]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - arch/blackfin/mm/sram-alloc.c
Merge branches 'x86-asm-for-linus', 'x86-cleanups-for-linus', 'x86-cpu-for-linus...
[linux-3.10.git] / arch / blackfin / mm / sram-alloc.c
1 /*
2  * SRAM allocator for Blackfin on-chip memory
3  *
4  * Copyright 2004-2009 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later.
7  */
8
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ioport.h>
14 #include <linux/fcntl.h>
15 #include <linux/init.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/spinlock.h>
20 #include <linux/rtc.h>
21 #include <linux/slab.h>
22 #include <asm/blackfin.h>
23 #include <asm/mem_map.h>
24 #include "blackfin_sram.h"
25
26 /* the data structure for L1 scratchpad and DATA SRAM */
27 struct sram_piece {
28         void *paddr;
29         int size;
30         pid_t pid;
31         struct sram_piece *next;
32 };
33
34 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
35 static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
36 static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
37
38 #if L1_DATA_A_LENGTH != 0
39 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
40 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
41 #endif
42
43 #if L1_DATA_B_LENGTH != 0
44 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
45 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
46 #endif
47
48 #if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
49 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
50 #endif
51
52 #if L1_CODE_LENGTH != 0
53 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
54 static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
55 static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
56 #endif
57
58 #if L2_LENGTH != 0
59 static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
60 static struct sram_piece free_l2_sram_head, used_l2_sram_head;
61 #endif
62
63 static struct kmem_cache *sram_piece_cache;
64
65 /* L1 Scratchpad SRAM initialization function */
66 static void __init l1sram_init(void)
67 {
68         unsigned int cpu;
69         unsigned long reserve;
70
71 #ifdef CONFIG_SMP
72         reserve = 0;
73 #else
74         reserve = sizeof(struct l1_scratch_task_info);
75 #endif
76
77         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
78                 per_cpu(free_l1_ssram_head, cpu).next =
79                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
80                 if (!per_cpu(free_l1_ssram_head, cpu).next) {
81                         printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
82                         return;
83                 }
84
85                 per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
86                 per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
87                 per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
88                 per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
89
90                 per_cpu(used_l1_ssram_head, cpu).next = NULL;
91
92                 /* mutex initialize */
93                 spin_lock_init(&per_cpu(l1sram_lock, cpu));
94                 printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
95                         L1_SCRATCH_LENGTH >> 10);
96         }
97 }
98
99 static void __init l1_data_sram_init(void)
100 {
101 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
102         unsigned int cpu;
103 #endif
104 #if L1_DATA_A_LENGTH != 0
105         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
106                 per_cpu(free_l1_data_A_sram_head, cpu).next =
107                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
108                 if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
109                         printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
110                         return;
111                 }
112
113                 per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
114                         (void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
115                 per_cpu(free_l1_data_A_sram_head, cpu).next->size =
116                         L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
117                 per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
118                 per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
119
120                 per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
121
122                 printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
123                         L1_DATA_A_LENGTH >> 10,
124                         per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
125         }
126 #endif
127 #if L1_DATA_B_LENGTH != 0
128         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
129                 per_cpu(free_l1_data_B_sram_head, cpu).next =
130                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
131                 if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
