TIMEOUT;
908
909         while (timeout) {
910                 if (er32(EEMNGCTL) &
911                     E1000_NVM_CFG_DONE_PORT_0)
912                         break;
913                 usleep_range(1000, 2000);
914                 timeout--;
915         }
916         if (!timeout) {
917                 e_dbg("MNG configuration cycle has not completed.\n");
918                 return -E1000_ERR_RESET;
919         }
920
921         return 0;
922 }
923
924 /**
925  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
926  *  @hw: pointer to the HW structure
927  *  @active: true to enable LPLU, false to disable
928  *
929  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
930  *  this function also disables smart speed and vice versa.  LPLU will not be
931  *  activated unless the device autonegotiation advertisement meets standards
932  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
933  *  pointer entry point only called by PHY setup routines.
934  **/
935 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
936 {
937         struct e1000_phy_info *phy = &hw->phy;
938         s32 ret_val;
939         u16 data;
940
941         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
942         if (ret_val)
943                 return ret_val;
944
945         if (active) {
946                 data |= IGP02E1000_PM_D0_LPLU;
947                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
948                 if (ret_val)
949                         return ret_val;
950
951                 /* When LPLU is enabled, we should disable SmartSpeed */
952                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
953                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
954                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
955                 if (ret_val)
956                         return ret_val;
957         } else {
958                 data &= ~IGP02E1000_PM_D0_LPLU;
959                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
960                 /*
961                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
962                  * during Dx states where the power conservation is most
963                  * important.  During driver activity we should enable
964                  * SmartSpeed, so performance is maintained.
965                  */
966                 if (phy->smart_speed == e1000_smart_speed_on) {
967                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
968                                            &data);
969                         if (ret_val)
970                                 return ret_val;
971
972                         data |= IGP01E1000_PSCFR_SMART_SPEED;
973                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
974                                            data);
975                         if (ret_val)
976                                 return ret_val;
977                 } else if (phy->smart_speed == e1000_smart_speed_off) {
978                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
979                                            &data);
980                         if (ret_val)
981                                 return ret_val;
982
983                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
984                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
985                                            data);
986                         if (ret_val)
987                                 return ret_val;
988                 }
989         }
990
991         return 0;
992 }
993
994 /**
995  *  e1000_reset_hw_82571 - Reset hardware
996  *  @hw: pointer to the HW structure
997  *
998  *  This resets the hardware into a known state.
999  **/
1000 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
1001 {
1002         u32 ctrl, ctrl_ext, eecd;
1003         s32 ret_val;
1004
1005         /*
1006          * Prevent the PCI-E bus from sticking if there is no TLP connection
1007          * on the last TLP read/write transaction when MAC is reset.
1008          */
1009         ret_val = e1000e_disable_pcie_master(hw);
1010         if (ret_val)
1011                 e_dbg("PCI-E Master disable polling has failed.\n");
1012
1013         e_dbg("Masking off all interrupts\n");
1014         ew32(IMC, 0xffffffff);
1015
1016         ew32(RCTL, 0);
1017         ew32(TCTL, E1000_TCTL_PSP);
1018         e1e_flush();
1019
1020         usleep_range(10000, 20000);
1021
1022         /*
1023          * Must acquire the MDIO ownership before MAC reset.
1024          * Ownership defaults to firmware after a reset.
1025          */
1026         switch (hw->mac.type) {
1027         case e1000_82573:
1028                 ret_val = e1000_get_hw_semaphore_82573(hw);
1029                 break;
1030         case e1000_82574:
1031         case e1000_82583:
1032                 ret_val = e1000_get_hw_semaphore_82574(hw);
1033                 break;
1034         default:
1035                 break;
1036         }
1037         if (ret_val)
1038                 e_dbg("Cannot acquire MDIO ownership\n");
1039
1040         ctrl = er32(CTRL);
1041
1042         e_dbg("Issuing a global reset to MAC\n");
1043         ew32(CTRL, ctrl | E1000_CTRL_RST);
1044
1045         /* Must release MDIO ownership and mutex after MAC reset. */
1046         switch (hw->mac.type) {
1047         case e1000_82574:
1048         case e1000_82583:
1049                 e1000_put_hw_semaphore_82574(hw);
1050                 break;
1051         default:
1052                 break;
1053         }
1054
1055         if (hw->nvm.type == e1000_nvm_flash_hw) {
1056                 udelay(10);
1057                 ctrl_ext = er32(CTRL_EXT);
1058                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1059                 ew32(CTRL_EXT, ctrl_ext);
1060                 e1e_flush();
1061         }
1062
1063         ret_val = e1000e_get_auto_rd_done(hw);
1064         if (ret_val)
1065                 /* We don't want to continue accessing MAC registers. */
1066                 return ret_val;
1067
1068         /*
1069          * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1070          * Need to wait for Phy configuration completion before accessing
1071          * NVM and Phy.
1072          */
1073
1074         switch (hw->mac.type) {
1075         case e1000_82571:
1076         case e1000_82572:
1077                 /*
1078                  * REQ and GNT bits need to be cleared when using AUTO_RD
1079                  * to access the EEPROM.
