]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - arch/mips/alchemy/common/irq.c
Merge branch 'next' into for-linus
[linux-3.10.git] / arch / mips / alchemy / common / irq.c
1 /*
2  * Copyright 2001, 2007-2008 MontaVista Software Inc.
3  * Author: MontaVista Software, Inc. <source@mvista.com>
4  *
5  * Copyright (C) 2007 Ralf Baechle (ralf@linux-mips.org)
6  *
7  *  This program is free software; you can redistribute  it and/or modify it
8  *  under  the terms of  the GNU General  Public License as published by the
9  *  Free Software Foundation;  either version 2 of the  License, or (at your
10  *  option) any later version.
11  *
12  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
13  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
14  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
15  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
16  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
17  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
18  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
19  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
20  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
21  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
22  *
23  *  You should have received a copy of the  GNU General Public License along
24  *  with this program; if not, write  to the Free Software Foundation, Inc.,
25  *  675 Mass Ave, Cambridge, MA 02139, USA.
26  */
27
28 #include <linux/bitops.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h>
32 #include <linux/slab.h>
33 #include <linux/syscore_ops.h>
34
35 #include <asm/irq_cpu.h>
36 #include <asm/mipsregs.h>
37 #include <asm/mach-au1x00/au1000.h>
38 #ifdef CONFIG_MIPS_PB1000
39 #include <asm/mach-pb1x00/pb1000.h>
40 #endif
41
42 /* Interrupt Controller register offsets */
43 #define IC_CFG0RD       0x40
44 #define IC_CFG0SET      0x40
45 #define IC_CFG0CLR      0x44
46 #define IC_CFG1RD       0x48
47 #define IC_CFG1SET      0x48
48 #define IC_CFG1CLR      0x4C
49 #define IC_CFG2RD       0x50
50 #define IC_CFG2SET      0x50
51 #define IC_CFG2CLR      0x54
52 #define IC_REQ0INT      0x54
53 #define IC_SRCRD        0x58
54 #define IC_SRCSET       0x58
55 #define IC_SRCCLR       0x5C
56 #define IC_REQ1INT      0x5C
57 #define IC_ASSIGNRD     0x60
58 #define IC_ASSIGNSET    0x60
59 #define IC_ASSIGNCLR    0x64
60 #define IC_WAKERD       0x68
61 #define IC_WAKESET      0x68
62 #define IC_WAKECLR      0x6C
63 #define IC_MASKRD       0x70
64 #define IC_MASKSET      0x70
65 #define IC_MASKCLR      0x74
66 #define IC_RISINGRD     0x78
67 #define IC_RISINGCLR    0x78
68 #define IC_FALLINGRD    0x7C
69 #define IC_FALLINGCLR   0x7C
70 #define IC_TESTBIT      0x80
71
72 static int au1x_ic_settype(struct irq_data *d, unsigned int flow_type);
73
74 /* NOTE on interrupt priorities: The original writers of this code said:
75  *
76  * Because of the tight timing of SETUP token to reply transactions,
77  * the USB devices-side packet complete interrupt (USB_DEV_REQ_INT)
78  * needs the highest priority.
