2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
51 #define CREATE_TRACE_POINTS
54 #include <asm/debugreg.h>
60 #include <asm/fpu-internal.h> /* Ugh! */
62 #include <asm/pvclock.h>
63 #include <asm/div64.h>
65 #define MAX_IO_MSRS 256
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
69 #define emul_to_vcpu(ctxt) \
70 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73 * - enable syscall per default because its emulated by KVM
74 * - enable LME and LMA per default on 64 bit KVM
78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
86 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
87 static void process_nmi(struct kvm_vcpu *vcpu);
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
92 static bool ignore_msrs = 0;
93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
95 bool kvm_has_tsc_control;
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
97 u32 kvm_max_guest_tsc_khz;
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
101 static u32 tsc_tolerance_ppm = 250;
102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
104 #define KVM_NR_SHARED_MSRS 16
106 struct kvm_shared_msrs_global {
108 u32 msrs[KVM_NR_SHARED_MSRS];
111 struct kvm_shared_msrs {
112 struct user_return_notifier urn;
114 struct kvm_shared_msr_values {
117 } values[KVM_NR_SHARED_MSRS];
120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
123 struct kvm_stats_debugfs_item debugfs_entries[] = {
124 { "pf_fixed", VCPU_STAT(pf_fixed) },
125 { "pf_guest", VCPU_STAT(pf_guest) },
126 { "tlb_flush", VCPU_STAT(tlb_flush) },
127 { "invlpg", VCPU_STAT(invlpg) },
128 { "exits", VCPU_STAT(exits) },
129 { "io_exits", VCPU_STAT(io_exits) },
130 { "mmio_exits", VCPU_STAT(mmio_exits) },
131 { "signal_exits", VCPU_STAT(signal_exits) },
132 { "irq_window", VCPU_STAT(irq_window_exits) },
133 { "nmi_window", VCPU_STAT(nmi_window_exits) },
134 { "halt_exits", VCPU_STAT(halt_exits) },
135 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
136 { "hypercalls", VCPU_STAT(hypercalls) },
137 { "request_irq", VCPU_STAT(request_irq_exits) },
138 { "irq_exits", VCPU_STAT(irq_exits) },
139 { "host_state_reload", VCPU_STAT(host_state_reload) },
140 { "efer_reload", VCPU_STAT(efer_reload) },
141 { "fpu_reload", VCPU_STAT(fpu_reload) },
142 { "insn_emulation", VCPU_STAT(insn_emulation) },
143 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
144 { "irq_injections", VCPU_STAT(irq_injections) },
145 { "nmi_injections", VCPU_STAT(nmi_injections) },
146 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
147 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
148 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
149 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
150 { "mmu_flooded", VM_STAT(mmu_flooded) },
151 { "mmu_recycled", VM_STAT(mmu_recycled) },
152 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
153 { "mmu_unsync", VM_STAT(mmu_unsync) },
154 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
155 { "largepages", VM_STAT(lpages) },
159 u64 __read_mostly host_xcr0;
161 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
167 vcpu->arch.apf.gfns[i] = ~0;
170 static void kvm_on_user_return(struct user_return_notifier *urn)
173 struct kvm_shared_msrs *locals
174 = container_of(urn, struct kvm_shared_msrs, urn);
175 struct kvm_shared_msr_values *values;
177 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
178 values = &locals->values[slot];
179 if (values->host != values->curr) {
180 wrmsrl(shared_msrs_global.msrs[slot], values->host);
181 values->curr = values->host;
184 locals->registered = false;
185 user_return_notifier_unregister(urn);
188 static void shared_msr_update(unsigned slot, u32 msr)
190 struct kvm_shared_msrs *smsr;
193 smsr = &__get_cpu_var(shared_msrs);
194 /* only read, and nobody should modify it at this time,
195 * so don't need lock */
196 if (slot >= shared_msrs_global.nr) {
197 printk(KERN_ERR "kvm: invalid MSR slot!");
200 rdmsrl_safe(msr, &value);
201 smsr->values[slot].host = value;
202 smsr->values[slot].curr = value;
205 void kvm_define_shared_msr(unsigned slot, u32 msr)
207 if (slot >= shared_msrs_global.nr)
208 shared_msrs_global.nr = slot + 1;
209 shared_msrs_global.msrs[slot] = msr;
210 /* we need ensured the shared_msr_global have been updated */
213 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
215 static void kvm_shared_msr_cpu_online(void)
219 for (i = 0; i < shared_msrs_global.nr; ++i)
220 shared_msr_update(i, shared_msrs_global.msrs[i]);
223 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
225 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
227 if (((value ^ smsr->values[slot].curr) & mask) == 0)
229 smsr->values[slot].curr = value;
230 wrmsrl(shared_msrs_global.msrs[slot], value);
231 if (!smsr->registered) {
232 smsr->urn.on_user_return = kvm_on_user_return;
233 user_return_notifier_register(&smsr->urn);
234 smsr->registered = true;
237 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
239 static void drop_user_return_notifiers(void *ignore)
241 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
243 if (smsr->registered)
244 kvm_on_user_return(&smsr->urn);
247 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
249 return vcpu->arch.apic_base;
251 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
253 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
255 /* TODO: reserve bits check */
256 kvm_lapic_set_base(vcpu, data);
258 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
260 #define EXCPT_BENIGN 0
261 #define EXCPT_CONTRIBUTORY 1
264 static int exception_class(int vector)
274 return EXCPT_CONTRIBUTORY;
281 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
282 unsigned nr, bool has_error, u32 error_code,
288 kvm_make_request(KVM_REQ_EVENT, vcpu);
290 if (!vcpu->arch.exception.pending) {
292 vcpu->arch.exception.pending = true;
293 vcpu->arch.exception.has_error_code = has_error;
294 vcpu->arch.exception.nr = nr;
295 vcpu->arch.exception.error_code = error_code;
296 vcpu->arch.exception.reinject = reinject;
300 /* to check exception */
301 prev_nr = vcpu->arch.exception.nr;
302 if (prev_nr == DF_VECTOR) {
303 /* triple fault -> shutdown */
304 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
307 class1 = exception_class(prev_nr);
308 class2 = exception_class(nr);
309 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
310 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
311 /* generate double fault per SDM Table 5-5 */
312 vcpu->arch.exception.pending = true;
313 vcpu->arch.exception.has_error_code = true;
314 vcpu->arch.exception.nr = DF_VECTOR;
315 vcpu->arch.exception.error_code = 0;
317 /* replace previous exception with a new one in a hope
318 that instruction re-execution will regenerate lost
323 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
325 kvm_multiple_exception(vcpu, nr, false, 0, false);
327 EXPORT_SYMBOL_GPL(kvm_queue_exception);
329 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
331 kvm_multiple_exception(vcpu, nr, false, 0, true);
333 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
335 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
338 kvm_inject_gp(vcpu, 0);
340 kvm_x86_ops->skip_emulated_instruction(vcpu);
342 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
344 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
346 ++vcpu->stat.pf_guest;
347 vcpu->arch.cr2 = fault->address;
348 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
350 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
352 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
354 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
355 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
357 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
360 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
362 atomic_inc(&vcpu->arch.nmi_queued);
363 kvm_make_request(KVM_REQ_NMI, vcpu);
365 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
367 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
369 kvm_multiple_exception(vcpu, nr, true, error_code, false);
371 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
373 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
375 kvm_multiple_exception(vcpu, nr, true, error_code, true);
377 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
380 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
381 * a #GP and return false.
383 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
385 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
387 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
390 EXPORT_SYMBOL_GPL(kvm_require_cpl);
393 * This function will be used to read from the physical memory of the currently
394 * running guest. The difference to kvm_read_guest_page is that this function
395 * can read from guest physical or from the guest's guest physical memory.
397 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
398 gfn_t ngfn, void *data, int offset, int len,
404 ngpa = gfn_to_gpa(ngfn);
405 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
406 if (real_gfn == UNMAPPED_GVA)
409 real_gfn = gpa_to_gfn(real_gfn);
411 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
413 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
415 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
416 void *data, int offset, int len, u32 access)
418 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
419 data, offset, len, access);
423 * Load the pae pdptrs. Return true is they are all valid.
425 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
427 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
428 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
431 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
433 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
434 offset * sizeof(u64), sizeof(pdpte),
435 PFERR_USER_MASK|PFERR_WRITE_MASK);
440 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
441 if (is_present_gpte(pdpte[i]) &&
442 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
449 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
450 __set_bit(VCPU_EXREG_PDPTR,
451 (unsigned long *)&vcpu->arch.regs_avail);
452 __set_bit(VCPU_EXREG_PDPTR,
453 (unsigned long *)&vcpu->arch.regs_dirty);
458 EXPORT_SYMBOL_GPL(load_pdptrs);
460 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
462 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
468 if (is_long_mode(vcpu) || !is_pae(vcpu))
471 if (!test_bit(VCPU_EXREG_PDPTR,
472 (unsigned long *)&vcpu->arch.regs_avail))
475 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
476 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
477 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
478 PFERR_USER_MASK | PFERR_WRITE_MASK);
481 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
487 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
489 unsigned long old_cr0 = kvm_read_cr0(vcpu);
490 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
491 X86_CR0_CD | X86_CR0_NW;
496 if (cr0 & 0xffffffff00000000UL)
500 cr0 &= ~CR0_RESERVED_BITS;
502 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
505 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
508 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
510 if ((vcpu->arch.efer & EFER_LME)) {
515 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
520 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
525 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
528 kvm_x86_ops->set_cr0(vcpu, cr0);
530 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
531 kvm_clear_async_pf_completion_queue(vcpu);
532 kvm_async_pf_hash_reset(vcpu);
535 if ((cr0 ^ old_cr0) & update_bits)
536 kvm_mmu_reset_context(vcpu);
539 EXPORT_SYMBOL_GPL(kvm_set_cr0);
541 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
543 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
545 EXPORT_SYMBOL_GPL(kvm_lmsw);
547 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
551 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
552 if (index != XCR_XFEATURE_ENABLED_MASK)
555 if (kvm_x86_ops->get_cpl(vcpu) != 0)
557 if (!(xcr0 & XSTATE_FP))
559 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
561 if (xcr0 & ~host_xcr0)
563 vcpu->arch.xcr0 = xcr0;
564 vcpu->guest_xcr0_loaded = 0;
568 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
570 if (__kvm_set_xcr(vcpu, index, xcr)) {
571 kvm_inject_gp(vcpu, 0);
576 EXPORT_SYMBOL_GPL(kvm_set_xcr);
578 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
580 unsigned long old_cr4 = kvm_read_cr4(vcpu);
581 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
582 X86_CR4_PAE | X86_CR4_SMEP;
583 if (cr4 & CR4_RESERVED_BITS)
586 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
589 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
592 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
595 if (is_long_mode(vcpu)) {
596 if (!(cr4 & X86_CR4_PAE))
598 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
599 && ((cr4 ^ old_cr4) & pdptr_bits)
600 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
604 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
605 if (!guest_cpuid_has_pcid(vcpu))
608 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
609 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
613 if (kvm_x86_ops->set_cr4(vcpu, cr4))
616 if (((cr4 ^ old_cr4) & pdptr_bits) ||
617 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
618 kvm_mmu_reset_context(vcpu);
620 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
621 kvm_update_cpuid(vcpu);
625 EXPORT_SYMBOL_GPL(kvm_set_cr4);
627 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
629 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
630 kvm_mmu_sync_roots(vcpu);
631 kvm_mmu_flush_tlb(vcpu);
635 if (is_long_mode(vcpu)) {
636 if (kvm_read_cr4(vcpu) & X86_CR4_PCIDE) {
637 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
640 if (cr3 & CR3_L_MODE_RESERVED_BITS)
644 if (cr3 & CR3_PAE_RESERVED_BITS)
646 if (is_paging(vcpu) &&
647 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
651 * We don't check reserved bits in nonpae mode, because
652 * this isn't enforced, and VMware depends on this.
657 * Does the new cr3 value map to physical memory? (Note, we
658 * catch an invalid cr3 even in real-mode, because it would
659 * cause trouble later on when we turn on paging anyway.)
661 * A real CPU would silently accept an invalid cr3 and would
662 * attempt to use it - with largely undefined (and often hard
663 * to debug) behavior on the guest side.
665 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
667 vcpu->arch.cr3 = cr3;
668 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
669 vcpu->arch.mmu.new_cr3(vcpu);
672 EXPORT_SYMBOL_GPL(kvm_set_cr3);
674 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
676 if (cr8 & CR8_RESERVED_BITS)
678 if (irqchip_in_kernel(vcpu->kvm))
679 kvm_lapic_set_tpr(vcpu, cr8);
681 vcpu->arch.cr8 = cr8;
684 EXPORT_SYMBOL_GPL(kvm_set_cr8);
686 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
688 if (irqchip_in_kernel(vcpu->kvm))
689 return kvm_lapic_get_cr8(vcpu);
691 return vcpu->arch.cr8;
693 EXPORT_SYMBOL_GPL(kvm_get_cr8);
695 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
699 vcpu->arch.db[dr] = val;
700 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
701 vcpu->arch.eff_db[dr] = val;
704 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
708 if (val & 0xffffffff00000000ULL)
710 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
713 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
717 if (val & 0xffffffff00000000ULL)
719 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
720 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
721 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
722 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
730 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
734 res = __kvm_set_dr(vcpu, dr, val);
736 kvm_queue_exception(vcpu, UD_VECTOR);
738 kvm_inject_gp(vcpu, 0);
742 EXPORT_SYMBOL_GPL(kvm_set_dr);
744 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
748 *val = vcpu->arch.db[dr];
751 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
755 *val = vcpu->arch.dr6;
758 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
762 *val = vcpu->arch.dr7;
769 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
771 if (_kvm_get_dr(vcpu, dr, val)) {
772 kvm_queue_exception(vcpu, UD_VECTOR);
777 EXPORT_SYMBOL_GPL(kvm_get_dr);
779 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
781 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
785 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
788 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
789 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
792 EXPORT_SYMBOL_GPL(kvm_rdpmc);
795 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
796 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
798 * This list is modified at module load time to reflect the
799 * capabilities of the host cpu. This capabilities test skips MSRs that are
800 * kvm-specific. Those are put in the beginning of the list.
803 #define KVM_SAVE_MSRS_BEGIN 10
804 static u32 msrs_to_save[] = {
805 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
806 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
807 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
808 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
810 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
813 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
815 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
818 static unsigned num_msrs_to_save;
820 static const u32 emulated_msrs[] = {
821 MSR_IA32_TSCDEADLINE,
822 MSR_IA32_MISC_ENABLE,
827 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
829 u64 old_efer = vcpu->arch.efer;
831 if (efer & efer_reserved_bits)
835 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
838 if (efer & EFER_FFXSR) {
839 struct kvm_cpuid_entry2 *feat;
841 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
842 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
846 if (efer & EFER_SVME) {
847 struct kvm_cpuid_entry2 *feat;
849 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
850 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
855 efer |= vcpu->arch.efer & EFER_LMA;
857 kvm_x86_ops->set_efer(vcpu, efer);
859 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
861 /* Update reserved bits */
862 if ((efer ^ old_efer) & EFER_NX)
863 kvm_mmu_reset_context(vcpu);
868 void kvm_enable_efer_bits(u64 mask)
870 efer_reserved_bits &= ~mask;
872 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
876 * Writes msr value into into the appropriate "register".
877 * Returns 0 on success, non-0 otherwise.
878 * Assumes vcpu_load() was already called.