1080                  */
1081                 eecd = er32(EECD);
1082                 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1083                 ew32(EECD, eecd);
1084                 break;
1085         case e1000_82573:
1086         case e1000_82574:
1087         case e1000_82583:
1088                 msleep(25);
1089                 break;
1090         default:
1091                 break;
1092         }
1093
1094         /* Clear any pending interrupt events. */
1095         ew32(IMC, 0xffffffff);
1096         er32(ICR);
1097
1098         if (hw->mac.type == e1000_82571) {
1099                 /* Install any alternate MAC address into RAR0 */
1100                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1101                 if (ret_val)
1102                         return ret_val;
1103
1104                 e1000e_set_laa_state_82571(hw, true);
1105         }
1106
1107         /* Reinitialize the 82571 serdes link state machine */
1108         if (hw->phy.media_type == e1000_media_type_internal_serdes)
1109                 hw->mac.serdes_link_state = e1000_serdes_link_down;
1110
1111         return 0;
1112 }
1113
1114 /**
1115  *  e1000_init_hw_82571 - Initialize hardware
1116  *  @hw: pointer to the HW structure
1117  *
1118  *  This inits the hardware readying it for operation.
1119  **/
1120 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1121 {
1122         struct e1000_mac_info *mac = &hw->mac;
1123         u32 reg_data;
1124         s32 ret_val;
1125         u16 i, rar_count = mac->rar_entry_count;
1126
1127         e1000_initialize_hw_bits_82571(hw);
1128
1129         /* Initialize identification LED */
1130         ret_val = mac->ops.id_led_init(hw);
1131         if (ret_val)
1132                 e_dbg("Error initializing identification LED\n");
1133                 /* This is not fatal and we should not stop init due to this */
1134
1135         /* Disabling VLAN filtering */
1136         e_dbg("Initializing the IEEE VLAN\n");
1137         mac->ops.clear_vfta(hw);
1138
1139         /* Setup the receive address. */
1140         /*
1141          * If, however, a locally administered address was assigned to the
1142          * 82571, we must reserve a RAR for it to work around an issue where
1143          * resetting one port will reload the MAC on the other port.
1144          */
1145         if (e1000e_get_laa_state_82571(hw))
1146                 rar_count--;
1147         e1000e_init_rx_addrs(hw, rar_count);
1148
1149         /* Zero out the Multicast HASH table */
1150         e_dbg("Zeroing the MTA\n");
1151         for (i = 0; i < mac->mta_reg_count; i++)
1152                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1153
1154         /* Setup link and flow control */
1155         ret_val = mac->ops.setup_link(hw);
1156
1157         /* Set the transmit descriptor write-back policy */
1158         reg_data = er32(TXDCTL(0));
1159         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1160                    E1000_TXDCTL_FULL_TX_DESC_WB |
1161                    E1000_TXDCTL_COUNT_DESC;
1162         ew32(TXDCTL(0), reg_data);
1163
1164         /* ...for both queues. */
1165         switch (mac->type) {
1166         case e1000_82573:
1167                 e1000e_enable_tx_pkt_filtering(hw);
1168                 /* fall through */
1169         case e1000_82574:
1170         case e1000_82583:
1171                 reg_data = er32(GCR);
1172                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1173                 ew32(GCR, reg_data);
1174                 break;
1175         default:
1176                 reg_data = er32(TXDCTL(1));
1177                 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1178                            E1000_TXDCTL_FULL_TX_DESC_WB |
1179                            E1000_TXDCTL_COUNT_DESC;
1180                 ew32(TXDCTL(1), reg_data);
1181                 break;
1182         }
1183
1184         /*
1185          * Clear all of the statistics registers (clear on read).  It is
1186          * important that we do this after we have tried to establish link
1187          * because the symbol error count will increment wildly if there
1188          * is no link.
1189          */
1190         e1000_clear_hw_cntrs_82571(hw);
1191
1192         return ret_val;
1193 }
1194
1195 /**
1196  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1197  *  @hw: pointer to the HW structure
1198  *
1199  *  Initializes required hardware-dependent bits needed for normal operation.