79  */
80
81 /* per-processor fixed function irqs */
82 struct au1xxx_irqmap {
83         int im_irq;
84         int im_type;
85         int im_request;         /* set 1 to get higher priority */
86 };
87
88 struct au1xxx_irqmap au1000_irqmap[] __initdata = {
89         { AU1000_UART0_INT,       IRQ_TYPE_LEVEL_HIGH,  0 },
90         { AU1000_UART1_INT,       IRQ_TYPE_LEVEL_HIGH,  0 },
91         { AU1000_UART2_INT,       IRQ_TYPE_LEVEL_HIGH,  0 },
92         { AU1000_UART3_INT,       IRQ_TYPE_LEVEL_HIGH,  0 },
93         { AU1000_SSI0_INT,        IRQ_TYPE_LEVEL_HIGH,  0 },
94         { AU1000_SSI1_INT,        IRQ_TYPE_LEVEL_HIGH,  0 },
95         { AU1000_DMA_INT_BASE,    IRQ_TYPE_LEVEL_HIGH,  0 },
96         { AU1000_DMA_INT_BASE+1,  IRQ_TYPE_LEVEL_HIGH,  0 },
97         { AU1000_DMA_INT_BASE+2,  IRQ_TYPE_LEVEL_HIGH,  0 },
98         { AU1000_DMA_INT_BASE+3,  IRQ_TYPE_LEVEL_HIGH,  0 },
99         { AU1000_DMA_INT_BASE+4,  IRQ_TYPE_LEVEL_HIGH,  0 },
100         { AU1000_DMA_INT_BASE+5,  IRQ_TYPE_LEVEL_HIGH,  0 },
101         { AU1000_DMA_INT_BASE+6,  IRQ_TYPE_LEVEL_HIGH,  0 },
102         { AU1000_DMA_INT_BASE+7,  IRQ_TYPE_LEVEL_HIGH,  0 },
103         { AU1000_TOY_INT,         IRQ_TYPE_EDGE_RISING, 0 },
104         { AU1000_TOY_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
105         { AU1000_TOY_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
106         { AU1000_TOY_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 0 },
107         { AU1000_RTC_INT,         IRQ_TYPE_EDGE_RISING, 0 },
108         { AU1000_RTC_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
109         { AU1000_RTC_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
110         { AU1000_RTC_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 1 },
111         { AU1000_IRDA_TX_INT,     IRQ_TYPE_LEVEL_HIGH,  0 },
112         { AU1000_IRDA_RX_INT,     IRQ_TYPE_LEVEL_HIGH,  0 },
113         { AU1000_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH,  1 },
114         { AU1000_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
115         { AU1000_USB_HOST_INT,    IRQ_TYPE_LEVEL_LOW,   0 },
116         { AU1000_ACSYNC_INT,      IRQ_TYPE_EDGE_RISING, 0 },
117         { AU1000_MAC0_DMA_INT,    IRQ_TYPE_LEVEL_HIGH,  0 },
118         { AU1000_MAC1_DMA_INT,    IRQ_TYPE_LEVEL_HIGH,  0 },
119         { AU1000_AC97C_INT,       IRQ_TYPE_EDGE_RISING, 0 },
120         { -1, },
121 };
122
123 struct au1xxx_irqmap au1500_irqmap[] __initdata = {
124         { AU1500_UART0_INT,       IRQ_TYPE_LEVEL_HIGH,  0 },
125         { AU1500_PCI_INTA,        IRQ_TYPE_LEVEL_LOW,   0 },
126         { AU1500_PCI_INTB,        IRQ_TYPE_LEVEL_LOW,   0 },
127         { AU1500_UART3_INT,       IRQ_TYPE_LEVEL_HIGH,  0 },
128         { AU1500_PCI_INTC,        IRQ_TYPE_LEVEL_LOW,   0 },
129         { AU1500_PCI_INTD,        IRQ_TYPE_LEVEL_LOW,   0 },
130         { AU1500_DMA_INT_BASE,    IRQ_TYPE_LEVEL_HIGH,  0 },
131         { AU1500_DMA_INT_BASE+1,  IRQ_TYPE_LEVEL_HIGH,  0 },
132         { AU1500_DMA_INT_BASE+2,  IRQ_TYPE_LEVEL_HIGH,  0 },
133         { AU1500_DMA_INT_BASE+3,  IRQ_TYPE_LEVEL_HIGH,  0 },
134         { AU1500_DMA_INT_BASE+4,  IRQ_TYPE_LEVEL_HIGH,  0 },
135         { AU1500_DMA_INT_BASE+5,  IRQ_TYPE_LEVEL_HIGH,  0 },
136         { AU1500_DMA_INT_BASE+6,  IRQ_TYPE_LEVEL_HIGH,  0 },
137         { AU1500_DMA_INT_BASE+7,  IRQ_TYPE_LEVEL_HIGH,  0 },
138         { AU1500_TOY_INT,         IRQ_TYPE_EDGE_RISING, 0 },
139         { AU1500_TOY_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
140         { AU1500_TOY_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