880 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
882 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
886 * Adapt set_msr() to msr_io()'s calling convention
888 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
890 return kvm_set_msr(vcpu, index, *data);
893 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
897 struct pvclock_wall_clock wc;
898 struct timespec boot;
903 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
908 ++version; /* first time write, random junk */
912 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
915 * The guest calculates current wall clock time by adding
916 * system time (updated by kvm_guest_time_update below) to the
917 * wall clock specified here. guest system time equals host
918 * system time for us, thus we must fill in host boot time here.
922 if (kvm->arch.kvmclock_offset) {
923 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
924 boot = timespec_sub(boot, ts);
926 wc.sec = boot.tv_sec;
927 wc.nsec = boot.tv_nsec;
928 wc.version = version;
930 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
933 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
936 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
938 uint32_t quotient, remainder;
940 /* Don't try to replace with do_div(), this one calculates
941 * "(dividend << 32) / divisor" */
943 : "=a" (quotient), "=d" (remainder)
944 : "0" (0), "1" (dividend), "r" (divisor) );
948 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
949 s8 *pshift, u32 *pmultiplier)
956 tps64 = base_khz * 1000LL;
957 scaled64 = scaled_khz * 1000LL;
958 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
963 tps32 = (uint32_t)tps64;
964 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
965 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
973 *pmultiplier = div_frac(scaled64, tps32);
975 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
976 __func__, base_khz, scaled_khz, shift, *pmultiplier);
979 static inline u64 get_kernel_ns(void)
983 WARN_ON(preemptible());
985 monotonic_to_bootbased(&ts);
986 return timespec_to_ns(&ts);
989 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
990 unsigned long max_tsc_khz;
992 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
994 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
995 vcpu->arch.virtual_tsc_shift);
998 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1000 u64 v = (u64)khz * (1000000 + ppm);
1005 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1007 u32 thresh_lo, thresh_hi;
1008 int use_scaling = 0;
1010 /* Compute a scale to convert nanoseconds in TSC cycles */
1011 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1012 &vcpu->arch.virtual_tsc_shift,
1013 &vcpu->arch.virtual_tsc_mult);
1014 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1017 * Compute the variation in TSC rate which is acceptable
1018 * within the range of tolerance and decide if the
1019 * rate being applied is within that bounds of the hardware
1020 * rate. If so, no scaling or compensation need be done.
1022 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1023 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1024 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1025 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1028 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1031 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1033 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1034 vcpu->arch.virtual_tsc_mult,
1035 vcpu->arch.virtual_tsc_shift);
1036 tsc += vcpu->arch.this_tsc_write;
1040 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1042 struct kvm *kvm = vcpu->kvm;
1043 u64 offset, ns, elapsed;
1044 unsigned long flags;
1047 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1048 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1049 ns = get_kernel_ns();
1050 elapsed = ns - kvm->arch.last_tsc_nsec;
1052 /* n.b - signed multiplication and division required */
1053 usdiff = data - kvm->arch.last_tsc_write;
1054 #ifdef CONFIG_X86_64
1055 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1057 /* do_div() only does unsigned */
1058 asm("idivl %2; xor %%edx, %%edx"
1060 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1062 do_div(elapsed, 1000);
1068 * Special case: TSC write with a small delta (1 second) of virtual
1069 * cycle time against real time is interpreted as an attempt to
1070 * synchronize the CPU.
1072 * For a reliable TSC, we can match TSC offsets, and for an unstable
1073 * TSC, we add elapsed time in this computation. We could let the
1074 * compensation code attempt to catch up if we fall behind, but
1075 * it's better to try to match offsets from the beginning.
1077 if (usdiff < USEC_PER_SEC &&
1078 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1079 if (!check_tsc_unstable()) {
1080 offset = kvm->arch.cur_tsc_offset;
1081 pr_debug("kvm: matched tsc offset for %llu\n", data);
1083 u64 delta = nsec_to_cycles(vcpu, elapsed);
1085 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1086 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1090 * We split periods of matched TSC writes into generations.
1091 * For each generation, we track the original measured
1092 * nanosecond time, offset, and write, so if TSCs are in
1093 * sync, we can match exact offset, and if not, we can match
1094 * exact software computation in compute_guest_tsc()
1096 * These values are tracked in kvm->arch.cur_xxx variables.
1098 kvm->arch.cur_tsc_generation++;
1099 kvm->arch.cur_tsc_nsec = ns;
1100 kvm->arch.cur_tsc_write = data;
1101 kvm->arch.cur_tsc_offset = offset;
1102 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1103 kvm->arch.cur_tsc_generation, data);
1107 * We also track th most recent recorded KHZ, write and time to
1108 * allow the matching interval to be extended at each write.
1110 kvm->arch.last_tsc_nsec = ns;
1111 kvm->arch.last_tsc_write = data;
1112 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1114 /* Reset of TSC must disable overshoot protection below */
1115 vcpu->arch.hv_clock.tsc_timestamp = 0;
1116 vcpu->arch.last_guest_tsc = data;
1118 /* Keep track of which generation this VCPU has synchronized to */
1119 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1120 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1121 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1123 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1124 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1127 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1129 static int kvm_guest_time_update(struct kvm_vcpu *v)
1131 unsigned long flags;
1132 struct kvm_vcpu_arch *vcpu = &v->arch;
1134 unsigned long this_tsc_khz;
1135 s64 kernel_ns, max_kernel_ns;
1139 /* Keep irq disabled to prevent changes to the clock */
1140 local_irq_save(flags);
1141 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1142 kernel_ns = get_kernel_ns();
1143 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1144 if (unlikely(this_tsc_khz == 0)) {
1145 local_irq_restore(flags);
1146 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1151 * We may have to catch up the TSC to match elapsed wall clock
1152 * time for two reasons, even if kvmclock is used.
1153 * 1) CPU could have been running below the maximum TSC rate
1154 * 2) Broken TSC compensation resets the base at each VCPU
1155 * entry to avoid unknown leaps of TSC even when running
1156 * again on the same CPU. This may cause apparent elapsed
1157 * time to disappear, and the guest to stand still or run
1160 if (vcpu->tsc_catchup) {
1161 u64 tsc = compute_guest_tsc(v, kernel_ns);
1162 if (tsc > tsc_timestamp) {
1163 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1164 tsc_timestamp = tsc;
1168 local_irq_restore(flags);
1170 if (!vcpu->time_page)
1174 * Time as measured by the TSC may go backwards when resetting the base
1175 * tsc_timestamp. The reason for this is that the TSC resolution is
1176 * higher than the resolution of the other clock scales. Thus, many
1177 * possible measurments of the TSC correspond to one measurement of any
1178 * other clock, and so a spread of values is possible. This is not a
1179 * problem for the computation of the nanosecond clock; with TSC rates
1180 * around 1GHZ, there can only be a few cycles which correspond to one
1181 * nanosecond value, and any path through this code will inevitably
1182 * take longer than that. However, with the kernel_ns value itself,
1183 * the precision may be much lower, down to HZ granularity. If the
1184 * first sampling of TSC against kernel_ns ends in the low part of the
1185 * range, and the second in the high end of the range, we can get:
1187 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1189 * As the sampling errors potentially range in the thousands of cycles,
1190 * it is possible such a time value has already been observed by the
1191 * guest. To protect against this, we must compute the system time as
1192 * observed by the guest and ensure the new system time is greater.
1195 if (vcpu->hv_clock.tsc_timestamp) {
1196 max_kernel_ns = vcpu->last_guest_tsc -
1197 vcpu->hv_clock.tsc_timestamp;
1198 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1199 vcpu->hv_clock.tsc_to_system_mul,
1200 vcpu->hv_clock.tsc_shift);
1201 max_kernel_ns += vcpu->last_kernel_ns;
1204 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1205 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1206 &vcpu->hv_clock.tsc_shift,
1207 &vcpu->hv_clock.tsc_to_system_mul);
1208 vcpu->hw_tsc_khz = this_tsc_khz;
1211 if (max_kernel_ns > kernel_ns)
1212 kernel_ns = max_kernel_ns;
1214 /* With all the info we got, fill in the values */
1215 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1216 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1217 vcpu->last_kernel_ns = kernel_ns;
1218 vcpu->last_guest_tsc = tsc_timestamp;
1221 if (vcpu->pvclock_set_guest_stopped_request) {
1222 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1223 vcpu->pvclock_set_guest_stopped_request = false;
1226 vcpu->hv_clock.flags = pvclock_flags;
1229 * The interface expects us to write an even number signaling that the
1230 * update is finished. Since the guest won't see the intermediate
1231 * state, we just increase by 2 at the end.
1233 vcpu->hv_clock.version += 2;
1235 shared_kaddr = kmap_atomic(vcpu->time_page);
1237 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1238 sizeof(vcpu->hv_clock));
1240 kunmap_atomic(shared_kaddr);
1242 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1246 static bool msr_mtrr_valid(unsigned msr)
1249 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1250 case MSR_MTRRfix64K_00000:
1251 case MSR_MTRRfix16K_80000:
1252 case MSR_MTRRfix16K_A0000:
1253 case MSR_MTRRfix4K_C0000:
1254 case MSR_MTRRfix4K_C8000:
1255 case MSR_MTRRfix4K_D0000:
1256 case MSR_MTRRfix4K_D8000:
1257 case MSR_MTRRfix4K_E0000:
1258 case MSR_MTRRfix4K_E8000:
1259 case MSR_MTRRfix4K_F0000:
1260 case MSR_MTRRfix4K_F8000:
1261 case MSR_MTRRdefType:
1262 case MSR_IA32_CR_PAT:
1270 static bool valid_pat_type(unsigned t)
1272 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1275 static bool valid_mtrr_type(unsigned t)
1277 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1280 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1284 if (!msr_mtrr_valid(msr))
1287 if (msr == MSR_IA32_CR_PAT) {
1288 for (i = 0; i < 8; i++)
1289 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1292 } else if (msr == MSR_MTRRdefType) {
1295 return valid_mtrr_type(data & 0xff);
1296 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1297 for (i = 0; i < 8 ; i++)
1298 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1303 /* variable MTRRs */
1304 return valid_mtrr_type(data & 0xff);
1307 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1309 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1311 if (!mtrr_valid(vcpu, msr, data))
1314 if (msr == MSR_MTRRdefType) {
1315 vcpu->arch.mtrr_state.def_type = data;
1316 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1317 } else if (msr == MSR_MTRRfix64K_00000)
1319 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1320 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1321 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1322 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1323 else if (msr == MSR_IA32_CR_PAT)
1324 vcpu->arch.pat = data;
1325 else { /* Variable MTRRs */
1326 int idx, is_mtrr_mask;
1329 idx = (msr - 0x200) / 2;
1330 is_mtrr_mask = msr - 0x200 - 2 * idx;
1333 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1336 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1340 kvm_mmu_reset_context(vcpu);
1344 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1346 u64 mcg_cap = vcpu->arch.mcg_cap;
1347 unsigned bank_num = mcg_cap & 0xff;
1350 case MSR_IA32_MCG_STATUS:
1351 vcpu->arch.mcg_status = data;
1353 case MSR_IA32_MCG_CTL:
1354 if (!(mcg_cap & MCG_CTL_P))
1356 if (data != 0 && data != ~(u64)0)
1358 vcpu->arch.mcg_ctl = data;
1361 if (msr >= MSR_IA32_MC0_CTL &&
1362 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1363 u32 offset = msr - MSR_IA32_MC0_CTL;
1364 /* only 0 or all 1s can be written to IA32_MCi_CTL
1365 * some Linux kernels though clear bit 10 in bank 4 to
1366 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1367 * this to avoid an uncatched #GP in the guest
1369 if ((offset & 0x3) == 0 &&
1370 data != 0 && (data | (1 << 10)) != ~(u64)0)
1372 vcpu->arch.mce_banks[offset] = data;
1380 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1382 struct kvm *kvm = vcpu->kvm;
1383 int lm = is_long_mode(vcpu);
1384 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1385 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1386 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1387 : kvm->arch.xen_hvm_config.blob_size_32;
1388 u32 page_num = data & ~PAGE_MASK;
1389 u64 page_addr = data & PAGE_MASK;
1394 if (page_num >= blob_size)
1397 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1402 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1411 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1413 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1416 static bool kvm_hv_msr_partition_wide(u32 msr)
1420 case HV_X64_MSR_GUEST_OS_ID:
1421 case HV_X64_MSR_HYPERCALL:
1429 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1431 struct kvm *kvm = vcpu->kvm;
1434 case HV_X64_MSR_GUEST_OS_ID:
1435 kvm->arch.hv_guest_os_id = data;
1436 /* setting guest os id to zero disables hypercall page */
1437 if (!kvm->arch.hv_guest_os_id)
1438 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1440 case HV_X64_MSR_HYPERCALL: {
1445 /* if guest os id is not set hypercall should remain disabled */
1446 if (!kvm->arch.hv_guest_os_id)
1448 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1449 kvm->arch.hv_hypercall = data;
1452 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1453 addr = gfn_to_hva(kvm, gfn);
1454 if (kvm_is_error_hva(addr))
1456 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1457 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1458 if (__copy_to_user((void __user *)addr, instructions, 4))
1460 kvm->arch.hv_hypercall = data;
1464 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1465 "data 0x%llx\n", msr, data);
1471 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1474 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1477 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1478 vcpu->arch.hv_vapic = data;
1481 addr = gfn_to_hva(vcpu->kvm, data >>
1482 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1483 if (kvm_is_error_hva(addr))
1485 if (__clear_user((void __user *)addr, PAGE_SIZE))
1487 vcpu->arch.hv_vapic = data;
1490 case HV_X64_MSR_EOI:
1491 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1492 case HV_X64_MSR_ICR:
1493 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1494 case HV_X64_MSR_TPR:
1495 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1497 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1498 "data 0x%llx\n", msr, data);
1505 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1507 gpa_t gpa = data & ~0x3f;
1509 /* Bits 2:5 are reserved, Should be zero */
1513 vcpu->arch.apf.msr_val = data;
1515 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1516 kvm_clear_async_pf_completion_queue(vcpu);
1517 kvm_async_pf_hash_reset(vcpu);
1521 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1524 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1525 kvm_async_pf_wakeup_all(vcpu);
1529 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1531 if (vcpu->arch.time_page) {
1532 kvm_release_page_dirty(vcpu->arch.time_page);
1533 vcpu->arch.time_page = NULL;
1537 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1541 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1544 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1545 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1546 vcpu->arch.st.accum_steal = delta;
1549 static void record_steal_time(struct kvm_vcpu *vcpu)
1551 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1554 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1555 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1558 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1559 vcpu->arch.st.steal.version += 2;
1560 vcpu->arch.st.accum_steal = 0;
1562 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1563 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1566 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1572 return set_efer(vcpu, data);
1574 data &= ~(u64)0x40; /* ignore flush filter disable */
1575 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1576 data &= ~(u64)0x8; /* ignore TLB cache disable */
1578 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1583 case MSR_FAM10H_MMIO_CONF_BASE:
1585 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1590 case MSR_AMD64_NB_CFG:
1592 case MSR_IA32_DEBUGCTLMSR:
1594 /* We support the non-activated case already */
1596 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1597 /* Values other than LBR and BTF are vendor-specific,
1598 thus reserved and should throw a #GP */
1601 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1604 case MSR_IA32_UCODE_REV:
1605 case MSR_IA32_UCODE_WRITE:
1606 case MSR_VM_HSAVE_PA:
1607 case MSR_AMD64_PATCH_LOADER:
1609 case 0x200 ... 0x2ff:
1610 return set_msr_mtrr(vcpu, msr, data);
1611 case MSR_IA32_APICBASE:
1612 kvm_set_apic_base(vcpu, data);
1614 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1615 return kvm_x2apic_msr_write(vcpu, msr, data);
1616 case MSR_IA32_TSCDEADLINE:
1617 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1619 case MSR_IA32_MISC_ENABLE:
1620 vcpu->arch.ia32_misc_enable_msr = data;
1622 case MSR_KVM_WALL_CLOCK_NEW:
1623 case MSR_KVM_WALL_CLOCK:
1624 vcpu->kvm->arch.wall_clock = data;
1625 kvm_write_wall_clock(vcpu->kvm, data);
1627 case MSR_KVM_SYSTEM_TIME_NEW:
1628 case MSR_KVM_SYSTEM_TIME: {
1629 kvmclock_reset(vcpu);
1631 vcpu->arch.time = data;
1632 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1634 /* we verify if the enable bit is set... */
1638 /* ...but clean it before doing the actual write */
1639 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1641 vcpu->arch.time_page =
1642 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1644 if (is_error_page(vcpu->arch.time_page))
1645 vcpu->arch.time_page = NULL;
1649 case MSR_KVM_ASYNC_PF_EN:
1650 if (kvm_pv_enable_async_pf(vcpu, data))
1653 case MSR_KVM_STEAL_TIME:
1655 if (unlikely(!sched_info_on()))
1658 if (data & KVM_STEAL_RESERVED_MASK)
1661 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1662 data & KVM_STEAL_VALID_BITS))
1665 vcpu->arch.st.msr_val = data;
1667 if (!(data & KVM_MSR_ENABLED))
1670 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1673 accumulate_steal_time(vcpu);
1676 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1679 case MSR_KVM_PV_EOI_EN:
1680 if (kvm_lapic_enable_pv_eoi(vcpu, data))
1684 case MSR_IA32_MCG_CTL:
1685 case MSR_IA32_MCG_STATUS:
1686 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1687 return set_msr_mce(vcpu, msr, data);
1689 /* Performance counters are not protected by a CPUID bit,
1690 * so we should check all of them in the generic path for the sake of
1691 * cross vendor migration.