1200  **/
1201 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1202 {
1203         u32 reg;
1204
1205         /* Transmit Descriptor Control 0 */
1206         reg = er32(TXDCTL(0));
1207         reg |= (1 << 22);
1208         ew32(TXDCTL(0), reg);
1209
1210         /* Transmit Descriptor Control 1 */
1211         reg = er32(TXDCTL(1));
1212         reg |= (1 << 22);
1213         ew32(TXDCTL(1), reg);
1214
1215         /* Transmit Arbitration Control 0 */
1216         reg = er32(TARC(0));
1217         reg &= ~(0xF << 27); /* 30:27 */
1218         switch (hw->mac.type) {
1219         case e1000_82571:
1220         case e1000_82572:
1221                 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1222                 break;
1223         case e1000_82574:
1224         case e1000_82583:
1225                 reg |= (1 << 26);
1226                 break;
1227         default:
1228                 break;
1229         }
1230         ew32(TARC(0), reg);
1231
1232         /* Transmit Arbitration Control 1 */
1233         reg = er32(TARC(1));
1234         switch (hw->mac.type) {
1235         case e1000_82571:
1236         case e1000_82572:
1237                 reg &= ~((1 << 29) | (1 << 30));
1238                 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1239                 if (er32(TCTL) & E1000_TCTL_MULR)
1240                         reg &= ~(1 << 28);
1241                 else
1242                         reg |= (1 << 28);
1243                 ew32(TARC(1), reg);
1244                 break;
1245         default:
1246                 break;
1247         }
1248
1249         /* Device Control */
1250         switch (hw->mac.type) {
1251         case e1000_82573:
1252         case e1000_82574:
1253         case e1000_82583:
1254                 reg = er32(CTRL);
1255                 reg &= ~(1 << 29);
1256                 ew32(CTRL, reg);
1257                 break;
1258         default:
1259                 break;
1260         }
1261
1262         /* Extended Device Control */
1263         switch (hw->mac.type) {
1264         case e1000_82573:
1265         case e1000_82574:
1266         case e1000_82583:
1267                 reg = er32(CTRL_EXT);
1268                 reg &= ~(1 << 23);
1269                 reg |= (1 << 22);
1270                 ew32(CTRL_EXT, reg);
1271                 break;
1272         default:
1273                 break;
1274         }
1275
1276         if (hw->mac.type == e1000_82571) {
1277                 reg = er32(PBA_ECC);
1278                 reg |= E1000_PBA_ECC_CORR_EN;
1279                 ew32(PBA_ECC, reg);
1280         }
1281
1282         /*
1283          * Workaround for hardware errata.
1284          * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1285          */
1286         if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1287                 reg = er32(CTRL_EXT);
1288                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1289                 ew32(CTRL_EXT, reg);
1290         }
1291
1292         /*
1293          * Disable IPv6 extension header parsing because some malformed
1294          * IPv6 headers can hang the Rx.
1295          */
1296         if (hw->mac.type <= e1000_82573) {
1297                 reg = er32(RFCTL);
1298                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1299                 ew32(RFCTL, reg);
1300         }
1301
1302         /* PCI-Ex Control Registers */
1303         switch (hw->mac.type) {
1304         case e1000_82574:
1305         case e1000_82583:
1306                 reg = er32(GCR);
1307                 reg |= (1 << 22);
1308                 ew32(GCR, reg);
1309
1310                 /*
1311                  * Workaround for hardware errata.
1312                  * apply workaround for hardware errata documented in errata
1313                  * docs Fixes issue where some error prone or unreliable PCIe
1314                  * completions are occurring, particularly with ASPM enabled.
1315                  * Without fix, issue can cause Tx timeouts.
1316                  */
1317                 reg = er32(GCR2);
1318                 reg |= 1;
1319                 ew32(GCR2, reg);
1320                 break;
1321         default:
1322                 break;
1323         }
1324 }
1325
1326 /**
1327  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1328  *  @hw: pointer to the HW structure
1329  *
1330  *  Clears the register array which contains the VLAN filter table by
1331  *  setting all the values to 0.
1332  **/
1333 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1334 {
1335         u32 offset;
1336         u32 vfta_value = 0;
1337         u32 vfta_offset = 0;
1338         u32 vfta_bit_in_reg = 0;
1339
1340         switch (hw->mac.type) {
1341         case e1000_82573:
1342         case e1000_82574:
1343         case e1000_82583:
1344                 if (hw->mng_cookie.vlan_id != 0) {
1345                         /*
1346                          * The VFTA is a 4096b bit-field, each identifying
1347                          * a single VLAN ID.  The following operations
1348                          * determine which 32b entry (i.e. offset) into the
1349                          * array we want to set the VLAN ID (i.e. bit) of
1350                          * the manageability unit.
1351                          */
1352                         vfta_offset = (hw->mng_cookie.vlan_id >>
1353                                        E1000_VFTA_ENTRY_SHIFT) &
1354                                       E1000_VFTA_ENTRY_MASK;
1355                         vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1356                                                E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1357                 }
1358                 break;
1359         default:
1360                 break;
1361         }
1362         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1363                 /*
1364                  * If the offset we want to clear is the same offset of the
1365                  * manageability VLAN ID, then clear all bits except that of
1366                  * the manageability unit.
1367                  */
1368                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1369                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1370                 e1e_flush();
1371         }
1372 }
1373
1374 /**
1375  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1376  *  @hw: pointer to the HW structure
1377  *
1378  *  Reads the NVM Initialization Control Word 2 and returns true
1379  *  (>0) if any manageability is enabled, else false (0).
1380  **/
1381 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1382 {
1383         u16 data;
1384
1385         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1386         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1387 }
1388
1389 /**
1390  *  e1000_led_on_82574 - Turn LED on
1391  *  @hw: pointer to the HW structure
1392  *
1393  *  Turn LED on.