132                         printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
133                         return;
134                 }
135
136                 per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
137                         (void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
138                 per_cpu(free_l1_data_B_sram_head, cpu).next->size =
139                         L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
140                 per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
141                 per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
142
143                 per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
144
145                 printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
146                         L1_DATA_B_LENGTH >> 10,
147                         per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
148                 /* mutex initialize */
149         }
150 #endif
151
152 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
153         for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
154                 spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
155 #endif
156 }
157
158 static void __init l1_inst_sram_init(void)
159 {
160 #if L1_CODE_LENGTH != 0
161         unsigned int cpu;
162         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
163                 per_cpu(free_l1_inst_sram_head, cpu).next =
164                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
165                 if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
166                         printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
167                         return;
168                 }
169
170                 per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
171                         (void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
172                 per_cpu(free_l1_inst_sram_head, cpu).next->size =
173                         L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
174                 per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
175                 per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
176
177                 per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
178
179                 printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
180                         L1_CODE_LENGTH >> 10,
181                         per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
182
183                 /* mutex initialize */
184                 spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
185         }
186 #endif
187 }
188
189 #ifdef __ADSPBF60x__
190 static irqreturn_t l2_ecc_err(int irq, void *dev_id)
191 {
192         int status;
193
194         printk(KERN_ERR "L2 ecc error happend\n");
195         status = bfin_read32(L2CTL0_STAT);
196         if (status & 0x1)
197                 printk(KERN_ERR "Core channel error type:0x%x, addr:0x%x\n",
198                         bfin_read32(L2CTL0_ET0), bfin_read32(L2CTL0_EADDR0));
199         if (status & 0x2)
200                 printk(KERN_ERR "System channel error type:0x%x, addr:0x%x\n",
201                         bfin_read32(L2CTL0_ET1), bfin_read32(L2CTL0_EADDR1));
202
203         status = status >> 8;
204         if (status)
205                 printk(KERN_ERR "L2 Bank%d error, addr:0x%x\n",
206                         status, bfin_read32(L2CTL0_ERRADDR0 + status));
207
208         panic("L2 Ecc error");
209         return IRQ_HANDLED;
210 }
211 #endif
212
213 static void __init l2_sram_init(void)
214 {
215 #if L2_LENGTH != 0
216
217 #ifdef __ADSPBF60x__
218         int ret;
219
220         ret = request_irq(IRQ_L2CTL0_ECC_ERR, l2_ecc_err, 0, "l2-ecc-err",
221                         NULL);
222         if (unlikely(ret < 0)) {
223                 printk(KERN_INFO "Fail to request l2 ecc error interrupt");
224                 return;
225         }
226 #endif
227
228         free_l2_sram_head.next =
229                 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
230         if (!free_l2_sram_head.next) {
231                 printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
232                 return;
233         }
234
235         free_l2_sram_head.next->paddr =
236                 (void *)L2_START + (_ebss_l2 - _stext_l2);
237         free_l2_sram_head.next->size =
238                 L2_LENGTH - (_ebss_l2 - _stext_l2);
239         free_l2_sram_head.next->pid = 0;
240         free_l2_sram_head.next->next = NULL;
241
242         used_l2_sram_head.next = NULL;
243
244         printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
245                 L2_LENGTH >> 10,
246                 free_l2_sram_head.next->size >> 10);
247
248         /* mutex initialize */
249         spin_lock_init(&l2_sram_lock);
250 #endif
251 }
252
253 static int __init bfin_sram_init(void)
254 {
255         sram_piece_cache = kmem_cache_create("sram_piece_cache",