1692 * Writing a zero into the event select MSRs disables them,
1693 * which we perfectly emulate ;-). Any other value should be at least
1694 * reported, some guests depend on them.
1696 case MSR_K7_EVNTSEL0:
1697 case MSR_K7_EVNTSEL1:
1698 case MSR_K7_EVNTSEL2:
1699 case MSR_K7_EVNTSEL3:
1701 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1702 "0x%x data 0x%llx\n", msr, data);
1704 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1705 * so we ignore writes to make it happy.
1707 case MSR_K7_PERFCTR0:
1708 case MSR_K7_PERFCTR1:
1709 case MSR_K7_PERFCTR2:
1710 case MSR_K7_PERFCTR3:
1711 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1712 "0x%x data 0x%llx\n", msr, data);
1714 case MSR_P6_PERFCTR0:
1715 case MSR_P6_PERFCTR1:
1717 case MSR_P6_EVNTSEL0:
1718 case MSR_P6_EVNTSEL1:
1719 if (kvm_pmu_msr(vcpu, msr))
1720 return kvm_pmu_set_msr(vcpu, msr, data);
1722 if (pr || data != 0)
1723 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
1724 "0x%x data 0x%llx\n", msr, data);
1726 case MSR_K7_CLK_CTL:
1728 * Ignore all writes to this no longer documented MSR.
1729 * Writes are only relevant for old K7 processors,
1730 * all pre-dating SVM, but a recommended workaround from
1731 * AMD for these chips. It is possible to specify the
1732 * affected processor models on the command line, hence
1733 * the need to ignore the workaround.
1736 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1737 if (kvm_hv_msr_partition_wide(msr)) {
1739 mutex_lock(&vcpu->kvm->lock);
1740 r = set_msr_hyperv_pw(vcpu, msr, data);
1741 mutex_unlock(&vcpu->kvm->lock);
1744 return set_msr_hyperv(vcpu, msr, data);
1746 case MSR_IA32_BBL_CR_CTL3:
1747 /* Drop writes to this legacy MSR -- see rdmsr
1748 * counterpart for further detail.
1750 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1752 case MSR_AMD64_OSVW_ID_LENGTH:
1753 if (!guest_cpuid_has_osvw(vcpu))
1755 vcpu->arch.osvw.length = data;
1757 case MSR_AMD64_OSVW_STATUS:
1758 if (!guest_cpuid_has_osvw(vcpu))
1760 vcpu->arch.osvw.status = data;
1763 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1764 return xen_hvm_config(vcpu, data);
1765 if (kvm_pmu_msr(vcpu, msr))
1766 return kvm_pmu_set_msr(vcpu, msr, data);
1768 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1772 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1779 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1783 * Reads an msr value (of 'msr_index') into 'pdata'.
1784 * Returns 0 on success, non-0 otherwise.
1785 * Assumes vcpu_load() was already called.
1787 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1789 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1792 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1794 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1796 if (!msr_mtrr_valid(msr))
1799 if (msr == MSR_MTRRdefType)
1800 *pdata = vcpu->arch.mtrr_state.def_type +
1801 (vcpu->arch.mtrr_state.enabled << 10);
1802 else if (msr == MSR_MTRRfix64K_00000)
1804 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1805 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1806 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1807 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1808 else if (msr == MSR_IA32_CR_PAT)
1809 *pdata = vcpu->arch.pat;
1810 else { /* Variable MTRRs */
1811 int idx, is_mtrr_mask;
1814 idx = (msr - 0x200) / 2;
1815 is_mtrr_mask = msr - 0x200 - 2 * idx;
1818 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1821 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1828 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1831 u64 mcg_cap = vcpu->arch.mcg_cap;
1832 unsigned bank_num = mcg_cap & 0xff;
1835 case MSR_IA32_P5_MC_ADDR:
1836 case MSR_IA32_P5_MC_TYPE:
1839 case MSR_IA32_MCG_CAP:
1840 data = vcpu->arch.mcg_cap;
1842 case MSR_IA32_MCG_CTL:
1843 if (!(mcg_cap & MCG_CTL_P))
1845 data = vcpu->arch.mcg_ctl;
1847 case MSR_IA32_MCG_STATUS:
1848 data = vcpu->arch.mcg_status;
1851 if (msr >= MSR_IA32_MC0_CTL &&
1852 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1853 u32 offset = msr - MSR_IA32_MC0_CTL;
1854 data = vcpu->arch.mce_banks[offset];
1863 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1866 struct kvm *kvm = vcpu->kvm;
1869 case HV_X64_MSR_GUEST_OS_ID:
1870 data = kvm->arch.hv_guest_os_id;
1872 case HV_X64_MSR_HYPERCALL:
1873 data = kvm->arch.hv_hypercall;
1876 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1884 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1889 case HV_X64_MSR_VP_INDEX: {
1892 kvm_for_each_vcpu(r, v, vcpu->kvm)
1897 case HV_X64_MSR_EOI:
1898 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1899 case HV_X64_MSR_ICR:
1900 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1901 case HV_X64_MSR_TPR:
1902 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1903 case HV_X64_MSR_APIC_ASSIST_PAGE:
1904 data = vcpu->arch.hv_vapic;
1907 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1914 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1919 case MSR_IA32_PLATFORM_ID:
1920 case MSR_IA32_EBL_CR_POWERON:
1921 case MSR_IA32_DEBUGCTLMSR:
1922 case MSR_IA32_LASTBRANCHFROMIP:
1923 case MSR_IA32_LASTBRANCHTOIP:
1924 case MSR_IA32_LASTINTFROMIP:
1925 case MSR_IA32_LASTINTTOIP:
1928 case MSR_VM_HSAVE_PA:
1929 case MSR_K7_EVNTSEL0:
1930 case MSR_K7_PERFCTR0:
1931 case MSR_K8_INT_PENDING_MSG:
1932 case MSR_AMD64_NB_CFG:
1933 case MSR_FAM10H_MMIO_CONF_BASE:
1936 case MSR_P6_PERFCTR0:
1937 case MSR_P6_PERFCTR1:
1938 case MSR_P6_EVNTSEL0:
1939 case MSR_P6_EVNTSEL1:
1940 if (kvm_pmu_msr(vcpu, msr))
1941 return kvm_pmu_get_msr(vcpu, msr, pdata);
1944 case MSR_IA32_UCODE_REV:
1945 data = 0x100000000ULL;
1948 data = 0x500 | KVM_NR_VAR_MTRR;
1950 case 0x200 ... 0x2ff:
1951 return get_msr_mtrr(vcpu, msr, pdata);
1952 case 0xcd: /* fsb frequency */
1956 * MSR_EBC_FREQUENCY_ID
1957 * Conservative value valid for even the basic CPU models.
1958 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1959 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1960 * and 266MHz for model 3, or 4. Set Core Clock
1961 * Frequency to System Bus Frequency Ratio to 1 (bits
1962 * 31:24) even though these are only valid for CPU
1963 * models > 2, however guests may end up dividing or
1964 * multiplying by zero otherwise.
1966 case MSR_EBC_FREQUENCY_ID:
1969 case MSR_IA32_APICBASE:
1970 data = kvm_get_apic_base(vcpu);
1972 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1973 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1975 case MSR_IA32_TSCDEADLINE:
1976 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1978 case MSR_IA32_MISC_ENABLE:
1979 data = vcpu->arch.ia32_misc_enable_msr;
1981 case MSR_IA32_PERF_STATUS:
1982 /* TSC increment by tick */
1984 /* CPU multiplier */
1985 data |= (((uint64_t)4ULL) << 40);
1988 data = vcpu->arch.efer;
1990 case MSR_KVM_WALL_CLOCK:
1991 case MSR_KVM_WALL_CLOCK_NEW:
1992 data = vcpu->kvm->arch.wall_clock;
1994 case MSR_KVM_SYSTEM_TIME:
1995 case MSR_KVM_SYSTEM_TIME_NEW:
1996 data = vcpu->arch.time;
1998 case MSR_KVM_ASYNC_PF_EN:
1999 data = vcpu->arch.apf.msr_val;
2001 case MSR_KVM_STEAL_TIME:
2002 data = vcpu->arch.st.msr_val;
2004 case MSR_IA32_P5_MC_ADDR:
2005 case MSR_IA32_P5_MC_TYPE:
2006 case MSR_IA32_MCG_CAP:
2007 case MSR_IA32_MCG_CTL:
2008 case MSR_IA32_MCG_STATUS:
2009 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2010 return get_msr_mce(vcpu, msr, pdata);
2011 case MSR_K7_CLK_CTL:
2013 * Provide expected ramp-up count for K7. All other
2014 * are set to zero, indicating minimum divisors for
2017 * This prevents guest kernels on AMD host with CPU
2018 * type 6, model 8 and higher from exploding due to
2019 * the rdmsr failing.
2023 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2024 if (kvm_hv_msr_partition_wide(msr)) {
2026 mutex_lock(&vcpu->kvm->lock);
2027 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2028 mutex_unlock(&vcpu->kvm->lock);
2031 return get_msr_hyperv(vcpu, msr, pdata);
2033 case MSR_IA32_BBL_CR_CTL3:
2034 /* This legacy MSR exists but isn't fully documented in current
2035 * silicon. It is however accessed by winxp in very narrow
2036 * scenarios where it sets bit #19, itself documented as
2037 * a "reserved" bit. Best effort attempt to source coherent
2038 * read data here should the balance of the register be
2039 * interpreted by the guest:
2041 * L2 cache control register 3: 64GB range, 256KB size,
2042 * enabled, latency 0x1, configured
2046 case MSR_AMD64_OSVW_ID_LENGTH:
2047 if (!guest_cpuid_has_osvw(vcpu))
2049 data = vcpu->arch.osvw.length;
2051 case MSR_AMD64_OSVW_STATUS:
2052 if (!guest_cpuid_has_osvw(vcpu))
2054 data = vcpu->arch.osvw.status;
2057 if (kvm_pmu_msr(vcpu, msr))
2058 return kvm_pmu_get_msr(vcpu, msr, pdata);
2060 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2063 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2071 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2074 * Read or write a bunch of msrs. All parameters are kernel addresses.
2076 * @return number of msrs set successfully.
2078 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2079 struct kvm_msr_entry *entries,
2080 int (*do_msr)(struct kvm_vcpu *vcpu,
2081 unsigned index, u64 *data))
2085 idx = srcu_read_lock(&vcpu->kvm->srcu);
2086 for (i = 0; i < msrs->nmsrs; ++i)
2087 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2089 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2095 * Read or write a bunch of msrs. Parameters are user addresses.
2097 * @return number of msrs set successfully.