1394  **/
1395 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1396 {
1397         u32 ctrl;
1398         u32 i;
1399
1400         ctrl = hw->mac.ledctl_mode2;
1401         if (!(E1000_STATUS_LU & er32(STATUS))) {
1402                 /*
1403                  * If no link, then turn LED on by setting the invert bit
1404                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1405                  */
1406                 for (i = 0; i < 4; i++)
1407                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1408                             E1000_LEDCTL_MODE_LED_ON)
1409                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1410         }
1411         ew32(LEDCTL, ctrl);
1412
1413         return 0;
1414 }
1415
1416 /**
1417  *  e1000_check_phy_82574 - check 82574 phy hung state
1418  *  @hw: pointer to the HW structure
1419  *
1420  *  Returns whether phy is hung or not
1421  **/
1422 bool e1000_check_phy_82574(struct e1000_hw *hw)
1423 {
1424         u16 status_1kbt = 0;
1425         u16 receive_errors = 0;
1426         s32 ret_val = 0;
1427
1428         /*
1429          * Read PHY Receive Error counter first, if its is max - all F's then
1430          * read the Base1000T status register If both are max then PHY is hung.
1431          */
1432         ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1433         if (ret_val)
1434                 return false;
1435         if (receive_errors == E1000_RECEIVE_ERROR_MAX)  {
1436                 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1437                 if (ret_val)
1438                         return false;
1439                 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1440                     E1000_IDLE_ERROR_COUNT_MASK)
1441                         return true;
1442         }
1443
1444         return false;
1445 }
1446
1447 /**
1448  *  e1000_setup_link_82571 - Setup flow control and link settings
1449  *  @hw: pointer to the HW structure
1450  *
1451  *  Determines which flow control settings to use, then configures flow
1452  *  control.  Calls the appropriate media-specific link configuration
1453  *  function.  Assuming the adapter has a valid link partner, a valid link
1454  *  should be established.  Assumes the hardware has previously been reset
1455  *  and the transmitter and receiver are not enabled.
1456  **/
1457 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1458 {
1459         /*
1460          * 82573 does not have a word in the NVM to determine
1461          * the default flow control setting, so we explicitly
1462          * set it to full.
1463          */
1464         switch (hw->mac.type) {
1465         case e1000_82573:
1466         case e1000_82574:
1467         case e1000_82583:
1468                 if (hw->fc.requested_mode == e1000_fc_default)
1469                         hw->fc.requested_mode = e1000_fc_full;
1470                 break;
1471         default:
1472                 break;
1473         }
1474
1475         return e1000e_setup_link_generic(hw);
1476 }
1477
1478 /**
1479  *  e1000_setup_copper_link_82571 - Configure copper link settings
1480  *  @hw: pointer to the HW structure
1481  *
1482  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1483  *  for link, once link is established calls to configure collision distance
1484  *  and flow control are called.
1485  **/
1486 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1487 {
1488         u32 ctrl;
1489         s32 ret_val;
1490
1491         ctrl = er32(CTRL);
1492         ctrl |= E1000_CTRL_SLU;
1493         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1494         ew32(CTRL, ctrl);
1495
1496         switch (hw->phy.type) {
1497         case e1000_phy_m88:
1498         case e1000_phy_bm:
1499                 ret_val = e1000e_copper_link_setup_m88(hw);
1500                 break;
1501         case e1000_phy_igp_2:
1502                 ret_val = e1000e_copper_link_setup_igp(hw);
1503                 break;
1504         default:
1505                 return -E1000_ERR_PHY;
1506                 break;
1507         }
1508
1509         if (ret_val)
1510                 return ret_val;
1511
1512         return e1000e_setup_copper_link(hw);
1513 }
1514
1515 /**
1516  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1517  *  @hw: pointer to the HW structure
1518  *
1519  *  Configures collision distance and flow control for fiber and serdes links.
1520  *  Upon successful setup, poll for link.
1521  **/
1522 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1523 {
1524         switch (hw->mac.type) {
1525         case e1000_82571:
1526         case e1000_82572:
1527                 /*
1528                  * If SerDes loopback mode is entered, there is no form
1529                  * of reset to take the adapter out of that mode.  So we
1530                  * have to explicitly take the adapter out of loopback
1531                  * mode.  This prevents drivers from twiddling their thumbs
1532                  * if another tool failed to take it out of loopback mode.
1533                  */
1534                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1535                 break;
1536         default:
1537                 break;
1538         }
1539
1540         return e1000e_setup_fiber_serdes_link(hw);
1541 }
1542
1543 /**
1544  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1545  *  @hw: pointer to the HW structure
1546  *
1547  *  Reports the link state as up or down.
1548  *
1549  *  If autonegotiation is supported by the link partner, the link state is
1550  *  determined by the result of autonegotiation. This is the most likely case.
1551  *  If autonegotiation is not supported by the link partner, and the link
1552  *  has a valid signal, force the link up.