256                                 sizeof(struct sram_piece),
257                                 0, SLAB_PANIC, NULL);
258
259         l1sram_init();
260         l1_data_sram_init();
261         l1_inst_sram_init();
262         l2_sram_init();
263
264         return 0;
265 }
266 pure_initcall(bfin_sram_init);
267
268 /* SRAM allocate function */
269 static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
270                 struct sram_piece *pused_head)
271 {
272         struct sram_piece *pslot, *plast, *pavail;
273
274         if (size <= 0 || !pfree_head || !pused_head)
275                 return NULL;
276
277         /* Align the size */
278         size = (size + 3) & ~3;
279
280         pslot = pfree_head->next;
281         plast = pfree_head;
282
283         /* search an available piece slot */
284         while (pslot != NULL && size > pslot->size) {
285                 plast = pslot;
286                 pslot = pslot->next;
287         }
288
289         if (!pslot)
290                 return NULL;
291
292         if (pslot->size == size) {
293                 plast->next = pslot->next;
294                 pavail = pslot;
295         } else {
296                 /* use atomic so our L1 allocator can be used atomically */
297                 pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC);
298
299                 if (!pavail)
300                         return NULL;
301
302                 pavail->paddr = pslot->paddr;
303                 pavail->size = size;
304                 pslot->paddr += size;
305                 pslot->size -= size;
306         }
307
308         pavail->pid = current->pid;
309
310         pslot = pused_head->next;
311         plast = pused_head;
312
313         /* insert new piece into used piece list !!! */
314         while (pslot != NULL && pavail->paddr < pslot->paddr) {
315                 plast = pslot;
316                 pslot = pslot->next;
317         }
318
319         pavail->next = pslot;
320         plast->next = pavail;
321
322         return pavail->paddr;
323 }
324
325 /* Allocate the largest available block.  */
326 static void *_sram_alloc_max(struct sram_piece *pfree_head,
327                                 struct sram_piece *pused_head,
328                                 unsigned long *psize)
329 {
330         struct sram_piece *pslot, *pmax;
331
332         if (!pfree_head || !pused_head)
333                 return NULL;
334
335         pmax = pslot = pfree_head->next;
336
337         /* search an available piece slot */
338         while (pslot != NULL) {
339                 if (pslot->size > pmax->size)
340                         pmax = pslot;
341                 pslot = pslot->next;
342         }
343
344         if (!pmax)
345                 return NULL;
346
347         *psize = pmax->size;
348
349         return _sram_alloc(*psize, pfree_head, pused_head);
350 }
351
352 /* SRAM free function */
353 static int _sram_free(const void *addr,
354                         struct sram_piece *pfree_head,
355                         struct sram_piece *pused_head)
356 {
357         struct sram_piece *pslot, *plast, *pavail;
358
359         if (!pfree_head || !pused_head)
360                 return -1;
361
362         /* search the relevant memory slot */
363         pslot = pused_head->next;
364         plast = pused_head;
365
366         /* search an available piece slot */
367         while (pslot != NULL && pslot->paddr != addr) {
368                 plast = pslot;
369                 pslot = pslot->next;
370         }
371
372         if (!pslot)
373                 return -1;
374
375         plast->next = pslot->next;
376         pavail = pslot;
377         pavail->pid = 0;
378
379         /* insert free pieces back to the free list */
380         pslot = pfree_head->next;
381         plast = pfree_head;
382
383         while (pslot != NULL && addr > pslot->paddr) {
384                 plast = pslot;
385                 pslot = pslot->next;
386         }
387
388         if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
389                 plast->size += pavail->size;
390                 kmem_cache_free(sram_piece_cache, pavail);
391         } else {
392                 pavail->next = plast->next;
393                 plast->next = pavail;
394                 plast = pavail;
395         }
396
397         if (pslot && plast->paddr + plast->size == pslot->paddr) {
398                 plast->size += pslot->size;
399                 plast->next = pslot->next;
400                 kmem_cache_free(sram_piece_cache, pslot);
401         }
402
403         return 0;
404 }
405
406 int sram_free(const void *addr)
407 {
408
409 #if L1_CODE_LENGTH != 0
410         if (addr >= (void *)get_l1_code_start()
411                  && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
412                 return l1_inst_sram_free(addr);
413         else
414 #endif
415 #if L1_DATA_A_LENGTH != 0
416         if (addr >= (void *)get_l1_data_a_start()