2099 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2100 int (*do_msr)(struct kvm_vcpu *vcpu,
2101 unsigned index, u64 *data),
2104 struct kvm_msrs msrs;
2105 struct kvm_msr_entry *entries;
2110 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2114 if (msrs.nmsrs >= MAX_IO_MSRS)
2117 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2118 entries = memdup_user(user_msrs->entries, size);
2119 if (IS_ERR(entries)) {
2120 r = PTR_ERR(entries);
2124 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2129 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2140 int kvm_dev_ioctl_check_extension(long ext)
2145 case KVM_CAP_IRQCHIP:
2147 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2148 case KVM_CAP_SET_TSS_ADDR:
2149 case KVM_CAP_EXT_CPUID:
2150 case KVM_CAP_CLOCKSOURCE:
2152 case KVM_CAP_NOP_IO_DELAY:
2153 case KVM_CAP_MP_STATE:
2154 case KVM_CAP_SYNC_MMU:
2155 case KVM_CAP_USER_NMI:
2156 case KVM_CAP_REINJECT_CONTROL:
2157 case KVM_CAP_IRQ_INJECT_STATUS:
2158 case KVM_CAP_ASSIGN_DEV_IRQ:
2160 case KVM_CAP_IOEVENTFD:
2162 case KVM_CAP_PIT_STATE2:
2163 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2164 case KVM_CAP_XEN_HVM:
2165 case KVM_CAP_ADJUST_CLOCK:
2166 case KVM_CAP_VCPU_EVENTS:
2167 case KVM_CAP_HYPERV:
2168 case KVM_CAP_HYPERV_VAPIC:
2169 case KVM_CAP_HYPERV_SPIN:
2170 case KVM_CAP_PCI_SEGMENT:
2171 case KVM_CAP_DEBUGREGS:
2172 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2174 case KVM_CAP_ASYNC_PF:
2175 case KVM_CAP_GET_TSC_KHZ:
2176 case KVM_CAP_PCI_2_3:
2177 case KVM_CAP_KVMCLOCK_CTRL:
2178 case KVM_CAP_READONLY_MEM:
2179 case KVM_CAP_IRQFD_RESAMPLE:
2182 case KVM_CAP_COALESCED_MMIO:
2183 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2186 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2188 case KVM_CAP_NR_VCPUS:
2189 r = KVM_SOFT_MAX_VCPUS;
2191 case KVM_CAP_MAX_VCPUS:
2194 case KVM_CAP_NR_MEMSLOTS:
2195 r = KVM_MEMORY_SLOTS;
2197 case KVM_CAP_PV_MMU: /* obsolete */
2201 r = iommu_present(&pci_bus_type);
2204 r = KVM_MAX_MCE_BANKS;
2209 case KVM_CAP_TSC_CONTROL:
2210 r = kvm_has_tsc_control;
2212 case KVM_CAP_TSC_DEADLINE_TIMER:
2213 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2223 long kvm_arch_dev_ioctl(struct file *filp,
2224 unsigned int ioctl, unsigned long arg)
2226 void __user *argp = (void __user *)arg;
2230 case KVM_GET_MSR_INDEX_LIST: {
2231 struct kvm_msr_list __user *user_msr_list = argp;
2232 struct kvm_msr_list msr_list;
2236 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2239 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2240 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2243 if (n < msr_list.nmsrs)
2246 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2247 num_msrs_to_save * sizeof(u32)))
2249 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2251 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2256 case KVM_GET_SUPPORTED_CPUID: {
2257 struct kvm_cpuid2 __user *cpuid_arg = argp;
2258 struct kvm_cpuid2 cpuid;
2261 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2263 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2264 cpuid_arg->entries);
2269 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2274 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2277 mce_cap = KVM_MCE_CAP_SUPPORTED;
2279 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2291 static void wbinvd_ipi(void *garbage)
2296 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2298 return vcpu->kvm->arch.iommu_domain &&
2299 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2302 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2304 /* Address WBINVD may be executed by guest */
2305 if (need_emulate_wbinvd(vcpu)) {
2306 if (kvm_x86_ops->has_wbinvd_exit())
2307 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2308 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2309 smp_call_function_single(vcpu->cpu,
2310 wbinvd_ipi, NULL, 1);
2313 kvm_x86_ops->vcpu_load(vcpu, cpu);
2315 /* Apply any externally detected TSC adjustments (due to suspend) */
2316 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2317 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2318 vcpu->arch.tsc_offset_adjustment = 0;
2319 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2322 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2323 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2324 native_read_tsc() - vcpu->arch.last_host_tsc;
2326 mark_tsc_unstable("KVM discovered backwards TSC");
2327 if (check_tsc_unstable()) {
2328 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2329 vcpu->arch.last_guest_tsc);
2330 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2331 vcpu->arch.tsc_catchup = 1;
2333 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2334 if (vcpu->cpu != cpu)
2335 kvm_migrate_timers(vcpu);
2339 accumulate_steal_time(vcpu);
2340 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2343 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2345 kvm_x86_ops->vcpu_put(vcpu);
2346 kvm_put_guest_fpu(vcpu);
2347 vcpu->arch.last_host_tsc = native_read_tsc();
2350 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2351 struct kvm_lapic_state *s)
2353 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2358 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2359 struct kvm_lapic_state *s)
2361 kvm_apic_post_state_restore(vcpu, s);
2362 update_cr8_intercept(vcpu);
2367 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2368 struct kvm_interrupt *irq)
2370 if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
2372 if (irqchip_in_kernel(vcpu->kvm))
2375 kvm_queue_interrupt(vcpu, irq->irq, false);
2376 kvm_make_request(KVM_REQ_EVENT, vcpu);
2381 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2383 kvm_inject_nmi(vcpu);
2388 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2389 struct kvm_tpr_access_ctl *tac)
2393 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2397 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2401 unsigned bank_num = mcg_cap & 0xff, bank;
2404 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2406 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2409 vcpu->arch.mcg_cap = mcg_cap;
2410 /* Init IA32_MCG_CTL to all 1s */
2411 if (mcg_cap & MCG_CTL_P)
2412 vcpu->arch.mcg_ctl = ~(u64)0;
2413 /* Init IA32_MCi_CTL to all 1s */
2414 for (bank = 0; bank < bank_num; bank++)
2415 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2420 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2421 struct kvm_x86_mce *mce)
2423 u64 mcg_cap = vcpu->arch.mcg_cap;
2424 unsigned bank_num = mcg_cap & 0xff;
2425 u64 *banks = vcpu->arch.mce_banks;
2427 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2430 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2431 * reporting is disabled
2433 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2434 vcpu->arch.mcg_ctl != ~(u64)0)
2436 banks += 4 * mce->bank;
2438 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2439 * reporting is disabled for the bank
2441 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2443 if (mce->status & MCI_STATUS_UC) {
2444 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2445 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2446 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2449 if (banks[1] & MCI_STATUS_VAL)
2450 mce->status |= MCI_STATUS_OVER;
2451 banks[2] = mce->addr;
2452 banks[3] = mce->misc;
2453 vcpu->arch.mcg_status = mce->mcg_status;
2454 banks[1] = mce->status;
2455 kvm_queue_exception(vcpu, MC_VECTOR);
2456 } else if (!(banks[1] & MCI_STATUS_VAL)
2457 || !(banks[1] & MCI_STATUS_UC)) {
2458 if (banks[1] & MCI_STATUS_VAL)
2459 mce->status |= MCI_STATUS_OVER;
2460 banks[2] = mce->addr;
2461 banks[3] = mce->misc;
2462 banks[1] = mce->status;
2464 banks[1] |= MCI_STATUS_OVER;
2468 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2469 struct kvm_vcpu_events *events)
2472 events->exception.injected =
2473 vcpu->arch.exception.pending &&
2474 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2475 events->exception.nr = vcpu->arch.exception.nr;
2476 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2477 events->exception.pad = 0;
2478 events->exception.error_code = vcpu->arch.exception.error_code;
2480 events->interrupt.injected =
2481 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2482 events->interrupt.nr = vcpu->arch.interrupt.nr;
2483 events->interrupt.soft = 0;
2484 events->interrupt.shadow =
2485 kvm_x86_ops->get_interrupt_shadow(vcpu,
2486 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2488 events->nmi.injected = vcpu->arch.nmi_injected;
2489 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2490 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2491 events->nmi.pad = 0;
2493 events->sipi_vector = vcpu->arch.sipi_vector;
2495 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2496 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2497 | KVM_VCPUEVENT_VALID_SHADOW);
2498 memset(&events->reserved, 0, sizeof(events->reserved));
2501 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2502 struct kvm_vcpu_events *events)
2504 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2505 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2506 | KVM_VCPUEVENT_VALID_SHADOW))
2510 vcpu->arch.exception.pending = events->exception.injected;
2511 vcpu->arch.exception.nr = events->exception.nr;
2512 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2513 vcpu->arch.exception.error_code = events->exception.error_code;
2515 vcpu->arch.interrupt.pending = events->interrupt.injected;
2516 vcpu->arch.interrupt.nr = events->interrupt.nr;
2517 vcpu->arch.interrupt.soft = events->interrupt.soft;
2518 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2519 kvm_x86_ops->set_interrupt_shadow(vcpu,
2520 events->interrupt.shadow);
2522 vcpu->arch.nmi_injected = events->nmi.injected;
2523 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2524 vcpu->arch.nmi_pending = events->nmi.pending;
2525 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2527 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2528 vcpu->arch.sipi_vector = events->sipi_vector;
2530 kvm_make_request(KVM_REQ_EVENT, vcpu);
2535 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2536 struct kvm_debugregs *dbgregs)
2538 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2539 dbgregs->dr6 = vcpu->arch.dr6;
2540 dbgregs->dr7 = vcpu->arch.dr7;
2542 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2545 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2546 struct kvm_debugregs *dbgregs)
2551 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2552 vcpu->arch.dr6 = dbgregs->dr6;
2553 vcpu->arch.dr7 = dbgregs->dr7;
2558 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2559 struct kvm_xsave *guest_xsave)
2562 memcpy(guest_xsave->region,
2563 &vcpu->arch.guest_fpu.state->xsave,
2566 memcpy(guest_xsave->region,
2567 &vcpu->arch.guest_fpu.state->fxsave,
2568 sizeof(struct i387_fxsave_struct));
2569 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2574 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2575 struct kvm_xsave *guest_xsave)
2578 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2581 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2582 guest_xsave->region, xstate_size);
2584 if (xstate_bv & ~XSTATE_FPSSE)
2586 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2587 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2592 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2593 struct kvm_xcrs *guest_xcrs)
2595 if (!cpu_has_xsave) {
2596 guest_xcrs->nr_xcrs = 0;
2600 guest_xcrs->nr_xcrs = 1;
2601 guest_xcrs->flags = 0;
2602 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2603 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2606 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2607 struct kvm_xcrs *guest_xcrs)
2614 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2617 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2618 /* Only support XCR0 currently */
2619 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2620 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2621 guest_xcrs->xcrs[0].value);
2630 * kvm_set_guest_paused() indicates to the guest kernel that it has been
2631 * stopped by the hypervisor. This function will be called from the host only.
2632 * EINVAL is returned when the host attempts to set the flag for a guest that
2633 * does not support pv clocks.
2635 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2637 if (!vcpu->arch.time_page)
2639 vcpu->arch.pvclock_set_guest_stopped_request = true;
2640 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2644 long kvm_arch_vcpu_ioctl(struct file *filp,
2645 unsigned int ioctl, unsigned long arg)
2647 struct kvm_vcpu *vcpu = filp->private_data;
2648 void __user *argp = (void __user *)arg;
2651 struct kvm_lapic_state *lapic;
2652 struct kvm_xsave *xsave;
2653 struct kvm_xcrs *xcrs;
2659 case KVM_GET_LAPIC: {
2661 if (!vcpu->arch.apic)
2663 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2668 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2672 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2677 case KVM_SET_LAPIC: {
2679 if (!vcpu->arch.apic)
2681 u.lapic = memdup_user(argp, sizeof(*u.lapic));
2682 if (IS_ERR(u.lapic)) {
2683 r = PTR_ERR(u.lapic);
2687 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2693 case KVM_INTERRUPT: {
2694 struct kvm_interrupt irq;
2697 if (copy_from_user(&irq, argp, sizeof irq))
2699 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2706 r = kvm_vcpu_ioctl_nmi(vcpu);
2712 case KVM_SET_CPUID: {
2713 struct kvm_cpuid __user *cpuid_arg = argp;
2714 struct kvm_cpuid cpuid;
2717 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2719 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2724 case KVM_SET_CPUID2: {
2725 struct kvm_cpuid2 __user *cpuid_arg = argp;
2726 struct kvm_cpuid2 cpuid;
2729 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2731 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2732 cpuid_arg->entries);
2737 case KVM_GET_CPUID2: {
2738 struct kvm_cpuid2 __user *cpuid_arg = argp;
2739 struct kvm_cpuid2 cpuid;
2742 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2744 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2745 cpuid_arg->entries);
2749 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2755 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2758 r = msr_io(vcpu, argp, do_set_msr, 0);
2760 case KVM_TPR_ACCESS_REPORTING: {
2761 struct kvm_tpr_access_ctl tac;
2764 if (copy_from_user(&tac, argp, sizeof tac))
2766 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2770 if (copy_to_user(argp, &tac, sizeof tac))
2775 case KVM_SET_VAPIC_ADDR: {
2776 struct kvm_vapic_addr va;
2779 if (!irqchip_in_kernel(vcpu->kvm))
2782 if (copy_from_user(&va, argp, sizeof va))
2785 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2788 case KVM_X86_SETUP_MCE: {
2792 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2794 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2797 case KVM_X86_SET_MCE: {
2798 struct kvm_x86_mce mce;
2801 if (copy_from_user(&mce, argp, sizeof mce))
2803 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2806 case KVM_GET_VCPU_EVENTS: {
2807 struct kvm_vcpu_events events;
2809 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2812 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2817 case KVM_SET_VCPU_EVENTS: {
2818 struct kvm_vcpu_events events;
2821 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2824 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2827 case KVM_GET_DEBUGREGS: {
2828 struct kvm_debugregs dbgregs;
2830 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2833 if (copy_to_user(argp, &dbgregs,
2834 sizeof(struct kvm_debugregs)))
2839 case KVM_SET_DEBUGREGS: {
2840 struct kvm_debugregs dbgregs;
2843 if (copy_from_user(&dbgregs, argp,
2844 sizeof(struct kvm_debugregs)))
2847 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2850 case KVM_GET_XSAVE: {
2851 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2856 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2859 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2864 case KVM_SET_XSAVE: {
2865 u.xsave = memdup_user(argp, sizeof(*u.xsave));
2866 if (IS_ERR(u.xsave)) {
2867 r = PTR_ERR(u.xsave);
2871 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2874 case KVM_GET_XCRS: {
2875 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2880 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2883 if (copy_to_user(argp, u.xcrs,
2884 sizeof(struct kvm_xcrs)))
2889 case KVM_SET_XCRS: {
2890 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2891 if (IS_ERR(u.xcrs)) {
2892 r = PTR_ERR(u.xcrs);
2896 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2899 case KVM_SET_TSC_KHZ: {
2903 user_tsc_khz = (u32)arg;
2905 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2908 if (user_tsc_khz == 0)
2909 user_tsc_khz = tsc_khz;
2911 kvm_set_tsc_khz(vcpu, user_tsc_khz);
2916 case KVM_GET_TSC_KHZ: {
2917 r = vcpu->arch.virtual_tsc_khz;
2920 case KVM_KVMCLOCK_CTRL: {
2921 r = kvm_set_guest_paused(vcpu);
2932 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2934 return VM_FAULT_SIGBUS;
2937 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2941 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2943 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2947 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2950 kvm->arch.ept_identity_map_addr = ident_addr;
2954 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2955 u32 kvm_nr_mmu_pages)
2957 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2960 mutex_lock(&kvm->slots_lock);
2961 spin_lock(&kvm->mmu_lock);
2963 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2964 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2966 spin_unlock(&kvm->mmu_lock);
2967 mutex_unlock(&kvm->slots_lock);
2971 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2973 return kvm->arch.n_max_mmu_pages;
2976 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2981 switch (chip->chip_id) {
2982 case KVM_IRQCHIP_PIC_MASTER:
2983 memcpy(&chip->chip.pic,
2984 &pic_irqchip(kvm)->pics[0],
2985 sizeof(struct kvm_pic_state));
2987 case KVM_IRQCHIP_PIC_SLAVE:
2988 memcpy(&chip->chip.pic,
2989 &pic_irqchip(kvm)->pics[1],
2990 sizeof(struct kvm_pic_state));
2992 case KVM_IRQCHIP_IOAPIC:
2993 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3002 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3007 switch (chip->chip_id) {
3008 case KVM_IRQCHIP_PIC_MASTER:
3009 spin_lock(&pic_irqchip(kvm)->lock);
3010 memcpy(&pic_irqchip(kvm)->pics[0],
3012 sizeof(struct kvm_pic_state));
3013 spin_unlock(&pic_irqchip(kvm)->lock);
3015 case KVM_IRQCHIP_PIC_SLAVE:
3016 spin_lock(&pic_irqchip(kvm)->lock);
3017 memcpy(&pic_irqchip(kvm)->pics[1],
3019 sizeof(struct kvm_pic_state));
3020 spin_unlock(&pic_irqchip(kvm)->lock);
3022 case KVM_IRQCHIP_IOAPIC:
3023 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3029 kvm_pic_update_irq(pic_irqchip(kvm));
3033 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3037 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3038 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3039 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3043 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3047 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3048 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3049 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3050 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3054 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3058 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3059 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3060 sizeof(ps->channels));
3061 ps->flags = kvm->arch.vpit->pit_state.flags;
3062 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3063 memset(&ps->reserved, 0, sizeof(ps->reserved));
3067 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3069 int r = 0, start = 0;
3070 u32 prev_legacy, cur_legacy;
3071 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3072 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3073 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3074 if (!prev_legacy && cur_legacy)
3076 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3077 sizeof(kvm->arch.vpit->pit_state.channels));
3078 kvm->arch.vpit->pit_state.flags = ps->flags;
3079 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3080 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3084 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3085 struct kvm_reinject_control *control)
3087 if (!kvm->arch.vpit)
3089 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3090 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3091 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3096 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3097 * @kvm: kvm instance
3098 * @log: slot id and address to which we copy the log
3100 * We need to keep it in mind that VCPU threads can write to the bitmap
3101 * concurrently. So, to avoid losing data, we keep the following order for
3104 * 1. Take a snapshot of the bit and clear it if needed.