141         { AU1500_TOY_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 0 },
142         { AU1500_RTC_INT,         IRQ_TYPE_EDGE_RISING, 0 },
143         { AU1500_RTC_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
144         { AU1500_RTC_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
145         { AU1500_RTC_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 1 },
146         { AU1500_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH,  1 },
147         { AU1500_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
148         { AU1500_USB_HOST_INT,    IRQ_TYPE_LEVEL_LOW,   0 },
149         { AU1500_ACSYNC_INT,      IRQ_TYPE_EDGE_RISING, 0 },
150         { AU1500_MAC0_DMA_INT,    IRQ_TYPE_LEVEL_HIGH,  0 },
151         { AU1500_MAC1_DMA_INT,    IRQ_TYPE_LEVEL_HIGH,  0 },
152         { AU1500_AC97C_INT,       IRQ_TYPE_EDGE_RISING, 0 },
153         { -1, },
154 };
155
156 struct au1xxx_irqmap au1100_irqmap[] __initdata = {
157         { AU1100_UART0_INT,       IRQ_TYPE_LEVEL_HIGH,  0 },
158         { AU1100_UART1_INT,       IRQ_TYPE_LEVEL_HIGH,  0 },
159         { AU1100_SD_INT,          IRQ_TYPE_LEVEL_HIGH,  0 },
160         { AU1100_UART3_INT,       IRQ_TYPE_LEVEL_HIGH,  0 },
161         { AU1100_SSI0_INT,        IRQ_TYPE_LEVEL_HIGH,  0 },
162         { AU1100_SSI1_INT,        IRQ_TYPE_LEVEL_HIGH,  0 },
163         { AU1100_DMA_INT_BASE,    IRQ_TYPE_LEVEL_HIGH,  0 },
164         { AU1100_DMA_INT_BASE+1,  IRQ_TYPE_LEVEL_HIGH,  0 },
165         { AU1100_DMA_INT_BASE+2,  IRQ_TYPE_LEVEL_HIGH,  0 },
166         { AU1100_DMA_INT_BASE+3,  IRQ_TYPE_LEVEL_HIGH,  0 },
167         { AU1100_DMA_INT_BASE+4,  IRQ_TYPE_LEVEL_HIGH,  0 },
168         { AU1100_DMA_INT_BASE+5,  IRQ_TYPE_LEVEL_HIGH,  0 },
169         { AU1100_DMA_INT_BASE+6,  IRQ_TYPE_LEVEL_HIGH,  0 },
170         { AU1100_DMA_INT_BASE+7,  IRQ_TYPE_LEVEL_HIGH,  0 },
171         { AU1100_TOY_INT,         IRQ_TYPE_EDGE_RISING, 0 },
172         { AU1100_TOY_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
173         { AU1100_TOY_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
174         { AU1100_TOY_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 0 },
175         { AU1100_RTC_INT,         IRQ_TYPE_EDGE_RISING, 0 },
176         { AU1100_RTC_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
177         { AU1100_RTC_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
178         { AU1100_RTC_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 1 },
179         { AU1100_IRDA_TX_INT,     IRQ_TYPE_LEVEL_HIGH,  0 },
180         { AU1100_IRDA_RX_INT,     IRQ_TYPE_LEVEL_HIGH,  0 },
181         { AU1100_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH,  1 },
182         { AU1100_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
183         { AU1100_USB_HOST_INT,    IRQ_TYPE_LEVEL_LOW,   0 },
184         { AU1100_ACSYNC_INT,      IRQ_TYPE_EDGE_RISING, 0 },
185         { AU1100_MAC0_DMA_INT,    IRQ_TYPE_LEVEL_HIGH,  0 },
186         { AU1100_LCD_INT,         IRQ_TYPE_LEVEL_HIGH,  0 },
187         { AU1100_AC97C_INT,       IRQ_TYPE_EDGE_RISING, 0 },
188         { -1, },
189 };
190
191 struct au1xxx_irqmap au1550_irqmap[] __initdata = {
192         { AU1550_UART0_INT,       IRQ_TYPE_LEVEL_HIGH,  0 },
193         { AU1550_PCI_INTA,        IRQ_TYPE_LEVEL_LOW,   0 },
194         { AU1550_PCI_INTB,        IRQ_TYPE_LEVEL_LOW,   0 },
195         { AU1550_DDMA_INT,        IRQ_TYPE_LEVEL_HIGH,  0 },
196         { AU1550_CRYPTO_INT,      IRQ_TYPE_LEVEL_HIGH,  0 },
197         { AU1550_PCI_INTC,        IRQ_TYPE_LEVEL_LOW,   0 },