1553  *
1554  *  The link state is represented internally here by 4 states:
1555  *
1556  *  1) down
1557  *  2) autoneg_progress
1558  *  3) autoneg_complete (the link successfully autonegotiated)
1559  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1560  *
1561  **/
1562 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1563 {
1564         struct e1000_mac_info *mac = &hw->mac;
1565         u32 rxcw;
1566         u32 ctrl;
1567         u32 status;
1568         u32 txcw;
1569         u32 i;
1570         s32 ret_val = 0;
1571
1572         ctrl = er32(CTRL);
1573         status = er32(STATUS);
1574         rxcw = er32(RXCW);
1575         /* SYNCH bit and IV bit are sticky */
1576         udelay(10);
1577         rxcw = er32(RXCW);
1578
1579         if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1580
1581                 /* Receiver is synchronized with no invalid bits.  */
1582                 switch (mac->serdes_link_state) {
1583                 case e1000_serdes_link_autoneg_complete:
1584                         if (!(status & E1000_STATUS_LU)) {
1585                                 /*
1586                                  * We have lost link, retry autoneg before
1587                                  * reporting link failure
1588                                  */
1589                                 mac->serdes_link_state =
1590                                     e1000_serdes_link_autoneg_progress;
1591                                 mac->serdes_has_link = false;
1592                                 e_dbg("AN_UP     -> AN_PROG\n");
1593                         } else {
1594                                 mac->serdes_has_link = true;
1595                         }
1596                         break;
1597
1598                 case e1000_serdes_link_forced_up:
1599                         /*
1600                          * If we are receiving /C/ ordered sets, re-enable
1601                          * auto-negotiation in the TXCW register and disable
1602                          * forced link in the Device Control register in an
1603                          * attempt to auto-negotiate with our link partner.
1604                          * If the partner code word is null, stop forcing
1605                          * and restart auto negotiation.
1606                          */
1607                         if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW))  {
1608                                 /* Enable autoneg, and unforce link up */
1609                                 ew32(TXCW, mac->txcw);
1610                                 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1611                                 mac->serdes_link_state =
1612                                     e1000_serdes_link_autoneg_progress;
1613                                 mac->serdes_has_link = false;
1614                                 e_dbg("FORCED_UP -> AN_PROG\n");
1615                         } else {
1616                                 mac->serdes_has_link = true;
1617                         }
1618                         break;
1619
1620                 case e1000_serdes_link_autoneg_progress:
1621                         if (rxcw & E1000_RXCW_C) {
1622                                 /*
1623                                  * We received /C/ ordered sets, meaning the
1624                                  * link partner has autonegotiated, and we can
1625                                  * trust the Link Up (LU) status bit.
1626                                  */
1627                                 if (status & E1000_STATUS_LU) {
1628                                         mac->serdes_link_state =
1629                                             e1000_serdes_link_autoneg_complete;
1630                                         e_dbg("AN_PROG   -> AN_UP\n");
1631                                         mac->serdes_has_link = true;
1632                                 } else {
1633                                         /* Autoneg completed, but failed. */
1634                                         mac->serdes_link_state =
1635                                             e1000_serdes_link_down;
1636                                         e_dbg("AN_PROG   -> DOWN\n");
1637                                 }
1638                         } else {
1639                                 /*
1640                                  * The link partner did not autoneg.
1641                                  * Force link up and full duplex, and change
1642                                  * state to forced.
1643                                  */
1644                                 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1645                                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1646                                 ew32(CTRL, ctrl);
1647
1648                                 /* Configure Flow Control after link up. */
1649                                 ret_val = e1000e_config_fc_after_link_up(hw);
1650                                 if (ret_val) {
1651                                         e_dbg("Error config flow control\n");
1652                                         break;
1653                                 }
1654                                 mac->serdes_link_state =
1655                                     e1000_serdes_link_forced_up;
1656                                 mac->serdes_has_link = true;
1657                                 e_dbg("AN_PROG   -> FORCED_UP\n");
1658                         }
1659                         break;
1660
1661                 case e1000_serdes_link_down:
1662                 default:
1663                         /*
1664                          * The link was down but the receiver has now gained
1665                          * valid sync, so lets see if we can bring the link
1666                          * up.
1667                          */
1668                         ew32(TXCW, mac->txcw);
1669                         ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1670                         mac->serdes_link_state =
1671                             e1000_serdes_link_autoneg_progress;
1672                         mac->serdes_has_link = false;
1673                         e_dbg("DOWN      -> AN_PROG\n");
1674                         break;
1675                 }
1676         } else {
1677                 if (!(rxcw & E1000_RXCW_SYNCH)) {
1678                         mac->serdes_has_link = false;
1679                         mac->serdes_link_state = e1000_serdes_link_down;
1680                         e_dbg("ANYSTATE  -> DOWN\n");
1681                 } else {
1682                         /*
1683                          * Check several times, if SYNCH bit and CONFIG
1684                          * bit both are consistently 1 then simply ignore
1685                          * the IV bit and restart Autoneg
1686                          */
1687                         for (i = 0; i < AN_RETRY_COUNT; i++) {
1688                                 udelay(10);
1689                                 rxcw = er32(RXCW);
1690                                 if ((rxcw & E1000_RXCW_SYNCH) &&
1691                                     (rxcw & E1000_RXCW_C))
1692                                         continue;
1693
1694                                 if (rxcw & E1000_RXCW_IV) {
1695                                         mac->serdes_has_link = false;
1696                                         mac->serdes_link_state =
1697                                             e1000_serdes_link_down;
1698                                         e_dbg("ANYSTATE  -> DOWN\n");
1699                                         break;
1700                                 }
1701                         }
1702
1703                         if (i == AN_RETRY_COUNT) {
1704                                 txcw = er32(TXCW);
1705                                 txcw |= E1000_TXCW_ANE;
1706                                 ew32(TXCW, txcw);
1707                                 mac->serdes_link_state =
1708                                     e1000_serdes_link_autoneg_progress;
1709                                 mac->serdes_has_link = false;
1710                                 e_dbg("ANYSTATE  -> AN_PROG\n");
1711                         }
1712                 }
1713         }
1714
1715         return ret_val;
1716 }
1717
1718 /**
1719  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1720  *  @hw: pointer to the HW structure
1721  *  @data: pointer to the NVM (EEPROM)
1722  *
1723  *  Read the EEPROM for the current default LED configuration.  If the
1724  *  LED configuration is not valid, set to a valid LED configuration.