3105 * 2. Write protect the corresponding page.
3106 * 3. Flush TLB's if needed.
3107 * 4. Copy the snapshot to the userspace.
3109 * Between 2 and 3, the guest may write to the page using the remaining TLB
3110 * entry. This is not a problem because the page will be reported dirty at
3111 * step 4 using the snapshot taken before and step 3 ensures that successive
3112 * writes will be logged for the next call.
3114 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3117 struct kvm_memory_slot *memslot;
3119 unsigned long *dirty_bitmap;
3120 unsigned long *dirty_bitmap_buffer;
3121 bool is_dirty = false;
3123 mutex_lock(&kvm->slots_lock);
3126 if (log->slot >= KVM_MEMORY_SLOTS)
3129 memslot = id_to_memslot(kvm->memslots, log->slot);
3131 dirty_bitmap = memslot->dirty_bitmap;
3136 n = kvm_dirty_bitmap_bytes(memslot);
3138 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3139 memset(dirty_bitmap_buffer, 0, n);
3141 spin_lock(&kvm->mmu_lock);
3143 for (i = 0; i < n / sizeof(long); i++) {
3147 if (!dirty_bitmap[i])
3152 mask = xchg(&dirty_bitmap[i], 0);
3153 dirty_bitmap_buffer[i] = mask;
3155 offset = i * BITS_PER_LONG;
3156 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3159 kvm_flush_remote_tlbs(kvm);
3161 spin_unlock(&kvm->mmu_lock);
3164 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3169 mutex_unlock(&kvm->slots_lock);
3173 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3175 if (!irqchip_in_kernel(kvm))
3178 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3179 irq_event->irq, irq_event->level);
3183 long kvm_arch_vm_ioctl(struct file *filp,
3184 unsigned int ioctl, unsigned long arg)
3186 struct kvm *kvm = filp->private_data;
3187 void __user *argp = (void __user *)arg;
3190 * This union makes it completely explicit to gcc-3.x
3191 * that these two variables' stack usage should be
3192 * combined, not added together.
3195 struct kvm_pit_state ps;
3196 struct kvm_pit_state2 ps2;
3197 struct kvm_pit_config pit_config;
3201 case KVM_SET_TSS_ADDR:
3202 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3206 case KVM_SET_IDENTITY_MAP_ADDR: {
3210 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3212 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3217 case KVM_SET_NR_MMU_PAGES:
3218 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3222 case KVM_GET_NR_MMU_PAGES:
3223 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3225 case KVM_CREATE_IRQCHIP: {
3226 struct kvm_pic *vpic;
3228 mutex_lock(&kvm->lock);
3231 goto create_irqchip_unlock;
3233 if (atomic_read(&kvm->online_vcpus))
3234 goto create_irqchip_unlock;
3236 vpic = kvm_create_pic(kvm);
3238 r = kvm_ioapic_init(kvm);
3240 mutex_lock(&kvm->slots_lock);
3241 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3243 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3245 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3247 mutex_unlock(&kvm->slots_lock);
3249 goto create_irqchip_unlock;
3252 goto create_irqchip_unlock;
3254 kvm->arch.vpic = vpic;
3256 r = kvm_setup_default_irq_routing(kvm);
3258 mutex_lock(&kvm->slots_lock);
3259 mutex_lock(&kvm->irq_lock);
3260 kvm_ioapic_destroy(kvm);
3261 kvm_destroy_pic(kvm);
3262 mutex_unlock(&kvm->irq_lock);
3263 mutex_unlock(&kvm->slots_lock);
3265 create_irqchip_unlock:
3266 mutex_unlock(&kvm->lock);
3269 case KVM_CREATE_PIT:
3270 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3272 case KVM_CREATE_PIT2:
3274 if (copy_from_user(&u.pit_config, argp,
3275 sizeof(struct kvm_pit_config)))
3278 mutex_lock(&kvm->slots_lock);
3281 goto create_pit_unlock;
3283 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3287 mutex_unlock(&kvm->slots_lock);
3289 case KVM_GET_IRQCHIP: {
3290 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3291 struct kvm_irqchip *chip;
3293 chip = memdup_user(argp, sizeof(*chip));
3300 if (!irqchip_in_kernel(kvm))
3301 goto get_irqchip_out;
3302 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3304 goto get_irqchip_out;
3306 if (copy_to_user(argp, chip, sizeof *chip))
3307 goto get_irqchip_out;
3315 case KVM_SET_IRQCHIP: {
3316 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3317 struct kvm_irqchip *chip;
3319 chip = memdup_user(argp, sizeof(*chip));
3326 if (!irqchip_in_kernel(kvm))
3327 goto set_irqchip_out;
3328 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3330 goto set_irqchip_out;
3340 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3343 if (!kvm->arch.vpit)
3345 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3349 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3356 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3359 if (!kvm->arch.vpit)
3361 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3367 case KVM_GET_PIT2: {
3369 if (!kvm->arch.vpit)
3371 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3375 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3380 case KVM_SET_PIT2: {
3382 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3385 if (!kvm->arch.vpit)
3387 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3393 case KVM_REINJECT_CONTROL: {
3394 struct kvm_reinject_control control;
3396 if (copy_from_user(&control, argp, sizeof(control)))
3398 r = kvm_vm_ioctl_reinject(kvm, &control);
3404 case KVM_XEN_HVM_CONFIG: {
3406 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3407 sizeof(struct kvm_xen_hvm_config)))
3410 if (kvm->arch.xen_hvm_config.flags)
3415 case KVM_SET_CLOCK: {
3416 struct kvm_clock_data user_ns;
3421 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3429 local_irq_disable();
3430 now_ns = get_kernel_ns();
3431 delta = user_ns.clock - now_ns;
3433 kvm->arch.kvmclock_offset = delta;
3436 case KVM_GET_CLOCK: {
3437 struct kvm_clock_data user_ns;
3440 local_irq_disable();
3441 now_ns = get_kernel_ns();
3442 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3445 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3448 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3461 static void kvm_init_msr_list(void)
3466 /* skip the first msrs in the list. KVM-specific */
3467 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3468 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3471 msrs_to_save[j] = msrs_to_save[i];
3474 num_msrs_to_save = j;
3477 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3485 if (!(vcpu->arch.apic &&
3486 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3487 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3498 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3505 if (!(vcpu->arch.apic &&
3506 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3507 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3509 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3519 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3520 struct kvm_segment *var, int seg)
3522 kvm_x86_ops->set_segment(vcpu, var, seg);
3525 void kvm_get_segment(struct kvm_vcpu *vcpu,
3526 struct kvm_segment *var, int seg)
3528 kvm_x86_ops->get_segment(vcpu, var, seg);
3531 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3534 struct x86_exception exception;
3536 BUG_ON(!mmu_is_nested(vcpu));
3538 /* NPT walks are always user-walks */
3539 access |= PFERR_USER_MASK;
3540 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3545 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3546 struct x86_exception *exception)
3548 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3549 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3552 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3553 struct x86_exception *exception)
3555 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3556 access |= PFERR_FETCH_MASK;
3557 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3560 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3561 struct x86_exception *exception)
3563 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3564 access |= PFERR_WRITE_MASK;
3565 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3568 /* uses this to access any guest's mapped memory without checking CPL */
3569 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3570 struct x86_exception *exception)
3572 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3575 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3576 struct kvm_vcpu *vcpu, u32 access,
3577 struct x86_exception *exception)
3580 int r = X86EMUL_CONTINUE;
3583 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3585 unsigned offset = addr & (PAGE_SIZE-1);
3586 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3589 if (gpa == UNMAPPED_GVA)
3590 return X86EMUL_PROPAGATE_FAULT;
3591 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3593 r = X86EMUL_IO_NEEDED;
3605 /* used for instruction fetching */
3606 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3607 gva_t addr, void *val, unsigned int bytes,
3608 struct x86_exception *exception)
3610 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3611 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3613 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3614 access | PFERR_FETCH_MASK,
3618 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3619 gva_t addr, void *val, unsigned int bytes,
3620 struct x86_exception *exception)
3622 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3623 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3625 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3628 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3630 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3631 gva_t addr, void *val, unsigned int bytes,
3632 struct x86_exception *exception)
3634 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3635 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3638 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3639 gva_t addr, void *val,
3641 struct x86_exception *exception)
3643 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3645 int r = X86EMUL_CONTINUE;
3648 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3651 unsigned offset = addr & (PAGE_SIZE-1);
3652 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3655 if (gpa == UNMAPPED_GVA)
3656 return X86EMUL_PROPAGATE_FAULT;
3657 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3659 r = X86EMUL_IO_NEEDED;
3670 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3672 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3673 gpa_t *gpa, struct x86_exception *exception,
3676 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3677 | (write ? PFERR_WRITE_MASK : 0);
3679 if (vcpu_match_mmio_gva(vcpu, gva)
3680 && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3681 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3682 (gva & (PAGE_SIZE - 1));
3683 trace_vcpu_match_mmio(gva, *gpa, write, false);
3687 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3689 if (*gpa == UNMAPPED_GVA)
3692 /* For APIC access vmexit */
3693 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3696 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3697 trace_vcpu_match_mmio(gva, *gpa, write, true);
3704 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3705 const void *val, int bytes)
3709 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3712 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3716 struct read_write_emulator_ops {
3717 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3719 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3720 void *val, int bytes);
3721 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3722 int bytes, void *val);
3723 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3724 void *val, int bytes);
3728 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3730 if (vcpu->mmio_read_completed) {
3731 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3732 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
3733 vcpu->mmio_read_completed = 0;
3740 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3741 void *val, int bytes)
3743 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3746 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3747 void *val, int bytes)
3749 return emulator_write_phys(vcpu, gpa, val, bytes);
3752 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3754 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3755 return vcpu_mmio_write(vcpu, gpa, bytes, val);
3758 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3759 void *val, int bytes)
3761 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3762 return X86EMUL_IO_NEEDED;
3765 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3766 void *val, int bytes)
3768 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
3770 memcpy(vcpu->run->mmio.data, frag->data, frag->len);
3771 return X86EMUL_CONTINUE;
3774 static const struct read_write_emulator_ops read_emultor = {
3775 .read_write_prepare = read_prepare,
3776 .read_write_emulate = read_emulate,
3777 .read_write_mmio = vcpu_mmio_read,
3778 .read_write_exit_mmio = read_exit_mmio,
3781 static const struct read_write_emulator_ops write_emultor = {
3782 .read_write_emulate = write_emulate,
3783 .read_write_mmio = write_mmio,
3784 .read_write_exit_mmio = write_exit_mmio,
3788 static int emulator_read_write_onepage(unsigned long addr, void *val,
3790 struct x86_exception *exception,
3791 struct kvm_vcpu *vcpu,
3792 const struct read_write_emulator_ops *ops)
3796 bool write = ops->write;
3797 struct kvm_mmio_fragment *frag;
3799 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3802 return X86EMUL_PROPAGATE_FAULT;
3804 /* For APIC access vmexit */
3808 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3809 return X86EMUL_CONTINUE;
3813 * Is this MMIO handled locally?
3815 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3816 if (handled == bytes)
3817 return X86EMUL_CONTINUE;
3824 unsigned now = min(bytes, 8U);
3826 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
3835 return X86EMUL_CONTINUE;
3838 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3839 void *val, unsigned int bytes,
3840 struct x86_exception *exception,
3841 const struct read_write_emulator_ops *ops)
3843 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3847 if (ops->read_write_prepare &&
3848 ops->read_write_prepare(vcpu, val, bytes))
3849 return X86EMUL_CONTINUE;
3851 vcpu->mmio_nr_fragments = 0;
3853 /* Crossing a page boundary? */
3854 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3857 now = -addr & ~PAGE_MASK;
3858 rc = emulator_read_write_onepage(addr, val, now, exception,
3861 if (rc != X86EMUL_CONTINUE)
3868 rc = emulator_read_write_onepage(addr, val, bytes, exception,
3870 if (rc != X86EMUL_CONTINUE)
3873 if (!vcpu->mmio_nr_fragments)
3876 gpa = vcpu->mmio_fragments[0].gpa;
3878 vcpu->mmio_needed = 1;
3879 vcpu->mmio_cur_fragment = 0;
3881 vcpu->run->mmio.len = vcpu->mmio_fragments[0].len;
3882 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
3883 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3884 vcpu->run->mmio.phys_addr = gpa;
3886 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3889 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3893 struct x86_exception *exception)
3895 return emulator_read_write(ctxt, addr, val, bytes,
3896 exception, &read_emultor);
3899 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3903 struct x86_exception *exception)
3905 return emulator_read_write(ctxt, addr, (void *)val, bytes,
3906 exception, &write_emultor);
3909 #define CMPXCHG_TYPE(t, ptr, old, new) \
3910 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3912 #ifdef CONFIG_X86_64
3913 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3915 # define CMPXCHG64(ptr, old, new) \
3916 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3919 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3924 struct x86_exception *exception)
3926 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3932 /* guests cmpxchg8b have to be emulated atomically */
3933 if (bytes > 8 || (bytes & (bytes - 1)))
3936 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3938 if (gpa == UNMAPPED_GVA ||
3939 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3942 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3945 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3946 if (is_error_page(page))
3949 kaddr = kmap_atomic(page);
3950 kaddr += offset_in_page(gpa);
3953 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3956 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3959 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3962 exchanged = CMPXCHG64(kaddr, old, new);
3967 kunmap_atomic(kaddr);
3968 kvm_release_page_dirty(page);
3971 return X86EMUL_CMPXCHG_FAILED;
3973 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3975 return X86EMUL_CONTINUE;
3978 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3980 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3983 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3985 /* TODO: String I/O for in kernel device */
3988 if (vcpu->arch.pio.in)
3989 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3990 vcpu->arch.pio.size, pd);
3992 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3993 vcpu->arch.pio.port, vcpu->arch.pio.size,
3998 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
3999 unsigned short port, void *val,
4000 unsigned int count, bool in)
4002 trace_kvm_pio(!in, port, size, count);
4004 vcpu->arch.pio.port = port;
4005 vcpu->arch.pio.in = in;
4006 vcpu->arch.pio.count = count;
4007 vcpu->arch.pio.size = size;
4009 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4010 vcpu->arch.pio.count = 0;
4014 vcpu->run->exit_reason = KVM_EXIT_IO;
4015 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4016 vcpu->run->io.size = size;
4017 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4018 vcpu->run->io.count = count;
4019 vcpu->run->io.port = port;
4024 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4025 int size, unsigned short port, void *val,
4028 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4031 if (vcpu->arch.pio.count)
4034 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4037 memcpy(val, vcpu->arch.pio_data, size * count);
4038 vcpu->arch.pio.count = 0;
4045 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4046 int size, unsigned short port,
4047 const void *val, unsigned int count)
4049 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4051 memcpy(vcpu->arch.pio_data, val, size * count);
4052 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4055 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4057 return kvm_x86_ops->get_segment_base(vcpu, seg);
4060 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4062 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4065 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4067 if (!need_emulate_wbinvd(vcpu))
4068 return X86EMUL_CONTINUE;
4070 if (kvm_x86_ops->has_wbinvd_exit()) {
4071 int cpu = get_cpu();
4073 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4074 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4075 wbinvd_ipi, NULL, 1);
4077 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4080 return X86EMUL_CONTINUE;
4082 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4084 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4086 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4089 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4091 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4094 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4097 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4100 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4102 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4105 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4107 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4108 unsigned long value;
4112 value = kvm_read_cr0(vcpu);
4115 value = vcpu->arch.cr2;
4118 value = kvm_read_cr3(vcpu);
4121 value = kvm_read_cr4(vcpu);
4124 value = kvm_get_cr8(vcpu);
4127 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4134 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4136 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4141 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4144 vcpu->arch.cr2 = val;
4147 res = kvm_set_cr3(vcpu, val);
4150 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4153 res = kvm_set_cr8(vcpu, val);
4156 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4163 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4165 kvm_set_rflags(emul_to_vcpu(ctxt), val);
4168 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4170 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4173 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4175 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4178 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4180 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4183 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4185 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4188 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4190 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4193 static unsigned long emulator_get_cached_segment_base(
4194 struct x86_emulate_ctxt *ctxt, int seg)
4196 return get_segment_base(emul_to_vcpu(ctxt), seg);
4199 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4200 struct desc_struct *desc, u32 *base3,
4203 struct kvm_segment var;
4205 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4206 *selector = var.selector;
4213 set_desc_limit(desc, var.limit);
4214 set_desc_base(desc, (unsigned long)var.base);
4215 #ifdef CONFIG_X86_64
4217 *base3 = var.base >> 32;
4219 desc->type = var.type;
4221 desc->dpl = var.dpl;
4222 desc->p = var.present;
4223 desc->avl = var.avl;
4231 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4232 struct desc_struct *desc, u32 base3,
4235 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4236 struct kvm_segment var;
4238 var.selector = selector;
4239 var.base = get_desc_base(desc);
4240 #ifdef CONFIG_X86_64
4241 var.base |= ((u64)base3) << 32;
4243 var.limit = get_desc_limit(desc);
4245 var.limit = (var.limit << 12) | 0xfff;
4246 var.type = desc->type;
4247 var.present = desc->p;
4248 var.dpl = desc->dpl;
4253 var.avl = desc->avl;
4254 var.present = desc->p;
4255 var.unusable = !var.present;
4258 kvm_set_segment(vcpu, &var, seg);
4262 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4263 u32 msr_index, u64 *pdata)
4265 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4268 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4269 u32 msr_index, u64 data)
4271 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4274 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4275 u32 pmc, u64 *pdata)
4277 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4280 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4282 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4285 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4288 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4290 * CR0.TS may reference the host fpu state, not the guest fpu state,
4291 * so it may be clear at this point.