198         { AU1550_PCI_INTD,        IRQ_TYPE_LEVEL_LOW,   0 },
199         { AU1550_PCI_RST_INT,     IRQ_TYPE_LEVEL_LOW,   0 },
200         { AU1550_UART1_INT,       IRQ_TYPE_LEVEL_HIGH,  0 },
201         { AU1550_UART3_INT,       IRQ_TYPE_LEVEL_HIGH,  0 },
202         { AU1550_PSC0_INT,        IRQ_TYPE_LEVEL_HIGH,  0 },
203         { AU1550_PSC1_INT,        IRQ_TYPE_LEVEL_HIGH,  0 },
204         { AU1550_PSC2_INT,        IRQ_TYPE_LEVEL_HIGH,  0 },
205         { AU1550_PSC3_INT,        IRQ_TYPE_LEVEL_HIGH,  0 },
206         { AU1550_TOY_INT,         IRQ_TYPE_EDGE_RISING, 0 },
207         { AU1550_TOY_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
208         { AU1550_TOY_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
209         { AU1550_TOY_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 0 },
210         { AU1550_RTC_INT,         IRQ_TYPE_EDGE_RISING, 0 },
211         { AU1550_RTC_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
212         { AU1550_RTC_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
213         { AU1550_RTC_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 1 },
214         { AU1550_NAND_INT,        IRQ_TYPE_EDGE_RISING, 0 },
215         { AU1550_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH,  1 },
216         { AU1550_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
217         { AU1550_USB_HOST_INT,    IRQ_TYPE_LEVEL_LOW,   0 },
218         { AU1550_MAC0_DMA_INT,    IRQ_TYPE_LEVEL_HIGH,  0 },
219         { AU1550_MAC1_DMA_INT,    IRQ_TYPE_LEVEL_HIGH,  0 },
220         { -1, },
221 };
222
223 struct au1xxx_irqmap au1200_irqmap[] __initdata = {
224         { AU1200_UART0_INT,       IRQ_TYPE_LEVEL_HIGH,  0 },
225         { AU1200_SWT_INT,         IRQ_TYPE_EDGE_RISING, 0 },
226         { AU1200_SD_INT,          IRQ_TYPE_LEVEL_HIGH,  0 },
227         { AU1200_DDMA_INT,        IRQ_TYPE_LEVEL_HIGH,  0 },
228         { AU1200_MAE_BE_INT,      IRQ_TYPE_LEVEL_HIGH,  0 },
229         { AU1200_UART1_INT,       IRQ_TYPE_LEVEL_HIGH,  0 },
230         { AU1200_MAE_FE_INT,      IRQ_TYPE_LEVEL_HIGH,  0 },
231         { AU1200_PSC0_INT,        IRQ_TYPE_LEVEL_HIGH,  0 },
232         { AU1200_PSC1_INT,        IRQ_TYPE_LEVEL_HIGH,  0 },
233         { AU1200_AES_INT,         IRQ_TYPE_LEVEL_HIGH,  0 },
234         { AU1200_CAMERA_INT,      IRQ_TYPE_LEVEL_HIGH,  0 },
235         { AU1200_TOY_INT,         IRQ_TYPE_EDGE_RISING, 0 },
236         { AU1200_TOY_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
237         { AU1200_TOY_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
238         { AU1200_TOY_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 0 },
239         { AU1200_RTC_INT,         IRQ_TYPE_EDGE_RISING, 0 },
240         { AU1200_RTC_MATCH0_INT,  IRQ_TYPE_EDGE_RISING, 0 },
241         { AU1200_RTC_MATCH1_INT,  IRQ_TYPE_EDGE_RISING, 0 },
242         { AU1200_RTC_MATCH2_INT,  IRQ_TYPE_EDGE_RISING, 1 },
243         { AU1200_NAND_INT,        IRQ_TYPE_EDGE_RISING, 0 },
244         { AU1200_USB_INT,         IRQ_TYPE_LEVEL_HIGH,  0 },
245         { AU1200_LCD_INT,         IRQ_TYPE_LEVEL_HIGH,  0 },
246         { AU1200_MAE_BOTH_INT,    IRQ_TYPE_LEVEL_HIGH,  0 },
247         { -1, },
248 };
249
250
251 static void au1x_ic0_unmask(struct irq_data *d)
252 {
253         unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
254         void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
255
256         __raw_writel(1 << bit, base + IC_MASKSET);
257         __raw_writel(1 << bit, base + IC_WAKESET);
258         wmb();
259 }
260