417                  && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
418                 return l1_data_A_sram_free(addr);
419         else
420 #endif
421 #if L1_DATA_B_LENGTH != 0
422         if (addr >= (void *)get_l1_data_b_start()
423                  && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
424                 return l1_data_B_sram_free(addr);
425         else
426 #endif
427 #if L2_LENGTH != 0
428         if (addr >= (void *)L2_START
429                  && addr < (void *)(L2_START + L2_LENGTH))
430                 return l2_sram_free(addr);
431         else
432 #endif
433                 return -1;
434 }
435 EXPORT_SYMBOL(sram_free);
436
437 void *l1_data_A_sram_alloc(size_t size)
438 {
439 #if L1_DATA_A_LENGTH != 0
440         unsigned long flags;
441         void *addr;
442         unsigned int cpu;
443
444         cpu = smp_processor_id();
445         /* add mutex operation */
446         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
447
448         addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
449                         &per_cpu(used_l1_data_A_sram_head, cpu));
450
451         /* add mutex operation */
452         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
453
454         pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
455                  (long unsigned int)addr, size);
456
457         return addr;
458 #else
459         return NULL;
460 #endif
461 }
462 EXPORT_SYMBOL(l1_data_A_sram_alloc);
463
464 int l1_data_A_sram_free(const void *addr)
465 {
466 #if L1_DATA_A_LENGTH != 0
467         unsigned long flags;
468         int ret;
469         unsigned int cpu;
470
471         cpu = smp_processor_id();
472         /* add mutex operation */
473         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
474
475         ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
476                         &per_cpu(used_l1_data_A_sram_head, cpu));
477
478         /* add mutex operation */
479         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
480
481         return ret;
482 #else
483         return -1;
484 #endif
485 }
486 EXPORT_SYMBOL(l1_data_A_sram_free);
487
488 void *l1_data_B_sram_alloc(size_t size)
489 {
490 #if L1_DATA_B_LENGTH != 0
491         unsigned long flags;
492         void *addr;
493         unsigned int cpu;
494
495         cpu = smp_processor_id();
496         /* add mutex operation */
497         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
498
499         addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
500                         &per_cpu(used_l1_data_B_sram_head, cpu));
501
502         /* add mutex operation */
503         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
504
505         pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
506                  (long unsigned int)addr, size);
507
508         return addr;
509 #else
510         return NULL;
511 #endif
512 }
513 EXPORT_SYMBOL(l1_data_B_sram_alloc);
514
515 int l1_data_B_sram_free(const void *addr)
516 {
517 #if L1_DATA_B_LENGTH != 0
518         unsigned long flags;
519         int ret;
520         unsigned int cpu;
521
522         cpu = smp_processor_id();
523         /* add mutex operation */
524         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
525
526         ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
527                         &per_cpu(used_l1_data_B_sram_head, cpu));
528
529         /* add mutex operation */
530         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
531
532         return ret;
533 #else
534         return -1;
535 #endif
536 }
537 EXPORT_SYMBOL(l1_data_B_sram_free);
538
539 void *l1_data_sram_alloc(size_t size)
540 {
541         void *addr = l1_data_A_sram_alloc(size);
542
543         if (!addr)
544                 addr = l1_data_B_sram_alloc(size);
545
546         return addr;
547 }
548 EXPORT_SYMBOL(l1_data_sram_alloc);
549
550 void *l1_data_sram_zalloc(size_t size)
551 {
552         void *addr = l1_data_sram_alloc(size);
553
554         if (addr)
555                 memset(addr, 0x00, size);
556
557         return addr;
558 }
559 EXPORT_SYMBOL(l1_data_sram_zalloc);
560
561 int l1_data_sram_free(const void *addr)
562 {
563         int ret;
564         ret = l1_data_A_sram_free(addr);
565         if (ret == -1)
566                 ret = l1_data_B_sram_free(addr);
567         return ret;
568 }
569 EXPORT_SYMBOL(l1_data_sram_free);
570
571 void *l1_inst_sram_alloc(size_t size)
572 {
573 #if L1_CODE_LENGTH != 0
574         unsigned long flags;
575         void *addr;
576         unsigned int cpu;
577
578         cpu = smp_processor_id();
579         /* add mutex operation */
580         spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
581
582         addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
583                         &per_cpu(used_l1_inst_sram_head, cpu));
584
585         /* add mutex operation */
586         spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