4296 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4301 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4302 struct x86_instruction_info *info,
4303 enum x86_intercept_stage stage)
4305 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4308 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4309 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4311 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4314 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4316 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4319 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4321 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4324 static const struct x86_emulate_ops emulate_ops = {
4325 .read_gpr = emulator_read_gpr,
4326 .write_gpr = emulator_write_gpr,
4327 .read_std = kvm_read_guest_virt_system,
4328 .write_std = kvm_write_guest_virt_system,
4329 .fetch = kvm_fetch_guest_virt,
4330 .read_emulated = emulator_read_emulated,
4331 .write_emulated = emulator_write_emulated,
4332 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4333 .invlpg = emulator_invlpg,
4334 .pio_in_emulated = emulator_pio_in_emulated,
4335 .pio_out_emulated = emulator_pio_out_emulated,
4336 .get_segment = emulator_get_segment,
4337 .set_segment = emulator_set_segment,
4338 .get_cached_segment_base = emulator_get_cached_segment_base,
4339 .get_gdt = emulator_get_gdt,
4340 .get_idt = emulator_get_idt,
4341 .set_gdt = emulator_set_gdt,
4342 .set_idt = emulator_set_idt,
4343 .get_cr = emulator_get_cr,
4344 .set_cr = emulator_set_cr,
4345 .set_rflags = emulator_set_rflags,
4346 .cpl = emulator_get_cpl,
4347 .get_dr = emulator_get_dr,
4348 .set_dr = emulator_set_dr,
4349 .set_msr = emulator_set_msr,
4350 .get_msr = emulator_get_msr,
4351 .read_pmc = emulator_read_pmc,
4352 .halt = emulator_halt,
4353 .wbinvd = emulator_wbinvd,
4354 .fix_hypercall = emulator_fix_hypercall,
4355 .get_fpu = emulator_get_fpu,
4356 .put_fpu = emulator_put_fpu,
4357 .intercept = emulator_intercept,
4358 .get_cpuid = emulator_get_cpuid,
4361 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4363 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4365 * an sti; sti; sequence only disable interrupts for the first
4366 * instruction. So, if the last instruction, be it emulated or
4367 * not, left the system with the INT_STI flag enabled, it
4368 * means that the last instruction is an sti. We should not
4369 * leave the flag on in this case. The same goes for mov ss
4371 if (!(int_shadow & mask))
4372 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4375 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4377 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4378 if (ctxt->exception.vector == PF_VECTOR)
4379 kvm_propagate_fault(vcpu, &ctxt->exception);
4380 else if (ctxt->exception.error_code_valid)
4381 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4382 ctxt->exception.error_code);
4384 kvm_queue_exception(vcpu, ctxt->exception.vector);
4387 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4389 memset(&ctxt->twobyte, 0,
4390 (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4392 ctxt->fetch.start = 0;
4393 ctxt->fetch.end = 0;
4394 ctxt->io_read.pos = 0;
4395 ctxt->io_read.end = 0;
4396 ctxt->mem_read.pos = 0;
4397 ctxt->mem_read.end = 0;
4400 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4402 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4405 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4407 ctxt->eflags = kvm_get_rflags(vcpu);
4408 ctxt->eip = kvm_rip_read(vcpu);
4409 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4410 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4411 cs_l ? X86EMUL_MODE_PROT64 :
4412 cs_db ? X86EMUL_MODE_PROT32 :
4413 X86EMUL_MODE_PROT16;
4414 ctxt->guest_mode = is_guest_mode(vcpu);
4416 init_decode_cache(ctxt);
4417 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4420 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4422 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4425 init_emulate_ctxt(vcpu);
4429 ctxt->_eip = ctxt->eip + inc_eip;
4430 ret = emulate_int_real(ctxt, irq);
4432 if (ret != X86EMUL_CONTINUE)
4433 return EMULATE_FAIL;
4435 ctxt->eip = ctxt->_eip;
4436 kvm_rip_write(vcpu, ctxt->eip);
4437 kvm_set_rflags(vcpu, ctxt->eflags);
4439 if (irq == NMI_VECTOR)
4440 vcpu->arch.nmi_pending = 0;
4442 vcpu->arch.interrupt.pending = false;
4444 return EMULATE_DONE;
4446 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4448 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4450 int r = EMULATE_DONE;
4452 ++vcpu->stat.insn_emulation_fail;
4453 trace_kvm_emulate_insn_failed(vcpu);
4454 if (!is_guest_mode(vcpu)) {
4455 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4456 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4457 vcpu->run->internal.ndata = 0;
4460 kvm_queue_exception(vcpu, UD_VECTOR);
4465 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4474 * if emulation was due to access to shadowed page table
4475 * and it failed try to unshadow page and re-enter the
4476 * guest to let CPU execute the instruction.
4478 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4481 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4483 if (gpa == UNMAPPED_GVA)
4484 return true; /* let cpu generate fault */
4487 * Do not retry the unhandleable instruction if it faults on the
4488 * readonly host memory, otherwise it will goto a infinite loop:
4489 * retry instruction -> write #PF -> emulation fail -> retry
4490 * instruction -> ...
4492 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4493 if (!is_error_pfn(pfn)) {
4494 kvm_release_pfn_clean(pfn);
4501 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4502 unsigned long cr2, int emulation_type)
4504 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4505 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4507 last_retry_eip = vcpu->arch.last_retry_eip;
4508 last_retry_addr = vcpu->arch.last_retry_addr;
4511 * If the emulation is caused by #PF and it is non-page_table
4512 * writing instruction, it means the VM-EXIT is caused by shadow
4513 * page protected, we can zap the shadow page and retry this
4514 * instruction directly.
4516 * Note: if the guest uses a non-page-table modifying instruction
4517 * on the PDE that points to the instruction, then we will unmap
4518 * the instruction and go to an infinite loop. So, we cache the
4519 * last retried eip and the last fault address, if we meet the eip
4520 * and the address again, we can break out of the potential infinite
4523 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4525 if (!(emulation_type & EMULTYPE_RETRY))
4528 if (x86_page_table_writing_insn(ctxt))
4531 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4534 vcpu->arch.last_retry_eip = ctxt->eip;
4535 vcpu->arch.last_retry_addr = cr2;
4537 if (!vcpu->arch.mmu.direct_map)
4538 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4540 kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4545 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4546 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4548 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4555 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4556 bool writeback = true;
4558 kvm_clear_exception_queue(vcpu);
4560 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4561 init_emulate_ctxt(vcpu);
4562 ctxt->interruptibility = 0;
4563 ctxt->have_exception = false;
4564 ctxt->perm_ok = false;
4566 ctxt->only_vendor_specific_insn
4567 = emulation_type & EMULTYPE_TRAP_UD;
4569 r = x86_decode_insn(ctxt, insn, insn_len);
4571 trace_kvm_emulate_insn_start(vcpu);
4572 ++vcpu->stat.insn_emulation;
4573 if (r != EMULATION_OK) {
4574 if (emulation_type & EMULTYPE_TRAP_UD)
4575 return EMULATE_FAIL;
4576 if (reexecute_instruction(vcpu, cr2))
4577 return EMULATE_DONE;
4578 if (emulation_type & EMULTYPE_SKIP)
4579 return EMULATE_FAIL;
4580 return handle_emulation_failure(vcpu);
4584 if (emulation_type & EMULTYPE_SKIP) {
4585 kvm_rip_write(vcpu, ctxt->_eip);
4586 return EMULATE_DONE;
4589 if (retry_instruction(ctxt, cr2, emulation_type))
4590 return EMULATE_DONE;
4592 /* this is needed for vmware backdoor interface to work since it
4593 changes registers values during IO operation */
4594 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4595 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4596 emulator_invalidate_register_cache(ctxt);
4600 r = x86_emulate_insn(ctxt);
4602 if (r == EMULATION_INTERCEPTED)
4603 return EMULATE_DONE;
4605 if (r == EMULATION_FAILED) {
4606 if (reexecute_instruction(vcpu, cr2))
4607 return EMULATE_DONE;
4609 return handle_emulation_failure(vcpu);
4612 if (ctxt->have_exception) {
4613 inject_emulated_exception(vcpu);
4615 } else if (vcpu->arch.pio.count) {
4616 if (!vcpu->arch.pio.in)
4617 vcpu->arch.pio.count = 0;
4620 vcpu->arch.complete_userspace_io = complete_emulated_pio;
4622 r = EMULATE_DO_MMIO;
4623 } else if (vcpu->mmio_needed) {
4624 if (!vcpu->mmio_is_write)
4626 r = EMULATE_DO_MMIO;
4627 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4628 } else if (r == EMULATION_RESTART)
4634 toggle_interruptibility(vcpu, ctxt->interruptibility);
4635 kvm_set_rflags(vcpu, ctxt->eflags);
4636 kvm_make_request(KVM_REQ_EVENT, vcpu);
4637 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4638 kvm_rip_write(vcpu, ctxt->eip);
4640 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4644 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4646 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4648 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4649 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4650 size, port, &val, 1);
4651 /* do not return to emulator after return from userspace */
4652 vcpu->arch.pio.count = 0;
4655 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4657 static void tsc_bad(void *info)
4659 __this_cpu_write(cpu_tsc_khz, 0);
4662 static void tsc_khz_changed(void *data)
4664 struct cpufreq_freqs *freq = data;
4665 unsigned long khz = 0;
4669 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4670 khz = cpufreq_quick_get(raw_smp_processor_id());
4673 __this_cpu_write(cpu_tsc_khz, khz);
4676 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4679 struct cpufreq_freqs *freq = data;
4681 struct kvm_vcpu *vcpu;
4682 int i, send_ipi = 0;
4685 * We allow guests to temporarily run on slowing clocks,
4686 * provided we notify them after, or to run on accelerating
4687 * clocks, provided we notify them before. Thus time never
4690 * However, we have a problem. We can't atomically update
4691 * the frequency of a given CPU from this function; it is
4692 * merely a notifier, which can be called from any CPU.
4693 * Changing the TSC frequency at arbitrary points in time
4694 * requires a recomputation of local variables related to
4695 * the TSC for each VCPU. We must flag these local variables
4696 * to be updated and be sure the update takes place with the
4697 * new frequency before any guests proceed.
4699 * Unfortunately, the combination of hotplug CPU and frequency
4700 * change creates an intractable locking scenario; the order
4701 * of when these callouts happen is undefined with respect to
4702 * CPU hotplug, and they can race with each other. As such,
4703 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4704 * undefined; you can actually have a CPU frequency change take
4705 * place in between the computation of X and the setting of the
4706 * variable. To protect against this problem, all updates of
4707 * the per_cpu tsc_khz variable are done in an interrupt
4708 * protected IPI, and all callers wishing to update the value
4709 * must wait for a synchronous IPI to complete (which is trivial
4710 * if the caller is on the CPU already). This establishes the
4711 * necessary total order on variable updates.
4713 * Note that because a guest time update may take place
4714 * anytime after the setting of the VCPU's request bit, the
4715 * correct TSC value must be set before the request. However,
4716 * to ensure the update actually makes it to any guest which
4717 * starts running in hardware virtualization between the set
4718 * and the acquisition of the spinlock, we must also ping the
4719 * CPU after setting the request bit.
4723 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4725 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4728 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4730 raw_spin_lock(&kvm_lock);
4731 list_for_each_entry(kvm, &vm_list, vm_list) {
4732 kvm_for_each_vcpu(i, vcpu, kvm) {
4733 if (vcpu->cpu != freq->cpu)
4735 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4736 if (vcpu->cpu != smp_processor_id())
4740 raw_spin_unlock(&kvm_lock);
4742 if (freq->old < freq->new && send_ipi) {
4744 * We upscale the frequency. Must make the guest
4745 * doesn't see old kvmclock values while running with
4746 * the new frequency, otherwise we risk the guest sees
4747 * time go backwards.
4749 * In case we update the frequency for another cpu
4750 * (which might be in guest context) send an interrupt
4751 * to kick the cpu out of guest context. Next time
4752 * guest context is entered kvmclock will be updated,
4753 * so the guest will not see stale values.