261 static void au1x_ic1_unmask(struct irq_data *d)
262 {
263         unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
264         void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
265
266         __raw_writel(1 << bit, base + IC_MASKSET);
267         __raw_writel(1 << bit, base + IC_WAKESET);
268
269 /* very hacky. does the pb1000 cpld auto-disable this int?
270  * nowhere in the current kernel sources is it disabled.        --mlau
271  */
272 #if defined(CONFIG_MIPS_PB1000)
273         if (d->irq == AU1000_GPIO15_INT)
274                 __raw_writel(0x4000, (void __iomem *)PB1000_MDR); /* enable int */
275 #endif
276         wmb();
277 }
278
279 static void au1x_ic0_mask(struct irq_data *d)
280 {
281         unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
282         void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
283
284         __raw_writel(1 << bit, base + IC_MASKCLR);
285         __raw_writel(1 << bit, base + IC_WAKECLR);
286         wmb();
287 }
288
289 static void au1x_ic1_mask(struct irq_data *d)
290 {
291         unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
292         void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
293
294         __raw_writel(1 << bit, base + IC_MASKCLR);
295         __raw_writel(1 << bit, base + IC_WAKECLR);
296         wmb();
297 }
298
299 static void au1x_ic0_ack(struct irq_data *d)
300 {
301         unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
302         void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
303
304         /*
305          * This may assume that we don't get interrupts from
306          * both edges at once, or if we do, that we don't care.
307          */
308         __raw_writel(1 << bit, base + IC_FALLINGCLR);
309         __raw_writel(1 << bit, base + IC_RISINGCLR);
310         wmb();
311 }
312
313 static void au1x_ic1_ack(struct irq_data *d)
314 {
315         unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
316         void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
317
318         /*
319          * This may assume that we don't get interrupts from
320          * both edges at once, or if we do, that we don't care.
321          */
322         __raw_writel(1 << bit, base + IC_FALLINGCLR);
323         __raw_writel(1 << bit, base + IC_RISINGCLR);
324         wmb();
325 }
326
327 static void au1x_ic0_maskack(struct irq_data *d)
328 {
329         unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
330         void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
331
332         __raw_writel(1 << bit, base + IC_WAKECLR);
333         __raw_writel(1 << bit, base + IC_MASKCLR);
334         __raw_writel(1 << bit, base + IC_RISINGCLR);
335         __raw_writel(1 << bit, base + IC_FALLINGCLR);
336         wmb();
337 }
338
339 static void au1x_ic1_maskack(struct irq_data *d)
340 {
341         unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
342         void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
343
344         __raw_writel(1 << bit, base + IC_WAKECLR);
345         __raw_writel(1 << bit, base + IC_MASKCLR);
346         __raw_writel(1 << bit, base + IC_RISINGCLR);
347         __raw_writel(1 << bit, base + IC_FALLINGCLR);
348         wmb();
349 }
350
351 static int au1x_ic1_setwake(struct irq_data *d, unsigned int on)
352 {
353         int bit = d->irq - AU1000_INTC1_INT_BASE;
354         unsigned long wakemsk, flags;
355
356         /* only GPIO 0-7 can act as wakeup source.  Fortunately these
357          * are wired up identically on all supported variants.
358          */
359         if ((bit < 0) || (bit > 7))
360                 return -EINVAL;
361
362         local_irq_save(flags);
363         wakemsk = __raw_readl((void __iomem *)SYS_WAKEMSK);
364         if (on)
365                 wakemsk |= 1 << bit;
366         else
367                 wakemsk &= ~(1 << bit);
368         __raw_writel(wakemsk, (void __iomem *)SYS_WAKEMSK);
369         wmb();
370         local_irq_restore(flags);
371
372         return 0;
373 }
374
375 /*
376  * irq_chips for both ICs; this way the mask handlers can be
377  * as short as possible.
378  */
379 static struct irq_chip au1x_ic0_chip = {
380         .name           = "Alchemy-IC0",
381         .irq_ack        = au1x_ic0_ack,
382         .irq_mask       = au1x_ic0_mask,
383         .irq_mask_ack   = au1x_ic0_maskack,
384         .irq_unmask     = au1x_ic0_unmask,
385         .irq_set_type   = au1x_ic_settype,
386 };
387
388 static struct irq_chip au1x_ic1_chip = {
389         .name           = "Alchemy-IC1",
390         .irq_ack        = au1x_ic1_ack,
391         .irq_mask       = au1x_ic1_mask,
392         .irq_mask_ack   = au1x_ic1_maskack,
393         .irq_unmask     = au1x_ic1_unmask,
394         .irq_set_type   = au1x_ic_settype,
395         .irq_set_wake   = au1x_ic1_setwake,
396 };
397
398 static int au1x_ic_settype(struct irq_data *d, unsigned int flow_type)
399 {
400         struct irq_chip *chip;
401         unsigned int bit, irq = d->irq;
402         irq_flow_handler_t handler = NULL;
403         unsigned char *name = NULL;
404         void __iomem *base;
405         int ret;
406
407         if (irq >= AU1000_INTC1_INT_BASE) {
408                 bit = irq - AU1000_INTC1_INT_BASE;
409                 chip = &au1x_ic1_chip;
410                 base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
411         } else {
412                 bit = irq - AU1000_INTC0_INT_BASE;
413                 chip = &au1x_ic0_chip;
414                 base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
415         }
416
417         if (bit > 31)
418                 return -EINVAL;
419
420         ret = 0;
421
422         switch (flow_type) {    /* cfgregs 2:1:0 */
423         case IRQ_TYPE_EDGE_RISING:      /* 0:0:1 */
424                 __raw_writel(1 << bit, base + IC_CFG2CLR);
425                 __raw_writel(1 << bit, base + IC_CFG1CLR);
426                 __raw_writel(1 << bit, base + IC_CFG0SET);
427                 handler = handle_edge_irq;
428                 name = "riseedge";
429                 break;
430         case IRQ_TYPE_EDGE_FALLING:     /* 0:1:0 */
431                 __raw_writel(1 << bit, base + IC_CFG2CLR);
432                 __raw_writel(1 << bit, base + IC_CFG1SET);
433                 __raw_writel(1 << bit, base + IC_CFG0CLR);
434                 handler = handle_edge_irq;
435                 name = "falledge";
436                 break;
437         case IRQ_TYPE_EDGE_BOTH:        /* 0:1:1 */
438                 __raw_writel(1 << bit, base + IC_CFG2CLR);
439                 __raw_writel(1 << bit, base + IC_CFG1SET);
440                 __raw_writel(1 << bit, base + IC_CFG0SET);
441                 handler = handle_edge_irq;
442                 name = "bothedge";
443                 break;
444         case IRQ_TYPE_LEVEL_HIGH:       /* 1:0:1 */
445                 __raw_writel(1 << bit, base + IC_CFG2SET);
446                 __raw_writel(1 << bit, base + IC_CFG1CLR);
447                 __raw_writel(1 << bit, base + IC_CFG0SET);
448                 handler = handle_level_irq;
449                 name = "hilevel";
450                 break;
451         case IRQ_TYPE_LEVEL_LOW:        /* 1:1:0 */
452                 __raw_writel(1 << bit, base + IC_CFG2SET);
453                 __raw_writel(1 << bit, base + IC_CFG1SET);
454                 __raw_writel(1 << bit, base + IC_CFG0CLR);
455                 handler = handle_level_irq;
456                 name = "lowlevel";
457                 break;
458         case IRQ_TYPE_NONE:             /* 0:0:0 */
459                 __raw_writel(1 << bit, base + IC_CFG2CLR);
460                 __raw_writel(1 << bit, base + IC_CFG1CLR);
461                 __raw_writel(1 << bit, base + IC_CFG0CLR);
462                 break;
463         default:
464                 ret = -EINVAL;
465         }
466         __irq_set_chip_handler_name_locked(d->irq, chip, handler, name);
467
468         wmb();
469
470         return ret;
471 }
472
473 asmlinkage void plat_irq_dispatch(void)
474 {
475         unsigned int pending = read_c0_status() & read_c0_cause();
476         unsigned long s, off;
477
478         if (pending & CAUSEF_IP7) {
479                 off = MIPS_CPU_IRQ_BASE + 7;
480                 goto handle;
481         } else if (pending & CAUSEF_IP2) {
482                 s = KSEG1ADDR(AU1000_IC0_PHYS_ADDR) + IC_REQ0INT;
483                 off = AU1000_INTC0_INT_BASE;
484         } else if (pending & CAUSEF_IP3) {
485                 s = KSEG1ADDR(AU1000_IC0_PHYS_ADDR) + IC_REQ1INT;
486                 off = AU1000_INTC0_INT_BASE;
487         } else if (pending & CAUSEF_IP4) {
488                 s = KSEG1ADDR(AU1000_IC1_PHYS_ADDR) + IC_REQ0INT;
489                 off = AU1000_INTC1_INT_BASE;
490         } else if (pending & CAUSEF_IP5) {
491                 s = KSEG1ADDR(AU1000_IC1_PHYS_ADDR) + IC_REQ1INT;
492                 off = AU1000_INTC1_INT_BASE;
493         } else
494                 goto spurious;
495
496         s = __raw_readl((void __iomem *)s);
497         if (unlikely(!s)) {
498 spurious:
499                 spurious_interrupt();
500                 return;
501         }
502         off += __ffs(s);
503 handle:
504         do_IRQ(off);
505 }
506
507
508 static inline void ic_init(void __iomem *base)
509 {
510         /* initialize interrupt controller to a safe state */
511         __raw_writel(0xffffffff, base + IC_CFG0CLR);
512         __raw_writel(0xffffffff, base + IC_CFG1CLR);
513         __raw_writel(0xffffffff, base + IC_CFG2CLR);
514         __raw_writel(0xffffffff, base + IC_MASKCLR);
515         __raw_writel(0xffffffff, base + IC_ASSIGNCLR);
516         __raw_writel(0xffffffff, base + IC_WAKECLR);
517         __raw_writel(0xffffffff, base + IC_SRCSET);
518         __raw_writel(0xffffffff, base + IC_FALLINGCLR);
519         __raw_writel(0xffffffff, base + IC_RISINGCLR);
520         __raw_writel(0x00000000, base + IC_TESTBIT);
521         wmb();
522 }
523
524 static void __init au1000_init_irq(struct au1xxx_irqmap *map)
525 {
526         unsigned int bit, irq_nr;
527         void __iomem *base;
528
529         ic_init((void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR));
530         ic_init((void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR));
531         mips_cpu_irq_init();
532
533         /* register all 64 possible IC0+IC1 irq sources as type "none".
534          * Use set_irq_type() to set edge/level behaviour at runtime.
535          */
536         for (irq_nr = AU1000_INTC0_INT_BASE;
537              (irq_nr < AU1000_INTC0_INT_BASE + 32); irq_nr++)
538                 au1x_ic_settype(irq_get_irq_data(irq_nr), IRQ_TYPE_NONE);
539
540         for (irq_nr = AU1000_INTC1_INT_BASE;
541              (irq_nr < AU1000_INTC1_INT_BASE + 32); irq_nr++)
542                 au1x_ic_settype(irq_get_irq_data(irq_nr), IRQ_TYPE_NONE);
543
544         /*
545          * Initialize IC0, which is fixed per processor.
546          */
547         while (map->im_irq != -1) {
548                 irq_nr = map->im_irq;
549
550                 if (irq_nr >= AU1000_INTC1_INT_BASE) {
551                         bit = irq_nr - AU1000_INTC1_INT_BASE;
552                         base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
553                 } else {
554                         bit = irq_nr - AU1000_INTC0_INT_BASE;
555                         base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
556                 }
557                 if (map->im_request)
558                         __raw_writel(1 << bit, base + IC_ASSIGNSET);
559
560                 au1x_ic_settype(irq_get_irq_data(irq_nr), map->im_type);
561                 ++map;
562         }
563
564         set_c0_status(IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3);
565 }
566
567 void __init arch_init_irq(void)
568 {
569         switch (alchemy_get_cputype()) {
570         case ALCHEMY_CPU_AU1000:
571                 au1000_init_irq(au1000_irqmap);
572                 break;
573         case ALCHEMY_CPU_AU1500:
574                 au1000_init_irq(au1500_irqmap);
575                 break;
576         case ALCHEMY_CPU_AU1100:
577                 au1000_init_irq(au1100_irqmap);
578                 break;
579         case ALCHEMY_CPU_AU1550:
580                 au1000_init_irq(au1550_irqmap);
581                 break;
582         case ALCHEMY_CPU_AU1200:
583                 au1000_init_irq(au1200_irqmap);
584                 break;
585         }
586 }
587
588
589 static unsigned long alchemy_ic_pmdata[7 * 2];
590
591 static inline void alchemy_ic_suspend_one(void __iomem *base, unsigned long *d)
592 {
593         d[0] = __raw_readl(base + IC_CFG0RD);
594         d[1] = __raw_readl(base + IC_CFG1RD);
595         d[2] = __raw_readl(base + IC_CFG2RD);
596         d[3] = __raw_readl(base + IC_SRCRD);
597         d[4] = __raw_readl(base + IC_ASSIGNRD);
598         d[5] = __raw_readl(base + IC_WAKERD);
599         d[6] = __raw_readl(base + IC_MASKRD);
600         ic_init(base);          /* shut it up too while at it */
601 }
602
603 static inline void alchemy_ic_resume_one(void __iomem *base, unsigned long *d)
604 {
605         ic_init(base);
606
607         __raw_writel(d[0], base + IC_CFG0SET);
608         __raw_writel(d[1], base + IC_CFG1SET);
609         __raw_writel(d[2], base + IC_CFG2SET);
610         __raw_writel(d[3], base + IC_SRCSET);
611         __raw_writel(d[4], base + IC_ASSIGNSET);
612         __raw_writel(d[5], base + IC_WAKESET);
613         wmb();
614
615         __raw_writel(d[6], base + IC_MASKSET);
616         wmb();
617 }
618
619 static int alchemy_ic_suspend(void)
620 {
621         alchemy_ic_suspend_one((void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR),
622                                alchemy_ic_pmdata);
623         alchemy_ic_suspend_one((void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR),
624                                &alchemy_ic_pmdata[7]);
625         return 0;
626 }
627
628 static void alchemy_ic_resume(void)
629 {
630         alchemy_ic_resume_one((void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR),
631                               &alchemy_ic_pmdata[7]);
632         alchemy_ic_resume_one((void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR),
633                               alchemy_ic_pmdata);
634 }
635
636 static struct syscore_ops alchemy_ic_syscore_ops = {
637         .suspend        = alchemy_ic_suspend,
638         .resume         = alchemy_ic_resume,
639 };
640
641 static int __init alchemy_ic_pm_init(void)
642 {
643         register_syscore_ops(&alchemy_ic_syscore_ops);
644         return 0;
645 }
646 device_initcall(alchemy_ic_pm_init);