587
588         pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
589                  (long unsigned int)addr, size);
590
591         return addr;
592 #else
593         return NULL;
594 #endif
595 }
596 EXPORT_SYMBOL(l1_inst_sram_alloc);
597
598 int l1_inst_sram_free(const void *addr)
599 {
600 #if L1_CODE_LENGTH != 0
601         unsigned long flags;
602         int ret;
603         unsigned int cpu;
604
605         cpu = smp_processor_id();
606         /* add mutex operation */
607         spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
608
609         ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
610                         &per_cpu(used_l1_inst_sram_head, cpu));
611
612         /* add mutex operation */
613         spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
614
615         return ret;
616 #else
617         return -1;
618 #endif
619 }
620 EXPORT_SYMBOL(l1_inst_sram_free);
621
622 /* L1 Scratchpad memory allocate function */
623 void *l1sram_alloc(size_t size)
624 {
625         unsigned long flags;
626         void *addr;
627         unsigned int cpu;
628
629         cpu = smp_processor_id();
630         /* add mutex operation */
631         spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
632
633         addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
634                         &per_cpu(used_l1_ssram_head, cpu));
635
636         /* add mutex operation */
637         spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
638
639         return addr;
640 }
641
642 /* L1 Scratchpad memory allocate function */
643 void *l1sram_alloc_max(size_t *psize)
644 {
645         unsigned long flags;
646         void *addr;
647         unsigned int cpu;
648
649         cpu = smp_processor_id();
650         /* add mutex operation */
651         spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
652
653         addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
654                         &per_cpu(used_l1_ssram_head, cpu), psize);
655
656         /* add mutex operation */
657         spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
658
659         return addr;
660 }
661
662 /* L1 Scratchpad memory free function */
663 int l1sram_free(const void *addr)
664 {
665         unsigned long flags;
666         int ret;
667         unsigned int cpu;
668
669         cpu = smp_processor_id();
670         /* add mutex operation */
671         spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
672
673         ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
674                         &per_cpu(used_l1_ssram_head, cpu));
675
676         /* add mutex operation */
677         spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
678
679         return ret;
680 }
681
682 void *l2_sram_alloc(size_t size)
683 {
684 #if L2_LENGTH != 0
685         unsigned long flags;
686         void *addr;
687
688         /* add mutex operation */
689         spin_lock_irqsave(&l2_sram_lock, flags);
690
691         addr = _sram_alloc(size, &free_l2_sram_head,
692                         &used_l2_sram_head);
693
694         /* add mutex operation */
695         spin_unlock_irqrestore(&l2_sram_lock, flags);
696
697         pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
698                  (long unsigned int)addr, size);
699
700         return addr;
701 #else
702         return NULL;
703 #endif
704 }
705 EXPORT_SYMBOL(l2_sram_alloc);
706
707 void *l2_sram_zalloc(size_t size)
708 {
709         void *addr = l2_sram_alloc(size);
710
711         if (addr)
712                 memset(addr, 0x00, size);
713
714         return addr;
715 }
716 EXPORT_SYMBOL(l2_sram_zalloc);
717
718 int l2_sram_free(const void *addr)
719 {
720 #if L2_LENGTH != 0
721         unsigned long flags;
722         int ret;
723
724         /* add mutex operation */
725         spin_lock_irqsave(&l2_sram_lock, flags);
726
727         ret = _sram_free(addr, &free_l2_sram_head,
728                         &used_l2_sram_head);
729
730         /* add mutex operation */
731         spin_unlock_irqrestore(&l2_sram_lock, flags);
732
733         return ret;
734 #else
735         return -1;
736 #endif
737 }
738 EXPORT_SYMBOL(l2_sram_free);
739
740 int sram_free_with_lsl(const void *addr)
741 {
742         struct sram_list_struct *lsl, **tmp;
743         struct mm_struct *mm = current->mm;
744         int ret = -1;
745
746         for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
747                 if ((*tmp)->addr == addr) {
748                         lsl = *tmp;
749                         ret = sram_free(addr);
750                         *tmp = lsl->next;
751                         kfree(lsl);
752                         break;
753                 }
754
755         return ret;
756 }
757 EXPORT_SYMBOL(sram_free_with_lsl);
758
759 /* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
760  * tracked.  These are designed for userspace so that when a process exits,
761  * we can safely reap their resources.
762  */
763 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
764 {
765         void *addr = NULL;
766         struct sram_list_struct *lsl = NULL;
767         struct mm_struct *mm = current->mm;
768
769         lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
770         if (!lsl)
771                 return NULL;
772
773         if (flags & L1_INST_SRAM)
774                 addr = l1_inst_sram_alloc(size);
775
776         if (addr == NULL && (flags & L1_DATA_A_SRAM))
777                 addr = l1_data_A_sram_alloc(size);
778
779         if (addr == NULL && (flags & L1_DATA_B_SRAM))
780                 addr = l1_data_B_sram_alloc(size);
781
782         if (addr == NULL && (flags & L2_SRAM))
783                 addr = l2_sram_alloc(size);
784
785         if (addr == NULL) {
786                 kfree(lsl);
787                 return NULL;
788         }
789         lsl->addr = addr;
790         lsl->length = size;
791         lsl->next = mm->context.sram_list;
792         mm->context.sram_list = lsl;
793         return addr;
794 }
795 EXPORT_SYMBOL(sram_alloc_with_lsl);
796
797 #ifdef CONFIG_PROC_FS
798 /* Once we get a real allocator, we'll throw all of this away.
799  * Until then, we need some sort of visibility into the L1 alloc.
800  */
801 /* Need to keep line of output the same.  Currently, that is 44 bytes
802  * (including newline).
803  */
804 static int _sram_proc_show(struct seq_file *m, const char *desc,
805                 struct sram_piece *pfree_head,
806                 struct sram_piece *pused_head)
807 {
808         struct sram_piece *pslot;
809
810         if (!pfree_head || !pused_head)
811                 return -1;
812
813         seq_printf(m, "--- SRAM %-14s Size   PID State     \n", desc);
814
815         /* search the relevant memory slot */
816         pslot = pused_head->next;
817
818         while (pslot != NULL) {
819                 seq_printf(m, "%p-%p %10i %5i %-10s\n",
820                         pslot->paddr, pslot->paddr + pslot->size,
821                         pslot->size, pslot->pid, "ALLOCATED");
822
823                 pslot = pslot->next;
824         }
825
826         pslot = pfree_head->next;
827
828         while (pslot != NULL) {
829                 seq_printf(m, "%p-%p %10i %5i %-10s\n",
830                         pslot->paddr, pslot->paddr + pslot->size,
831                         pslot->size, pslot->pid, "FREE");
832
833                 pslot = pslot->next;
834         }
835
836         return 0;
837 }
838 static int sram_proc_show(struct seq_file *m, void *v)
839 {
840         unsigned int cpu;
841
842         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
843                 if (_sram_proc_show(m, "Scratchpad",
844                         &per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
845                         goto not_done;
846 #if L1_DATA_A_LENGTH != 0
847                 if (_sram_proc_show(m, "L1 Data A",
848                         &per_cpu(free_l1_data_A_sram_head, cpu),
849                         &per_cpu(used_l1_data_A_sram_head, cpu)))
850                         goto not_done;
851 #endif
852 #if L1_DATA_B_LENGTH != 0
853                 if (_sram_proc_show(m, "L1 Data B",
854                         &per_cpu(free_l1_data_B_sram_head, cpu),
855                         &per_cpu(used_l1_data_B_sram_head, cpu)))
856                         goto not_done;
857 #endif
858 #if L1_CODE_LENGTH != 0
859                 if (_sram_proc_show(m, "L1 Instruction",
860                         &per_cpu(free_l1_inst_sram_head, cpu),
861                         &per_cpu(used_l1_inst_sram_head, cpu)))
862                         goto not_done;
863 #endif
864         }
865 #if L2_LENGTH != 0
866         if (_sram_proc_show(m, "L2", &free_l2_sram_head, &used_l2_sram_head))
867                 goto not_done;
868 #endif
869  not_done:
870         return 0;
871 }
872
873 static int sram_proc_open(struct inode *inode, struct file *file)
874 {
875         return single_open(file, sram_proc_show, NULL);
876 }
877
878 static const struct file_operations sram_proc_ops = {
879         .open           = sram_proc_open,
880         .read           = seq_read,
881         .llseek         = seq_lseek,
882         .release        = single_release,
883 };
884
885 static int __init sram_proc_init(void)
886 {
887         struct proc_dir_entry *ptr;
888
889         ptr = proc_create("sram", S_IRUGO, NULL, &sram_proc_ops);
890         if (!ptr) {
891                 printk(KERN_WARNING "unable to create /proc/sram\n");
892                 return -1;
893         }
894         return 0;
895 }
896 late_initcall(sram_proc_init);
897 #endif