4755 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4760 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4761 .notifier_call = kvmclock_cpufreq_notifier
4764 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4765 unsigned long action, void *hcpu)
4767 unsigned int cpu = (unsigned long)hcpu;
4771 case CPU_DOWN_FAILED:
4772 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4774 case CPU_DOWN_PREPARE:
4775 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4781 static struct notifier_block kvmclock_cpu_notifier_block = {
4782 .notifier_call = kvmclock_cpu_notifier,
4783 .priority = -INT_MAX
4786 static void kvm_timer_init(void)
4790 max_tsc_khz = tsc_khz;
4791 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4792 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4793 #ifdef CONFIG_CPU_FREQ
4794 struct cpufreq_policy policy;
4795 memset(&policy, 0, sizeof(policy));
4797 cpufreq_get_policy(&policy, cpu);
4798 if (policy.cpuinfo.max_freq)
4799 max_tsc_khz = policy.cpuinfo.max_freq;
4802 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4803 CPUFREQ_TRANSITION_NOTIFIER);
4805 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4806 for_each_online_cpu(cpu)
4807 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4810 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4812 int kvm_is_in_guest(void)
4814 return __this_cpu_read(current_vcpu) != NULL;
4817 static int kvm_is_user_mode(void)
4821 if (__this_cpu_read(current_vcpu))
4822 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4824 return user_mode != 0;
4827 static unsigned long kvm_get_guest_ip(void)
4829 unsigned long ip = 0;
4831 if (__this_cpu_read(current_vcpu))
4832 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4837 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4838 .is_in_guest = kvm_is_in_guest,
4839 .is_user_mode = kvm_is_user_mode,
4840 .get_guest_ip = kvm_get_guest_ip,
4843 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4845 __this_cpu_write(current_vcpu, vcpu);
4847 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4849 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4851 __this_cpu_write(current_vcpu, NULL);
4853 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4855 static void kvm_set_mmio_spte_mask(void)
4858 int maxphyaddr = boot_cpu_data.x86_phys_bits;
4861 * Set the reserved bits and the present bit of an paging-structure
4862 * entry to generate page fault with PFER.RSV = 1.
4864 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4867 #ifdef CONFIG_X86_64
4869 * If reserved bit is not supported, clear the present bit to disable
4872 if (maxphyaddr == 52)
4876 kvm_mmu_set_mmio_spte_mask(mask);
4879 int kvm_arch_init(void *opaque)
4882 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4885 printk(KERN_ERR "kvm: already loaded the other module\n");
4890 if (!ops->cpu_has_kvm_support()) {
4891 printk(KERN_ERR "kvm: no hardware support\n");
4895 if (ops->disabled_by_bios()) {
4896 printk(KERN_ERR "kvm: disabled by bios\n");
4901 r = kvm_mmu_module_init();
4905 kvm_set_mmio_spte_mask();
4906 kvm_init_msr_list();
4909 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4910 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4914 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4917 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4926 void kvm_arch_exit(void)
4928 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4930 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4931 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4932 CPUFREQ_TRANSITION_NOTIFIER);
4933 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4935 kvm_mmu_module_exit();
4938 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4940 ++vcpu->stat.halt_exits;
4941 if (irqchip_in_kernel(vcpu->kvm)) {
4942 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4945 vcpu->run->exit_reason = KVM_EXIT_HLT;
4949 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4951 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4953 u64 param, ingpa, outgpa, ret;
4954 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4955 bool fast, longmode;
4959 * hypercall generates UD from non zero cpl and real mode
4962 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4963 kvm_queue_exception(vcpu, UD_VECTOR);
4967 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4968 longmode = is_long_mode(vcpu) && cs_l == 1;
4971 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4972 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4973 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4974 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4975 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4976 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4978 #ifdef CONFIG_X86_64
4980 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4981 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4982 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4986 code = param & 0xffff;
4987 fast = (param >> 16) & 0x1;
4988 rep_cnt = (param >> 32) & 0xfff;
4989 rep_idx = (param >> 48) & 0xfff;
4991 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4994 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4995 kvm_vcpu_on_spin(vcpu);
4998 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5002 ret = res | (((u64)rep_done & 0xfff) << 32);
5004 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5006 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5007 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5013 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5015 unsigned long nr, a0, a1, a2, a3, ret;
5018 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5019 return kvm_hv_hypercall(vcpu);
5021 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5022 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5023 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5024 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5025 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5027 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5029 if (!is_long_mode(vcpu)) {
5037 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5043 case KVM_HC_VAPIC_POLL_IRQ:
5051 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5052 ++vcpu->stat.hypercalls;
5055 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5057 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5059 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5060 char instruction[3];
5061 unsigned long rip = kvm_rip_read(vcpu);
5064 * Blow out the MMU to ensure that no other VCPU has an active mapping
5065 * to ensure that the updated hypercall appears atomically across all
5068 kvm_mmu_zap_all(vcpu->kvm);
5070 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5072 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5076 * Check if userspace requested an interrupt window, and that the
5077 * interrupt window is open.
5079 * No need to exit to userspace if we already have an interrupt queued.
5081 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5083 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5084 vcpu->run->request_interrupt_window &&
5085 kvm_arch_interrupt_allowed(vcpu));
5088 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5090 struct kvm_run *kvm_run = vcpu->run;
5092 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5093 kvm_run->cr8 = kvm_get_cr8(vcpu);
5094 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5095 if (irqchip_in_kernel(vcpu->kvm))
5096 kvm_run->ready_for_interrupt_injection = 1;
5098 kvm_run->ready_for_interrupt_injection =
5099 kvm_arch_interrupt_allowed(vcpu) &&
5100 !kvm_cpu_has_interrupt(vcpu) &&
5101 !kvm_event_needs_reinjection(vcpu);
5104 static void vapic_enter(struct kvm_vcpu *vcpu)
5106 struct kvm_lapic *apic = vcpu->arch.apic;
5109 if (!apic || !apic->vapic_addr)
5112 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5114 vcpu->arch.apic->vapic_page = page;
5117 static void vapic_exit(struct kvm_vcpu *vcpu)
5119 struct kvm_lapic *apic = vcpu->arch.apic;
5122 if (!apic || !apic->vapic_addr)
5125 idx = srcu_read_lock(&vcpu->kvm->srcu);
5126 kvm_release_page_dirty(apic->vapic_page);
5127 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5128 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5131 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5135 if (!kvm_x86_ops->update_cr8_intercept)
5138 if (!vcpu->arch.apic)
5141 if (!vcpu->arch.apic->vapic_addr)
5142 max_irr = kvm_lapic_find_highest_irr(vcpu);
5149 tpr = kvm_lapic_get_cr8(vcpu);
5151 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5154 static void inject_pending_event(struct kvm_vcpu *vcpu)
5156 /* try to reinject previous events if any */
5157 if (vcpu->arch.exception.pending) {
5158 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5159 vcpu->arch.exception.has_error_code,
5160 vcpu->arch.exception.error_code);
5161 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5162 vcpu->arch.exception.has_error_code,
5163 vcpu->arch.exception.error_code,
5164 vcpu->arch.exception.reinject);
5168 if (vcpu->arch.nmi_injected) {
5169 kvm_x86_ops->set_nmi(vcpu);
5173 if (vcpu->arch.interrupt.pending) {
5174 kvm_x86_ops->set_irq(vcpu);
5178 /* try to inject new event if pending */
5179 if (vcpu->arch.nmi_pending) {
5180 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5181 --vcpu->arch.nmi_pending;
5182 vcpu->arch.nmi_injected = true;
5183 kvm_x86_ops->set_nmi(vcpu);
5185 } else if (kvm_cpu_has_interrupt(vcpu)) {
5186 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5187 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5189 kvm_x86_ops->set_irq(vcpu);
5194 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5196 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5197 !vcpu->guest_xcr0_loaded) {
5198 /* kvm_set_xcr() also depends on this */
5199 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5200 vcpu->guest_xcr0_loaded = 1;
5204 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5206 if (vcpu->guest_xcr0_loaded) {
5207 if (vcpu->arch.xcr0 != host_xcr0)
5208 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5209 vcpu->guest_xcr0_loaded = 0;
5213 static void process_nmi(struct kvm_vcpu *vcpu)
5218 * x86 is limited to one NMI running, and one NMI pending after it.
5219 * If an NMI is already in progress, limit further NMIs to just one.
5220 * Otherwise, allow two (and we'll inject the first one immediately).
5222 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5225 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5226 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5227 kvm_make_request(KVM_REQ_EVENT, vcpu);
5230 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5233 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5234 vcpu->run->request_interrupt_window;
5235 bool req_immediate_exit = 0;
5237 if (vcpu->requests) {
5238 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5239 kvm_mmu_unload(vcpu);
5240 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5241 __kvm_migrate_timers(vcpu);
5242 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5243 r = kvm_guest_time_update(vcpu);
5247 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5248 kvm_mmu_sync_roots(vcpu);
5249 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5250 kvm_x86_ops->tlb_flush(vcpu);
5251 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5252 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5256 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5257 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5261 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5262 vcpu->fpu_active = 0;
5263 kvm_x86_ops->fpu_deactivate(vcpu);
5265 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5266 /* Page is swapped out. Do synthetic halt */
5267 vcpu->arch.apf.halted = true;
5271 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5272 record_steal_time(vcpu);
5273 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5275 req_immediate_exit =
5276 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5277 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5278 kvm_handle_pmu_event(vcpu);
5279 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5280 kvm_deliver_pmi(vcpu);
5283 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5284 inject_pending_event(vcpu);
5286 /* enable NMI/IRQ window open exits if needed */
5287 if (vcpu->arch.nmi_pending)
5288 kvm_x86_ops->enable_nmi_window(vcpu);
5289 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5290 kvm_x86_ops->enable_irq_window(vcpu);
5292 if (kvm_lapic_enabled(vcpu)) {
5293 update_cr8_intercept(vcpu);
5294 kvm_lapic_sync_to_vapic(vcpu);
5298 r = kvm_mmu_reload(vcpu);
5300 goto cancel_injection;
5305 kvm_x86_ops->prepare_guest_switch(vcpu);
5306 if (vcpu->fpu_active)
5307 kvm_load_guest_fpu(vcpu);
5308 kvm_load_guest_xcr0(vcpu);
5310 vcpu->mode = IN_GUEST_MODE;
5312 /* We should set ->mode before check ->requests,
5313 * see the comment in make_all_cpus_request.
5317 local_irq_disable();
5319 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5320 || need_resched() || signal_pending(current)) {
5321 vcpu->mode = OUTSIDE_GUEST_MODE;
5326 goto cancel_injection;
5329 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5331 if (req_immediate_exit)
5332 smp_send_reschedule(vcpu->cpu);
5336 if (unlikely(vcpu->arch.switch_db_regs)) {
5338 set_debugreg(vcpu->arch.eff_db[0], 0);
5339 set_debugreg(vcpu->arch.eff_db[1], 1);
5340 set_debugreg(vcpu->arch.eff_db[2], 2);
5341 set_debugreg(vcpu->arch.eff_db[3], 3);
5344 trace_kvm_entry(vcpu->vcpu_id);
5345 kvm_x86_ops->run(vcpu);
5348 * If the guest has used debug registers, at least dr7
5349 * will be disabled while returning to the host.
5350 * If we don't have active breakpoints in the host, we don't
5351 * care about the messed up debug address registers. But if
5352 * we have some of them active, restore the old state.
5354 if (hw_breakpoint_active())
5355 hw_breakpoint_restore();
5357 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5359 vcpu->mode = OUTSIDE_GUEST_MODE;
5366 * We must have an instruction between local_irq_enable() and
5367 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5368 * the interrupt shadow. The stat.exits increment will do nicely.
