Add some block/ source files to the kernel-api docbook. Fix kernel-doc notation in...
[linux-3.10.git] / Documentation / DocBook / kernel-api.tmpl
1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3         "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5 <book id="LinuxKernelAPI">
6  <bookinfo>
7   <title>The Linux Kernel API</title>
8   
9   <legalnotice>
10    <para>
11      This documentation is free software; you can redistribute
12      it and/or modify it under the terms of the GNU General Public
13      License as published by the Free Software Foundation; either
14      version 2 of the License, or (at your option) any later
15      version.
16    </para>
17       
18    <para>
19      This program is distributed in the hope that it will be
20      useful, but WITHOUT ANY WARRANTY; without even the implied
21      warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22      See the GNU General Public License for more details.
23    </para>
24       
25    <para>
26      You should have received a copy of the GNU General Public
27      License along with this program; if not, write to the Free
28      Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
29      MA 02111-1307 USA
30    </para>
31       
32    <para>
33      For more details see the file COPYING in the source
34      distribution of Linux.
35    </para>
36   </legalnotice>
37  </bookinfo>
38
39 <toc></toc>
40
41   <chapter id="Basics">
42      <title>Driver Basics</title>
43      <sect1><title>Driver Entry and Exit points</title>
44 !Iinclude/linux/init.h
45      </sect1>
46
47      <sect1><title>Atomic and pointer manipulation</title>
48 !Iinclude/asm-x86/atomic_32.h
49 !Iinclude/asm-x86/unaligned.h
50      </sect1>
51
52      <sect1><title>Delaying, scheduling, and timer routines</title>
53 !Iinclude/linux/sched.h
54 !Ekernel/sched.c
55 !Ekernel/timer.c
56      </sect1>
57      <sect1><title>High-resolution timers</title>
58 !Iinclude/linux/ktime.h
59 !Iinclude/linux/hrtimer.h
60 !Ekernel/hrtimer.c
61      </sect1>
62      <sect1><title>Workqueues and Kevents</title>
63 !Ekernel/workqueue.c
64      </sect1>
65      <sect1><title>Internal Functions</title>
66 !Ikernel/exit.c
67 !Ikernel/signal.c
68 !Iinclude/linux/kthread.h
69 !Ekernel/kthread.c
70      </sect1>
71
72      <sect1><title>Kernel objects manipulation</title>
73 <!--
74 X!Iinclude/linux/kobject.h
75 -->
76 !Elib/kobject.c
77      </sect1>
78
79      <sect1><title>Kernel utility functions</title>
80 !Iinclude/linux/kernel.h
81 !Ekernel/printk.c
82 !Ekernel/panic.c
83 !Ekernel/sys.c
84 !Ekernel/rcupdate.c
85      </sect1>
86
87      <sect1><title>Device Resource Management</title>
88 !Edrivers/base/devres.c
89      </sect1>
90
91   </chapter>
92
93   <chapter id="adt">
94      <title>Data Types</title>
95      <sect1><title>Doubly Linked Lists</title>
96 !Iinclude/linux/list.h
97      </sect1>
98   </chapter>
99
100   <chapter id="libc">
101      <title>Basic C Library Functions</title>
102
103      <para>
104        When writing drivers, you cannot in general use routines which are
105        from the C Library.  Some of the functions have been found generally
106        useful and they are listed below.  The behaviour of these functions
107        may vary slightly from those defined by ANSI, and these deviations
108        are noted in the text.
109      </para>
110
111      <sect1><title>String Conversions</title>
112 !Ilib/vsprintf.c
113 !Elib/vsprintf.c
114      </sect1>
115      <sect1><title>String Manipulation</title>
116 <!-- All functions are exported at now
117 X!Ilib/string.c
118  -->
119 !Elib/string.c
120      </sect1>
121      <sect1><title>Bit Operations</title>
122 !Iinclude/asm-x86/bitops.h
123      </sect1>
124   </chapter>
125
126   <chapter id="kernel-lib">
127      <title>Basic Kernel Library Functions</title>
128
129      <para>
130        The Linux kernel provides more basic utility functions.
131      </para>
132
133      <sect1><title>Bitmap Operations</title>
134 !Elib/bitmap.c
135 !Ilib/bitmap.c
136      </sect1>
137
138      <sect1><title>Command-line Parsing</title>
139 !Elib/cmdline.c
140      </sect1>
141
142      <sect1 id="crc"><title>CRC Functions</title>
143 !Elib/crc7.c
144 !Elib/crc16.c
145 !Elib/crc-itu-t.c
146 !Elib/crc32.c
147 !Elib/crc-ccitt.c
148      </sect1>
149   </chapter>
150
151   <chapter id="mm">
152      <title>Memory Management in Linux</title>
153      <sect1><title>The Slab Cache</title>
154 !Iinclude/linux/slab.h
155 !Emm/slab.c
156      </sect1>
157      <sect1><title>User Space Memory Access</title>
158 !Iinclude/asm-x86/uaccess_32.h
159 !Earch/x86/lib/usercopy_32.c
160      </sect1>
161      <sect1><title>More Memory Management Functions</title>
162 !Emm/readahead.c
163 !Emm/filemap.c
164 !Emm/memory.c
165 !Emm/vmalloc.c
166 !Imm/page_alloc.c
167 !Emm/mempool.c
168 !Emm/dmapool.c
169 !Emm/page-writeback.c
170 !Emm/truncate.c
171      </sect1>
172   </chapter>
173
174
175   <chapter id="ipc">
176      <title>Kernel IPC facilities</title>
177
178      <sect1><title>IPC utilities</title>
179 !Iipc/util.c
180      </sect1>
181   </chapter>
182
183   <chapter id="kfifo">
184      <title>FIFO Buffer</title>
185      <sect1><title>kfifo interface</title>
186 !Iinclude/linux/kfifo.h
187 !Ekernel/kfifo.c
188      </sect1>
189   </chapter>
190
191   <chapter id="relayfs">
192      <title>relay interface support</title>
193
194      <para>
195         Relay interface support
196         is designed to provide an efficient mechanism for tools and
197         facilities to relay large amounts of data from kernel space to
198         user space.
199      </para>
200
201      <sect1><title>relay interface</title>
202 !Ekernel/relay.c
203 !Ikernel/relay.c
204      </sect1>
205   </chapter>
206
207   <chapter id="modload">
208      <title>Module Support</title>
209      <sect1><title>Module Loading</title>
210 !Ekernel/kmod.c
211      </sect1>
212      <sect1><title>Inter Module support</title>
213         <para>
214            Refer to the file kernel/module.c for more information.
215         </para>
216 <!-- FIXME: Removed for now since no structured comments in source
217 X!Ekernel/module.c
218 -->
219      </sect1>
220   </chapter>
221
222   <chapter id="hardware">
223      <title>Hardware Interfaces</title>
224      <sect1><title>Interrupt Handling</title>
225 !Ekernel/irq/manage.c
226      </sect1>
227
228      <sect1><title>DMA Channels</title>
229 !Ekernel/dma.c
230      </sect1>
231
232      <sect1><title>Resources Management</title>
233 !Ikernel/resource.c
234 !Ekernel/resource.c
235      </sect1>
236
237      <sect1><title>MTRR Handling</title>
238 !Earch/x86/kernel/cpu/mtrr/main.c
239      </sect1>
240
241      <sect1><title>PCI Support Library</title>
242 !Edrivers/pci/pci.c
243 !Edrivers/pci/pci-driver.c
244 !Edrivers/pci/remove.c
245 !Edrivers/pci/pci-acpi.c
246 !Edrivers/pci/search.c
247 !Edrivers/pci/msi.c
248 !Edrivers/pci/bus.c
249 <!-- FIXME: Removed for now since no structured comments in source
250 X!Edrivers/pci/hotplug.c
251 -->
252 !Edrivers/pci/probe.c
253 !Edrivers/pci/rom.c
254      </sect1>
255      <sect1><title>PCI Hotplug Support Library</title>
256 !Edrivers/pci/hotplug/pci_hotplug_core.c
257      </sect1>
258      <sect1><title>MCA Architecture</title>
259         <sect2><title>MCA Device Functions</title>
260            <para>
261               Refer to the file arch/x86/kernel/mca_32.c for more information.
262            </para>
263 <!-- FIXME: Removed for now since no structured comments in source
264 X!Earch/x86/kernel/mca_32.c
265 -->
266         </sect2>
267         <sect2><title>MCA Bus DMA</title>
268 !Iinclude/asm-x86/mca_dma.h
269         </sect2>
270      </sect1>
271   </chapter>
272
273   <chapter id="firmware">
274      <title>Firmware Interfaces</title>
275      <sect1><title>DMI Interfaces</title>
276 !Edrivers/firmware/dmi_scan.c
277      </sect1>
278      <sect1><title>EDD Interfaces</title>
279 !Idrivers/firmware/edd.c
280      </sect1>
281   </chapter>
282
283   <chapter id="security">
284      <title>Security Framework</title>
285 !Isecurity/security.c
286   </chapter>
287
288   <chapter id="audit">
289      <title>Audit Interfaces</title>
290 !Ekernel/audit.c
291 !Ikernel/auditsc.c
292 !Ikernel/auditfilter.c
293   </chapter>
294
295   <chapter id="accounting">
296      <title>Accounting Framework</title>
297 !Ikernel/acct.c
298   </chapter>
299
300   <chapter id="devdrivers">
301      <title>Device drivers infrastructure</title>
302      <sect1><title>Device Drivers Base</title>
303 <!--
304 X!Iinclude/linux/device.h
305 -->
306 !Edrivers/base/driver.c
307 !Edrivers/base/core.c
308 !Edrivers/base/class.c
309 !Edrivers/base/firmware_class.c
310 !Edrivers/base/transport_class.c
311 <!-- Cannot be included, because
312      attribute_container_add_class_device_adapter
313  and attribute_container_classdev_to_container
314      exceed allowed 44 characters maximum
315 X!Edrivers/base/attribute_container.c
316 -->
317 !Edrivers/base/sys.c
318 <!--
319 X!Edrivers/base/interface.c
320 -->
321 !Edrivers/base/platform.c
322 !Edrivers/base/bus.c
323      </sect1>
324      <sect1><title>Device Drivers Power Management</title>
325 !Edrivers/base/power/main.c
326      </sect1>
327      <sect1><title>Device Drivers ACPI Support</title>
328 <!-- Internal functions only
329 X!Edrivers/acpi/sleep/main.c
330 X!Edrivers/acpi/sleep/wakeup.c
331 X!Edrivers/acpi/motherboard.c
332 X!Edrivers/acpi/bus.c
333 -->
334 !Edrivers/acpi/scan.c
335 !Idrivers/acpi/scan.c
336 <!-- No correct structured comments
337 X!Edrivers/acpi/pci_bind.c
338 -->
339      </sect1>
340      <sect1><title>Device drivers PnP support</title>
341 !Idrivers/pnp/core.c
342 <!-- No correct structured comments
343 X!Edrivers/pnp/system.c
344  -->
345 !Edrivers/pnp/card.c
346 !Idrivers/pnp/driver.c
347 !Edrivers/pnp/manager.c
348 !Edrivers/pnp/support.c
349      </sect1>
350      <sect1><title>Userspace IO devices</title>
351 !Edrivers/uio/uio.c
352 !Iinclude/linux/uio_driver.h
353      </sect1>
354   </chapter>
355
356   <chapter id="blkdev">
357      <title>Block Devices</title>
358 !Eblock/blk-core.c
359 !Iblock/blk-core.c
360 !Eblock/blk-map.c
361 !Iblock/blk-sysfs.c
362 !Eblock/blk-settings.c
363 !Eblock/blk-exec.c
364 !Eblock/blk-barrier.c
365 !Eblock/blk-tag.c
366 !Iblock/blk-tag.c
367 !Eblock/blk-integrity.c
368 !Iblock/blktrace.c
369 !Iblock/genhd.c
370 !Eblock/genhd.c
371   </chapter>
372
373   <chapter id="chrdev">
374         <title>Char devices</title>
375 !Efs/char_dev.c
376   </chapter>
377
378   <chapter id="miscdev">
379      <title>Miscellaneous Devices</title>
380 !Edrivers/char/misc.c
381   </chapter>
382
383   <chapter id="parportdev">
384      <title>Parallel Port Devices</title>
385 !Iinclude/linux/parport.h
386 !Edrivers/parport/ieee1284.c
387 !Edrivers/parport/share.c
388 !Idrivers/parport/daisy.c
389   </chapter>
390
391   <chapter id="message_devices">
392         <title>Message-based devices</title>
393      <sect1><title>Fusion message devices</title>
394 !Edrivers/message/fusion/mptbase.c
395 !Idrivers/message/fusion/mptbase.c
396 !Edrivers/message/fusion/mptscsih.c
397 !Idrivers/message/fusion/mptscsih.c
398 !Idrivers/message/fusion/mptctl.c
399 !Idrivers/message/fusion/mptspi.c
400 !Idrivers/message/fusion/mptfc.c
401 !Idrivers/message/fusion/mptlan.c
402      </sect1>
403      <sect1><title>I2O message devices</title>
404 !Iinclude/linux/i2o.h
405 !Idrivers/message/i2o/core.h
406 !Edrivers/message/i2o/iop.c
407 !Idrivers/message/i2o/iop.c
408 !Idrivers/message/i2o/config-osm.c
409 !Edrivers/message/i2o/exec-osm.c
410 !Idrivers/message/i2o/exec-osm.c
411 !Idrivers/message/i2o/bus-osm.c
412 !Edrivers/message/i2o/device.c
413 !Idrivers/message/i2o/device.c
414 !Idrivers/message/i2o/driver.c
415 !Idrivers/message/i2o/pci.c
416 !Idrivers/message/i2o/i2o_block.c
417 !Idrivers/message/i2o/i2o_scsi.c
418 !Idrivers/message/i2o/i2o_proc.c
419      </sect1>
420   </chapter>
421
422   <chapter id="snddev">
423      <title>Sound Devices</title>
424 !Iinclude/sound/core.h
425 !Esound/sound_core.c
426 !Iinclude/sound/pcm.h
427 !Esound/core/pcm.c
428 !Esound/core/device.c
429 !Esound/core/info.c
430 !Esound/core/rawmidi.c
431 !Esound/core/sound.c
432 !Esound/core/memory.c
433 !Esound/core/pcm_memory.c
434 !Esound/core/init.c
435 !Esound/core/isadma.c
436 !Esound/core/control.c
437 !Esound/core/pcm_lib.c
438 !Esound/core/hwdep.c
439 !Esound/core/pcm_native.c
440 !Esound/core/memalloc.c
441 <!-- FIXME: Removed for now since no structured comments in source
442 X!Isound/sound_firmware.c
443 -->
444   </chapter>
445
446   <chapter id="uart16x50">
447      <title>16x50 UART Driver</title>
448 !Iinclude/linux/serial_core.h
449 !Edrivers/serial/serial_core.c
450 !Edrivers/serial/8250.c
451   </chapter>
452
453   <chapter id="fbdev">
454      <title>Frame Buffer Library</title>
455
456      <para>
457        The frame buffer drivers depend heavily on four data structures.  
458        These structures are declared in include/linux/fb.h.  They are 
459        fb_info, fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs. 
460        The last three can be made available to and from userland. 
461      </para>
462
463      <para>
464        fb_info defines the current state of a particular video card. 
465        Inside fb_info, there exists a fb_ops structure which is a 
466        collection of needed functions to make fbdev and fbcon work.
467        fb_info is only visible to the kernel.
468      </para>
469
470      <para>
471        fb_var_screeninfo is used to describe the features of a video card 
472        that are user defined.  With fb_var_screeninfo, things such as
473        depth and the resolution may be defined.
474      </para>
475
476      <para>
477        The next structure is fb_fix_screeninfo. This defines the 
478        properties of a card that are created when a mode is set and can't 
479        be changed otherwise.  A good example of this is the start of the 
480        frame buffer memory.  This "locks" the address of the frame buffer
481        memory, so that it cannot be changed or moved.
482      </para>
483
484      <para>
485        The last structure is fb_monospecs. In the old API, there was 
486        little importance for fb_monospecs. This allowed for forbidden things 
487        such as setting a mode of 800x600 on a fix frequency monitor. With 
488        the new API, fb_monospecs prevents such things, and if used 
489        correctly, can prevent a monitor from being cooked.  fb_monospecs
490        will not be useful until kernels 2.5.x.
491      </para>
492
493      <sect1><title>Frame Buffer Memory</title>
494 !Edrivers/video/fbmem.c
495      </sect1>
496 <!--
497      <sect1><title>Frame Buffer Console</title>
498 X!Edrivers/video/console/fbcon.c
499      </sect1>
500 -->
501      <sect1><title>Frame Buffer Colormap</title>
502 !Edrivers/video/fbcmap.c
503      </sect1>
504 <!-- FIXME:
505   drivers/video/fbgen.c has no docs, which stuffs up the sgml.  Comment
506   out until somebody adds docs.  KAO
507      <sect1><title>Frame Buffer Generic Functions</title>
508 X!Idrivers/video/fbgen.c
509      </sect1>
510 KAO -->
511      <sect1><title>Frame Buffer Video Mode Database</title>
512 !Idrivers/video/modedb.c
513 !Edrivers/video/modedb.c
514      </sect1>
515      <sect1><title>Frame Buffer Macintosh Video Mode Database</title>
516 !Edrivers/video/macmodes.c
517      </sect1>
518      <sect1><title>Frame Buffer Fonts</title>
519         <para>
520            Refer to the file drivers/video/console/fonts.c for more information.
521         </para>
522 <!-- FIXME: Removed for now since no structured comments in source
523 X!Idrivers/video/console/fonts.c
524 -->
525      </sect1>
526   </chapter>
527
528   <chapter id="input_subsystem">
529      <title>Input Subsystem</title>
530 !Iinclude/linux/input.h
531 !Edrivers/input/input.c
532 !Edrivers/input/ff-core.c
533 !Edrivers/input/ff-memless.c
534   </chapter>
535
536   <chapter id="spi">
537       <title>Serial Peripheral Interface (SPI)</title>
538   <para>
539         SPI is the "Serial Peripheral Interface", widely used with
540         embedded systems because it is a simple and efficient
541         interface:  basically a multiplexed shift register.
542         Its three signal wires hold a clock (SCK, often in the range
543         of 1-20 MHz), a "Master Out, Slave In" (MOSI) data line, and
544         a "Master In, Slave Out" (MISO) data line.
545         SPI is a full duplex protocol; for each bit shifted out the
546         MOSI line (one per clock) another is shifted in on the MISO line.
547         Those bits are assembled into words of various sizes on the
548         way to and from system memory.
549         An additional chipselect line is usually active-low (nCS);
550         four signals are normally used for each peripheral, plus
551         sometimes an interrupt.
552   </para>
553   <para>
554         The SPI bus facilities listed here provide a generalized
555         interface to declare SPI busses and devices, manage them
556         according to the standard Linux driver model, and perform
557         input/output operations.
558         At this time, only "master" side interfaces are supported,
559         where Linux talks to SPI peripherals and does not implement
560         such a peripheral itself.
561         (Interfaces to support implementing SPI slaves would
562         necessarily look different.)
563   </para>
564   <para>
565         The programming interface is structured around two kinds of driver,
566         and two kinds of device.
567         A "Controller Driver" abstracts the controller hardware, which may
568         be as simple as a set of GPIO pins or as complex as a pair of FIFOs
569         connected to dual DMA engines on the other side of the SPI shift
570         register (maximizing throughput).  Such drivers bridge between
571         whatever bus they sit on (often the platform bus) and SPI, and
572         expose the SPI side of their device as a
573         <structname>struct spi_master</structname>.
574         SPI devices are children of that master, represented as a
575         <structname>struct spi_device</structname> and manufactured from
576         <structname>struct spi_board_info</structname> descriptors which
577         are usually provided by board-specific initialization code.
578         A <structname>struct spi_driver</structname> is called a
579         "Protocol Driver", and is bound to a spi_device using normal
580         driver model calls.
581   </para>
582   <para>
583         The I/O model is a set of queued messages.  Protocol drivers
584         submit one or more <structname>struct spi_message</structname>
585         objects, which are processed and completed asynchronously.
586         (There are synchronous wrappers, however.)  Messages are
587         built from one or more <structname>struct spi_transfer</structname>
588         objects, each of which wraps a full duplex SPI transfer.
589         A variety of protocol tweaking options are needed, because
590         different chips adopt very different policies for how they
591         use the bits transferred with SPI.
592   </para>
593 !Iinclude/linux/spi/spi.h
594 !Fdrivers/spi/spi.c spi_register_board_info
595 !Edrivers/spi/spi.c
596   </chapter>
597
598   <chapter id="i2c">
599      <title>I<superscript>2</superscript>C and SMBus Subsystem</title>
600
601      <para>
602         I<superscript>2</superscript>C (or without fancy typography, "I2C")
603         is an acronym for the "Inter-IC" bus, a simple bus protocol which is
604         widely used where low data rate communications suffice.
605         Since it's also a licensed trademark, some vendors use another
606         name (such as "Two-Wire Interface", TWI) for the same bus.
607         I2C only needs two signals (SCL for clock, SDA for data), conserving
608         board real estate and minimizing signal quality issues.
609         Most I2C devices use seven bit addresses, and bus speeds of up
610         to 400 kHz; there's a high speed extension (3.4 MHz) that's not yet
611         found wide use.
612         I2C is a multi-master bus; open drain signaling is used to
613         arbitrate between masters, as well as to handshake and to
614         synchronize clocks from slower clients.
615      </para>
616
617      <para>
618         The Linux I2C programming interfaces support only the master
619         side of bus interactions, not the slave side.
620         The programming interface is structured around two kinds of driver,
621         and two kinds of device.
622         An I2C "Adapter Driver" abstracts the controller hardware; it binds
623         to a physical device (perhaps a PCI device or platform_device) and
624         exposes a <structname>struct i2c_adapter</structname> representing
625         each I2C bus segment it manages.
626         On each I2C bus segment will be I2C devices represented by a
627         <structname>struct i2c_client</structname>.  Those devices will
628         be bound to a <structname>struct i2c_driver</structname>,
629         which should follow the standard Linux driver model.
630         (At this writing, a legacy model is more widely used.)
631         There are functions to perform various I2C protocol operations; at
632         this writing all such functions are usable only from task context.
633      </para>
634
635      <para>
636         The System Management Bus (SMBus) is a sibling protocol.  Most SMBus
637         systems are also I2C conformant.  The electrical constraints are
638         tighter for SMBus, and it standardizes particular protocol messages
639         and idioms.  Controllers that support I2C can also support most
640         SMBus operations, but SMBus controllers don't support all the protocol
641         options that an I2C controller will.
642         There are functions to perform various SMBus protocol operations,
643         either using I2C primitives or by issuing SMBus commands to
644         i2c_adapter devices which don't support those I2C operations.
645      </para>
646
647 !Iinclude/linux/i2c.h
648 !Fdrivers/i2c/i2c-boardinfo.c i2c_register_board_info
649 !Edrivers/i2c/i2c-core.c
650   </chapter>
651
652   <chapter id="clk">
653      <title>Clock Framework</title>
654
655      <para>
656         The clock framework defines programming interfaces to support
657         software management of the system clock tree.
658         This framework is widely used with System-On-Chip (SOC) platforms
659         to support power management and various devices which may need
660         custom clock rates.
661         Note that these "clocks" don't relate to timekeeping or real
662         time clocks (RTCs), each of which have separate frameworks.
663         These <structname>struct clk</structname> instances may be used
664         to manage for example a 96 MHz signal that is used to shift bits
665         into and out of peripherals or busses, or otherwise trigger
666         synchronous state machine transitions in system hardware.
667      </para>
668
669      <para>
670         Power management is supported by explicit software clock gating:
671         unused clocks are disabled, so the system doesn't waste power
672         changing the state of transistors that aren't in active use.
673         On some systems this may be backed by hardware clock gating,
674         where clocks are gated without being disabled in software.
675         Sections of chips that are powered but not clocked may be able
676         to retain their last state.
677         This low power state is often called a <emphasis>retention
678         mode</emphasis>.
679         This mode still incurs leakage currents, especially with finer
680         circuit geometries, but for CMOS circuits power is mostly used
681         by clocked state changes.
682      </para>
683
684      <para>
685         Power-aware drivers only enable their clocks when the device
686         they manage is in active use.  Also, system sleep states often
687         differ according to which clock domains are active:  while a
688         "standby" state may allow wakeup from several active domains, a
689         "mem" (suspend-to-RAM) state may require a more wholesale shutdown
690         of clocks derived from higher speed PLLs and oscillators, limiting
691         the number of possible wakeup event sources.  A driver's suspend
692         method may need to be aware of system-specific clock constraints
693         on the target sleep state.
694      </para>
695
696      <para>
697         Some platforms support programmable clock generators.  These
698         can be used by external chips of various kinds, such as other
699         CPUs, multimedia codecs, and devices with strict requirements
700         for interface clocking.
701      </para>
702
703 !Iinclude/linux/clk.h
704   </chapter>
705
706 </book>