1725  **/
1726 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1727 {
1728         s32 ret_val;
1729
1730         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1731         if (ret_val) {
1732                 e_dbg("NVM Read Error\n");
1733                 return ret_val;
1734         }
1735
1736         switch (hw->mac.type) {
1737         case e1000_82573:
1738         case e1000_82574:
1739         case e1000_82583:
1740                 if (*data == ID_LED_RESERVED_F746)
1741                         *data = ID_LED_DEFAULT_82573;
1742                 break;
1743         default:
1744                 if (*data == ID_LED_RESERVED_0000 ||
1745                     *data == ID_LED_RESERVED_FFFF)
1746                         *data = ID_LED_DEFAULT;
1747                 break;
1748         }
1749
1750         return 0;
1751 }
1752
1753 /**
1754  *  e1000e_get_laa_state_82571 - Get locally administered address state
1755  *  @hw: pointer to the HW structure
1756  *
1757  *  Retrieve and return the current locally administered address state.
1758  **/
1759 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1760 {
1761         if (hw->mac.type != e1000_82571)
1762                 return false;
1763
1764         return hw->dev_spec.e82571.laa_is_present;
1765 }
1766
1767 /**
1768  *  e1000e_set_laa_state_82571 - Set locally administered address state
1769  *  @hw: pointer to the HW structure
1770  *  @state: enable/disable locally administered address
1771  *
1772  *  Enable/Disable the current locally administered address state.
1773  **/
1774 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1775 {
1776         if (hw->mac.type != e1000_82571)
1777                 return;
1778
1779         hw->dev_spec.e82571.laa_is_present = state;
1780
1781         /* If workaround is activated... */
1782         if (state)
1783                 /*
1784                  * Hold a copy of the LAA in RAR[14] This is done so that
1785                  * between the time RAR[0] gets clobbered and the time it
1786                  * gets fixed, the actual LAA is in one of the RARs and no
1787                  * incoming packets directed to this port are dropped.
1788                  * Eventually the LAA will be in RAR[0] and RAR[14].
1789                  */
1790                 hw->mac.ops.rar_set(hw, hw->mac.addr,
1791                                     hw->mac.rar_entry_count - 1);
1792 }
1793
1794 /**
1795  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1796  *  @hw: pointer to the HW structure
1797  *
1798  *  Verifies that the EEPROM has completed the update.  After updating the
1799  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1800  *  the checksum fix is not implemented, we need to set the bit and update
1801  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1802  *  we need to return bad checksum.
1803  **/
1804 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1805 {
1806         struct e1000_nvm_info *nvm = &hw->nvm;
1807         s32 ret_val;
1808         u16 data;
1809
1810         if (nvm->type != e1000_nvm_flash_hw)
1811                 return 0;
1812
1813         /*
1814          * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1815          * 10h-12h.  Checksum may need to be fixed.
1816          */
1817         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1818         if (ret_val)
1819                 return ret_val;
1820
1821         if (!(data & 0x10)) {
1822                 /*
1823                  * Read 0x23 and check bit 15.  This bit is a 1
1824                  * when the checksum has already been fixed.  If
1825                  * the checksum is still wrong and this bit is a
1826                  * 1, we need to return bad checksum.  Otherwise,
1827                  * we need to set this bit to a 1 and update the
1828                  * checksum.
1829                  */
1830                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1831                 if (ret_val)
1832                         return ret_val;
1833
1834                 if (!(data & 0x8000)) {
1835                         data |= 0x8000;
1836                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1837                         if (ret_val)
1838                                 return ret_val;
1839                         ret_val = e1000e_update_nvm_checksum(hw);
1840                 }
1841         }
1842
1843         return 0;
1844 }
1845
1846 /**
1847  *  e1000_read_mac_addr_82571 - Read device MAC address
1848  *  @hw: pointer to the HW structure
1849  **/
1850 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1851 {
1852         if (hw->mac.type == e1000_82571) {
1853                 s32 ret_val = 0;
1854
1855                 /*
1856                  * If there's an alternate MAC address place it in RAR0
1857                  * so that it will override the Si installed default perm
1858                  * address.
1859                  */
1860                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1861                 if (ret_val)
1862                         return ret_val;
1863         }
1864
1865         return e1000_read_mac_addr_generic(hw);
1866 }
1867
1868 /**
1869  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1870  * @hw: pointer to the HW structure
1871  *
1872  * In the case of a PHY power down to save power, or to turn off link during a
1873  * driver unload, or wake on lan is not enabled, remove the link.
1874  **/
1875 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1876 {
1877         struct e1000_phy_info *phy = &hw->phy;
1878         struct e1000_mac_info *mac = &hw->mac;
1879
1880         if (!phy->ops.check_reset_block)
1881                 return;
1882
1883         /* If the management interface is not enabled, then power down */
1884         if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1885                 e1000_power_down_phy_copper(hw);
1886 }
1887
1888 /**
1889  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1890  *  @hw: pointer to the HW structure
1891  *
1892  *  Clears the hardware counters by reading the counter registers.
1893  **/
1894 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1895 {
1896         e1000e_clear_hw_cntrs_base(hw);
1897
1898         er32(PRC64);
1899         er32(PRC127);
1900         er32(PRC255);
1901         er32(PRC511);
1902         er32(PRC1023);
1903         er32(PRC1522);
1904         er32(PTC64);
1905         er32(PTC127);
1906         er32(PTC255);
1907         er32(PTC511);
1908         er32(PTC1023);
1909         er32(PTC1522);
1910
1911         er32(ALGNERRC);
1912         er32(RXERRC);
1913         er32(TNCRS);
1914         er32(CEXTERR);
1915         er32(TSCTC);
1916         er32(TSCTFC);
1917
1918         er32(MGTPRC);
1919         er32(MGTPDC);
1920         er32(MGTPTC);
1921
1922         er32(IAC);
1923         er32(ICRXOC);
1924
1925         er32(ICRXPTC);
1926         er32(ICRXATC);
1927         er32(ICTXPTC);
1928         er32(ICTXATC);
1929         er32(ICTXQEC);
1930         er32(ICTXQMTC);
1931         er32(ICRXDMTC);
1932 }
1933
1934 static const struct e1000_mac_operations e82571_mac_ops = {
1935         /* .check_mng_mode: mac type dependent */
1936         /* .check_for_link: media type dependent */
1937         .id_led_init            = e1000e_id_led_init_generic,
1938         .cleanup_led            = e1000e_cleanup_led_generic,
1939         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1940         .get_bus_info           = e1000e_get_bus_info_pcie,
1941         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1942         /* .get_link_up_info: media type dependent */
1943         /* .led_on: mac type dependent */
1944         .led_off                = e1000e_led_off_generic,
1945         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1946         .write_vfta             = e1000_write_vfta_generic,
1947         .clear_vfta             = e1000_clear_vfta_82571,
1948         .reset_hw               = e1000_reset_hw_82571,
1949         .init_hw                = e1000_init_hw_82571,
1950         .setup_link             = e1000_setup_link_82571,
1951         /* .setup_physical_interface: media type dependent */
1952         .setup_led              = e1000e_setup_led_generic,
1953         .config_collision_dist  = e1000e_config_collision_dist_generic,
1954         .read_mac_addr          = e1000_read_mac_addr_82571,
1955         .rar_set                = e1000e_rar_set_generic,
1956 };
1957
1958 static const struct e1000_phy_operations e82_phy_ops_igp = {
1959         .acquire                = e1000_get_hw_semaphore_82571,
1960         .check_polarity         = e1000_check_polarity_igp,
1961         .check_reset_block      = e1000e_check_reset_block_generic,
1962         .commit                 = NULL,
1963         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1964         .get_cfg_done           = e1000_get_cfg_done_82571,
1965         .get_cable_length       = e1000e_get_cable_length_igp_2,
1966         .get_info               = e1000e_get_phy_info_igp,
1967         .read_reg               = e1000e_read_phy_reg_igp,
1968         .release                = e1000_put_hw_semaphore_82571,
1969         .reset                  = e1000e_phy_hw_reset_generic,
1970         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1971         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1972         .write_reg              = e1000e_write_phy_reg_igp,
1973         .cfg_on_link_up         = NULL,
1974 };
1975
1976 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1977         .acquire                = e1000_get_hw_semaphore_82571,
1978         .check_polarity         = e1000_check_polarity_m88,
1979         .check_reset_block      = e1000e_check_reset_block_generic,
1980         .commit                 = e1000e_phy_sw_reset,
1981         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1982         .get_cfg_done           = e1000e_get_cfg_done,
1983         .get_cable_length       = e1000e_get_cable_length_m88,
1984         .get_info               = e1000e_get_phy_info_m88,
1985         .read_reg               = e1000e_read_phy_reg_m88,
1986         .release                = e1000_put_hw_semaphore_82571,
1987         .reset                  = e1000e_phy_hw_reset_generic,
1988         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1989         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1990         .write_reg              = e1000e_write_phy_reg_m88,
1991         .cfg_on_link_up         = NULL,
1992 };
1993
1994 static const struct e1000_phy_operations e82_phy_ops_bm = {
1995         .acquire                = e1000_get_hw_semaphore_82571,
1996         .check_polarity         = e1000_check_polarity_m88,
1997         .check_reset_block      = e1000e_check_reset_block_generic,
1998         .commit                 = e1000e_phy_sw_reset,
1999         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
2000         .get_cfg_done           = e1000e_get_cfg_done,
2001         .get_cable_length       = e1000e_get_cable_length_m88,
2002         .get_info               = e1000e_get_phy_info_m88,
2003         .read_reg               = e1000e_read_phy_reg_bm2,
2004         .release                = e1000_put_hw_semaphore_82571,
2005         .reset                  = e1000e_phy_hw_reset_generic,
2006         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
2007         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
2008         .write_reg              = e1000e_write_phy_reg_bm2,
2009         .cfg_on_link_up         = NULL,
2010 };
2011
2012 static const struct e1000_nvm_operations e82571_nvm_ops = {
2013         .acquire                = e1000_acquire_nvm_82571,
2014         .read                   = e1000e_read_nvm_eerd,
2015         .release                = e1000_release_nvm_82571,
2016         .reload                 = e1000e_reload_nvm_generic,
2017         .update                 = e1000_update_nvm_checksum_82571,
2018         .valid_led_default      = e1000_valid_led_default_82571,
2019         .validate               = e1000_validate_nvm_checksum_82571,
2020         .write                  = e1000_write_nvm_82571,
2021 };
2022
2023 const struct e1000_info e1000_82571_info = {
2024         .mac                    = e1000_82571,
2025         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2026                                   | FLAG_HAS_JUMBO_FRAMES
2027                                   | FLAG_HAS_WOL
2028                                   | FLAG_APME_IN_CTRL3
2029                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2030                                   | FLAG_HAS_SMART_POWER_DOWN
2031                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
2032                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
2033                                   | FLAG_APME_CHECK_PORT_B,
2034         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2035                                   | FLAG2_DMA_BURST,
2036         .pba                    = 38,
2037         .max_hw_frame_size      = DEFAULT_JUMBO,
2038         .get_variants           = e1000_get_variants_82571,
2039         .mac_ops                = &e82571_mac_ops,
2040         .phy_ops                = &e82_phy_ops_igp,
2041         .nvm_ops                = &e82571_nvm_ops,
2042 };
2043
2044 const struct e1000_info e1000_82572_info = {
2045         .mac                    = e1000_82572,
2046         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2047                                   | FLAG_HAS_JUMBO_FRAMES
2048                                   | FLAG_HAS_WOL
2049                                   | FLAG_APME_IN_CTRL3
2050                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2051                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
2052         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2053                                   | FLAG2_DMA_BURST,
2054         .pba                    = 38,
2055         .max_hw_frame_size      = DEFAULT_JUMBO,
2056         .get_variants           = e1000_get_variants_82571,
2057         .mac_ops                = &e82571_mac_ops,
2058         .phy_ops                = &e82_phy_ops_igp,
2059         .nvm_ops                = &e82571_nvm_ops,
2060 };
2061
2062 const struct e1000_info e1000_82573_info = {
2063         .mac                    = e1000_82573,
2064         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2065                                   | FLAG_HAS_WOL
2066                                   | FLAG_APME_IN_CTRL3
2067                                   | FLAG_HAS_SMART_POWER_DOWN
2068                                   | FLAG_HAS_AMT
2069                                   | FLAG_HAS_SWSM_ON_LOAD,
2070         .flags2                 = FLAG2_DISABLE_ASPM_L1
2071                                   | FLAG2_DISABLE_ASPM_L0S,
2072         .pba                    = 20,
2073         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
2074         .get_variants           = e1000_get_variants_82571,
2075         .mac_ops                = &e82571_mac_ops,
2076         .phy_ops                = &e82_phy_ops_m88,
2077         .nvm_ops                = &e82571_nvm_ops,
2078 };
2079
2080 const struct e1000_info e1000_82574_info = {
2081         .mac                    = e1000_82574,
2082         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2083                                   | FLAG_HAS_MSIX
2084                                   | FLAG_HAS_JUMBO_FRAMES
2085                                   | FLAG_HAS_WOL
2086                                   | FLAG_APME_IN_CTRL3
2087                                   | FLAG_HAS_SMART_POWER_DOWN
2088                                   | FLAG_HAS_AMT
2089                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2090         .flags2                  = FLAG2_CHECK_PHY_HANG
2091                                   | FLAG2_DISABLE_ASPM_L0S
2092                                   | FLAG2_DISABLE_ASPM_L1
2093                                   | FLAG2_NO_DISABLE_RX
2094                                   | FLAG2_DMA_BURST,
2095         .pba                    = 32,
2096         .max_hw_frame_size      = DEFAULT_JUMBO,
2097         .get_variants           = e1000_get_variants_82571,
2098         .mac_ops                = &e82571_mac_ops,
2099         .phy_ops                = &e82_phy_ops_bm,
2100         .nvm_ops                = &e82571_nvm_ops,
2101 };
2102
2103 const struct e1000_info e1000_82583_info = {
2104         .mac                    = e1000_82583,
2105         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2106                                   | FLAG_HAS_WOL
2107                                   | FLAG_APME_IN_CTRL3
2108                                   | FLAG_HAS_SMART_POWER_DOWN
2109                                   | FLAG_HAS_AMT
2110                                   | FLAG_HAS_JUMBO_FRAMES
2111                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2112         .flags2                 = FLAG2_DISABLE_ASPM_L0S
2113                                   | FLAG2_NO_DISABLE_RX,
2114         .pba                    = 32,
2115         .max_hw_frame_size      = DEFAULT_JUMBO,
2116         .get_variants           = e1000_get_variants_82571,
2117         .mac_ops                = &e82571_mac_ops,
2118         .phy_ops                = &e82_phy_ops_bm,
2119         .nvm_ops                = &e82571_nvm_ops,
2120 };
2121