5369 * But we need to prevent reordering, hence this barrier():
5377 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5380 * Profile KVM exit RIPs:
5382 if (unlikely(prof_on == KVM_PROFILING)) {
5383 unsigned long rip = kvm_rip_read(vcpu);
5384 profile_hit(KVM_PROFILING, (void *)rip);
5387 if (unlikely(vcpu->arch.tsc_always_catchup))
5388 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5390 if (vcpu->arch.apic_attention)
5391 kvm_lapic_sync_from_vapic(vcpu);
5393 r = kvm_x86_ops->handle_exit(vcpu);
5397 kvm_x86_ops->cancel_injection(vcpu);
5398 if (unlikely(vcpu->arch.apic_attention))
5399 kvm_lapic_sync_from_vapic(vcpu);
5405 static int __vcpu_run(struct kvm_vcpu *vcpu)
5408 struct kvm *kvm = vcpu->kvm;
5410 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5411 pr_debug("vcpu %d received sipi with vector # %x\n",
5412 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5413 kvm_lapic_reset(vcpu);
5414 r = kvm_arch_vcpu_reset(vcpu);
5417 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5420 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5425 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5426 !vcpu->arch.apf.halted)
5427 r = vcpu_enter_guest(vcpu);
5429 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5430 kvm_vcpu_block(vcpu);
5431 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5432 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5434 switch(vcpu->arch.mp_state) {
5435 case KVM_MP_STATE_HALTED:
5436 vcpu->arch.mp_state =
5437 KVM_MP_STATE_RUNNABLE;
5438 case KVM_MP_STATE_RUNNABLE:
5439 vcpu->arch.apf.halted = false;
5441 case KVM_MP_STATE_SIPI_RECEIVED:
5452 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5453 if (kvm_cpu_has_pending_timer(vcpu))
5454 kvm_inject_pending_timer_irqs(vcpu);
5456 if (dm_request_for_irq_injection(vcpu)) {
5458 vcpu->run->exit_reason = KVM_EXIT_INTR;
5459 ++vcpu->stat.request_irq_exits;
5462 kvm_check_async_pf_completion(vcpu);
5464 if (signal_pending(current)) {
5466 vcpu->run->exit_reason = KVM_EXIT_INTR;
5467 ++vcpu->stat.signal_exits;
5469 if (need_resched()) {
5470 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5472 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5476 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5483 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5486 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5487 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5488 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5489 if (r != EMULATE_DONE)
5494 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5496 BUG_ON(!vcpu->arch.pio.count);
5498 return complete_emulated_io(vcpu);
5502 * Implements the following, as a state machine:
5517 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5519 struct kvm_run *run = vcpu->run;
5520 struct kvm_mmio_fragment *frag;
5522 BUG_ON(!vcpu->mmio_needed);
5524 /* Complete previous fragment */
5525 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment++];
5526 if (!vcpu->mmio_is_write)
5527 memcpy(frag->data, run->mmio.data, frag->len);
5528 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5529 vcpu->mmio_needed = 0;
5530 if (vcpu->mmio_is_write)
5532 vcpu->mmio_read_completed = 1;
5533 return complete_emulated_io(vcpu);
5535 /* Initiate next fragment */
5537 run->exit_reason = KVM_EXIT_MMIO;
5538 run->mmio.phys_addr = frag->gpa;
5539 if (vcpu->mmio_is_write)
5540 memcpy(run->mmio.data, frag->data, frag->len);
5541 run->mmio.len = frag->len;
5542 run->mmio.is_write = vcpu->mmio_is_write;
5543 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5548 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5553 if (!tsk_used_math(current) && init_fpu(current))
5556 if (vcpu->sigset_active)
5557 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5559 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5560 kvm_vcpu_block(vcpu);
5561 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5566 /* re-sync apic's tpr */
5567 if (!irqchip_in_kernel(vcpu->kvm)) {
5568 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5574 if (unlikely(vcpu->arch.complete_userspace_io)) {
5575 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
5576 vcpu->arch.complete_userspace_io = NULL;
5581 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
5583 r = __vcpu_run(vcpu);
5586 post_kvm_run_save(vcpu);
5587 if (vcpu->sigset_active)
5588 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5593 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5595 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5597 * We are here if userspace calls get_regs() in the middle of
5598 * instruction emulation. Registers state needs to be copied
5599 * back from emulation context to vcpu. Userspace shouldn't do
5600 * that usually, but some bad designed PV devices (vmware
5601 * backdoor interface) need this to work
5603 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
5604 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5606 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5607 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5608 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5609 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5610 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5611 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5612 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5613 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5614 #ifdef CONFIG_X86_64
5615 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5616 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5617 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5618 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5619 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5620 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5621 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5622 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5625 regs->rip = kvm_rip_read(vcpu);
5626 regs->rflags = kvm_get_rflags(vcpu);
5631 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5633 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5634 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5636 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5637 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5638 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5639 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5640 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5641 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5642 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5643 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5644 #ifdef CONFIG_X86_64
5645 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5646 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5647 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5648 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5649 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5650 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5651 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5652 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5655 kvm_rip_write(vcpu, regs->rip);
5656 kvm_set_rflags(vcpu, regs->rflags);
5658 vcpu->arch.exception.pending = false;
5660 kvm_make_request(KVM_REQ_EVENT, vcpu);
5665 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5667 struct kvm_segment cs;
5669 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5673 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5675 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5676 struct kvm_sregs *sregs)
5680 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5681 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5682 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5683 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5684 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5685 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5687 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5688 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5690 kvm_x86_ops->get_idt(vcpu, &dt);
5691 sregs->idt.limit = dt.size;
5692 sregs->idt.base = dt.address;
5693 kvm_x86_ops->get_gdt(vcpu, &dt);
5694 sregs->gdt.limit = dt.size;
5695 sregs->gdt.base = dt.address;
5697 sregs->cr0 = kvm_read_cr0(vcpu);
5698 sregs->cr2 = vcpu->arch.cr2;
5699 sregs->cr3 = kvm_read_cr3(vcpu);
5700 sregs->cr4 = kvm_read_cr4(vcpu);
5701 sregs->cr8 = kvm_get_cr8(vcpu);
5702 sregs->efer = vcpu->arch.efer;
5703 sregs->apic_base = kvm_get_apic_base(vcpu);
5705 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5707 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5708 set_bit(vcpu->arch.interrupt.nr,
5709 (unsigned long *)sregs->interrupt_bitmap);
5714 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5715 struct kvm_mp_state *mp_state)
5717 mp_state->mp_state = vcpu->arch.mp_state;
5721 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5722 struct kvm_mp_state *mp_state)
5724 vcpu->arch.mp_state = mp_state->mp_state;
5725 kvm_make_request(KVM_REQ_EVENT, vcpu);
5729 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
5730 int reason, bool has_error_code, u32 error_code)
5732 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5735 init_emulate_ctxt(vcpu);
5737 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
5738 has_error_code, error_code);
5741 return EMULATE_FAIL;
5743 kvm_rip_write(vcpu, ctxt->eip);
5744 kvm_set_rflags(vcpu, ctxt->eflags);
5745 kvm_make_request(KVM_REQ_EVENT, vcpu);
5746 return EMULATE_DONE;
5748 EXPORT_SYMBOL_GPL(kvm_task_switch);
5750 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5751 struct kvm_sregs *sregs)
5753 int mmu_reset_needed = 0;
5754 int pending_vec, max_bits, idx;
5757 dt.size = sregs->idt.limit;
5758 dt.address = sregs->idt.base;
5759 kvm_x86_ops->set_idt(vcpu, &dt);
5760 dt.size = sregs->gdt.limit;
5761 dt.address = sregs->gdt.base;
5762 kvm_x86_ops->set_gdt(vcpu, &dt);
5764 vcpu->arch.cr2 = sregs->cr2;
5765 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5766 vcpu->arch.cr3 = sregs->cr3;
5767 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5769 kvm_set_cr8(vcpu, sregs->cr8);
5771 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5772 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5773 kvm_set_apic_base(vcpu, sregs->apic_base);
5775 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5776 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5777 vcpu->arch.cr0 = sregs->cr0;
5779 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5780 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5781 if (sregs->cr4 & X86_CR4_OSXSAVE)
5782 kvm_update_cpuid(vcpu);
5784 idx = srcu_read_lock(&vcpu->kvm->srcu);
5785 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5786 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5787 mmu_reset_needed = 1;
5789 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5791 if (mmu_reset_needed)
5792 kvm_mmu_reset_context(vcpu);
5794 max_bits = KVM_NR_INTERRUPTS;
5795 pending_vec = find_first_bit(
5796 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5797 if (pending_vec < max_bits) {
5798 kvm_queue_interrupt(vcpu, pending_vec, false);
5799 pr_debug("Set back pending irq %d\n", pending_vec);
5802 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5803 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5804 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5805 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5806 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5807 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5809 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5810 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5812 update_cr8_intercept(vcpu);
5814 /* Older userspace won't unhalt the vcpu on reset. */
5815 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5816 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5818 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5820 kvm_make_request(KVM_REQ_EVENT, vcpu);
5825 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5826 struct kvm_guest_debug *dbg)
5828 unsigned long rflags;
5831 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5833 if (vcpu->arch.exception.pending)
5835 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5836 kvm_queue_exception(vcpu, DB_VECTOR);
5838 kvm_queue_exception(vcpu, BP_VECTOR);
5842 * Read rflags as long as potentially injected trace flags are still
5845 rflags = kvm_get_rflags(vcpu);
5847 vcpu->guest_debug = dbg->control;
5848 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5849 vcpu->guest_debug = 0;
5851 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5852 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5853 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5854 vcpu->arch.switch_db_regs =
5855 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5857 for (i = 0; i < KVM_NR_DB_REGS; i++)
5858 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5859 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5862 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5863 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5864 get_segment_base(vcpu, VCPU_SREG_CS);
5867 * Trigger an rflags update that will inject or remove the trace
5870 kvm_set_rflags(vcpu, rflags);
5872 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5882 * Translate a guest virtual address to a guest physical address.
5884 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5885 struct kvm_translation *tr)
5887 unsigned long vaddr = tr->linear_address;
5891 idx = srcu_read_lock(&vcpu->kvm->srcu);
5892 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5893 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5894 tr->physical_address = gpa;
5895 tr->valid = gpa != UNMAPPED_GVA;
5902 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5904 struct i387_fxsave_struct *fxsave =
5905 &vcpu->arch.guest_fpu.state->fxsave;
5907 memcpy(fpu->fpr, fxsave->st_space, 128);
5908 fpu->fcw = fxsave->cwd;
5909 fpu->fsw = fxsave->swd;
5910 fpu->ftwx = fxsave->twd;
5911 fpu->last_opcode = fxsave->fop;
5912 fpu->last_ip = fxsave->rip;
5913 fpu->last_dp = fxsave->rdp;
5914 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5919 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5921 struct i387_fxsave_struct *fxsave =
5922 &vcpu->arch.guest_fpu.state->fxsave;
5924 memcpy(fxsave->st_space, fpu->fpr, 128);
5925 fxsave->cwd = fpu->fcw;
5926 fxsave->swd = fpu->fsw;
5927 fxsave->twd = fpu->ftwx;
5928 fxsave->fop = fpu->last_opcode;
5929 fxsave->rip = fpu->last_ip;
5930 fxsave->rdp = fpu->last_dp;
5931 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5936 int fx_init(struct kvm_vcpu *vcpu)
5940 err = fpu_alloc(&vcpu->arch.guest_fpu);
5944 fpu_finit(&vcpu->arch.guest_fpu);
5947 * Ensure guest xcr0 is valid for loading
5949 vcpu->arch.xcr0 = XSTATE_FP;
5951 vcpu->arch.cr0 |= X86_CR0_ET;
5955 EXPORT_SYMBOL_GPL(fx_init);
5957 static void fx_free(struct kvm_vcpu *vcpu)
5959 fpu_free(&vcpu->arch.guest_fpu);
5962 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5964 if (vcpu->guest_fpu_loaded)
5968 * Restore all possible states in the guest,
5969 * and assume host would use all available bits.
5970 * Guest xcr0 would be loaded later.
5972 kvm_put_guest_xcr0(vcpu);
5973 vcpu->guest_fpu_loaded = 1;
5974 unlazy_fpu(current);
5975 fpu_restore_checking(&vcpu->arch.guest_fpu);
5979 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5981 kvm_put_guest_xcr0(vcpu);
5983 if (!vcpu->guest_fpu_loaded)
5986 vcpu->guest_fpu_loaded = 0;
5987 fpu_save_init(&vcpu->arch.guest_fpu);
5988 ++vcpu->stat.fpu_reload;
5989 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5993 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5995 kvmclock_reset(vcpu);
5997 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5999 kvm_x86_ops->vcpu_free(vcpu);
6002 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6005 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6006 printk_once(KERN_WARNING
6007 "kvm: SMP vm created on host with unstable TSC; "
6008 "guest TSC will not be reliable\n");
6009 return kvm_x86_ops->vcpu_create(kvm, id);
6012 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6016 vcpu->arch.mtrr_state.have_fixed = 1;
6017 r = vcpu_load(vcpu);
6020 r = kvm_arch_vcpu_reset(vcpu);
6022 r = kvm_mmu_setup(vcpu);
6028 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6031 vcpu->arch.apf.msr_val = 0;
6033 r = vcpu_load(vcpu);
6035 kvm_mmu_unload(vcpu);
6039 kvm_x86_ops->vcpu_free(vcpu);
6042 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6044 atomic_set(&vcpu->arch.nmi_queued, 0);
6045 vcpu->arch.nmi_pending = 0;
6046 vcpu->arch.nmi_injected = false;
6048 vcpu->arch.switch_db_regs = 0;
6049 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6050 vcpu->arch.dr6 = DR6_FIXED_1;
6051 vcpu->arch.dr7 = DR7_FIXED_1;
6053 kvm_make_request(KVM_REQ_EVENT, vcpu);
6054 vcpu->arch.apf.msr_val = 0;
6055 vcpu->arch.st.msr_val = 0;
6057 kvmclock_reset(vcpu);
6059 kvm_clear_async_pf_completion_queue(vcpu);
6060 kvm_async_pf_hash_reset(vcpu);
6061 vcpu->arch.apf.halted = false;
6063 kvm_pmu_reset(vcpu);
6065 return kvm_x86_ops->vcpu_reset(vcpu);
6068 int kvm_arch_hardware_enable(void *garbage)
6071 struct kvm_vcpu *vcpu;
6076 bool stable, backwards_tsc = false;
6078 kvm_shared_msr_cpu_online();
6079 ret = kvm_x86_ops->hardware_enable(garbage);
6083 local_tsc = native_read_tsc();
6084 stable = !check_tsc_unstable();
6085 list_for_each_entry(kvm, &vm_list, vm_list) {
6086 kvm_for_each_vcpu(i, vcpu, kvm) {
6087 if (!stable && vcpu->cpu == smp_processor_id())
6088 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6089 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6090 backwards_tsc = true;
6091 if (vcpu->arch.last_host_tsc > max_tsc)
6092 max_tsc = vcpu->arch.last_host_tsc;
6098 * Sometimes, even reliable TSCs go backwards. This happens on
6099 * platforms that reset TSC during suspend or hibernate actions, but
6100 * maintain synchronization. We must compensate. Fortunately, we can
6101 * detect that condition here, which happens early in CPU bringup,
6102 * before any KVM threads can be running. Unfortunately, we can't
6103 * bring the TSCs fully up to date with real time, as we aren't yet far
6104 * enough into CPU bringup that we know how much real time has actually
6105 * elapsed; our helper function, get_kernel_ns() will be using boot
6106 * variables that haven't been updated yet.
6108 * So we simply find the maximum observed TSC above, then record the
6109 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6110 * the adjustment will be applied. Note that we accumulate
6111 * adjustments, in case multiple suspend cycles happen before some VCPU
6112 * gets a chance to run again. In the event that no KVM threads get a
6113 * chance to run, we will miss the entire elapsed period, as we'll have
6114 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6115 * loose cycle time. This isn't too big a deal, since the loss will be
6116 * uniform across all VCPUs (not to mention the scenario is extremely
6117 * unlikely). It is possible that a second hibernate recovery happens
6118 * much faster than a first, causing the observed TSC here to be
6119 * smaller; this would require additional padding adjustment, which is
6120 * why we set last_host_tsc to the local tsc observed here.
6122 * N.B. - this code below runs only on platforms with reliable TSC,
6123 * as that is the only way backwards_tsc is set above. Also note
6124 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6125 * have the same delta_cyc adjustment applied if backwards_tsc
6126 * is detected. Note further, this adjustment is only done once,
6127 * as we reset last_host_tsc on all VCPUs to stop this from being
6128 * called multiple times (one for each physical CPU bringup).
6130 * Platforms with unreliable TSCs don't have to deal with this, they
6131 * will be compensated by the logic in vcpu_load, which sets the TSC to
6132 * catchup mode. This will catchup all VCPUs to real time, but cannot
6133 * guarantee that they stay in perfect synchronization.
6135 if (backwards_tsc) {
6136 u64 delta_cyc = max_tsc - local_tsc;
6137 list_for_each_entry(kvm, &vm_list, vm_list) {
6138 kvm_for_each_vcpu(i, vcpu, kvm) {
6139 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6140 vcpu->arch.last_host_tsc = local_tsc;
6144 * We have to disable TSC offset matching.. if you were
6145 * booting a VM while issuing an S4 host suspend....
6146 * you may have some problem. Solving this issue is
6147 * left as an exercise to the reader.
6149 kvm->arch.last_tsc_nsec = 0;
6150 kvm->arch.last_tsc_write = 0;
6157 void kvm_arch_hardware_disable(void *garbage)
6159 kvm_x86_ops->hardware_disable(garbage);
6160 drop_user_return_notifiers(garbage);
6163 int kvm_arch_hardware_setup(void)
6165 return kvm_x86_ops->hardware_setup();
6168 void kvm_arch_hardware_unsetup(void)
6170 kvm_x86_ops->hardware_unsetup();
6173 void kvm_arch_check_processor_compat(void *rtn)
6175 kvm_x86_ops->check_processor_compatibility(rtn);
6178 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6180 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6183 struct static_key kvm_no_apic_vcpu __read_mostly;
6185 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6191 BUG_ON(vcpu->kvm == NULL);
6194 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6195 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6196 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6198 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6200 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6205 vcpu->arch.pio_data = page_address(page);
6207 kvm_set_tsc_khz(vcpu, max_tsc_khz);
6209 r = kvm_mmu_create(vcpu);
6211 goto fail_free_pio_data;
6213 if (irqchip_in_kernel(kvm)) {
6214 r = kvm_create_lapic(vcpu);
6216 goto fail_mmu_destroy;
6218 static_key_slow_inc(&kvm_no_apic_vcpu);
6220 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6222 if (!vcpu->arch.mce_banks) {
6224 goto fail_free_lapic;
6226 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6228 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6229 goto fail_free_mce_banks;
6231 kvm_async_pf_hash_reset(vcpu);
6235 fail_free_mce_banks:
6236 kfree(vcpu->arch.mce_banks);
6238 kvm_free_lapic(vcpu);
6240 kvm_mmu_destroy(vcpu);
6242 free_page((unsigned long)vcpu->arch.pio_data);
6247 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6251 kvm_pmu_destroy(vcpu);
6252 kfree(vcpu->arch.mce_banks);
6253 kvm_free_lapic(vcpu);
6254 idx = srcu_read_lock(&vcpu->kvm->srcu);
6255 kvm_mmu_destroy(vcpu);
6256 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6257 free_page((unsigned long)vcpu->arch.pio_data);
6258 if (!irqchip_in_kernel(vcpu->kvm))
6259 static_key_slow_dec(&kvm_no_apic_vcpu);
6262 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6267 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6268 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6270 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6271 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6272 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */