/* $Id: uaccess.h,v 1.11 2003/10/13 07:21:20 lethal Exp $ * * User space memory access functions * * Copyright (C) 1999, 2002 Niibe Yutaka * Copyright (C) 2003 Paul Mundt * * Based on: * MIPS implementation version 1.15 by * Copyright (C) 1996, 1997, 1998 by Ralf Baechle * and i386 version. */ #ifndef __ASM_SH_UACCESS_H #define __ASM_SH_UACCESS_H #include #include /* * NOTE: Macro/functions in this file depends on threads_info.h implementation. * Assumes: * TI_FLAGS == 8 * TIF_USERSPACE == 31 * USER_ADDR_LIMIT == 0x80000000 */ #define VERIFY_READ 0 #define VERIFY_WRITE 1 typedef struct { unsigned int is_user_space; } mm_segment_t; /* * The fs value determines whether argument validity checking should be * performed or not. If get_fs() == USER_DS, checking is performed, with * get_fs() == KERNEL_DS, checking is bypassed. * * For historical reasons (Data Segment Register?), these macros are misnamed. */ #define MAKE_MM_SEG(s) ((mm_segment_t) { (s) }) #define segment_eq(a,b) ((a).is_user_space == (b).is_user_space) #define USER_ADDR_LIMIT 0x80000000 #define KERNEL_DS MAKE_MM_SEG(0) #define USER_DS MAKE_MM_SEG(1) #define get_ds() (KERNEL_DS) #if !defined(CONFIG_MMU) static inline mm_segment_t get_fs(void) { return USER_DS; } static inline void set_fs(mm_segment_t s) { } /* * __access_ok: Check if address with size is OK or not. * * If we don't have an MMU (or if its disabled) the only thing we really have * to look out for is if the address resides somewhere outside of what * available RAM we have. * * TODO: This check could probably also stand to be restricted somewhat more.. * though it still does the Right Thing(tm) for the time being. */ static inline int __access_ok(unsigned long addr, unsigned long size) { extern unsigned long memory_start, memory_end; return ((addr >= memory_start) && ((addr + size) < memory_end)); } #else /* CONFIG_MMU */ static inline mm_segment_t get_fs(void) { return MAKE_MM_SEG(test_thread_flag(TIF_USERSPACE)); } static inline void set_fs(mm_segment_t s) { unsigned long ti, flag; __asm__ __volatile__( "stc r7_bank, %0\n\t" "mov.l @(8,%0), %1\n\t" "shal %1\n\t" "cmp/pl %2\n\t" "rotcr %1\n\t" "mov.l %1, @(8,%0)" : "=&r" (ti), "=&r" (flag) : "r" (s.is_user_space) : "t"); /**** if (s.is_user_space) set_thread_flag(TIF_USERSPACE); else clear_thread_flag(TIF_USERSPACE); ****/ } /* * __access_ok: Check if address with size is OK or not. * * We do three checks: * (1) is it user space? * (2) addr + size --> carry? * (3) addr + size >= 0x80000000 (USER_ADDR_LIMIT) * * (1) (2) (3) | RESULT * 0 0 0 | ok * 0 0 1 | ok * 0 1 0 | bad * 0 1 1 | bad * 1 0 0 | ok * 1 0 1 | bad * 1 1 0 | bad * 1 1 1 | bad */ static inline int __access_ok(unsigned long addr, unsigned long size) { unsigned long flag, tmp; __asm__("stc r7_bank, %0\n\t" "mov.l @(8,%0), %0\n\t" "clrt\n\t" "addc %2, %1\n\t" "and %1, %0\n\t" "rotcl %0\n\t" "rotcl %0\n\t" "and #3, %0" : "=&z" (flag), "=r" (tmp) : "r" (addr), "1" (size) : "t"); return flag == 0; } #endif /* CONFIG_MMU */ static inline int access_ok(int type, const void __user *p, unsigned long size) { unsigned long addr = (unsigned long)p; return __access_ok(addr, size); } /* * Uh, these should become the main single-value transfer routines ... * They automatically use the right size if we just have the right * pointer type ... * * As SuperH uses the same address space for kernel and user data, we * can just do these as direct assignments. * * Careful to not * (a) re-use the arguments for side effects (sizeof is ok) * (b) require any knowledge of processes at this stage */ #define put_user(x,ptr) __put_user_check((x),(ptr),sizeof(*(ptr))) #define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr))) /* * The "__xxx" versions do not do address space checking, useful when * doing multiple accesses to the same area (the user has to do the * checks by hand with "access_ok()") */ #define __put_user(x,ptr) \ __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr))) #define __get_user(x,ptr) \ __get_user_nocheck((x),(ptr),sizeof(*(ptr))) struct __large_struct { unsigned long buf[100]; }; #define __m(x) (*(struct __large_struct *)(x)) #define __get_user_size(x,ptr,size,retval) \ do { \ retval = 0; \ switch (size) { \ case 1: \ __get_user_asm(x, ptr, retval, "b"); \ break; \ case 2: \ __get_user_asm(x, ptr, retval, "w"); \ break; \ case 4: \ __get_user_asm(x, ptr, retval, "l"); \ break; \ default: \ __get_user_unknown(); \ break; \ } \ } while (0) #define __get_user_nocheck(x,ptr,size) \ ({ \ long __gu_err, __gu_val; \ __get_user_size(__gu_val, (ptr), (size), __gu_err); \ (x) = (__typeof__(*(ptr)))__gu_val; \ __gu_err; \ }) #define __get_user_check(x,ptr,size) \ ({ \ long __gu_err, __gu_val; \ switch (size) { \ case 1: \ __get_user_1(__gu_val, (ptr), __gu_err); \ break; \ case 2: \ __get_user_2(__gu_val, (ptr), __gu_err); \ break; \ case 4: \ __get_user_4(__gu_val, (ptr), __gu_err); \ break; \ default: \ __get_user_unknown(); \ break; \ } \ \ (x) = (__typeof__(*(ptr)))__gu_val; \ __gu_err; \ }) #define __get_user_1(x,addr,err) ({ \ __asm__("stc r7_bank, %1\n\t" \ "mov.l @(8,%1), %1\n\t" \ "and %2, %1\n\t" \ "cmp/pz %1\n\t" \ "bt/s 1f\n\t" \ " mov #0, %0\n\t" \ "0:\n" \ "mov #-14, %0\n\t" \ "bra 2f\n\t" \ " mov #0, %1\n" \ "1:\n\t" \ "mov.b @%2, %1\n\t" \ "extu.b %1, %1\n" \ "2:\n" \ ".section __ex_table,\"a\"\n\t" \ ".long 1b, 0b\n\t" \ ".previous" \ : "=&r" (err), "=&r" (x) \ : "r" (addr) \ : "t"); \ }) #define __get_user_2(x,addr,err) ({ \ __asm__("stc r7_bank, %1\n\t" \ "mov.l @(8,%1), %1\n\t" \ "and %2, %1\n\t" \ "cmp/pz %1\n\t" \ "bt/s 1f\n\t" \ " mov #0, %0\n\t" \ "0:\n" \ "mov #-14, %0\n\t" \ "bra 2f\n\t" \ " mov #0, %1\n" \ "1:\n\t" \ "mov.w @%2, %1\n\t" \ "extu.w %1, %1\n" \ "2:\n" \ ".section __ex_table,\"a\"\n\t" \ ".long 1b, 0b\n\t" \ ".previous" \ : "=&r" (err), "=&r" (x) \ : "r" (addr) \ : "t"); \ }) #define __get_user_4(x,addr,err) ({ \ __asm__("stc r7_bank, %1\n\t" \ "mov.l @(8,%1), %1\n\t" \ "and %2, %1\n\t" \ "cmp/pz %1\n\t" \ "bt/s 1f\n\t" \ " mov #0, %0\n\t" \ "0:\n" \ "mov #-14, %0\n\t" \ "bra 2f\n\t" \ " mov #0, %1\n" \ "1:\n\t" \ "mov.l @%2, %1\n\t" \ "2:\n" \ ".section __ex_table,\"a\"\n\t" \ ".long 1b, 0b\n\t" \ ".previous" \ : "=&r" (err), "=&r" (x) \ : "r" (addr) \ : "t"); \ }) #define __get_user_asm(x, addr, err, insn) \ ({ \ __asm__ __volatile__( \ "1:\n\t" \ "mov." insn " %2, %1\n\t" \ "mov #0, %0\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3:\n\t" \ "mov #0, %1\n\t" \ "mov.l 4f, %0\n\t" \ "jmp @%0\n\t" \ " mov %3, %0\n" \ "4: .long 2b\n\t" \ ".previous\n" \ ".section __ex_table,\"a\"\n\t" \ ".long 1b, 3b\n\t" \ ".previous" \ :"=&r" (err), "=&r" (x) \ :"m" (__m(addr)), "i" (-EFAULT)); }) extern void __get_user_unknown(void); #define __put_user_size(x,ptr,size,retval) \ do { \ retval = 0; \ switch (size) { \ case 1: \ __put_user_asm(x, ptr, retval, "b"); \ break; \ case 2: \ __put_user_asm(x, ptr, retval, "w"); \ break; \ case 4: \ __put_user_asm(x, ptr, retval, "l"); \ break; \ case 8: \ __put_user_u64(x, ptr, retval); \ break; \ default: \ __put_user_unknown(); \ } \ } while (0) #define __put_user_nocheck(x,ptr,size) \ ({ \ long __pu_err; \ __put_user_size((x),(ptr),(size),__pu_err); \ __pu_err; \ }) #define __put_user_check(x,ptr,size) \ ({ \ long __pu_err = -EFAULT; \ __typeof__(*(ptr)) *__pu_addr = (ptr); \ \ if (__access_ok((unsigned long)__pu_addr,size)) \ __put_user_size((x),__pu_addr,(size),__pu_err); \ __pu_err; \ }) #define __put_user_asm(x, addr, err, insn) \ ({ \ __asm__ __volatile__( \ "1:\n\t" \ "mov." insn " %1, %2\n\t" \ "mov #0, %0\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3:\n\t" \ "nop\n\t" \ "mov.l 4f, %0\n\t" \ "jmp @%0\n\t" \ "mov %3, %0\n" \ "4: .long 2b\n\t" \ ".previous\n" \ ".section __ex_table,\"a\"\n\t" \ ".long 1b, 3b\n\t" \ ".previous" \ :"=&r" (err) \ :"r" (x), "m" (__m(addr)), "i" (-EFAULT) \ :"memory"); }) #if defined(__LITTLE_ENDIAN__) #define __put_user_u64(val,addr,retval) \ ({ \ __asm__ __volatile__( \ "1:\n\t" \ "mov.l %R1,%2\n\t" \ "mov.l %S1,%T2\n\t" \ "mov #0,%0\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3:\n\t" \ "nop\n\t" \ "mov.l 4f,%0\n\t" \ "jmp @%0\n\t" \ " mov %3,%0\n" \ "4: .long 2b\n\t" \ ".previous\n" \ ".section __ex_table,\"a\"\n\t" \ ".long 1b, 3b\n\t" \ ".previous" \ : "=r" (retval) \ : "r" (val), "m" (__m(addr)), "i" (-EFAULT) \ : "memory"); }) #else #define __put_user_u64(val,addr,retval) \ ({ \ __asm__ __volatile__( \ "1:\n\t" \ "mov.l %S1,%2\n\t" \ "mov.l %R1,%T2\n\t" \ "mov #0,%0\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3:\n\t" \ "nop\n\t" \ "mov.l 4f,%0\n\t" \ "jmp @%0\n\t" \ " mov %3,%0\n" \ "4: .long 2b\n\t" \ ".previous\n" \ ".section __ex_table,\"a\"\n\t" \ ".long 1b, 3b\n\t" \ ".previous" \ : "=r" (retval) \ : "r" (val), "m" (__m(addr)), "i" (-EFAULT) \ : "memory"); }) #endif extern void __put_user_unknown(void); /* Generic arbitrary sized copy. */ /* Return the number of bytes NOT copied */ extern __kernel_size_t __copy_user(void *to, const void *from, __kernel_size_t n); #define copy_to_user(to,from,n) ({ \ void *__copy_to = (void *) (to); \ __kernel_size_t __copy_size = (__kernel_size_t) (n); \ __kernel_size_t __copy_res; \ if(__copy_size && __access_ok((unsigned long)__copy_to, __copy_size)) { \ __copy_res = __copy_user(__copy_to, (void *) (from), __copy_size); \ } else __copy_res = __copy_size; \ __copy_res; }) #define __copy_to_user(to,from,n) \ __copy_user((void *)(to), \ (void *)(from), n) #define __copy_to_user_inatomic __copy_to_user #define __copy_from_user_inatomic __copy_from_user #define copy_from_user(to,from,n) ({ \ void *__copy_to = (void *) (to); \ void *__copy_from = (void *) (from); \ __kernel_size_t __copy_size = (__kernel_size_t) (n); \ __kernel_size_t __copy_res; \ if(__copy_size && __access_ok((unsigned long)__copy_from, __copy_size)) { \ __copy_res = __copy_user(__copy_to, __copy_from, __copy_size); \ } else __copy_res = __copy_size; \ __copy_res; }) #define __copy_from_user(to,from,n) \ __copy_user((void *)(to), \ (void *)(from), n) /* * Clear the area and return remaining number of bytes * (on failure. Usually it's 0.) */ extern __kernel_size_t __clear_user(void *addr, __kernel_size_t size); #define clear_user(addr,n) ({ \ void * __cl_addr = (addr); \ unsigned long __cl_size = (n); \ if (__cl_size && __access_ok(((unsigned long)(__cl_addr)), __cl_size)) \ __cl_size = __clear_user(__cl_addr, __cl_size); \ __cl_size; }) static __inline__ int __strncpy_from_user(unsigned long __dest, unsigned long __user __src, int __count) { __kernel_size_t res; unsigned long __dummy, _d, _s; __asm__ __volatile__( "9:\n" "mov.b @%2+, %1\n\t" "cmp/eq #0, %1\n\t" "bt/s 2f\n" "1:\n" "mov.b %1, @%3\n\t" "dt %7\n\t" "bf/s 9b\n\t" " add #1, %3\n\t" "2:\n\t" "sub %7, %0\n" "3:\n" ".section .fixup,\"ax\"\n" "4:\n\t" "mov.l 5f, %1\n\t" "jmp @%1\n\t" " mov %8, %0\n\t" ".balign 4\n" "5: .long 3b\n" ".previous\n" ".section __ex_table,\"a\"\n" " .balign 4\n" " .long 9b,4b\n" ".previous" : "=r" (res), "=&z" (__dummy), "=r" (_s), "=r" (_d) : "0" (__count), "2" (__src), "3" (__dest), "r" (__count), "i" (-EFAULT) : "memory", "t"); return res; } #define strncpy_from_user(dest,src,count) ({ \ unsigned long __sfu_src = (unsigned long) (src); \ int __sfu_count = (int) (count); \ long __sfu_res = -EFAULT; \ if(__access_ok(__sfu_src, __sfu_count)) { \ __sfu_res = __strncpy_from_user((unsigned long) (dest), __sfu_src, __sfu_count); \ } __sfu_res; }) /* * Return the size of a string (including the ending 0!) */ static __inline__ long __strnlen_user(const char __user *__s, long __n) { unsigned long res; unsigned long __dummy; __asm__ __volatile__( "9:\n" "cmp/eq %4, %0\n\t" "bt 2f\n" "1:\t" "mov.b @(%0,%3), %1\n\t" "tst %1, %1\n\t" "bf/s 9b\n\t" " add #1, %0\n" "2:\n" ".section .fixup,\"ax\"\n" "3:\n\t" "mov.l 4f, %1\n\t" "jmp @%1\n\t" " mov %5, %0\n" ".balign 4\n" "4: .long 2b\n" ".previous\n" ".section __ex_table,\"a\"\n" " .balign 4\n" " .long 1b,3b\n" ".previous" : "=z" (res), "=&r" (__dummy) : "0" (0), "r" (__s), "r" (__n), "i" (-EFAULT) : "t"); return res; } static __inline__ long strnlen_user(const char __user *s, long n) { if (!access_ok(VERIFY_READ, s, n)) return 0; else return __strnlen_user(s, n); } static __inline__ long strlen_user(const char __user *s) { if (!access_ok(VERIFY_READ, s, 0)) return 0; else return __strnlen_user(s, ~0UL >> 1); } /* * The exception table consists of pairs of addresses: the first is the * address of an instruction that is allowed to fault, and the second is * the address at which the program should continue. No registers are * modified, so it is entirely up to the continuation code to figure out * what to do. * * All the routines below use bits of fixup code that are out of line * with the main instruction path. This means when everything is well, * we don't even have to jump over them. Further, they do not intrude * on our cache or tlb entries. */ struct exception_table_entry { unsigned long insn, fixup; }; extern int fixup_exception(struct pt_regs *regs); #endif /* __ASM_SH_UACCESS_H */