/* * linux/drivers/ide/ide-tape.c Version 1.19 Nov, 2003 * * Copyright (C) 1995 - 1999 Gadi Oxman * * $Header$ * * This driver was constructed as a student project in the software laboratory * of the faculty of electrical engineering in the Technion - Israel's * Institute Of Technology, with the guide of Avner Lottem and Dr. Ilana David. * * It is hereby placed under the terms of the GNU general public license. * (See linux/COPYING). */ /* * IDE ATAPI streaming tape driver. * * This driver is a part of the Linux ide driver and works in co-operation * with linux/drivers/block/ide.c. * * The driver, in co-operation with ide.c, basically traverses the * request-list for the block device interface. The character device * interface, on the other hand, creates new requests, adds them * to the request-list of the block device, and waits for their completion. * * Pipelined operation mode is now supported on both reads and writes. * * The block device major and minor numbers are determined from the * tape's relative position in the ide interfaces, as explained in ide.c. * * The character device interface consists of the following devices: * * ht0 major 37, minor 0 first IDE tape, rewind on close. * ht1 major 37, minor 1 second IDE tape, rewind on close. * ... * nht0 major 37, minor 128 first IDE tape, no rewind on close. * nht1 major 37, minor 129 second IDE tape, no rewind on close. * ... * * Run linux/scripts/MAKEDEV.ide to create the above entries. * * The general magnetic tape commands compatible interface, as defined by * include/linux/mtio.h, is accessible through the character device. * * General ide driver configuration options, such as the interrupt-unmask * flag, can be configured by issuing an ioctl to the block device interface, * as any other ide device. * * Our own ide-tape ioctl's can be issued to either the block device or * the character device interface. * * Maximal throughput with minimal bus load will usually be achieved in the * following scenario: * * 1. ide-tape is operating in the pipelined operation mode. * 2. No buffering is performed by the user backup program. * * Testing was done with a 2 GB CONNER CTMA 4000 IDE ATAPI Streaming Tape Drive. * * Ver 0.1 Nov 1 95 Pre-working code :-) * Ver 0.2 Nov 23 95 A short backup (few megabytes) and restore procedure * was successful ! (Using tar cvf ... on the block * device interface). * A longer backup resulted in major swapping, bad * overall Linux performance and eventually failed as * we received non serial read-ahead requests from the * buffer cache. * Ver 0.3 Nov 28 95 Long backups are now possible, thanks to the * character device interface. Linux's responsiveness * and performance doesn't seem to be much affected * from the background backup procedure. * Some general mtio.h magnetic tape operations are * now supported by our character device. As a result, * popular tape utilities are starting to work with * ide tapes :-) * The following configurations were tested: * 1. An IDE ATAPI TAPE shares the same interface * and irq with an IDE ATAPI CDROM. * 2. An IDE ATAPI TAPE shares the same interface * and irq with a normal IDE disk. * Both configurations seemed to work just fine ! * However, to be on the safe side, it is meanwhile * recommended to give the IDE TAPE its own interface * and irq. * The one thing which needs to be done here is to * add a "request postpone" feature to ide.c, * so that we won't have to wait for the tape to finish * performing a long media access (DSC) request (such * as a rewind) before we can access the other device * on the same interface. This effect doesn't disturb * normal operation most of the time because read/write * requests are relatively fast, and once we are * performing one tape r/w request, a lot of requests * from the other device can be queued and ide.c will * service all of them after this single tape request. * Ver 1.0 Dec 11 95 Integrated into Linux 1.3.46 development tree. * On each read / write request, we now ask the drive * if we can transfer a constant number of bytes * (a parameter of the drive) only to its buffers, * without causing actual media access. If we can't, * we just wait until we can by polling the DSC bit. * This ensures that while we are not transferring * more bytes than the constant referred to above, the * interrupt latency will not become too high and * we won't cause an interrupt timeout, as happened * occasionally in the previous version. * While polling for DSC, the current request is * postponed and ide.c is free to handle requests from * the other device. This is handled transparently to * ide.c. The hwgroup locking method which was used * in the previous version was removed. * Use of new general features which are provided by * ide.c for use with atapi devices. * (Programming done by Mark Lord) * Few potential bug fixes (Again, suggested by Mark) * Single character device data transfers are now * not limited in size, as they were before. * We are asking the tape about its recommended * transfer unit and send a larger data transfer * as several transfers of the above size. * For best results, use an integral number of this * basic unit (which is shown during driver * initialization). I will soon add an ioctl to get * this important parameter. * Our data transfer buffer is allocated on startup, * rather than before each data transfer. This should * ensure that we will indeed have a data buffer. * Ver 1.1 Dec 14 95 Fixed random problems which occurred when the tape * shared an interface with another device. * (poll_for_dsc was a complete mess). * Removed some old (non-active) code which had * to do with supporting buffer cache originated * requests. * The block device interface can now be opened, so * that general ide driver features like the unmask * interrupts flag can be selected with an ioctl. * This is the only use of the block device interface. * New fast pipelined operation mode (currently only on * writes). When using the pipelined mode, the * throughput can potentially reach the maximum * tape supported throughput, regardless of the * user backup program. On my tape drive, it sometimes * boosted performance by a factor of 2. Pipelined * mode is enabled by default, but since it has a few * downfalls as well, you may want to disable it. * A short explanation of the pipelined operation mode * is available below. * Ver 1.2 Jan 1 96 Eliminated pipelined mode race condition. * Added pipeline read mode. As a result, restores * are now as fast as backups. * Optimized shared interface behavior. The new behavior * typically results in better IDE bus efficiency and * higher tape throughput. * Pre-calculation of the expected read/write request * service time, based on the tape's parameters. In * the pipelined operation mode, this allows us to * adjust our polling frequency to a much lower value, * and thus to dramatically reduce our load on Linux, * without any decrease in performance. * Implemented additional mtio.h operations. * The recommended user block size is returned by * the MTIOCGET ioctl. * Additional minor changes. * Ver 1.3 Feb 9 96 Fixed pipelined read mode bug which prevented the * use of some block sizes during a restore procedure. * The character device interface will now present a * continuous view of the media - any mix of block sizes * during a backup/restore procedure is supported. The * driver will buffer the requests internally and * convert them to the tape's recommended transfer * unit, making performance almost independent of the * chosen user block size. * Some improvements in error recovery. * By cooperating with ide-dma.c, bus mastering DMA can * now sometimes be used with IDE tape drives as well. * Bus mastering DMA has the potential to dramatically * reduce the CPU's overhead when accessing the device, * and can be enabled by using hdparm -d1 on the tape's * block device interface. For more info, read the * comments in ide-dma.c. * Ver 1.4 Mar 13 96 Fixed serialize support. * Ver 1.5 Apr 12 96 Fixed shared interface operation, broken in 1.3.85. * Fixed pipelined read mode inefficiency. * Fixed nasty null dereferencing bug. * Ver 1.6 Aug 16 96 Fixed FPU usage in the driver. * Fixed end of media bug. * Ver 1.7 Sep 10 96 Minor changes for the CONNER CTT8000-A model. * Ver 1.8 Sep 26 96 Attempt to find a better balance between good * interactive response and high system throughput. * Ver 1.9 Nov 5 96 Automatically cross encountered filemarks rather * than requiring an explicit FSF command. * Abort pending requests at end of media. * MTTELL was sometimes returning incorrect results. * Return the real block size in the MTIOCGET ioctl. * Some error recovery bug fixes. * Ver 1.10 Nov 5 96 Major reorganization. * Reduced CPU overhead a bit by eliminating internal * bounce buffers. * Added module support. * Added multiple tape drives support. * Added partition support. * Rewrote DSC handling. * Some portability fixes. * Removed ide-tape.h. * Additional minor changes. * Ver 1.11 Dec 2 96 Bug fix in previous DSC timeout handling. * Use ide_stall_queue() for DSC overlap. * Use the maximum speed rather than the current speed * to compute the request service time. * Ver 1.12 Dec 7 97 Fix random memory overwriting and/or last block data * corruption, which could occur if the total number * of bytes written to the tape was not an integral * number of tape blocks. * Add support for INTERRUPT DRQ devices. * Ver 1.13 Jan 2 98 Add "speed == 0" work-around for HP COLORADO 5GB * Ver 1.14 Dec 30 98 Partial fixes for the Sony/AIWA tape drives. * Replace cli()/sti() with hwgroup spinlocks. * Ver 1.15 Mar 25 99 Fix SMP race condition by replacing hwgroup * spinlock with private per-tape spinlock. * Ver 1.16 Sep 1 99 Add OnStream tape support. * Abort read pipeline on EOD. * Wait for the tape to become ready in case it returns * "in the process of becoming ready" on open(). * Fix zero padding of the last written block in * case the tape block size is larger than PAGE_SIZE. * Decrease the default disconnection time to tn. * Ver 1.16e Oct 3 99 Minor fixes. * Ver 1.16e1 Oct 13 99 Patches by Arnold Niessen, * niessen@iae.nl / arnold.niessen@philips.com * GO-1) Undefined code in idetape_read_position * according to Gadi's email * AJN-1) Minor fix asc == 11 should be asc == 0x11 * in idetape_issue_packet_command (did effect * debugging output only) * AJN-2) Added more debugging output, and * added ide-tape: where missing. I would also * like to add tape->name where possible * AJN-3) Added different debug_level's * via /proc/ide/hdc/settings * "debug_level" determines amount of debugging output; * can be changed using /proc/ide/hdx/settings * 0 : almost no debugging output * 1 : 0+output errors only * 2 : 1+output all sensekey/asc * 3 : 2+follow all chrdev related procedures * 4 : 3+follow all procedures * 5 : 4+include pc_stack rq_stack info * 6 : 5+USE_COUNT updates * AJN-4) Fixed timeout for retension in idetape_queue_pc_tail * from 5 to 10 minutes * AJN-5) Changed maximum number of blocks to skip when * reading tapes with multiple consecutive write * errors from 100 to 1000 in idetape_get_logical_blk * Proposed changes to code: * 1) output "logical_blk_num" via /proc * 2) output "current_operation" via /proc * 3) Either solve or document the fact that `mt rewind' is * required after reading from /dev/nhtx to be * able to rmmod the idetape module; * Also, sometimes an application finishes but the * device remains `busy' for some time. Same cause ? * Proposed changes to release-notes: * 4) write a simple `quickstart' section in the * release notes; I volunteer if you don't want to * 5) include a pointer to video4linux in the doc * to stimulate video applications * 6) release notes lines 331 and 362: explain what happens * if the application data rate is higher than 1100 KB/s; * similar approach to lower-than-500 kB/s ? * 7) 6.6 Comparison; wouldn't it be better to allow different * strategies for read and write ? * Wouldn't it be better to control the tape buffer * contents instead of the bandwidth ? * 8) line 536: replace will by would (if I understand * this section correctly, a hypothetical and unwanted situation * is being described) * Ver 1.16f Dec 15 99 Change place of the secondary OnStream header frames. * Ver 1.17 Nov 2000 / Jan 2001 Marcel Mol, marcel@mesa.nl * - Add idetape_onstream_mode_sense_tape_parameter_page * function to get tape capacity in frames: tape->capacity. * - Add support for DI-50 drives( or any DI- drive). * - 'workaround' for read error/blank block around block 3000. * - Implement Early warning for end of media for Onstream. * - Cosmetic code changes for readability. * - Idetape_position_tape should not use SKIP bit during * Onstream read recovery. * - Add capacity, logical_blk_num and first/last_frame_position * to /proc/ide/hd?/settings. * - Module use count was gone in the Linux 2.4 driver. * Ver 1.17a Apr 2001 Willem Riede osst@riede.org * - Get drive's actual block size from mode sense block descriptor * - Limit size of pipeline * Ver 1.17b Oct 2002 Alan Stern * Changed IDETAPE_MIN_PIPELINE_STAGES to 1 and actually used * it in the code! * Actually removed aborted stages in idetape_abort_pipeline * instead of just changing the command code. * Made the transfer byte count for Request Sense equal to the * actual length of the data transfer. * Changed handling of partial data transfers: they do not * cause DMA errors. * Moved initiation of DMA transfers to the correct place. * Removed reference to unallocated memory. * Made __idetape_discard_read_pipeline return the number of * sectors skipped, not the number of stages. * Replaced errant kfree() calls with __idetape_kfree_stage(). * Fixed off-by-one error in testing the pipeline length. * Fixed handling of filemarks in the read pipeline. * Small code optimization for MTBSF and MTBSFM ioctls. * Don't try to unlock the door during device close if is * already unlocked! * Cosmetic fixes to miscellaneous debugging output messages. * Set the minimum /proc/ide/hd?/settings values for "pipeline", * "pipeline_min", and "pipeline_max" to 1. * * Here are some words from the first releases of hd.c, which are quoted * in ide.c and apply here as well: * * | Special care is recommended. Have Fun! * */ /* * An overview of the pipelined operation mode. * * In the pipelined write mode, we will usually just add requests to our * pipeline and return immediately, before we even start to service them. The * user program will then have enough time to prepare the next request while * we are still busy servicing previous requests. In the pipelined read mode, * the situation is similar - we add read-ahead requests into the pipeline, * before the user even requested them. * * The pipeline can be viewed as a "safety net" which will be activated when * the system load is high and prevents the user backup program from keeping up * with the current tape speed. At this point, the pipeline will get * shorter and shorter but the tape will still be streaming at the same speed. * Assuming we have enough pipeline stages, the system load will hopefully * decrease before the pipeline is completely empty, and the backup program * will be able to "catch up" and refill the pipeline again. * * When using the pipelined mode, it would be best to disable any type of * buffering done by the user program, as ide-tape already provides all the * benefits in the kernel, where it can be done in a more efficient way. * As we will usually not block the user program on a request, the most * efficient user code will then be a simple read-write-read-... cycle. * Any additional logic will usually just slow down the backup process. * * Using the pipelined mode, I get a constant over 400 KBps throughput, * which seems to be the maximum throughput supported by my tape. * * However, there are some downfalls: * * 1. We use memory (for data buffers) in proportional to the number * of pipeline stages (each stage is about 26 KB with my tape). * 2. In the pipelined write mode, we cheat and postpone error codes * to the user task. In read mode, the actual tape position * will be a bit further than the last requested block. * * Concerning (1): * * 1. We allocate stages dynamically only when we need them. When * we don't need them, we don't consume additional memory. In * case we can't allocate stages, we just manage without them * (at the expense of decreased throughput) so when Linux is * tight in memory, we will not pose additional difficulties. * * 2. The maximum number of stages (which is, in fact, the maximum * amount of memory) which we allocate is limited by the compile * time parameter IDETAPE_MAX_PIPELINE_STAGES. * * 3. The maximum number of stages is a controlled parameter - We * don't start from the user defined maximum number of stages * but from the lower IDETAPE_MIN_PIPELINE_STAGES (again, we * will not even allocate this amount of stages if the user * program can't handle the speed). We then implement a feedback * loop which checks if the pipeline is empty, and if it is, we * increase the maximum number of stages as necessary until we * reach the optimum value which just manages to keep the tape * busy with minimum allocated memory or until we reach * IDETAPE_MAX_PIPELINE_STAGES. * * Concerning (2): * * In pipelined write mode, ide-tape can not return accurate error codes * to the user program since we usually just add the request to the * pipeline without waiting for it to be serviced. In case an error * occurs, I will report it on the next user request. * * In the pipelined read mode, subsequent read requests or forward * filemark spacing will perform correctly, as we preserve all blocks * and filemarks which we encountered during our excess read-ahead. * * For accurate tape positioning and error reporting, disabling * pipelined mode might be the best option. * * You can enable/disable/tune the pipelined operation mode by adjusting * the compile time parameters below. */ /* * Possible improvements. * * 1. Support for the ATAPI overlap protocol. * * In order to maximize bus throughput, we currently use the DSC * overlap method which enables ide.c to service requests from the * other device while the tape is busy executing a command. The * DSC overlap method involves polling the tape's status register * for the DSC bit, and servicing the other device while the tape * isn't ready. * * In the current QIC development standard (December 1995), * it is recommended that new tape drives will *in addition* * implement the ATAPI overlap protocol, which is used for the * same purpose - efficient use of the IDE bus, but is interrupt * driven and thus has much less CPU overhead. * * ATAPI overlap is likely to be supported in most new ATAPI * devices, including new ATAPI cdroms, and thus provides us * a method by which we can achieve higher throughput when * sharing a (fast) ATA-2 disk with any (slow) new ATAPI device. */ #define IDETAPE_VERSION "1.19" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * partition */ typedef struct os_partition_s { __u8 partition_num; __u8 par_desc_ver; __u16 wrt_pass_cntr; __u32 first_frame_addr; __u32 last_frame_addr; __u32 eod_frame_addr; } os_partition_t; /* * DAT entry */ typedef struct os_dat_entry_s { __u32 blk_sz; __u16 blk_cnt; __u8 flags; __u8 reserved; } os_dat_entry_t; /* * DAT */ #define OS_DAT_FLAGS_DATA (0xc) #define OS_DAT_FLAGS_MARK (0x1) typedef struct os_dat_s { __u8 dat_sz; __u8 reserved1; __u8 entry_cnt; __u8 reserved3; os_dat_entry_t dat_list[16]; } os_dat_t; #include /**************************** Tunable parameters *****************************/ /* * Pipelined mode parameters. * * We try to use the minimum number of stages which is enough to * keep the tape constantly streaming. To accomplish that, we implement * a feedback loop around the maximum number of stages: * * We start from MIN maximum stages (we will not even use MIN stages * if we don't need them), increment it by RATE*(MAX-MIN) * whenever we sense that the pipeline is empty, until we reach * the optimum value or until we reach MAX. * * Setting the following parameter to 0 is illegal: the pipelined mode * cannot be disabled (calculate_speeds() divides by tape->max_stages.) */ #define IDETAPE_MIN_PIPELINE_STAGES 1 #define IDETAPE_MAX_PIPELINE_STAGES 400 #define IDETAPE_INCREASE_STAGES_RATE 20 /* * The following are used to debug the driver: * * Setting IDETAPE_DEBUG_INFO to 1 will report device capabilities. * Setting IDETAPE_DEBUG_LOG to 1 will log driver flow control. * Setting IDETAPE_DEBUG_BUGS to 1 will enable self-sanity checks in * some places. * * Setting them to 0 will restore normal operation mode: * * 1. Disable logging normal successful operations. * 2. Disable self-sanity checks. * 3. Errors will still be logged, of course. * * All the #if DEBUG code will be removed some day, when the driver * is verified to be stable enough. This will make it much more * esthetic. */ #define IDETAPE_DEBUG_INFO 0 #define IDETAPE_DEBUG_LOG 0 #define IDETAPE_DEBUG_BUGS 1 /* * After each failed packet command we issue a request sense command * and retry the packet command IDETAPE_MAX_PC_RETRIES times. * * Setting IDETAPE_MAX_PC_RETRIES to 0 will disable retries. */ #define IDETAPE_MAX_PC_RETRIES 3 /* * With each packet command, we allocate a buffer of * IDETAPE_PC_BUFFER_SIZE bytes. This is used for several packet * commands (Not for READ/WRITE commands). */ #define IDETAPE_PC_BUFFER_SIZE 256 /* * In various places in the driver, we need to allocate storage * for packet commands and requests, which will remain valid while * we leave the driver to wait for an interrupt or a timeout event. */ #define IDETAPE_PC_STACK (10 + IDETAPE_MAX_PC_RETRIES) /* * Some drives (for example, Seagate STT3401A Travan) require a very long * timeout, because they don't return an interrupt or clear their busy bit * until after the command completes (even retension commands). */ #define IDETAPE_WAIT_CMD (900*HZ) /* * The following parameter is used to select the point in the internal * tape fifo in which we will start to refill the buffer. Decreasing * the following parameter will improve the system's latency and * interactive response, while using a high value might improve sytem * throughput. */ #define IDETAPE_FIFO_THRESHOLD 2 /* * DSC polling parameters. * * Polling for DSC (a single bit in the status register) is a very * important function in ide-tape. There are two cases in which we * poll for DSC: * * 1. Before a read/write packet command, to ensure that we * can transfer data from/to the tape's data buffers, without * causing an actual media access. In case the tape is not * ready yet, we take out our request from the device * request queue, so that ide.c will service requests from * the other device on the same interface meanwhile. * * 2. After the successful initialization of a "media access * packet command", which is a command which can take a long * time to complete (it can be several seconds or even an hour). * * Again, we postpone our request in the middle to free the bus * for the other device. The polling frequency here should be * lower than the read/write frequency since those media access * commands are slow. We start from a "fast" frequency - * IDETAPE_DSC_MA_FAST (one second), and if we don't receive DSC * after IDETAPE_DSC_MA_THRESHOLD (5 minutes), we switch it to a * lower frequency - IDETAPE_DSC_MA_SLOW (1 minute). * * We also set a timeout for the timer, in case something goes wrong. * The timeout should be longer then the maximum execution time of a * tape operation. */ /* * DSC timings. */ #define IDETAPE_DSC_RW_MIN 5*HZ/100 /* 50 msec */ #define IDETAPE_DSC_RW_MAX 40*HZ/100 /* 400 msec */ #define IDETAPE_DSC_RW_TIMEOUT 2*60*HZ /* 2 minutes */ #define IDETAPE_DSC_MA_FAST 2*HZ /* 2 seconds */ #define IDETAPE_DSC_MA_THRESHOLD 5*60*HZ /* 5 minutes */ #define IDETAPE_DSC_MA_SLOW 30*HZ /* 30 seconds */ #define IDETAPE_DSC_MA_TIMEOUT 2*60*60*HZ /* 2 hours */ /*************************** End of tunable parameters ***********************/ /* * Debugging/Performance analysis * * I/O trace support */ #define USE_IOTRACE 0 #if USE_IOTRACE #include #define IO_IDETAPE_FIFO 500 #endif /* * Read/Write error simulation */ #define SIMULATE_ERRORS 0 /* * For general magnetic tape device compatibility. */ typedef enum { idetape_direction_none, idetape_direction_read, idetape_direction_write } idetape_chrdev_direction_t; struct idetape_bh { unsigned short b_size; atomic_t b_count; struct idetape_bh *b_reqnext; char *b_data; }; /* * Our view of a packet command. */ typedef struct idetape_packet_command_s { u8 c[12]; /* Actual packet bytes */ int retries; /* On each retry, we increment retries */ int error; /* Error code */ int request_transfer; /* Bytes to transfer */ int actually_transferred; /* Bytes actually transferred */ int buffer_size; /* Size of our data buffer */ struct idetape_bh *bh; char *b_data; int b_count; u8 *buffer; /* Data buffer */ u8 *current_position; /* Pointer into the above buffer */ ide_startstop_t (*callback) (ide_drive_t *); /* Called when this packet command is completed */ u8 pc_buffer[IDETAPE_PC_BUFFER_SIZE]; /* Temporary buffer */ unsigned long flags; /* Status/Action bit flags: long for set_bit */ } idetape_pc_t; /* * Packet command flag bits. */ /* Set when an error is considered normal - We won't retry */ #define PC_ABORT 0 /* 1 When polling for DSC on a media access command */ #define PC_WAIT_FOR_DSC 1 /* 1 when we prefer to use DMA if possible */ #define PC_DMA_RECOMMENDED 2 /* 1 while DMA in progress */ #define PC_DMA_IN_PROGRESS 3 /* 1 when encountered problem during DMA */ #define PC_DMA_ERROR 4 /* Data direction */ #define PC_WRITING 5 /* * Capabilities and Mechanical Status Page */ typedef struct { unsigned page_code :6; /* Page code - Should be 0x2a */ __u8 reserved0_6 :1; __u8 ps :1; /* parameters saveable */ __u8 page_length; /* Page Length - Should be 0x12 */ __u8 reserved2, reserved3; unsigned ro :1; /* Read Only Mode */ unsigned reserved4_1234 :4; unsigned sprev :1; /* Supports SPACE in the reverse direction */ unsigned reserved4_67 :2; unsigned reserved5_012 :3; unsigned efmt :1; /* Supports ERASE command initiated formatting */ unsigned reserved5_4 :1; unsigned qfa :1; /* Supports the QFA two partition formats */ unsigned reserved5_67 :2; unsigned lock :1; /* Supports locking the volume */ unsigned locked :1; /* The volume is locked */ unsigned prevent :1; /* The device defaults in the prevent state after power up */ unsigned eject :1; /* The device can eject the volume */ __u8 disconnect :1; /* The device can break request > ctl */ __u8 reserved6_5 :1; unsigned ecc :1; /* Supports error correction */ unsigned cmprs :1; /* Supports data compression */ unsigned reserved7_0 :1; unsigned blk512 :1; /* Supports 512 bytes block size */ unsigned blk1024 :1; /* Supports 1024 bytes block size */ unsigned reserved7_3_6 :4; unsigned blk32768 :1; /* slowb - the device restricts the byte count for PIO */ /* transfers for slow buffer memory ??? */ /* Also 32768 block size in some cases */ __u16 max_speed; /* Maximum speed supported in KBps */ __u8 reserved10, reserved11; __u16 ctl; /* Continuous Transfer Limit in blocks */ __u16 speed; /* Current Speed, in KBps */ __u16 buffer_size; /* Buffer Size, in 512 bytes */ __u8 reserved18, reserved19; } idetape_capabilities_page_t; /* * Block Size Page */ typedef struct { unsigned page_code :6; /* Page code - Should be 0x30 */ unsigned reserved1_6 :1; unsigned ps :1; __u8 page_length; /* Page Length - Should be 2 */ __u8 reserved2; unsigned play32 :1; unsigned play32_5 :1; unsigned reserved2_23 :2; unsigned record32 :1; unsigned record32_5 :1; unsigned reserved2_6 :1; unsigned one :1; } idetape_block_size_page_t; /* * A pipeline stage. */ typedef struct idetape_stage_s { struct request rq; /* The corresponding request */ struct idetape_bh *bh; /* The data buffers */ struct idetape_stage_s *next; /* Pointer to the next stage */ } idetape_stage_t; /* * REQUEST SENSE packet command result - Data Format. */ typedef struct { unsigned error_code :7; /* Current of deferred errors */ unsigned valid :1; /* The information field conforms to QIC-157C */ __u8 reserved1 :8; /* Segment Number - Reserved */ unsigned sense_key :4; /* Sense Key */ unsigned reserved2_4 :1; /* Reserved */ unsigned ili :1; /* Incorrect Length Indicator */ unsigned eom :1; /* End Of Medium */ unsigned filemark :1; /* Filemark */ __u32 information __attribute__ ((packed)); __u8 asl; /* Additional sense length (n-7) */ __u32 command_specific; /* Additional command specific information */ __u8 asc; /* Additional Sense Code */ __u8 ascq; /* Additional Sense Code Qualifier */ __u8 replaceable_unit_code; /* Field Replaceable Unit Code */ unsigned sk_specific1 :7; /* Sense Key Specific */ unsigned sksv :1; /* Sense Key Specific information is valid */ __u8 sk_specific2; /* Sense Key Specific */ __u8 sk_specific3; /* Sense Key Specific */ __u8 pad[2]; /* Padding to 20 bytes */ } idetape_request_sense_result_t; /* * Most of our global data which we need to save even as we leave the * driver due to an interrupt or a timer event is stored in a variable * of type idetape_tape_t, defined below. */ typedef struct ide_tape_obj { ide_drive_t *drive; ide_driver_t *driver; struct gendisk *disk; struct kref kref; /* * Since a typical character device operation requires more * than one packet command, we provide here enough memory * for the maximum of interconnected packet commands. * The packet commands are stored in the circular array pc_stack. * pc_stack_index points to the last used entry, and warps around * to the start when we get to the last array entry. * * pc points to the current processed packet command. * * failed_pc points to the last failed packet command, or contains * NULL if we do not need to retry any packet command. This is * required since an additional packet command is needed before the * retry, to get detailed information on what went wrong. */ /* Current packet command */ idetape_pc_t *pc; /* Last failed packet command */ idetape_pc_t *failed_pc; /* Packet command stack */ idetape_pc_t pc_stack[IDETAPE_PC_STACK]; /* Next free packet command storage space */ int pc_stack_index; struct request rq_stack[IDETAPE_PC_STACK]; /* We implement a circular array */ int rq_stack_index; /* * DSC polling variables. * * While polling for DSC we use postponed_rq to postpone the * current request so that ide.c will be able to service * pending requests on the other device. Note that at most * we will have only one DSC (usually data transfer) request * in the device request queue. Additional requests can be * queued in our internal pipeline, but they will be visible * to ide.c only one at a time. */ struct request *postponed_rq; /* The time in which we started polling for DSC */ unsigned long dsc_polling_start; /* Timer used to poll for dsc */ struct timer_list dsc_timer; /* Read/Write dsc polling frequency */ unsigned long best_dsc_rw_frequency; /* The current polling frequency */ unsigned long dsc_polling_frequency; /* Maximum waiting time */ unsigned long dsc_timeout; /* * Read position information */ u8 partition; /* Current block */ unsigned int first_frame_position; unsigned int last_frame_position; unsigned int blocks_in_buffer; /* * Last error information */ u8 sense_key, asc, ascq; /* * Character device operation */ unsigned int minor; /* device name */ char name[4]; /* Current character device data transfer direction */ idetape_chrdev_direction_t chrdev_direction; /* * Device information */ /* Usually 512 or 1024 bytes */ unsigned short tape_block_size; int user_bs_factor; /* Copy of the tape's Capabilities and Mechanical Page */ idetape_capabilities_page_t capabilities; /* * Active data transfer request parameters. * * At most, there is only one ide-tape originated data transfer * request in the device request queue. This allows ide.c to * easily service requests from the other device when we * postpone our active request. In the pipelined operation * mode, we use our internal pipeline structure to hold * more data requests. * * The data buffer size is chosen based on the tape's * recommendation. */ /* Pointer to the request which is waiting in the device request queue */ struct request *active_data_request; /* Data buffer size (chosen based on the tape's recommendation */ int stage_size; idetape_stage_t *merge_stage; int merge_stage_size; struct idetape_bh *bh; char *b_data; int b_count; /* * Pipeline parameters. * * To accomplish non-pipelined mode, we simply set the following * variables to zero (or NULL, where appropriate). */ /* Number of currently used stages */ int nr_stages; /* Number of pending stages */ int nr_pending_stages; /* We will not allocate more than this number of stages */ int max_stages, min_pipeline, max_pipeline; /* The first stage which will be removed from the pipeline */ idetape_stage_t *first_stage; /* The currently active stage */ idetape_stage_t *active_stage; /* Will be serviced after the currently active request */ idetape_stage_t *next_stage; /* New requests will be added to the pipeline here */ idetape_stage_t *last_stage; /* Optional free stage which we can use */ idetape_stage_t *cache_stage; int pages_per_stage; /* Wasted space in each stage */ int excess_bh_size; /* Status/Action flags: long for set_bit */ unsigned long flags; /* protects the ide-tape queue */ spinlock_t spinlock; /* * Measures average tape speed */ unsigned long avg_time; int avg_size; int avg_speed; /* last sense information */ idetape_request_sense_result_t sense; char vendor_id[10]; char product_id[18]; char firmware_revision[6]; int firmware_revision_num; /* the door is currently locked */ int door_locked; /* the tape hardware is write protected */ char drv_write_prot; /* the tape is write protected (hardware or opened as read-only) */ char write_prot; /* * Limit the number of times a request can * be postponed, to avoid an infinite postpone * deadlock. */ /* request postpone count limit */ int postpone_cnt; /* * Measures number of frames: * * 1. written/read to/from the driver pipeline (pipeline_head). * 2. written/read to/from the tape buffers (idetape_bh). * 3. written/read by the tape to/from the media (tape_head). */ int pipeline_head; int buffer_head; int tape_head; int last_tape_head; /* * Speed control at the tape buffers input/output */ unsigned long insert_time; int insert_size; int insert_speed; int max_insert_speed; int measure_insert_time; /* * Measure tape still time, in milliseconds */ unsigned long tape_still_time_begin; int tape_still_time; /* * Speed regulation negative feedback loop */ int speed_control; int pipeline_head_speed; int controlled_pipeline_head_speed; int uncontrolled_pipeline_head_speed; int controlled_last_pipeline_head; int uncontrolled_last_pipeline_head; unsigned long uncontrolled_pipeline_head_time; unsigned long controlled_pipeline_head_time; int controlled_previous_pipeline_head; int uncontrolled_previous_pipeline_head; unsigned long controlled_previous_head_time; unsigned long uncontrolled_previous_head_time; int restart_speed_control_req; /* * Debug_level determines amount of debugging output; * can be changed using /proc/ide/hdx/settings * 0 : almost no debugging output * 1 : 0+output errors only * 2 : 1+output all sensekey/asc * 3 : 2+follow all chrdev related procedures * 4 : 3+follow all procedures * 5 : 4+include pc_stack rq_stack info * 6 : 5+USE_COUNT updates */ int debug_level; } idetape_tape_t; static DECLARE_MUTEX(idetape_ref_sem); static struct class *idetape_sysfs_class; #define to_ide_tape(obj) container_of(obj, struct ide_tape_obj, kref) #define ide_tape_g(disk) \ container_of((disk)->private_data, struct ide_tape_obj, driver) static struct ide_tape_obj *ide_tape_get(struct gendisk *disk) { struct ide_tape_obj *tape = NULL; down(&idetape_ref_sem); tape = ide_tape_g(disk); if (tape) kref_get(&tape->kref); up(&idetape_ref_sem); return tape; } static void ide_tape_release(struct kref *); static void ide_tape_put(struct ide_tape_obj *tape) { down(&idetape_ref_sem); kref_put(&tape->kref, ide_tape_release); up(&idetape_ref_sem); } /* * Tape door status */ #define DOOR_UNLOCKED 0 #define DOOR_LOCKED 1 #define DOOR_EXPLICITLY_LOCKED 2 /* * Tape flag bits values. */ #define IDETAPE_IGNORE_DSC 0 #define IDETAPE_ADDRESS_VALID 1 /* 0 When the tape position is unknown */ #define IDETAPE_BUSY 2 /* Device already opened */ #define IDETAPE_PIPELINE_ERROR 3 /* Error detected in a pipeline stage */ #define IDETAPE_DETECT_BS 4 /* Attempt to auto-detect the current user block size */ #define IDETAPE_FILEMARK 5 /* Currently on a filemark */ #define IDETAPE_DRQ_INTERRUPT 6 /* DRQ interrupt device */ #define IDETAPE_READ_ERROR 7 #define IDETAPE_PIPELINE_ACTIVE 8 /* pipeline active */ /* 0 = no tape is loaded, so we don't rewind after ejecting */ #define IDETAPE_MEDIUM_PRESENT 9 /* * Supported ATAPI tape drives packet commands */ #define IDETAPE_TEST_UNIT_READY_CMD 0x00 #define IDETAPE_REWIND_CMD 0x01 #define IDETAPE_REQUEST_SENSE_CMD 0x03 #define IDETAPE_READ_CMD 0x08 #define IDETAPE_WRITE_CMD 0x0a #define IDETAPE_WRITE_FILEMARK_CMD 0x10 #define IDETAPE_SPACE_CMD 0x11 #define IDETAPE_INQUIRY_CMD 0x12 #define IDETAPE_ERASE_CMD 0x19 #define IDETAPE_MODE_SENSE_CMD 0x1a #define IDETAPE_MODE_SELECT_CMD 0x15 #define IDETAPE_LOAD_UNLOAD_CMD 0x1b #define IDETAPE_PREVENT_CMD 0x1e #define IDETAPE_LOCATE_CMD 0x2b #define IDETAPE_READ_POSITION_CMD 0x34 #define IDETAPE_READ_BUFFER_CMD 0x3c #define IDETAPE_SET_SPEED_CMD 0xbb /* * Some defines for the READ BUFFER command */ #define IDETAPE_RETRIEVE_FAULTY_BLOCK 6 /* * Some defines for the SPACE command */ #define IDETAPE_SPACE_OVER_FILEMARK 1 #define IDETAPE_SPACE_TO_EOD 3 /* * Some defines for the LOAD UNLOAD command */ #define IDETAPE_LU_LOAD_MASK 1 #define IDETAPE_LU_RETENSION_MASK 2 #define IDETAPE_LU_EOT_MASK 4 /* * Special requests for our block device strategy routine. * * In order to service a character device command, we add special * requests to the tail of our block device request queue and wait * for their completion. */ enum { REQ_IDETAPE_PC1 = (1 << 0), /* packet command (first stage) */ REQ_IDETAPE_PC2 = (1 << 1), /* packet command (second stage) */ REQ_IDETAPE_READ = (1 << 2), REQ_IDETAPE_WRITE = (1 << 3), REQ_IDETAPE_READ_BUFFER = (1 << 4), }; /* * Error codes which are returned in rq->errors to the higher part * of the driver. */ #define IDETAPE_ERROR_GENERAL 101 #define IDETAPE_ERROR_FILEMARK 102 #define IDETAPE_ERROR_EOD 103 /* * The following is used to format the general configuration word of * the ATAPI IDENTIFY DEVICE command. */ struct idetape_id_gcw { unsigned packet_size :2; /* Packet Size */ unsigned reserved234 :3; /* Reserved */ unsigned drq_type :2; /* Command packet DRQ type */ unsigned removable :1; /* Removable media */ unsigned device_type :5; /* Device type */ unsigned reserved13 :1; /* Reserved */ unsigned protocol :2; /* Protocol type */ }; /* * INQUIRY packet command - Data Format (From Table 6-8 of QIC-157C) */ typedef struct { unsigned device_type :5; /* Peripheral Device Type */ unsigned reserved0_765 :3; /* Peripheral Qualifier - Reserved */ unsigned reserved1_6t0 :7; /* Reserved */ unsigned rmb :1; /* Removable Medium Bit */ unsigned ansi_version :3; /* ANSI Version */ unsigned ecma_version :3; /* ECMA Version */ unsigned iso_version :2; /* ISO Version */ unsigned response_format :4; /* Response Data Format */ unsigned reserved3_45 :2; /* Reserved */ unsigned reserved3_6 :1; /* TrmIOP - Reserved */ unsigned reserved3_7 :1; /* AENC - Reserved */ __u8 additional_length; /* Additional Length (total_length-4) */ __u8 rsv5, rsv6, rsv7; /* Reserved */ __u8 vendor_id[8]; /* Vendor Identification */ __u8 product_id[16]; /* Product Identification */ __u8 revision_level[4]; /* Revision Level */ __u8 vendor_specific[20]; /* Vendor Specific - Optional */ __u8 reserved56t95[40]; /* Reserved - Optional */ /* Additional information may be returned */ } idetape_inquiry_result_t; /* * READ POSITION packet command - Data Format (From Table 6-57) */ typedef struct { unsigned reserved0_10 :2; /* Reserved */ unsigned bpu :1; /* Block Position Unknown */ unsigned reserved0_543 :3; /* Reserved */ unsigned eop :1; /* End Of Partition */ unsigned bop :1; /* Beginning Of Partition */ u8 partition; /* Partition Number */ u8 reserved2, reserved3; /* Reserved */ u32 first_block; /* First Block Location */ u32 last_block; /* Last Block Location (Optional) */ u8 reserved12; /* Reserved */ u8 blocks_in_buffer[3]; /* Blocks In Buffer - (Optional) */ u32 bytes_in_buffer; /* Bytes In Buffer (Optional) */ } idetape_read_position_result_t; /* * Follows structures which are related to the SELECT SENSE / MODE SENSE * packet commands. Those packet commands are still not supported * by ide-tape. */ #define IDETAPE_BLOCK_DESCRIPTOR 0 #define IDETAPE_CAPABILITIES_PAGE 0x2a #define IDETAPE_PARAMTR_PAGE 0x2b /* Onstream DI-x0 only */ #define IDETAPE_BLOCK_SIZE_PAGE 0x30 #define IDETAPE_BUFFER_FILLING_PAGE 0x33 /* * Mode Parameter Header for the MODE SENSE packet command */ typedef struct { __u8 mode_data_length; /* Length of the following data transfer */ __u8 medium_type; /* Medium Type */ __u8 dsp; /* Device Specific Parameter */ __u8 bdl; /* Block Descriptor Length */ #if 0 /* data transfer page */ __u8 page_code :6; __u8 reserved0_6 :1; __u8 ps :1; /* parameters saveable */ __u8 page_length; /* page Length == 0x02 */ __u8 reserved2; __u8 read32k :1; /* 32k blk size (data only) */ __u8 read32k5 :1; /* 32.5k blk size (data&AUX) */ __u8 reserved3_23 :2; __u8 write32k :1; /* 32k blk size (data only) */ __u8 write32k5 :1; /* 32.5k blk size (data&AUX) */ __u8 reserved3_6 :1; __u8 streaming :1; /* streaming mode enable */ #endif } idetape_mode_parameter_header_t; /* * Mode Parameter Block Descriptor the MODE SENSE packet command * * Support for block descriptors is optional. */ typedef struct { __u8 density_code; /* Medium density code */ __u8 blocks[3]; /* Number of blocks */ __u8 reserved4; /* Reserved */ __u8 length[3]; /* Block Length */ } idetape_parameter_block_descriptor_t; /* * The Data Compression Page, as returned by the MODE SENSE packet command. */ typedef struct { unsigned page_code :6; /* Page Code - Should be 0xf */ unsigned reserved0 :1; /* Reserved */ unsigned ps :1; __u8 page_length; /* Page Length - Should be 14 */ unsigned reserved2 :6; /* Reserved */ unsigned dcc :1; /* Data Compression Capable */ unsigned dce :1; /* Data Compression Enable */ unsigned reserved3 :5; /* Reserved */ unsigned red :2; /* Report Exception on Decompression */ unsigned dde :1; /* Data Decompression Enable */ __u32 ca; /* Compression Algorithm */ __u32 da; /* Decompression Algorithm */ __u8 reserved[4]; /* Reserved */ } idetape_data_compression_page_t; /* * The Medium Partition Page, as returned by the MODE SENSE packet command. */ typedef struct { unsigned page_code :6; /* Page Code - Should be 0x11 */ unsigned reserved1_6 :1; /* Reserved */ unsigned ps :1; __u8 page_length; /* Page Length - Should be 6 */ __u8 map; /* Maximum Additional Partitions - Should be 0 */ __u8 apd; /* Additional Partitions Defined - Should be 0 */ unsigned reserved4_012 :3; /* Reserved */ unsigned psum :2; /* Should be 0 */ unsigned idp :1; /* Should be 0 */ unsigned sdp :1; /* Should be 0 */ unsigned fdp :1; /* Fixed Data Partitions */ __u8 mfr; /* Medium Format Recognition */ __u8 reserved[2]; /* Reserved */ } idetape_medium_partition_page_t; /* * Run time configurable parameters. */ typedef struct { int dsc_rw_frequency; int dsc_media_access_frequency; int nr_stages; } idetape_config_t; /* * The variables below are used for the character device interface. * Additional state variables are defined in our ide_drive_t structure. */ static struct ide_tape_obj * idetape_devs[MAX_HWIFS * MAX_DRIVES]; #define ide_tape_f(file) ((file)->private_data) static struct ide_tape_obj *ide_tape_chrdev_get(unsigned int i) { struct ide_tape_obj *tape = NULL; down(&idetape_ref_sem); tape = idetape_devs[i]; if (tape) kref_get(&tape->kref); up(&idetape_ref_sem); return tape; } /* * Function declarations * */ static int idetape_chrdev_release (struct inode *inode, struct file *filp); static void idetape_write_release (ide_drive_t *drive, unsigned int minor); /* * Too bad. The drive wants to send us data which we are not ready to accept. * Just throw it away. */ static void idetape_discard_data (ide_drive_t *drive, unsigned int bcount) { while (bcount--) (void) HWIF(drive)->INB(IDE_DATA_REG); } static void idetape_input_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount) { struct idetape_bh *bh = pc->bh; int count; while (bcount) { #if IDETAPE_DEBUG_BUGS if (bh == NULL) { printk(KERN_ERR "ide-tape: bh == NULL in " "idetape_input_buffers\n"); idetape_discard_data(drive, bcount); return; } #endif /* IDETAPE_DEBUG_BUGS */ count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), bcount); HWIF(drive)->atapi_input_bytes(drive, bh->b_data + atomic_read(&bh->b_count), count); bcount -= count; atomic_add(count, &bh->b_count); if (atomic_read(&bh->b_count) == bh->b_size) { bh = bh->b_reqnext; if (bh) atomic_set(&bh->b_count, 0); } } pc->bh = bh; } static void idetape_output_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount) { struct idetape_bh *bh = pc->bh; int count; while (bcount) { #if IDETAPE_DEBUG_BUGS if (bh == NULL) { printk(KERN_ERR "ide-tape: bh == NULL in " "idetape_output_buffers\n"); return; } #endif /* IDETAPE_DEBUG_BUGS */ count = min((unsigned int)pc->b_count, (unsigned int)bcount); HWIF(drive)->atapi_output_bytes(drive, pc->b_data, count); bcount -= count; pc->b_data += count; pc->b_count -= count; if (!pc->b_count) { pc->bh = bh = bh->b_reqnext; if (bh) { pc->b_data = bh->b_data; pc->b_count = atomic_read(&bh->b_count); } } } } static void idetape_update_buffers (idetape_pc_t *pc) { struct idetape_bh *bh = pc->bh; int count; unsigned int bcount = pc->actually_transferred; if (test_bit(PC_WRITING, &pc->flags)) return; while (bcount) { #if IDETAPE_DEBUG_BUGS if (bh == NULL) { printk(KERN_ERR "ide-tape: bh == NULL in " "idetape_update_buffers\n"); return; } #endif /* IDETAPE_DEBUG_BUGS */ count = min((unsigned int)bh->b_size, (unsigned int)bcount); atomic_set(&bh->b_count, count); if (atomic_read(&bh->b_count) == bh->b_size) bh = bh->b_reqnext; bcount -= count; } pc->bh = bh; } /* * idetape_next_pc_storage returns a pointer to a place in which we can * safely store a packet command, even though we intend to leave the * driver. A storage space for a maximum of IDETAPE_PC_STACK packet * commands is allocated at initialization time. */ static idetape_pc_t *idetape_next_pc_storage (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 5) printk(KERN_INFO "ide-tape: pc_stack_index=%d\n", tape->pc_stack_index); #endif /* IDETAPE_DEBUG_LOG */ if (tape->pc_stack_index == IDETAPE_PC_STACK) tape->pc_stack_index=0; return (&tape->pc_stack[tape->pc_stack_index++]); } /* * idetape_next_rq_storage is used along with idetape_next_pc_storage. * Since we queue packet commands in the request queue, we need to * allocate a request, along with the allocation of a packet command. */ /************************************************************** * * * This should get fixed to use kmalloc(.., GFP_ATOMIC) * * followed later on by kfree(). -ml * * * **************************************************************/ static struct request *idetape_next_rq_storage (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 5) printk(KERN_INFO "ide-tape: rq_stack_index=%d\n", tape->rq_stack_index); #endif /* IDETAPE_DEBUG_LOG */ if (tape->rq_stack_index == IDETAPE_PC_STACK) tape->rq_stack_index=0; return (&tape->rq_stack[tape->rq_stack_index++]); } /* * idetape_init_pc initializes a packet command. */ static void idetape_init_pc (idetape_pc_t *pc) { memset(pc->c, 0, 12); pc->retries = 0; pc->flags = 0; pc->request_transfer = 0; pc->buffer = pc->pc_buffer; pc->buffer_size = IDETAPE_PC_BUFFER_SIZE; pc->bh = NULL; pc->b_data = NULL; } /* * idetape_analyze_error is called on each failed packet command retry * to analyze the request sense. We currently do not utilize this * information. */ static void idetape_analyze_error (ide_drive_t *drive, idetape_request_sense_result_t *result) { idetape_tape_t *tape = drive->driver_data; idetape_pc_t *pc = tape->failed_pc; tape->sense = *result; tape->sense_key = result->sense_key; tape->asc = result->asc; tape->ascq = result->ascq; #if IDETAPE_DEBUG_LOG /* * Without debugging, we only log an error if we decided to * give up retrying. */ if (tape->debug_level >= 1) printk(KERN_INFO "ide-tape: pc = %x, sense key = %x, " "asc = %x, ascq = %x\n", pc->c[0], result->sense_key, result->asc, result->ascq); #endif /* IDETAPE_DEBUG_LOG */ /* * Correct pc->actually_transferred by asking the tape. */ if (test_bit(PC_DMA_ERROR, &pc->flags)) { pc->actually_transferred = pc->request_transfer - tape->tape_block_size * ntohl(get_unaligned(&result->information)); idetape_update_buffers(pc); } /* * If error was the result of a zero-length read or write command, * with sense key=5, asc=0x22, ascq=0, let it slide. Some drives * (i.e. Seagate STT3401A Travan) don't support 0-length read/writes. */ if ((pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD) && pc->c[4] == 0 && pc->c[3] == 0 && pc->c[2] == 0) { /* length==0 */ if (result->sense_key == 5) { /* don't report an error, everything's ok */ pc->error = 0; /* don't retry read/write */ set_bit(PC_ABORT, &pc->flags); } } if (pc->c[0] == IDETAPE_READ_CMD && result->filemark) { pc->error = IDETAPE_ERROR_FILEMARK; set_bit(PC_ABORT, &pc->flags); } if (pc->c[0] == IDETAPE_WRITE_CMD) { if (result->eom || (result->sense_key == 0xd && result->asc == 0x0 && result->ascq == 0x2)) { pc->error = IDETAPE_ERROR_EOD; set_bit(PC_ABORT, &pc->flags); } } if (pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD) { if (result->sense_key == 8) { pc->error = IDETAPE_ERROR_EOD; set_bit(PC_ABORT, &pc->flags); } if (!test_bit(PC_ABORT, &pc->flags) && pc->actually_transferred) pc->retries = IDETAPE_MAX_PC_RETRIES + 1; } } /* * idetape_active_next_stage will declare the next stage as "active". */ static void idetape_active_next_stage (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; idetape_stage_t *stage = tape->next_stage; struct request *rq = &stage->rq; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 4) printk(KERN_INFO "ide-tape: Reached idetape_active_next_stage\n"); #endif /* IDETAPE_DEBUG_LOG */ #if IDETAPE_DEBUG_BUGS if (stage == NULL) { printk(KERN_ERR "ide-tape: bug: Trying to activate a non existing stage\n"); return; } #endif /* IDETAPE_DEBUG_BUGS */ rq->rq_disk = tape->disk; rq->buffer = NULL; rq->special = (void *)stage->bh; tape->active_data_request = rq; tape->active_stage = stage; tape->next_stage = stage->next; } /* * idetape_increase_max_pipeline_stages is a part of the feedback * loop which tries to find the optimum number of stages. In the * feedback loop, we are starting from a minimum maximum number of * stages, and if we sense that the pipeline is empty, we try to * increase it, until we reach the user compile time memory limit. */ static void idetape_increase_max_pipeline_stages (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; int increase = (tape->max_pipeline - tape->min_pipeline) / 10; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 4) printk (KERN_INFO "ide-tape: Reached idetape_increase_max_pipeline_stages\n"); #endif /* IDETAPE_DEBUG_LOG */ tape->max_stages += max(increase, 1); tape->max_stages = max(tape->max_stages, tape->min_pipeline); tape->max_stages = min(tape->max_stages, tape->max_pipeline); } /* * idetape_kfree_stage calls kfree to completely free a stage, along with * its related buffers. */ static void __idetape_kfree_stage (idetape_stage_t *stage) { struct idetape_bh *prev_bh, *bh = stage->bh; int size; while (bh != NULL) { if (bh->b_data != NULL) { size = (int) bh->b_size; while (size > 0) { free_page((unsigned long) bh->b_data); size -= PAGE_SIZE; bh->b_data += PAGE_SIZE; } } prev_bh = bh; bh = bh->b_reqnext; kfree(prev_bh); } kfree(stage); } static void idetape_kfree_stage (idetape_tape_t *tape, idetape_stage_t *stage) { __idetape_kfree_stage(stage); } /* * idetape_remove_stage_head removes tape->first_stage from the pipeline. * The caller should avoid race conditions. */ static void idetape_remove_stage_head (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; idetape_stage_t *stage; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 4) printk(KERN_INFO "ide-tape: Reached idetape_remove_stage_head\n"); #endif /* IDETAPE_DEBUG_LOG */ #if IDETAPE_DEBUG_BUGS if (tape->first_stage == NULL) { printk(KERN_ERR "ide-tape: bug: tape->first_stage is NULL\n"); return; } if (tape->active_stage == tape->first_stage) { printk(KERN_ERR "ide-tape: bug: Trying to free our active pipeline stage\n"); return; } #endif /* IDETAPE_DEBUG_BUGS */ stage = tape->first_stage; tape->first_stage = stage->next; idetape_kfree_stage(tape, stage); tape->nr_stages--; if (tape->first_stage == NULL) { tape->last_stage = NULL; #if IDETAPE_DEBUG_BUGS if (tape->next_stage != NULL) printk(KERN_ERR "ide-tape: bug: tape->next_stage != NULL\n"); if (tape->nr_stages) printk(KERN_ERR "ide-tape: bug: nr_stages should be 0 now\n"); #endif /* IDETAPE_DEBUG_BUGS */ } } /* * This will free all the pipeline stages starting from new_last_stage->next * to the end of the list, and point tape->last_stage to new_last_stage. */ static void idetape_abort_pipeline(ide_drive_t *drive, idetape_stage_t *new_last_stage) { idetape_tape_t *tape = drive->driver_data; idetape_stage_t *stage = new_last_stage->next; idetape_stage_t *nstage; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 4) printk(KERN_INFO "ide-tape: %s: idetape_abort_pipeline called\n", tape->name); #endif while (stage) { nstage = stage->next; idetape_kfree_stage(tape, stage); --tape->nr_stages; --tape->nr_pending_stages; stage = nstage; } if (new_last_stage) new_last_stage->next = NULL; tape->last_stage = new_last_stage; tape->next_stage = NULL; } /* * idetape_end_request is used to finish servicing a request, and to * insert a pending pipeline request into the main device queue. */ static int idetape_end_request(ide_drive_t *drive, int uptodate, int nr_sects) { struct request *rq = HWGROUP(drive)->rq; idetape_tape_t *tape = drive->driver_data; unsigned long flags; int error; int remove_stage = 0; idetape_stage_t *active_stage; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 4) printk(KERN_INFO "ide-tape: Reached idetape_end_request\n"); #endif /* IDETAPE_DEBUG_LOG */ switch (uptodate) { case 0: error = IDETAPE_ERROR_GENERAL; break; case 1: error = 0; break; default: error = uptodate; } rq->errors = error; if (error) tape->failed_pc = NULL; spin_lock_irqsave(&tape->spinlock, flags); /* The request was a pipelined data transfer request */ if (tape->active_data_request == rq) { active_stage = tape->active_stage; tape->active_stage = NULL; tape->active_data_request = NULL; tape->nr_pending_stages--; if (rq->cmd[0] & REQ_IDETAPE_WRITE) { remove_stage = 1; if (error) { set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags); if (error == IDETAPE_ERROR_EOD) idetape_abort_pipeline(drive, active_stage); } } else if (rq->cmd[0] & REQ_IDETAPE_READ) { if (error == IDETAPE_ERROR_EOD) { set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags); idetape_abort_pipeline(drive, active_stage); } } if (tape->next_stage != NULL) { idetape_active_next_stage(drive); /* * Insert the next request into the request queue. */ (void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end); } else if (!error) { idetape_increase_max_pipeline_stages(drive); } } ide_end_drive_cmd(drive, 0, 0); // blkdev_dequeue_request(rq); // drive->rq = NULL; // end_that_request_last(rq); if (remove_stage) idetape_remove_stage_head(drive); if (tape->active_data_request == NULL) clear_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags); spin_unlock_irqrestore(&tape->spinlock, flags); return 0; } static ide_startstop_t idetape_request_sense_callback (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 4) printk(KERN_INFO "ide-tape: Reached idetape_request_sense_callback\n"); #endif /* IDETAPE_DEBUG_LOG */ if (!tape->pc->error) { idetape_analyze_error(drive, (idetape_request_sense_result_t *) tape->pc->buffer); idetape_end_request(drive, 1, 0); } else { printk(KERN_ERR "ide-tape: Error in REQUEST SENSE itself - Aborting request!\n"); idetape_end_request(drive, 0, 0); } return ide_stopped; } static void idetape_create_request_sense_cmd (idetape_pc_t *pc) { idetape_init_pc(pc); pc->c[0] = IDETAPE_REQUEST_SENSE_CMD; pc->c[4] = 20; pc->request_transfer = 20; pc->callback = &idetape_request_sense_callback; } static void idetape_init_rq(struct request *rq, u8 cmd) { memset(rq, 0, sizeof(*rq)); rq->flags = REQ_SPECIAL; rq->cmd[0] = cmd; } /* * idetape_queue_pc_head generates a new packet command request in front * of the request queue, before the current request, so that it will be * processed immediately, on the next pass through the driver. * * idetape_queue_pc_head is called from the request handling part of * the driver (the "bottom" part). Safe storage for the request should * be allocated with idetape_next_pc_storage and idetape_next_rq_storage * before calling idetape_queue_pc_head. * * Memory for those requests is pre-allocated at initialization time, and * is limited to IDETAPE_PC_STACK requests. We assume that we have enough * space for the maximum possible number of inter-dependent packet commands. * * The higher level of the driver - The ioctl handler and the character * device handling functions should queue request to the lower level part * and wait for their completion using idetape_queue_pc_tail or * idetape_queue_rw_tail. */ static void idetape_queue_pc_head (ide_drive_t *drive, idetape_pc_t *pc,struct request *rq) { struct ide_tape_obj *tape = drive->driver_data; idetape_init_rq(rq, REQ_IDETAPE_PC1); rq->buffer = (char *) pc; rq->rq_disk = tape->disk; (void) ide_do_drive_cmd(drive, rq, ide_preempt); } /* * idetape_retry_pc is called when an error was detected during the * last packet command. We queue a request sense packet command in * the head of the request list. */ static ide_startstop_t idetape_retry_pc (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; idetape_pc_t *pc; struct request *rq; atapi_error_t error; error.all = HWIF(drive)->INB(IDE_ERROR_REG); pc = idetape_next_pc_storage(drive); rq = idetape_next_rq_storage(drive); idetape_create_request_sense_cmd(pc); set_bit(IDETAPE_IGNORE_DSC, &tape->flags); idetape_queue_pc_head(drive, pc, rq); return ide_stopped; } /* * idetape_postpone_request postpones the current request so that * ide.c will be able to service requests from another device on * the same hwgroup while we are polling for DSC. */ static void idetape_postpone_request (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 4) printk(KERN_INFO "ide-tape: idetape_postpone_request\n"); #endif tape->postponed_rq = HWGROUP(drive)->rq; ide_stall_queue(drive, tape->dsc_polling_frequency); } /* * idetape_pc_intr is the usual interrupt handler which will be called * during a packet command. We will transfer some of the data (as * requested by the drive) and will re-point interrupt handler to us. * When data transfer is finished, we will act according to the * algorithm described before idetape_issue_packet_command. * */ static ide_startstop_t idetape_pc_intr (ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; idetape_tape_t *tape = drive->driver_data; atapi_status_t status; atapi_bcount_t bcount; atapi_ireason_t ireason; idetape_pc_t *pc = tape->pc; unsigned int temp; #if SIMULATE_ERRORS static int error_sim_count = 0; #endif #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 4) printk(KERN_INFO "ide-tape: Reached idetape_pc_intr " "interrupt handler\n"); #endif /* IDETAPE_DEBUG_LOG */ /* Clear the interrupt */ status.all = HWIF(drive)->INB(IDE_STATUS_REG); if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags)) { if (HWIF(drive)->ide_dma_end(drive) || status.b.check) { /* * A DMA error is sometimes expected. For example, * if the tape is crossing a filemark during a * READ command, it will issue an irq and position * itself before the filemark, so that only a partial * data transfer will occur (which causes the DMA * error). In that case, we will later ask the tape * how much bytes of the original request were * actually transferred (we can't receive that * information from the DMA engine on most chipsets). */ /* * On the contrary, a DMA error is never expected; * it usually indicates a hardware error or abort. * If the tape crosses a filemark during a READ * command, it will issue an irq and position itself * after the filemark (not before). Only a partial * data transfer will occur, but no DMA error. * (AS, 19 Apr 2001) */ set_bit(PC_DMA_ERROR, &pc->flags); } else { pc->actually_transferred = pc->request_transfer; idetape_update_buffers(pc); } #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 4) printk(KERN_INFO "ide-tape: DMA finished\n"); #endif /* IDETAPE_DEBUG_LOG */ } /* No more interrupts */ if (!status.b.drq) { #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 2) printk(KERN_INFO "ide-tape: Packet command completed, %d bytes transferred\n", pc->actually_transferred); #endif /* IDETAPE_DEBUG_LOG */ clear_bit(PC_DMA_IN_PROGRESS, &pc->flags); local_irq_enable(); #if SIMULATE_ERRORS if ((pc->c[0] == IDETAPE_WRITE_CMD || pc->c[0] == IDETAPE_READ_CMD) && (++error_sim_count % 100) == 0) { printk(KERN_INFO "ide-tape: %s: simulating error\n", tape->name); status.b.check = 1; } #endif if (status.b.check && pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) status.b.check = 0; if (status.b.check || test_bit(PC_DMA_ERROR, &pc->flags)) { /* Error detected */ #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 1) printk(KERN_INFO "ide-tape: %s: I/O error\n", tape->name); #endif /* IDETAPE_DEBUG_LOG */ if (pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) { printk(KERN_ERR "ide-tape: I/O error in request sense command\n"); return ide_do_reset(drive); } #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 1) printk(KERN_INFO "ide-tape: [cmd %x]: check condition\n", pc->c[0]); #endif /* Retry operation */ return idetape_retry_pc(drive); } pc->error = 0; if (test_bit(PC_WAIT_FOR_DSC, &pc->flags) && !status.b.dsc) { /* Media access command */ tape->dsc_polling_start = jiffies; tape->dsc_polling_frequency = IDETAPE_DSC_MA_FAST; tape->dsc_timeout = jiffies + IDETAPE_DSC_MA_TIMEOUT; /* Allow ide.c to handle other requests */ idetape_postpone_request(drive); return ide_stopped; } if (tape->failed_pc == pc) tape->failed_pc = NULL; /* Command finished - Call the callback function */ return pc->callback(drive); } if (test_and_clear_bit(PC_DMA_IN_PROGRESS, &pc->flags)) { printk(KERN_ERR "ide-tape: The tape wants to issue more " "interrupts in DMA mode\n"); printk(KERN_ERR "ide-tape: DMA disabled, reverting to PIO\n"); (void)__ide_dma_off(drive); return ide_do_reset(drive); } /* Get the number of bytes to transfer on this interrupt. */ bcount.b.high = hwif->INB(IDE_BCOUNTH_REG); bcount.b.low = hwif->INB(IDE_BCOUNTL_REG); ireason.all = hwif->INB(IDE_IREASON_REG); if (ireason.b.cod) { printk(KERN_ERR "ide-tape: CoD != 0 in idetape_pc_intr\n"); return ide_do_reset(drive); } if (ireason.b.io == test_bit(PC_WRITING, &pc->flags)) { /* Hopefully, we will never get here */ printk(KERN_ERR "ide-tape: We wanted to %s, ", ireason.b.io ? "Write":"Read"); printk(KERN_ERR "ide-tape: but the tape wants us to %s !\n", ireason.b.io ? "Read":"Write"); return ide_do_reset(drive); } if (!test_bit(PC_WRITING, &pc->flags)) { /* Reading - Check that we have enough space */ temp = pc->actually_transferred + bcount.all; if (temp > pc->request_transfer) { if (temp > pc->buffer_size) { printk(KERN_ERR "ide-tape: The tape wants to send us more data than expected - discarding data\n"); idetape_discard_data(drive, bcount.all); ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL); return ide_started; } #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 2) printk(KERN_NOTICE "ide-tape: The tape wants to send us more data than expected - allowing transfer\n"); #endif /* IDETAPE_DEBUG_LOG */ } } if (test_bit(PC_WRITING, &pc->flags)) { if (pc->bh != NULL) idetape_output_buffers(drive, pc, bcount.all); else /* Write the current buffer */ HWIF(drive)->atapi_output_bytes(drive, pc->current_position, bcount.all); } else { if (pc->bh != NULL) idetape_input_buffers(drive, pc, bcount.all); else /* Read the current buffer */ HWIF(drive)->atapi_input_bytes(drive, pc->current_position, bcount.all); } /* Update the current position */ pc->actually_transferred += bcount.all; pc->current_position += bcount.all; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 2) printk(KERN_INFO "ide-tape: [cmd %x] transferred %d bytes on that interrupt\n", pc->c[0], bcount.all); #endif /* And set the interrupt handler again */ ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL); return ide_started; } /* * Packet Command Interface * * The current Packet Command is available in tape->pc, and will not * change until we finish handling it. Each packet command is associated * with a callback function that will be called when the command is * finished. * * The handling will be done in three stages: * * 1. idetape_issue_packet_command will send the packet command to the * drive, and will set the interrupt handler to idetape_pc_intr. * * 2. On each interrupt, idetape_pc_intr will be called. This step * will be repeated until the device signals us that no more * interrupts will be issued. * * 3. ATAPI Tape media access commands have immediate status with a * delayed process. In case of a successful initiation of a * media access packet command, the DSC bit will be set when the * actual execution of the command is finished. * Since the tape drive will not issue an interrupt, we have to * poll for this event. In this case, we define the request as * "low priority request" by setting rq_status to * IDETAPE_RQ_POSTPONED, set a timer to poll for DSC and exit * the driver. * * ide.c will then give higher priority to requests which * originate from the other device, until will change rq_status * to RQ_ACTIVE. * * 4. When the packet command is finished, it will be checked for errors. * * 5. In case an error was found, we queue a request sense packet * command in front of the request queue and retry the operation * up to IDETAPE_MAX_PC_RETRIES times. * * 6. In case no error was found, or we decided to give up and not * to retry again, the callback function will be called and then * we will handle the next request. * */ static ide_startstop_t idetape_transfer_pc(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; idetape_tape_t *tape = drive->driver_data; idetape_pc_t *pc = tape->pc; atapi_ireason_t ireason; int retries = 100; ide_startstop_t startstop; if (ide_wait_stat(&startstop,drive,DRQ_STAT,BUSY_STAT,WAIT_READY)) { printk(KERN_ERR "ide-tape: Strange, packet command initiated yet DRQ isn't asserted\n"); return startstop; } ireason.all = hwif->INB(IDE_IREASON_REG); while (retries-- && (!ireason.b.cod || ireason.b.io)) { printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while issuing " "a packet command, retrying\n"); udelay(100); ireason.all = hwif->INB(IDE_IREASON_REG); if (retries == 0) { printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while " "issuing a packet command, ignoring\n"); ireason.b.cod = 1; ireason.b.io = 0; } } if (!ireason.b.cod || ireason.b.io) { printk(KERN_ERR "ide-tape: (IO,CoD) != (0,1) while issuing " "a packet command\n"); return ide_do_reset(drive); } /* Set the interrupt routine */ ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL); #ifdef CONFIG_BLK_DEV_IDEDMA /* Begin DMA, if necessary */ if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags)) hwif->dma_start(drive); #endif /* Send the actual packet */ HWIF(drive)->atapi_output_bytes(drive, pc->c, 12); return ide_started; } static ide_startstop_t idetape_issue_packet_command (ide_drive_t *drive, idetape_pc_t *pc) { ide_hwif_t *hwif = drive->hwif; idetape_tape_t *tape = drive->driver_data; atapi_bcount_t bcount; int dma_ok = 0; #if IDETAPE_DEBUG_BUGS if (tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD && pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) { printk(KERN_ERR "ide-tape: possible ide-tape.c bug - " "Two request sense in serial were issued\n"); } #endif /* IDETAPE_DEBUG_BUGS */ if (tape->failed_pc == NULL && pc->c[0] != IDETAPE_REQUEST_SENSE_CMD) tape->failed_pc = pc; /* Set the current packet command */ tape->pc = pc; if (pc->retries > IDETAPE_MAX_PC_RETRIES || test_bit(PC_ABORT, &pc->flags)) { /* * We will "abort" retrying a packet command in case * a legitimate error code was received (crossing a * filemark, or end of the media, for example). */ if (!test_bit(PC_ABORT, &pc->flags)) { if (!(pc->c[0] == IDETAPE_TEST_UNIT_READY_CMD && tape->sense_key == 2 && tape->asc == 4 && (tape->ascq == 1 || tape->ascq == 8))) { printk(KERN_ERR "ide-tape: %s: I/O error, " "pc = %2x, key = %2x, " "asc = %2x, ascq = %2x\n", tape->name, pc->c[0], tape->sense_key, tape->asc, tape->ascq); } /* Giving up */ pc->error = IDETAPE_ERROR_GENERAL; } tape->failed_pc = NULL; return pc->callback(drive); } #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 2) printk(KERN_INFO "ide-tape: Retry number - %d, cmd = %02X\n", pc->retries, pc->c[0]); #endif /* IDETAPE_DEBUG_LOG */ pc->retries++; /* We haven't transferred any data yet */ pc->actually_transferred = 0; pc->current_position = pc->buffer; /* Request to transfer the entire buffer at once */ bcount.all = pc->request_transfer; if (test_and_clear_bit(PC_DMA_ERROR, &pc->flags)) { printk(KERN_WARNING "ide-tape: DMA disabled, " "reverting to PIO\n"); (void)__ide_dma_off(drive); } if (test_bit(PC_DMA_RECOMMENDED, &pc->flags) && drive->using_dma) dma_ok = !hwif->dma_setup(drive); if (IDE_CONTROL_REG) hwif->OUTB(drive->ctl, IDE_CONTROL_REG); hwif->OUTB(dma_ok ? 1 : 0, IDE_FEATURE_REG); /* Use PIO/DMA */ hwif->OUTB(bcount.b.high, IDE_BCOUNTH_REG); hwif->OUTB(bcount.b.low, IDE_BCOUNTL_REG); hwif->OUTB(drive->select.all, IDE_SELECT_REG); if (dma_ok) /* Will begin DMA later */ set_bit(PC_DMA_IN_PROGRESS, &pc->flags); if (test_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags)) { ide_set_handler(drive, &idetape_transfer_pc, IDETAPE_WAIT_CMD, NULL); hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG); return ide_started; } else { hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG); return idetape_transfer_pc(drive); } } /* * General packet command callback function. */ static ide_startstop_t idetape_pc_callback (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 4) printk(KERN_INFO "ide-tape: Reached idetape_pc_callback\n"); #endif /* IDETAPE_DEBUG_LOG */ idetape_end_request(drive, tape->pc->error ? 0 : 1, 0); return ide_stopped; } /* * A mode sense command is used to "sense" tape parameters. */ static void idetape_create_mode_sense_cmd (idetape_pc_t *pc, u8 page_code) { idetape_init_pc(pc); pc->c[0] = IDETAPE_MODE_SENSE_CMD; if (page_code != IDETAPE_BLOCK_DESCRIPTOR) pc->c[1] = 8; /* DBD = 1 - Don't return block descriptors */ pc->c[2] = page_code; /* * Changed pc->c[3] to 0 (255 will at best return unused info). * * For SCSI this byte is defined as subpage instead of high byte * of length and some IDE drives seem to interpret it this way * and return an error when 255 is used. */ pc->c[3] = 0; pc->c[4] = 255; /* (We will just discard data in that case) */ if (page_code == IDETAPE_BLOCK_DESCRIPTOR) pc->request_transfer = 12; else if (page_code == IDETAPE_CAPABILITIES_PAGE) pc->request_transfer = 24; else pc->request_transfer = 50; pc->callback = &idetape_pc_callback; } static void calculate_speeds(ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; int full = 125, empty = 75; if (time_after(jiffies, tape->controlled_pipeline_head_time + 120 * HZ)) { tape->controlled_previous_pipeline_head = tape->controlled_last_pipeline_head; tape->controlled_previous_head_time = tape->controlled_pipeline_head_time; tape->controlled_last_pipeline_head = tape->pipeline_head; tape->controlled_pipeline_head_time = jiffies; } if (time_after(jiffies, tape->controlled_pipeline_head_time + 60 * HZ)) tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_last_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_pipeline_head_time); else if (time_after(jiffies, tape->controlled_previous_head_time)) tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_previous_head_time); if (tape->nr_pending_stages < tape->max_stages /*- 1 */) { /* -1 for read mode error recovery */ if (time_after(jiffies, tape->uncontrolled_previous_head_time + 10 * HZ)) { tape->uncontrolled_pipeline_head_time = jiffies; tape->uncontrolled_pipeline_head_speed = (tape->pipeline_head - tape->uncontrolled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->uncontrolled_previous_head_time); } } else { tape->uncontrolled_previous_head_time = jiffies; tape->uncontrolled_previous_pipeline_head = tape->pipeline_head; if (time_after(jiffies, tape->uncontrolled_pipeline_head_time + 30 * HZ)) { tape->uncontrolled_pipeline_head_time = jiffies; } } tape->pipeline_head_speed = max(tape->uncontrolled_pipeline_head_speed, tape->controlled_pipeline_head_speed); if (tape->speed_control == 0) { tape->max_insert_speed = 5000; } else if (tape->speed_control == 1) { if (tape->nr_pending_stages >= tape->max_stages / 2) tape->max_insert_speed = tape->pipeline_head_speed + (1100 - tape->pipeline_head_speed) * 2 * (tape->nr_pending_stages - tape->max_stages / 2) / tape->max_stages; else tape->max_insert_speed = 500 + (tape->pipeline_head_speed - 500) * 2 * tape->nr_pending_stages / tape->max_stages; if (tape->nr_pending_stages >= tape->max_stages * 99 / 100) tape->max_insert_speed = 5000; } else if (tape->speed_control == 2) { tape->max_insert_speed = tape->pipeline_head_speed * empty / 100 + (tape->pipeline_head_speed * full / 100 - tape->pipeline_head_speed * empty / 100) * tape->nr_pending_stages / tape->max_stages; } else tape->max_insert_speed = tape->speed_control; tape->max_insert_speed = max(tape->max_insert_speed, 500); } static ide_startstop_t idetape_media_access_finished (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; idetape_pc_t *pc = tape->pc; atapi_status_t status; status.all = HWIF(drive)->INB(IDE_STATUS_REG); if (status.b.dsc) { if (status.b.check) { /* Error detected */ if (pc->c[0] != IDETAPE_TEST_UNIT_READY_CMD) printk(KERN_ERR "ide-tape: %s: I/O error, ", tape->name); /* Retry operation */ return idetape_retry_pc(drive); } pc->error = 0; if (tape->failed_pc == pc) tape->failed_pc = NULL; } else { pc->error = IDETAPE_ERROR_GENERAL; tape->failed_pc = NULL; } return pc->callback(drive); } static ide_startstop_t idetape_rw_callback (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; struct request *rq = HWGROUP(drive)->rq; int blocks = tape->pc->actually_transferred / tape->tape_block_size; tape->avg_size += blocks * tape->tape_block_size; tape->insert_size += blocks * tape->tape_block_size; if (tape->insert_size > 1024 * 1024) tape->measure_insert_time = 1; if (tape->measure_insert_time) { tape->measure_insert_time = 0; tape->insert_time = jiffies; tape->insert_size = 0; } if (time_after(jiffies, tape->insert_time)) tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time); if (jiffies - tape->avg_time >= HZ) { tape->avg_speed = tape->avg_size * HZ / (jiffies - tape->avg_time) / 1024; tape->avg_size = 0; tape->avg_time = jiffies; } #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 4) printk(KERN_INFO "ide-tape: Reached idetape_rw_callback\n"); #endif /* IDETAPE_DEBUG_LOG */ tape->first_frame_position += blocks; rq->current_nr_sectors -= blocks; if (!tape->pc->error) idetape_end_request(drive, 1, 0); else idetape_end_request(drive, tape->pc->error, 0); return ide_stopped; } static void idetape_create_read_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh) { idetape_init_pc(pc); pc->c[0] = IDETAPE_READ_CMD; put_unaligned(htonl(length), (unsigned int *) &pc->c[1]); pc->c[1] = 1; pc->callback = &idetape_rw_callback; pc->bh = bh; atomic_set(&bh->b_count, 0); pc->buffer = NULL; pc->request_transfer = pc->buffer_size = length * tape->tape_block_size; if (pc->request_transfer == tape->stage_size) set_bit(PC_DMA_RECOMMENDED, &pc->flags); } static void idetape_create_read_buffer_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh) { int size = 32768; struct idetape_bh *p = bh; idetape_init_pc(pc); pc->c[0] = IDETAPE_READ_BUFFER_CMD; pc->c[1] = IDETAPE_RETRIEVE_FAULTY_BLOCK; pc->c[7] = size >> 8; pc->c[8] = size & 0xff; pc->callback = &idetape_pc_callback; pc->bh = bh; atomic_set(&bh->b_count, 0); pc->buffer = NULL; while (p) { atomic_set(&p->b_count, 0); p = p->b_reqnext; } pc->request_transfer = pc->buffer_size = size; } static void idetape_create_write_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh) { idetape_init_pc(pc); pc->c[0] = IDETAPE_WRITE_CMD; put_unaligned(htonl(length), (unsigned int *) &pc->c[1]); pc->c[1] = 1; pc->callback = &idetape_rw_callback; set_bit(PC_WRITING, &pc->flags); pc->bh = bh; pc->b_data = bh->b_data; pc->b_count = atomic_read(&bh->b_count); pc->buffer = NULL; pc->request_transfer = pc->buffer_size = length * tape->tape_block_size; if (pc->request_transfer == tape->stage_size) set_bit(PC_DMA_RECOMMENDED, &pc->flags); } /* * idetape_do_request is our request handling function. */ static ide_startstop_t idetape_do_request(ide_drive_t *drive, struct request *rq, sector_t block) { idetape_tape_t *tape = drive->driver_data; idetape_pc_t *pc = NULL; struct request *postponed_rq = tape->postponed_rq; atapi_status_t status; #if IDETAPE_DEBUG_LOG #if 0 if (tape->debug_level >= 5) printk(KERN_INFO "ide-tape: rq_status: %d, " "dev: %s, cmd: %ld, errors: %d\n", rq->rq_status, rq->rq_disk->disk_name, rq->cmd[0], rq->errors); #endif if (tape->debug_level >= 2) printk(KERN_INFO "ide-tape: sector: %ld, " "nr_sectors: %ld, current_nr_sectors: %d\n", rq->sector, rq->nr_sectors, rq->current_nr_sectors); #endif /* IDETAPE_DEBUG_LOG */ if ((rq->flags & REQ_SPECIAL) == 0) { /* * We do not support buffer cache originated requests. */ printk(KERN_NOTICE "ide-tape: %s: Unsupported request in " "request queue (%ld)\n", drive->name, rq->flags); ide_end_request(drive, 0, 0); return ide_stopped; } /* * Retry a failed packet command */ if (tape->failed_pc != NULL && tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) { return idetape_issue_packet_command(drive, tape->failed_pc); } #if IDETAPE_DEBUG_BUGS if (postponed_rq != NULL) if (rq != postponed_rq) { printk(KERN_ERR "ide-tape: ide-tape.c bug - " "Two DSC requests were queued\n"); idetape_end_request(drive, 0, 0); return ide_stopped; } #endif /* IDETAPE_DEBUG_BUGS */ tape->postponed_rq = NULL; /* * If the tape is still busy, postpone our request and service * the other device meanwhile. */ status.all = HWIF(drive)->INB(IDE_STATUS_REG); if (!drive->dsc_overlap && !(rq->cmd[0] & REQ_IDETAPE_PC2)) set_bit(IDETAPE_IGNORE_DSC, &tape->flags); if (drive->post_reset == 1) { set_bit(IDETAPE_IGNORE_DSC, &tape->flags); drive->post_reset = 0; } if (tape->tape_still_time > 100 && tape->tape_still_time < 200) tape->measure_insert_time = 1; if (time_after(jiffies, tape->insert_time)) tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time); calculate_speeds(drive); if (!test_and_clear_bit(IDETAPE_IGNORE_DSC, &tape->flags) && !status.b.dsc) { if (postponed_rq == NULL) { tape->dsc_polling_start = jiffies; tape->dsc_polling_frequency = tape->best_dsc_rw_frequency; tape->dsc_timeout = jiffies + IDETAPE_DSC_RW_TIMEOUT; } else if (time_after(jiffies, tape->dsc_timeout)) { printk(KERN_ERR "ide-tape: %s: DSC timeout\n", tape->name); if (rq->cmd[0] & REQ_IDETAPE_PC2) { idetape_media_access_finished(drive); return ide_stopped; } else { return ide_do_reset(drive); } } else if (jiffies - tape->dsc_polling_start > IDETAPE_DSC_MA_THRESHOLD) tape->dsc_polling_frequency = IDETAPE_DSC_MA_SLOW; idetape_postpone_request(drive); return ide_stopped; } if (rq->cmd[0] & REQ_IDETAPE_READ) { tape->buffer_head++; #if USE_IOTRACE IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor); #endif tape->postpone_cnt = 0; pc = idetape_next_pc_storage(drive); idetape_create_read_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special); goto out; } if (rq->cmd[0] & REQ_IDETAPE_WRITE) { tape->buffer_head++; #if USE_IOTRACE IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor); #endif tape->postpone_cnt = 0; pc = idetape_next_pc_storage(drive); idetape_create_write_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special); goto out; } if (rq->cmd[0] & REQ_IDETAPE_READ_BUFFER) { tape->postpone_cnt = 0; pc = idetape_next_pc_storage(drive); idetape_create_read_buffer_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special); goto out; } if (rq->cmd[0] & REQ_IDETAPE_PC1) { pc = (idetape_pc_t *) rq->buffer; rq->cmd[0] &= ~(REQ_IDETAPE_PC1); rq->cmd[0] |= REQ_IDETAPE_PC2; goto out; } if (rq->cmd[0] & REQ_IDETAPE_PC2) { idetape_media_access_finished(drive); return ide_stopped; } BUG(); out: return idetape_issue_packet_command(drive, pc); } /* * Pipeline related functions */ static inline int idetape_pipeline_active (idetape_tape_t *tape) { int rc1, rc2; rc1 = test_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags); rc2 = (tape->active_data_request != NULL); return rc1; } /* * idetape_kmalloc_stage uses __get_free_page to allocate a pipeline * stage, along with all the necessary small buffers which together make * a buffer of size tape->stage_size (or a bit more). We attempt to * combine sequential pages as much as possible. * * Returns a pointer to the new allocated stage, or NULL if we * can't (or don't want to) allocate a stage. * * Pipeline stages are optional and are used to increase performance. * If we can't allocate them, we'll manage without them. */ static idetape_stage_t *__idetape_kmalloc_stage (idetape_tape_t *tape, int full, int clear) { idetape_stage_t *stage; struct idetape_bh *prev_bh, *bh; int pages = tape->pages_per_stage; char *b_data = NULL; if ((stage = (idetape_stage_t *) kmalloc (sizeof (idetape_stage_t),GFP_KERNEL)) == NULL) return NULL; stage->next = NULL; bh = stage->bh = (struct idetape_bh *)kmalloc(sizeof(struct idetape_bh), GFP_KERNEL); if (bh == NULL) goto abort; bh->b_reqnext = NULL; if ((bh->b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL) goto abort; if (clear) memset(bh->b_data, 0, PAGE_SIZE); bh->b_size = PAGE_SIZE; atomic_set(&bh->b_count, full ? bh->b_size : 0); while (--pages) { if ((b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL) goto abort; if (clear) memset(b_data, 0, PAGE_SIZE); if (bh->b_data == b_data + PAGE_SIZE) { bh->b_size += PAGE_SIZE; bh->b_data -= PAGE_SIZE; if (full) atomic_add(PAGE_SIZE, &bh->b_count); continue; } if (b_data == bh->b_data + bh->b_size) { bh->b_size += PAGE_SIZE; if (full) atomic_add(PAGE_SIZE, &bh->b_count); continue; } prev_bh = bh; if ((bh = (struct idetape_bh *)kmalloc(sizeof(struct idetape_bh), GFP_KERNEL)) == NULL) { free_page((unsigned long) b_data); goto abort; } bh->b_reqnext = NULL; bh->b_data = b_data; bh->b_size = PAGE_SIZE; atomic_set(&bh->b_count, full ? bh->b_size : 0); prev_bh->b_reqnext = bh; } bh->b_size -= tape->excess_bh_size; if (full) atomic_sub(tape->excess_bh_size, &bh->b_count); return stage; abort: __idetape_kfree_stage(stage); return NULL; } static idetape_stage_t *idetape_kmalloc_stage (idetape_tape_t *tape) { idetape_stage_t *cache_stage = tape->cache_stage; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 4) printk(KERN_INFO "ide-tape: Reached idetape_kmalloc_stage\n"); #endif /* IDETAPE_DEBUG_LOG */ if (tape->nr_stages >= tape->max_stages) return NULL; if (cache_stage != NULL) { tape->cache_stage = NULL; return cache_stage; } return __idetape_kmalloc_stage(tape, 0, 0); } static void idetape_copy_stage_from_user (idetape_tape_t *tape, idetape_stage_t *stage, const char __user *buf, int n) { struct idetape_bh *bh = tape->bh; int count; while (n) { #if IDETAPE_DEBUG_BUGS if (bh == NULL) { printk(KERN_ERR "ide-tape: bh == NULL in " "idetape_copy_stage_from_user\n"); return; } #endif /* IDETAPE_DEBUG_BUGS */ count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), (unsigned int)n); copy_from_user(bh->b_data + atomic_read(&bh->b_count), buf, count); n -= count; atomic_add(count, &bh->b_count); buf += count; if (atomic_read(&bh->b_count) == bh->b_size) { bh = bh->b_reqnext; if (bh) atomic_set(&bh->b_count, 0); } } tape->bh = bh; } static void idetape_copy_stage_to_user (idetape_tape_t *tape, char __user *buf, idetape_stage_t *stage, int n) { struct idetape_bh *bh = tape->bh; int count; while (n) { #if IDETAPE_DEBUG_BUGS if (bh == NULL) { printk(KERN_ERR "ide-tape: bh == NULL in " "idetape_copy_stage_to_user\n"); return; } #endif /* IDETAPE_DEBUG_BUGS */ count = min(tape->b_count, n); copy_to_user(buf, tape->b_data, count); n -= count; tape->b_data += count; tape->b_count -= count; buf += count; if (!tape->b_count) { tape->bh = bh = bh->b_reqnext; if (bh) { tape->b_data = bh->b_data; tape->b_count = atomic_read(&bh->b_count); } } } } static void idetape_init_merge_stage (idetape_tape_t *tape) { struct idetape_bh *bh = tape->merge_stage->bh; tape->bh = bh; if (tape->chrdev_direction == idetape_direction_write) atomic_set(&bh->b_count, 0); else { tape->b_data = bh->b_data; tape->b_count = atomic_read(&bh->b_count); } } static void idetape_switch_buffers (idetape_tape_t *tape, idetape_stage_t *stage) { struct idetape_bh *tmp; tmp = stage->bh; stage->bh = tape->merge_stage->bh; tape->merge_stage->bh = tmp; idetape_init_merge_stage(tape); } /* * idetape_add_stage_tail adds a new stage at the end of the pipeline. */ static void idetape_add_stage_tail (ide_drive_t *drive,idetape_stage_t *stage) { idetape_tape_t *tape = drive->driver_data; unsigned long flags; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 4) printk (KERN_INFO "ide-tape: Reached idetape_add_stage_tail\n"); #endif /* IDETAPE_DEBUG_LOG */ spin_lock_irqsave(&tape->spinlock, flags); stage->next = NULL; if (tape->last_stage != NULL) tape->last_stage->next=stage; else tape->first_stage = tape->next_stage=stage; tape->last_stage = stage; if (tape->next_stage == NULL) tape->next_stage = tape->last_stage; tape->nr_stages++; tape->nr_pending_stages++; spin_unlock_irqrestore(&tape->spinlock, flags); } /* * idetape_wait_for_request installs a completion in a pending request * and sleeps until it is serviced. * * The caller should ensure that the request will not be serviced * before we install the completion (usually by disabling interrupts). */ static void idetape_wait_for_request (ide_drive_t *drive, struct request *rq) { DECLARE_COMPLETION(wait); idetape_tape_t *tape = drive->driver_data; #if IDETAPE_DEBUG_BUGS if (rq == NULL || (rq->flags & REQ_SPECIAL) == 0) { printk (KERN_ERR "ide-tape: bug: Trying to sleep on non-valid request\n"); return; } #endif /* IDETAPE_DEBUG_BUGS */ rq->waiting = &wait; rq->end_io = blk_end_sync_rq; spin_unlock_irq(&tape->spinlock); wait_for_completion(&wait); /* The stage and its struct request have been deallocated */ spin_lock_irq(&tape->spinlock); } static ide_startstop_t idetape_read_position_callback (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; idetape_read_position_result_t *result; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 4) printk(KERN_INFO "ide-tape: Reached idetape_read_position_callback\n"); #endif /* IDETAPE_DEBUG_LOG */ if (!tape->pc->error) { result = (idetape_read_position_result_t *) tape->pc->buffer; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 2) printk(KERN_INFO "ide-tape: BOP - %s\n",result->bop ? "Yes":"No"); if (tape->debug_level >= 2) printk(KERN_INFO "ide-tape: EOP - %s\n",result->eop ? "Yes":"No"); #endif /* IDETAPE_DEBUG_LOG */ if (result->bpu) { printk(KERN_INFO "ide-tape: Block location is unknown to the tape\n"); clear_bit(IDETAPE_ADDRESS_VALID, &tape->flags); idetape_end_request(drive, 0, 0); } else { #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 2) printk(KERN_INFO "ide-tape: Block Location - %u\n", ntohl(result->first_block)); #endif /* IDETAPE_DEBUG_LOG */ tape->partition = result->partition; tape->first_frame_position = ntohl(result->first_block); tape->last_frame_position = ntohl(result->last_block); tape->blocks_in_buffer = result->blocks_in_buffer[2]; set_bit(IDETAPE_ADDRESS_VALID, &tape->flags); idetape_end_request(drive, 1, 0); } } else { idetape_end_request(drive, 0, 0); } return ide_stopped; } /* * idetape_create_write_filemark_cmd will: * * 1. Write a filemark if write_filemark=1. * 2. Flush the device buffers without writing a filemark * if write_filemark=0. * */ static void idetape_create_write_filemark_cmd (ide_drive_t *drive, idetape_pc_t *pc,int write_filemark) { idetape_init_pc(pc); pc->c[0] = IDETAPE_WRITE_FILEMARK_CMD; pc->c[4] = write_filemark; set_bit(PC_WAIT_FOR_DSC, &pc->flags); pc->callback = &idetape_pc_callback; } static void idetape_create_test_unit_ready_cmd(idetape_pc_t *pc) { idetape_init_pc(pc); pc->c[0] = IDETAPE_TEST_UNIT_READY_CMD; pc->callback = &idetape_pc_callback; } /* * idetape_queue_pc_tail is based on the following functions: * * ide_do_drive_cmd from ide.c * cdrom_queue_request and cdrom_queue_packet_command from ide-cd.c * * We add a special packet command request to the tail of the request * queue, and wait for it to be serviced. * * This is not to be called from within the request handling part * of the driver ! We allocate here data in the stack, and it is valid * until the request is finished. This is not the case for the bottom * part of the driver, where we are always leaving the functions to wait * for an interrupt or a timer event. * * From the bottom part of the driver, we should allocate safe memory * using idetape_next_pc_storage and idetape_next_rq_storage, and add * the request to the request list without waiting for it to be serviced ! * In that case, we usually use idetape_queue_pc_head. */ static int __idetape_queue_pc_tail (ide_drive_t *drive, idetape_pc_t *pc) { struct ide_tape_obj *tape = drive->driver_data; struct request rq; idetape_init_rq(&rq, REQ_IDETAPE_PC1); rq.buffer = (char *) pc; rq.rq_disk = tape->disk; return ide_do_drive_cmd(drive, &rq, ide_wait); } static void idetape_create_load_unload_cmd (ide_drive_t *drive, idetape_pc_t *pc,int cmd) { idetape_init_pc(pc); pc->c[0] = IDETAPE_LOAD_UNLOAD_CMD; pc->c[4] = cmd; set_bit(PC_WAIT_FOR_DSC, &pc->flags); pc->callback = &idetape_pc_callback; } static int idetape_wait_ready(ide_drive_t *drive, unsigned long timeout) { idetape_tape_t *tape = drive->driver_data; idetape_pc_t pc; int load_attempted = 0; /* * Wait for the tape to become ready */ set_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags); timeout += jiffies; while (time_before(jiffies, timeout)) { idetape_create_test_unit_ready_cmd(&pc); if (!__idetape_queue_pc_tail(drive, &pc)) return 0; if ((tape->sense_key == 2 && tape->asc == 4 && tape->ascq == 2) || (tape->asc == 0x3A)) { /* no media */ if (load_attempted) return -ENOMEDIUM; idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK); __idetape_queue_pc_tail(drive, &pc); load_attempted = 1; /* not about to be ready */ } else if (!(tape->sense_key == 2 && tape->asc == 4 && (tape->ascq == 1 || tape->ascq == 8))) return -EIO; msleep(100); } return -EIO; } static int idetape_queue_pc_tail (ide_drive_t *drive,idetape_pc_t *pc) { return __idetape_queue_pc_tail(drive, pc); } static int idetape_flush_tape_buffers (ide_drive_t *drive) { idetape_pc_t pc; int rc; idetape_create_write_filemark_cmd(drive, &pc, 0); if ((rc = idetape_queue_pc_tail(drive, &pc))) return rc; idetape_wait_ready(drive, 60 * 5 * HZ); return 0; } static void idetape_create_read_position_cmd (idetape_pc_t *pc) { idetape_init_pc(pc); pc->c[0] = IDETAPE_READ_POSITION_CMD; pc->request_transfer = 20; pc->callback = &idetape_read_position_callback; } static int idetape_read_position (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; idetape_pc_t pc; int position; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 4) printk(KERN_INFO "ide-tape: Reached idetape_read_position\n"); #endif /* IDETAPE_DEBUG_LOG */ idetape_create_read_position_cmd(&pc); if (idetape_queue_pc_tail(drive, &pc)) return -1; position = tape->first_frame_position; return position; } static void idetape_create_locate_cmd (ide_drive_t *drive, idetape_pc_t *pc, unsigned int block, u8 partition, int skip) { idetape_init_pc(pc); pc->c[0] = IDETAPE_LOCATE_CMD; pc->c[1] = 2; put_unaligned(htonl(block), (unsigned int *) &pc->c[3]); pc->c[8] = partition; set_bit(PC_WAIT_FOR_DSC, &pc->flags); pc->callback = &idetape_pc_callback; } static int idetape_create_prevent_cmd (ide_drive_t *drive, idetape_pc_t *pc, int prevent) { idetape_tape_t *tape = drive->driver_data; if (!tape->capabilities.lock) return 0; idetape_init_pc(pc); pc->c[0] = IDETAPE_PREVENT_CMD; pc->c[4] = prevent; pc->callback = &idetape_pc_callback; return 1; } static int __idetape_discard_read_pipeline (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; unsigned long flags; int cnt; if (tape->chrdev_direction != idetape_direction_read) return 0; /* Remove merge stage. */ cnt = tape->merge_stage_size / tape->tape_block_size; if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags)) ++cnt; /* Filemarks count as 1 sector */ tape->merge_stage_size = 0; if (tape->merge_stage != NULL) { __idetape_kfree_stage(tape->merge_stage); tape->merge_stage = NULL; } /* Clear pipeline flags. */ clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags); tape->chrdev_direction = idetape_direction_none; /* Remove pipeline stages. */ if (tape->first_stage == NULL) return 0; spin_lock_irqsave(&tape->spinlock, flags); tape->next_stage = NULL; if (idetape_pipeline_active(tape)) idetape_wait_for_request(drive, tape->active_data_request); spin_unlock_irqrestore(&tape->spinlock, flags); while (tape->first_stage != NULL) { struct request *rq_ptr = &tape->first_stage->rq; cnt += rq_ptr->nr_sectors - rq_ptr->current_nr_sectors; if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK) ++cnt; idetape_remove_stage_head(drive); } tape->nr_pending_stages = 0; tape->max_stages = tape->min_pipeline; return cnt; } /* * idetape_position_tape positions the tape to the requested block * using the LOCATE packet command. A READ POSITION command is then * issued to check where we are positioned. * * Like all higher level operations, we queue the commands at the tail * of the request queue and wait for their completion. * */ static int idetape_position_tape (ide_drive_t *drive, unsigned int block, u8 partition, int skip) { idetape_tape_t *tape = drive->driver_data; int retval; idetape_pc_t pc; if (tape->chrdev_direction == idetape_direction_read) __idetape_discard_read_pipeline(drive); idetape_wait_ready(drive, 60 * 5 * HZ); idetape_create_locate_cmd(drive, &pc, block, partition, skip); retval = idetape_queue_pc_tail(drive, &pc); if (retval) return (retval); idetape_create_read_position_cmd(&pc); return (idetape_queue_pc_tail(drive, &pc)); } static void idetape_discard_read_pipeline (ide_drive_t *drive, int restore_position) { idetape_tape_t *tape = drive->driver_data; int cnt; int seek, position; cnt = __idetape_discard_read_pipeline(drive); if (restore_position) { position = idetape_read_position(drive); seek = position > cnt ? position - cnt : 0; if (idetape_position_tape(drive, seek, 0, 0)) { printk(KERN_INFO "ide-tape: %s: position_tape failed in discard_pipeline()\n", tape->name); return; } } } /* * idetape_queue_rw_tail generates a read/write request for the block * device interface and wait for it to be serviced. */ static int idetape_queue_rw_tail(ide_drive_t *drive, int cmd, int blocks, struct idetape_bh *bh) { idetape_tape_t *tape = drive->driver_data; struct request rq; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 2) printk(KERN_INFO "ide-tape: idetape_queue_rw_tail: cmd=%d\n",cmd); #endif /* IDETAPE_DEBUG_LOG */ #if IDETAPE_DEBUG_BUGS if (idetape_pipeline_active(tape)) { printk(KERN_ERR "ide-tape: bug: the pipeline is active in idetape_queue_rw_tail\n"); return (0); } #endif /* IDETAPE_DEBUG_BUGS */ idetape_init_rq(&rq, cmd); rq.rq_disk = tape->disk; rq.special = (void *)bh; rq.sector = tape->first_frame_position; rq.nr_sectors = rq.current_nr_sectors = blocks; (void) ide_do_drive_cmd(drive, &rq, ide_wait); if ((cmd & (REQ_IDETAPE_READ | REQ_IDETAPE_WRITE)) == 0) return 0; if (tape->merge_stage) idetape_init_merge_stage(tape); if (rq.errors == IDETAPE_ERROR_GENERAL) return -EIO; return (tape->tape_block_size * (blocks-rq.current_nr_sectors)); } /* * idetape_insert_pipeline_into_queue is used to start servicing the * pipeline stages, starting from tape->next_stage. */ static void idetape_insert_pipeline_into_queue (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; if (tape->next_stage == NULL) return; if (!idetape_pipeline_active(tape)) { set_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags); idetape_active_next_stage(drive); (void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end); } } static void idetape_create_inquiry_cmd (idetape_pc_t *pc) { idetape_init_pc(pc); pc->c[0] = IDETAPE_INQUIRY_CMD; pc->c[4] = pc->request_transfer = 254; pc->callback = &idetape_pc_callback; } static void idetape_create_rewind_cmd (ide_drive_t *drive, idetape_pc_t *pc) { idetape_init_pc(pc); pc->c[0] = IDETAPE_REWIND_CMD; set_bit(PC_WAIT_FOR_DSC, &pc->flags); pc->callback = &idetape_pc_callback; } #if 0 static void idetape_create_mode_select_cmd (idetape_pc_t *pc, int length) { idetape_init_pc(pc); set_bit(PC_WRITING, &pc->flags); pc->c[0] = IDETAPE_MODE_SELECT_CMD; pc->c[1] = 0x10; put_unaligned(htons(length), (unsigned short *) &pc->c[3]); pc->request_transfer = 255; pc->callback = &idetape_pc_callback; } #endif static void idetape_create_erase_cmd (idetape_pc_t *pc) { idetape_init_pc(pc); pc->c[0] = IDETAPE_ERASE_CMD; pc->c[1] = 1; set_bit(PC_WAIT_FOR_DSC, &pc->flags); pc->callback = &idetape_pc_callback; } static void idetape_create_space_cmd (idetape_pc_t *pc,int count, u8 cmd) { idetape_init_pc(pc); pc->c[0] = IDETAPE_SPACE_CMD; put_unaligned(htonl(count), (unsigned int *) &pc->c[1]); pc->c[1] = cmd; set_bit(PC_WAIT_FOR_DSC, &pc->flags); pc->callback = &idetape_pc_callback; } static void idetape_wait_first_stage (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; unsigned long flags; if (tape->first_stage == NULL) return; spin_lock_irqsave(&tape->spinlock, flags); if (tape->active_stage == tape->first_stage) idetape_wait_for_request(drive, tape->active_data_request); spin_unlock_irqrestore(&tape->spinlock, flags); } /* * idetape_add_chrdev_write_request tries to add a character device * originated write request to our pipeline. In case we don't succeed, * we revert to non-pipelined operation mode for this request. * * 1. Try to allocate a new pipeline stage. * 2. If we can't, wait for more and more requests to be serviced * and try again each time. * 3. If we still can't allocate a stage, fallback to * non-pipelined operation mode for this request. */ static int idetape_add_chrdev_write_request (ide_drive_t *drive, int blocks) { idetape_tape_t *tape = drive->driver_data; idetape_stage_t *new_stage; unsigned long flags; struct request *rq; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 3) printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_write_request\n"); #endif /* IDETAPE_DEBUG_LOG */ /* * Attempt to allocate a new stage. * Pay special attention to possible race conditions. */ while ((new_stage = idetape_kmalloc_stage(tape)) == NULL) { spin_lock_irqsave(&tape->spinlock, flags); if (idetape_pipeline_active(tape)) { idetape_wait_for_request(drive, tape->active_data_request); spin_unlock_irqrestore(&tape->spinlock, flags); } else { spin_unlock_irqrestore(&tape->spinlock, flags); idetape_insert_pipeline_into_queue(drive); if (idetape_pipeline_active(tape)) continue; /* * Linux is short on memory. Fallback to * non-pipelined operation mode for this request. */ return idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh); } } rq = &new_stage->rq; idetape_init_rq(rq, REQ_IDETAPE_WRITE); /* Doesn't actually matter - We always assume sequential access */ rq->sector = tape->first_frame_position; rq->nr_sectors = rq->current_nr_sectors = blocks; idetape_switch_buffers(tape, new_stage); idetape_add_stage_tail(drive, new_stage); tape->pipeline_head++; #if USE_IOTRACE IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor); #endif calculate_speeds(drive); /* * Estimate whether the tape has stopped writing by checking * if our write pipeline is currently empty. If we are not * writing anymore, wait for the pipeline to be full enough * (90%) before starting to service requests, so that we will * be able to keep up with the higher speeds of the tape. */ if (!idetape_pipeline_active(tape)) { if (tape->nr_stages >= tape->max_stages * 9 / 10 || tape->nr_stages >= tape->max_stages - tape->uncontrolled_pipeline_head_speed * 3 * 1024 / tape->tape_block_size) { tape->measure_insert_time = 1; tape->insert_time = jiffies; tape->insert_size = 0; tape->insert_speed = 0; idetape_insert_pipeline_into_queue(drive); } } if (test_and_clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags)) /* Return a deferred error */ return -EIO; return blocks; } /* * idetape_wait_for_pipeline will wait until all pending pipeline * requests are serviced. Typically called on device close. */ static void idetape_wait_for_pipeline (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; unsigned long flags; while (tape->next_stage || idetape_pipeline_active(tape)) { idetape_insert_pipeline_into_queue(drive); spin_lock_irqsave(&tape->spinlock, flags); if (idetape_pipeline_active(tape)) idetape_wait_for_request(drive, tape->active_data_request); spin_unlock_irqrestore(&tape->spinlock, flags); } } static void idetape_empty_write_pipeline (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; int blocks, min; struct idetape_bh *bh; #if IDETAPE_DEBUG_BUGS if (tape->chrdev_direction != idetape_direction_write) { printk(KERN_ERR "ide-tape: bug: Trying to empty write pipeline, but we are not writing.\n"); return; } if (tape->merge_stage_size > tape->stage_size) { printk(KERN_ERR "ide-tape: bug: merge_buffer too big\n"); tape->merge_stage_size = tape->stage_size; } #endif /* IDETAPE_DEBUG_BUGS */ if (tape->merge_stage_size) { blocks = tape->merge_stage_size / tape->tape_block_size; if (tape->merge_stage_size % tape->tape_block_size) { unsigned int i; blocks++; i = tape->tape_block_size - tape->merge_stage_size % tape->tape_block_size; bh = tape->bh->b_reqnext; while (bh) { atomic_set(&bh->b_count, 0); bh = bh->b_reqnext; } bh = tape->bh; while (i) { if (bh == NULL) { printk(KERN_INFO "ide-tape: bug, bh NULL\n"); break; } min = min(i, (unsigned int)(bh->b_size - atomic_read(&bh->b_count))); memset(bh->b_data + atomic_read(&bh->b_count), 0, min); atomic_add(min, &bh->b_count); i -= min; bh = bh->b_reqnext; } } (void) idetape_add_chrdev_write_request(drive, blocks); tape->merge_stage_size = 0; } idetape_wait_for_pipeline(drive); if (tape->merge_stage != NULL) { __idetape_kfree_stage(tape->merge_stage); tape->merge_stage = NULL; } clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags); tape->chrdev_direction = idetape_direction_none; /* * On the next backup, perform the feedback loop again. * (I don't want to keep sense information between backups, * as some systems are constantly on, and the system load * can be totally different on the next backup). */ tape->max_stages = tape->min_pipeline; #if IDETAPE_DEBUG_BUGS if (tape->first_stage != NULL || tape->next_stage != NULL || tape->last_stage != NULL || tape->nr_stages != 0) { printk(KERN_ERR "ide-tape: ide-tape pipeline bug, " "first_stage %p, next_stage %p, " "last_stage %p, nr_stages %d\n", tape->first_stage, tape->next_stage, tape->last_stage, tape->nr_stages); } #endif /* IDETAPE_DEBUG_BUGS */ } static void idetape_restart_speed_control (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; tape->restart_speed_control_req = 0; tape->pipeline_head = 0; tape->controlled_last_pipeline_head = tape->uncontrolled_last_pipeline_head = 0; tape->controlled_previous_pipeline_head = tape->uncontrolled_previous_pipeline_head = 0; tape->pipeline_head_speed = tape->controlled_pipeline_head_speed = 5000; tape->uncontrolled_pipeline_head_speed = 0; tape->controlled_pipeline_head_time = tape->uncontrolled_pipeline_head_time = jiffies; tape->controlled_previous_head_time = tape->uncontrolled_previous_head_time = jiffies; } static int idetape_initiate_read (ide_drive_t *drive, int max_stages) { idetape_tape_t *tape = drive->driver_data; idetape_stage_t *new_stage; struct request rq; int bytes_read; int blocks = tape->capabilities.ctl; /* Initialize read operation */ if (tape->chrdev_direction != idetape_direction_read) { if (tape->chrdev_direction == idetape_direction_write) { idetape_empty_write_pipeline(drive); idetape_flush_tape_buffers(drive); } #if IDETAPE_DEBUG_BUGS if (tape->merge_stage || tape->merge_stage_size) { printk (KERN_ERR "ide-tape: merge_stage_size should be 0 now\n"); tape->merge_stage_size = 0; } #endif /* IDETAPE_DEBUG_BUGS */ if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL) return -ENOMEM; tape->chrdev_direction = idetape_direction_read; /* * Issue a read 0 command to ensure that DSC handshake * is switched from completion mode to buffer available * mode. * No point in issuing this if DSC overlap isn't supported, * some drives (Seagate STT3401A) will return an error. */ if (drive->dsc_overlap) { bytes_read = idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, 0, tape->merge_stage->bh); if (bytes_read < 0) { __idetape_kfree_stage(tape->merge_stage); tape->merge_stage = NULL; tape->chrdev_direction = idetape_direction_none; return bytes_read; } } } if (tape->restart_speed_control_req) idetape_restart_speed_control(drive); idetape_init_rq(&rq, REQ_IDETAPE_READ); rq.sector = tape->first_frame_position; rq.nr_sectors = rq.current_nr_sectors = blocks; if (!test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags) && tape->nr_stages < max_stages) { new_stage = idetape_kmalloc_stage(tape); while (new_stage != NULL) { new_stage->rq = rq; idetape_add_stage_tail(drive, new_stage); if (tape->nr_stages >= max_stages) break; new_stage = idetape_kmalloc_stage(tape); } } if (!idetape_pipeline_active(tape)) { if (tape->nr_pending_stages >= 3 * max_stages / 4) { tape->measure_insert_time = 1; tape->insert_time = jiffies; tape->insert_size = 0; tape->insert_speed = 0; idetape_insert_pipeline_into_queue(drive); } } return 0; } /* * idetape_add_chrdev_read_request is called from idetape_chrdev_read * to service a character device read request and add read-ahead * requests to our pipeline. */ static int idetape_add_chrdev_read_request (ide_drive_t *drive,int blocks) { idetape_tape_t *tape = drive->driver_data; unsigned long flags; struct request *rq_ptr; int bytes_read; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 4) printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_read_request, %d blocks\n", blocks); #endif /* IDETAPE_DEBUG_LOG */ /* * If we are at a filemark, return a read length of 0 */ if (test_bit(IDETAPE_FILEMARK, &tape->flags)) return 0; /* * Wait for the next block to be available at the head * of the pipeline */ idetape_initiate_read(drive, tape->max_stages); if (tape->first_stage == NULL) { if (test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags)) return 0; return idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, blocks, tape->merge_stage->bh); } idetape_wait_first_stage(drive); rq_ptr = &tape->first_stage->rq; bytes_read = tape->tape_block_size * (rq_ptr->nr_sectors - rq_ptr->current_nr_sectors); rq_ptr->nr_sectors = rq_ptr->current_nr_sectors = 0; if (rq_ptr->errors == IDETAPE_ERROR_EOD) return 0; else { idetape_switch_buffers(tape, tape->first_stage); if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK) set_bit(IDETAPE_FILEMARK, &tape->flags); spin_lock_irqsave(&tape->spinlock, flags); idetape_remove_stage_head(drive); spin_unlock_irqrestore(&tape->spinlock, flags); tape->pipeline_head++; #if USE_IOTRACE IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor); #endif calculate_speeds(drive); } #if IDETAPE_DEBUG_BUGS if (bytes_read > blocks * tape->tape_block_size) { printk(KERN_ERR "ide-tape: bug: trying to return more bytes than requested\n"); bytes_read = blocks * tape->tape_block_size; } #endif /* IDETAPE_DEBUG_BUGS */ return (bytes_read); } static void idetape_pad_zeros (ide_drive_t *drive, int bcount) { idetape_tape_t *tape = drive->driver_data; struct idetape_bh *bh; int blocks; while (bcount) { unsigned int count; bh = tape->merge_stage->bh; count = min(tape->stage_size, bcount); bcount -= count; blocks = count / tape->tape_block_size; while (count) { atomic_set(&bh->b_count, min(count, (unsigned int)bh->b_size)); memset(bh->b_data, 0, atomic_read(&bh->b_count)); count -= atomic_read(&bh->b_count); bh = bh->b_reqnext; } idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh); } } static int idetape_pipeline_size (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; idetape_stage_t *stage; struct request *rq; int size = 0; idetape_wait_for_pipeline(drive); stage = tape->first_stage; while (stage != NULL) { rq = &stage->rq; size += tape->tape_block_size * (rq->nr_sectors-rq->current_nr_sectors); if (rq->errors == IDETAPE_ERROR_FILEMARK) size += tape->tape_block_size; stage = stage->next; } size += tape->merge_stage_size; return size; } /* * Rewinds the tape to the Beginning Of the current Partition (BOP). * * We currently support only one partition. */ static int idetape_rewind_tape (ide_drive_t *drive) { int retval; idetape_pc_t pc; #if IDETAPE_DEBUG_LOG idetape_tape_t *tape = drive->driver_data; if (tape->debug_level >= 2) printk(KERN_INFO "ide-tape: Reached idetape_rewind_tape\n"); #endif /* IDETAPE_DEBUG_LOG */ idetape_create_rewind_cmd(drive, &pc); retval = idetape_queue_pc_tail(drive, &pc); if (retval) return retval; idetape_create_read_position_cmd(&pc); retval = idetape_queue_pc_tail(drive, &pc); if (retval) return retval; return 0; } /* * Our special ide-tape ioctl's. * * Currently there aren't any ioctl's. * mtio.h compatible commands should be issued to the character device * interface. */ static int idetape_blkdev_ioctl(ide_drive_t *drive, unsigned int cmd, unsigned long arg) { idetape_tape_t *tape = drive->driver_data; idetape_config_t config; void __user *argp = (void __user *)arg; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 4) printk(KERN_INFO "ide-tape: Reached idetape_blkdev_ioctl\n"); #endif /* IDETAPE_DEBUG_LOG */ switch (cmd) { case 0x0340: if (copy_from_user(&config, argp, sizeof (idetape_config_t))) return -EFAULT; tape->best_dsc_rw_frequency = config.dsc_rw_frequency; tape->max_stages = config.nr_stages; break; case 0x0350: config.dsc_rw_frequency = (int) tape->best_dsc_rw_frequency; config.nr_stages = tape->max_stages; if (copy_to_user(argp, &config, sizeof (idetape_config_t))) return -EFAULT; break; default: return -EIO; } return 0; } /* * idetape_space_over_filemarks is now a bit more complicated than just * passing the command to the tape since we may have crossed some * filemarks during our pipelined read-ahead mode. * * As a minor side effect, the pipeline enables us to support MTFSFM when * the filemark is in our internal pipeline even if the tape doesn't * support spacing over filemarks in the reverse direction. */ static int idetape_space_over_filemarks (ide_drive_t *drive,short mt_op,int mt_count) { idetape_tape_t *tape = drive->driver_data; idetape_pc_t pc; unsigned long flags; int retval,count=0; if (mt_count == 0) return 0; if (MTBSF == mt_op || MTBSFM == mt_op) { if (!tape->capabilities.sprev) return -EIO; mt_count = - mt_count; } if (tape->chrdev_direction == idetape_direction_read) { /* * We have a read-ahead buffer. Scan it for crossed * filemarks. */ tape->merge_stage_size = 0; if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags)) ++count; while (tape->first_stage != NULL) { if (count == mt_count) { if (mt_op == MTFSFM) set_bit(IDETAPE_FILEMARK, &tape->flags); return 0; } spin_lock_irqsave(&tape->spinlock, flags); if (tape->first_stage == tape->active_stage) { /* * We have reached the active stage in the read pipeline. * There is no point in allowing the drive to continue * reading any farther, so we stop the pipeline. * * This section should be moved to a separate subroutine, * because a similar function is performed in * __idetape_discard_read_pipeline(), for example. */ tape->next_stage = NULL; spin_unlock_irqrestore(&tape->spinlock, flags); idetape_wait_first_stage(drive); tape->next_stage = tape->first_stage->next; } else spin_unlock_irqrestore(&tape->spinlock, flags); if (tape->first_stage->rq.errors == IDETAPE_ERROR_FILEMARK) ++count; idetape_remove_stage_head(drive); } idetape_discard_read_pipeline(drive, 0); } /* * The filemark was not found in our internal pipeline. * Now we can issue the space command. */ switch (mt_op) { case MTFSF: case MTBSF: idetape_create_space_cmd(&pc,mt_count-count,IDETAPE_SPACE_OVER_FILEMARK); return (idetape_queue_pc_tail(drive, &pc)); case MTFSFM: case MTBSFM: if (!tape->capabilities.sprev) return (-EIO); retval = idetape_space_over_filemarks(drive, MTFSF, mt_count-count); if (retval) return (retval); count = (MTBSFM == mt_op ? 1 : -1); return (idetape_space_over_filemarks(drive, MTFSF, count)); default: printk(KERN_ERR "ide-tape: MTIO operation %d not supported\n",mt_op); return (-EIO); } } /* * Our character device read / write functions. * * The tape is optimized to maximize throughput when it is transferring * an integral number of the "continuous transfer limit", which is * a parameter of the specific tape (26 KB on my particular tape). * (32 kB for Onstream) * * As of version 1.3 of the driver, the character device provides an * abstract continuous view of the media - any mix of block sizes (even 1 * byte) on the same backup/restore procedure is supported. The driver * will internally convert the requests to the recommended transfer unit, * so that an unmatch between the user's block size to the recommended * size will only result in a (slightly) increased driver overhead, but * will no longer hit performance. * This is not applicable to Onstream. */ static ssize_t idetape_chrdev_read (struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct ide_tape_obj *tape = ide_tape_f(file); ide_drive_t *drive = tape->drive; ssize_t bytes_read,temp, actually_read = 0, rc; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 3) printk(KERN_INFO "ide-tape: Reached idetape_chrdev_read, count %Zd\n", count); #endif /* IDETAPE_DEBUG_LOG */ if (tape->chrdev_direction != idetape_direction_read) { if (test_bit(IDETAPE_DETECT_BS, &tape->flags)) if (count > tape->tape_block_size && (count % tape->tape_block_size) == 0) tape->user_bs_factor = count / tape->tape_block_size; } if ((rc = idetape_initiate_read(drive, tape->max_stages)) < 0) return rc; if (count == 0) return (0); if (tape->merge_stage_size) { actually_read = min((unsigned int)(tape->merge_stage_size), (unsigned int)count); idetape_copy_stage_to_user(tape, buf, tape->merge_stage, actually_read); buf += actually_read; tape->merge_stage_size -= actually_read; count -= actually_read; } while (count >= tape->stage_size) { bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl); if (bytes_read <= 0) goto finish; idetape_copy_stage_to_user(tape, buf, tape->merge_stage, bytes_read); buf += bytes_read; count -= bytes_read; actually_read += bytes_read; } if (count) { bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl); if (bytes_read <= 0) goto finish; temp = min((unsigned long)count, (unsigned long)bytes_read); idetape_copy_stage_to_user(tape, buf, tape->merge_stage, temp); actually_read += temp; tape->merge_stage_size = bytes_read-temp; } finish: if (!actually_read && test_bit(IDETAPE_FILEMARK, &tape->flags)) { #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 2) printk(KERN_INFO "ide-tape: %s: spacing over filemark\n", tape->name); #endif idetape_space_over_filemarks(drive, MTFSF, 1); return 0; } return actually_read; } static ssize_t idetape_chrdev_write (struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct ide_tape_obj *tape = ide_tape_f(file); ide_drive_t *drive = tape->drive; ssize_t retval, actually_written = 0; /* The drive is write protected. */ if (tape->write_prot) return -EACCES; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 3) printk(KERN_INFO "ide-tape: Reached idetape_chrdev_write, " "count %Zd\n", count); #endif /* IDETAPE_DEBUG_LOG */ /* Initialize write operation */ if (tape->chrdev_direction != idetape_direction_write) { if (tape->chrdev_direction == idetape_direction_read) idetape_discard_read_pipeline(drive, 1); #if IDETAPE_DEBUG_BUGS if (tape->merge_stage || tape->merge_stage_size) { printk(KERN_ERR "ide-tape: merge_stage_size " "should be 0 now\n"); tape->merge_stage_size = 0; } #endif /* IDETAPE_DEBUG_BUGS */ if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL) return -ENOMEM; tape->chrdev_direction = idetape_direction_write; idetape_init_merge_stage(tape); /* * Issue a write 0 command to ensure that DSC handshake * is switched from completion mode to buffer available * mode. * No point in issuing this if DSC overlap isn't supported, * some drives (Seagate STT3401A) will return an error. */ if (drive->dsc_overlap) { retval = idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, 0, tape->merge_stage->bh); if (retval < 0) { __idetape_kfree_stage(tape->merge_stage); tape->merge_stage = NULL; tape->chrdev_direction = idetape_direction_none; return retval; } } } if (count == 0) return (0); if (tape->restart_speed_control_req) idetape_restart_speed_control(drive); if (tape->merge_stage_size) { #if IDETAPE_DEBUG_BUGS if (tape->merge_stage_size >= tape->stage_size) { printk(KERN_ERR "ide-tape: bug: merge buffer too big\n"); tape->merge_stage_size = 0; } #endif /* IDETAPE_DEBUG_BUGS */ actually_written = min((unsigned int)(tape->stage_size - tape->merge_stage_size), (unsigned int)count); idetape_copy_stage_from_user(tape, tape->merge_stage, buf, actually_written); buf += actually_written; tape->merge_stage_size += actually_written; count -= actually_written; if (tape->merge_stage_size == tape->stage_size) { tape->merge_stage_size = 0; retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl); if (retval <= 0) return (retval); } } while (count >= tape->stage_size) { idetape_copy_stage_from_user(tape, tape->merge_stage, buf, tape->stage_size); buf += tape->stage_size; count -= tape->stage_size; retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl); actually_written += tape->stage_size; if (retval <= 0) return (retval); } if (count) { actually_written += count; idetape_copy_stage_from_user(tape, tape->merge_stage, buf, count); tape->merge_stage_size += count; } return (actually_written); } static int idetape_write_filemark (ide_drive_t *drive) { idetape_pc_t pc; /* Write a filemark */ idetape_create_write_filemark_cmd(drive, &pc, 1); if (idetape_queue_pc_tail(drive, &pc)) { printk(KERN_ERR "ide-tape: Couldn't write a filemark\n"); return -EIO; } return 0; } /* * idetape_mtioctop is called from idetape_chrdev_ioctl when * the general mtio MTIOCTOP ioctl is requested. * * We currently support the following mtio.h operations: * * MTFSF - Space over mt_count filemarks in the positive direction. * The tape is positioned after the last spaced filemark. * * MTFSFM - Same as MTFSF, but the tape is positioned before the * last filemark. * * MTBSF - Steps background over mt_count filemarks, tape is * positioned before the last filemark. * * MTBSFM - Like MTBSF, only tape is positioned after the last filemark. * * Note: * * MTBSF and MTBSFM are not supported when the tape doesn't * support spacing over filemarks in the reverse direction. * In this case, MTFSFM is also usually not supported (it is * supported in the rare case in which we crossed the filemark * during our read-ahead pipelined operation mode). * * MTWEOF - Writes mt_count filemarks. Tape is positioned after * the last written filemark. * * MTREW - Rewinds tape. * * MTLOAD - Loads the tape. * * MTOFFL - Puts the tape drive "Offline": Rewinds the tape and * MTUNLOAD prevents further access until the media is replaced. * * MTNOP - Flushes tape buffers. * * MTRETEN - Retension media. This typically consists of one end * to end pass on the media. * * MTEOM - Moves to the end of recorded data. * * MTERASE - Erases tape. * * MTSETBLK - Sets the user block size to mt_count bytes. If * mt_count is 0, we will attempt to autodetect * the block size. * * MTSEEK - Positions the tape in a specific block number, where * each block is assumed to contain which user_block_size * bytes. * * MTSETPART - Switches to another tape partition. * * MTLOCK - Locks the tape door. * * MTUNLOCK - Unlocks the tape door. * * The following commands are currently not supported: * * MTFSS, MTBSS, MTWSM, MTSETDENSITY, * MTSETDRVBUFFER, MT_ST_BOOLEANS, MT_ST_WRITE_THRESHOLD. */ static int idetape_mtioctop (ide_drive_t *drive,short mt_op,int mt_count) { idetape_tape_t *tape = drive->driver_data; idetape_pc_t pc; int i,retval; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 1) printk(KERN_INFO "ide-tape: Handling MTIOCTOP ioctl: " "mt_op=%d, mt_count=%d\n", mt_op, mt_count); #endif /* IDETAPE_DEBUG_LOG */ /* * Commands which need our pipelined read-ahead stages. */ switch (mt_op) { case MTFSF: case MTFSFM: case MTBSF: case MTBSFM: if (!mt_count) return (0); return (idetape_space_over_filemarks(drive,mt_op,mt_count)); default: break; } switch (mt_op) { case MTWEOF: if (tape->write_prot) return -EACCES; idetape_discard_read_pipeline(drive, 1); for (i = 0; i < mt_count; i++) { retval = idetape_write_filemark(drive); if (retval) return retval; } return (0); case MTREW: idetape_discard_read_pipeline(drive, 0); if (idetape_rewind_tape(drive)) return -EIO; return 0; case MTLOAD: idetape_discard_read_pipeline(drive, 0); idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK); return (idetape_queue_pc_tail(drive, &pc)); case MTUNLOAD: case MTOFFL: /* * If door is locked, attempt to unlock before * attempting to eject. */ if (tape->door_locked) { if (idetape_create_prevent_cmd(drive, &pc, 0)) if (!idetape_queue_pc_tail(drive, &pc)) tape->door_locked = DOOR_UNLOCKED; } idetape_discard_read_pipeline(drive, 0); idetape_create_load_unload_cmd(drive, &pc,!IDETAPE_LU_LOAD_MASK); retval = idetape_queue_pc_tail(drive, &pc); if (!retval) clear_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags); return retval; case MTNOP: idetape_discard_read_pipeline(drive, 0); return (idetape_flush_tape_buffers(drive)); case MTRETEN: idetape_discard_read_pipeline(drive, 0); idetape_create_load_unload_cmd(drive, &pc,IDETAPE_LU_RETENSION_MASK | IDETAPE_LU_LOAD_MASK); return (idetape_queue_pc_tail(drive, &pc)); case MTEOM: idetape_create_space_cmd(&pc, 0, IDETAPE_SPACE_TO_EOD); return (idetape_queue_pc_tail(drive, &pc)); case MTERASE: (void) idetape_rewind_tape(drive); idetape_create_erase_cmd(&pc); return (idetape_queue_pc_tail(drive, &pc)); case MTSETBLK: if (mt_count) { if (mt_count < tape->tape_block_size || mt_count % tape->tape_block_size) return -EIO; tape->user_bs_factor = mt_count / tape->tape_block_size; clear_bit(IDETAPE_DETECT_BS, &tape->flags); } else set_bit(IDETAPE_DETECT_BS, &tape->flags); return 0; case MTSEEK: idetape_discard_read_pipeline(drive, 0); return idetape_position_tape(drive, mt_count * tape->user_bs_factor, tape->partition, 0); case MTSETPART: idetape_discard_read_pipeline(drive, 0); return (idetape_position_tape(drive, 0, mt_count, 0)); case MTFSR: case MTBSR: case MTLOCK: if (!idetape_create_prevent_cmd(drive, &pc, 1)) return 0; retval = idetape_queue_pc_tail(drive, &pc); if (retval) return retval; tape->door_locked = DOOR_EXPLICITLY_LOCKED; return 0; case MTUNLOCK: if (!idetape_create_prevent_cmd(drive, &pc, 0)) return 0; retval = idetape_queue_pc_tail(drive, &pc); if (retval) return retval; tape->door_locked = DOOR_UNLOCKED; return 0; default: printk(KERN_ERR "ide-tape: MTIO operation %d not " "supported\n", mt_op); return (-EIO); } } /* * Our character device ioctls. * * General mtio.h magnetic io commands are supported here, and not in * the corresponding block interface. * * The following ioctls are supported: * * MTIOCTOP - Refer to idetape_mtioctop for detailed description. * * MTIOCGET - The mt_dsreg field in the returned mtget structure * will be set to (user block size in bytes << * MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK. * * The mt_blkno is set to the current user block number. * The other mtget fields are not supported. * * MTIOCPOS - The current tape "block position" is returned. We * assume that each block contains user_block_size * bytes. * * Our own ide-tape ioctls are supported on both interfaces. */ static int idetape_chrdev_ioctl (struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct ide_tape_obj *tape = ide_tape_f(file); ide_drive_t *drive = tape->drive; struct mtop mtop; struct mtget mtget; struct mtpos mtpos; int block_offset = 0, position = tape->first_frame_position; void __user *argp = (void __user *)arg; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 3) printk(KERN_INFO "ide-tape: Reached idetape_chrdev_ioctl, " "cmd=%u\n", cmd); #endif /* IDETAPE_DEBUG_LOG */ tape->restart_speed_control_req = 1; if (tape->chrdev_direction == idetape_direction_write) { idetape_empty_write_pipeline(drive); idetape_flush_tape_buffers(drive); } if (cmd == MTIOCGET || cmd == MTIOCPOS) { block_offset = idetape_pipeline_size(drive) / (tape->tape_block_size * tape->user_bs_factor); if ((position = idetape_read_position(drive)) < 0) return -EIO; } switch (cmd) { case MTIOCTOP: if (copy_from_user(&mtop, argp, sizeof (struct mtop))) return -EFAULT; return (idetape_mtioctop(drive,mtop.mt_op,mtop.mt_count)); case MTIOCGET: memset(&mtget, 0, sizeof (struct mtget)); mtget.mt_type = MT_ISSCSI2; mtget.mt_blkno = position / tape->user_bs_factor - block_offset; mtget.mt_dsreg = ((tape->tape_block_size * tape->user_bs_factor) << MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK; if (tape->drv_write_prot) { mtget.mt_gstat |= GMT_WR_PROT(0xffffffff); } if (copy_to_user(argp, &mtget, sizeof(struct mtget))) return -EFAULT; return 0; case MTIOCPOS: mtpos.mt_blkno = position / tape->user_bs_factor - block_offset; if (copy_to_user(argp, &mtpos, sizeof(struct mtpos))) return -EFAULT; return 0; default: if (tape->chrdev_direction == idetape_direction_read) idetape_discard_read_pipeline(drive, 1); return idetape_blkdev_ioctl(drive, cmd, arg); } } static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive); /* * Our character device open function. */ static int idetape_chrdev_open (struct inode *inode, struct file *filp) { unsigned int minor = iminor(inode), i = minor & ~0xc0; ide_drive_t *drive; idetape_tape_t *tape; idetape_pc_t pc; int retval; /* * We really want to do nonseekable_open(inode, filp); here, but some * versions of tar incorrectly call lseek on tapes and bail out if that * fails. So we disallow pread() and pwrite(), but permit lseeks. */ filp->f_mode &= ~(FMODE_PREAD | FMODE_PWRITE); #if IDETAPE_DEBUG_LOG printk(KERN_INFO "ide-tape: Reached idetape_chrdev_open\n"); #endif /* IDETAPE_DEBUG_LOG */ if (i >= MAX_HWIFS * MAX_DRIVES) return -ENXIO; if (!(tape = ide_tape_chrdev_get(i))) return -ENXIO; drive = tape->drive; filp->private_data = tape; if (test_and_set_bit(IDETAPE_BUSY, &tape->flags)) { retval = -EBUSY; goto out_put_tape; } retval = idetape_wait_ready(drive, 60 * HZ); if (retval) { clear_bit(IDETAPE_BUSY, &tape->flags); printk(KERN_ERR "ide-tape: %s: drive not ready\n", tape->name); goto out_put_tape; } idetape_read_position(drive); if (!test_bit(IDETAPE_ADDRESS_VALID, &tape->flags)) (void)idetape_rewind_tape(drive); if (tape->chrdev_direction != idetape_direction_read) clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags); /* Read block size and write protect status from drive. */ idetape_get_blocksize_from_block_descriptor(drive); /* Set write protect flag if device is opened as read-only. */ if ((filp->f_flags & O_ACCMODE) == O_RDONLY) tape->write_prot = 1; else tape->write_prot = tape->drv_write_prot; /* Make sure drive isn't write protected if user wants to write. */ if (tape->write_prot) { if ((filp->f_flags & O_ACCMODE) == O_WRONLY || (filp->f_flags & O_ACCMODE) == O_RDWR) { clear_bit(IDETAPE_BUSY, &tape->flags); retval = -EROFS; goto out_put_tape; } } /* * Lock the tape drive door so user can't eject. */ if (tape->chrdev_direction == idetape_direction_none) { if (idetape_create_prevent_cmd(drive, &pc, 1)) { if (!idetape_queue_pc_tail(drive, &pc)) { if (tape->door_locked != DOOR_EXPLICITLY_LOCKED) tape->door_locked = DOOR_LOCKED; } } } idetape_restart_speed_control(drive); tape->restart_speed_control_req = 0; return 0; out_put_tape: ide_tape_put(tape); return retval; } static void idetape_write_release (ide_drive_t *drive, unsigned int minor) { idetape_tape_t *tape = drive->driver_data; idetape_empty_write_pipeline(drive); tape->merge_stage = __idetape_kmalloc_stage(tape, 1, 0); if (tape->merge_stage != NULL) { idetape_pad_zeros(drive, tape->tape_block_size * (tape->user_bs_factor - 1)); __idetape_kfree_stage(tape->merge_stage); tape->merge_stage = NULL; } idetape_write_filemark(drive); idetape_flush_tape_buffers(drive); idetape_flush_tape_buffers(drive); } /* * Our character device release function. */ static int idetape_chrdev_release (struct inode *inode, struct file *filp) { struct ide_tape_obj *tape = ide_tape_f(filp); ide_drive_t *drive = tape->drive; idetape_pc_t pc; unsigned int minor = iminor(inode); lock_kernel(); tape = drive->driver_data; #if IDETAPE_DEBUG_LOG if (tape->debug_level >= 3) printk(KERN_INFO "ide-tape: Reached idetape_chrdev_release\n"); #endif /* IDETAPE_DEBUG_LOG */ if (tape->chrdev_direction == idetape_direction_write) idetape_write_release(drive, minor); if (tape->chrdev_direction == idetape_direction_read) { if (minor < 128) idetape_discard_read_pipeline(drive, 1); else idetape_wait_for_pipeline(drive); } if (tape->cache_stage != NULL) { __idetape_kfree_stage(tape->cache_stage); tape->cache_stage = NULL; } if (minor < 128 && test_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags)) (void) idetape_rewind_tape(drive); if (tape->chrdev_direction == idetape_direction_none) { if (tape->door_locked == DOOR_LOCKED) { if (idetape_create_prevent_cmd(drive, &pc, 0)) { if (!idetape_queue_pc_tail(drive, &pc)) tape->door_locked = DOOR_UNLOCKED; } } } clear_bit(IDETAPE_BUSY, &tape->flags); ide_tape_put(tape); unlock_kernel(); return 0; } /* * idetape_identify_device is called to check the contents of the * ATAPI IDENTIFY command results. We return: * * 1 If the tape can be supported by us, based on the information * we have so far. * * 0 If this tape driver is not currently supported by us. */ static int idetape_identify_device (ide_drive_t *drive) { struct idetape_id_gcw gcw; struct hd_driveid *id = drive->id; #if IDETAPE_DEBUG_INFO unsigned short mask,i; #endif /* IDETAPE_DEBUG_INFO */ if (drive->id_read == 0) return 1; *((unsigned short *) &gcw) = id->config; #if IDETAPE_DEBUG_INFO printk(KERN_INFO "ide-tape: Dumping ATAPI Identify Device tape parameters\n"); printk(KERN_INFO "ide-tape: Protocol Type: "); switch (gcw.protocol) { case 0: case 1: printk("ATA\n");break; case 2: printk("ATAPI\n");break; case 3: printk("Reserved (Unknown to ide-tape)\n");break; } printk(KERN_INFO "ide-tape: Device Type: %x - ",gcw.device_type); switch (gcw.device_type) { case 0: printk("Direct-access Device\n");break; case 1: printk("Streaming Tape Device\n");break; case 2: case 3: case 4: printk("Reserved\n");break; case 5: printk("CD-ROM Device\n");break; case 6: printk("Reserved\n"); case 7: printk("Optical memory Device\n");break; case 0x1f: printk("Unknown or no Device type\n");break; default: printk("Reserved\n"); } printk(KERN_INFO "ide-tape: Removable: %s",gcw.removable ? "Yes\n":"No\n"); printk(KERN_INFO "ide-tape: Command Packet DRQ Type: "); switch (gcw.drq_type) { case 0: printk("Microprocessor DRQ\n");break; case 1: printk("Interrupt DRQ\n");break; case 2: printk("Accelerated DRQ\n");break; case 3: printk("Reserved\n");break; } printk(KERN_INFO "ide-tape: Command Packet Size: "); switch (gcw.packet_size) { case 0: printk("12 bytes\n");break; case 1: printk("16 bytes\n");break; default: printk("Reserved\n");break; } printk(KERN_INFO "ide-tape: Model: %.40s\n",id->model); printk(KERN_INFO "ide-tape: Firmware Revision: %.8s\n",id->fw_rev); printk(KERN_INFO "ide-tape: Serial Number: %.20s\n",id->serial_no); printk(KERN_INFO "ide-tape: Write buffer size: %d bytes\n",id->buf_size*512); printk(KERN_INFO "ide-tape: DMA: %s",id->capability & 0x01 ? "Yes\n":"No\n"); printk(KERN_INFO "ide-tape: LBA: %s",id->capability & 0x02 ? "Yes\n":"No\n"); printk(KERN_INFO "ide-tape: IORDY can be disabled: %s",id->capability & 0x04 ? "Yes\n":"No\n"); printk(KERN_INFO "ide-tape: IORDY supported: %s",id->capability & 0x08 ? "Yes\n":"Unknown\n"); printk(KERN_INFO "ide-tape: ATAPI overlap supported: %s",id->capability & 0x20 ? "Yes\n":"No\n"); printk(KERN_INFO "ide-tape: PIO Cycle Timing Category: %d\n",id->tPIO); printk(KERN_INFO "ide-tape: DMA Cycle Timing Category: %d\n",id->tDMA); printk(KERN_INFO "ide-tape: Single Word DMA supported modes: "); for (i=0,mask=1;i<8;i++,mask=mask << 1) { if (id->dma_1word & mask) printk("%d ",i); if (id->dma_1word & (mask << 8)) printk("(active) "); } printk("\n"); printk(KERN_INFO "ide-tape: Multi Word DMA supported modes: "); for (i=0,mask=1;i<8;i++,mask=mask << 1) { if (id->dma_mword & mask) printk("%d ",i); if (id->dma_mword & (mask << 8)) printk("(active) "); } printk("\n"); if (id->field_valid & 0x0002) { printk(KERN_INFO "ide-tape: Enhanced PIO Modes: %s\n", id->eide_pio_modes & 1 ? "Mode 3":"None"); printk(KERN_INFO "ide-tape: Minimum Multi-word DMA cycle per word: "); if (id->eide_dma_min == 0) printk("Not supported\n"); else printk("%d ns\n",id->eide_dma_min); printk(KERN_INFO "ide-tape: Manufacturer\'s Recommended Multi-word cycle: "); if (id->eide_dma_time == 0) printk("Not supported\n"); else printk("%d ns\n",id->eide_dma_time); printk(KERN_INFO "ide-tape: Minimum PIO cycle without IORDY: "); if (id->eide_pio == 0) printk("Not supported\n"); else printk("%d ns\n",id->eide_pio); printk(KERN_INFO "ide-tape: Minimum PIO cycle with IORDY: "); if (id->eide_pio_iordy == 0) printk("Not supported\n"); else printk("%d ns\n",id->eide_pio_iordy); } else printk(KERN_INFO "ide-tape: According to the device, fields 64-70 are not valid.\n"); #endif /* IDETAPE_DEBUG_INFO */ /* Check that we can support this device */ if (gcw.protocol !=2 ) printk(KERN_ERR "ide-tape: Protocol is not ATAPI\n"); else if (gcw.device_type != 1) printk(KERN_ERR "ide-tape: Device type is not set to tape\n"); else if (!gcw.removable) printk(KERN_ERR "ide-tape: The removable flag is not set\n"); else if (gcw.packet_size != 0) { printk(KERN_ERR "ide-tape: Packet size is not 12 bytes long\n"); if (gcw.packet_size == 1) printk(KERN_ERR "ide-tape: Sorry, padding to 16 bytes is still not supported\n"); } else return 1; return 0; } /* * Use INQUIRY to get the firmware revision */ static void idetape_get_inquiry_results (ide_drive_t *drive) { char *r; idetape_tape_t *tape = drive->driver_data; idetape_pc_t pc; idetape_inquiry_result_t *inquiry; idetape_create_inquiry_cmd(&pc); if (idetape_queue_pc_tail(drive, &pc)) { printk(KERN_ERR "ide-tape: %s: can't get INQUIRY results\n", tape->name); return; } inquiry = (idetape_inquiry_result_t *) pc.buffer; memcpy(tape->vendor_id, inquiry->vendor_id, 8); memcpy(tape->product_id, inquiry->product_id, 16); memcpy(tape->firmware_revision, inquiry->revision_level, 4); ide_fixstring(tape->vendor_id, 10, 0); ide_fixstring(tape->product_id, 18, 0); ide_fixstring(tape->firmware_revision, 6, 0); r = tape->firmware_revision; if (*(r + 1) == '.') tape->firmware_revision_num = (*r - '0') * 100 + (*(r + 2) - '0') * 10 + *(r + 3) - '0'; printk(KERN_INFO "ide-tape: %s <-> %s: %s %s rev %s\n", drive->name, tape->name, tape->vendor_id, tape->product_id, tape->firmware_revision); } /* * idetape_get_mode_sense_results asks the tape about its various * parameters. In particular, we will adjust our data transfer buffer * size to the recommended value as returned by the tape. */ static void idetape_get_mode_sense_results (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; idetape_pc_t pc; idetape_mode_parameter_header_t *header; idetape_capabilities_page_t *capabilities; idetape_create_mode_sense_cmd(&pc, IDETAPE_CAPABILITIES_PAGE); if (idetape_queue_pc_tail(drive, &pc)) { printk(KERN_ERR "ide-tape: Can't get tape parameters - assuming some default values\n"); tape->tape_block_size = 512; tape->capabilities.ctl = 52; tape->capabilities.speed = 450; tape->capabilities.buffer_size = 6 * 52; return; } header = (idetape_mode_parameter_header_t *) pc.buffer; capabilities = (idetape_capabilities_page_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t) + header->bdl); capabilities->max_speed = ntohs(capabilities->max_speed); capabilities->ctl = ntohs(capabilities->ctl); capabilities->speed = ntohs(capabilities->speed); capabilities->buffer_size = ntohs(capabilities->buffer_size); if (!capabilities->speed) { printk(KERN_INFO "ide-tape: %s: overriding capabilities->speed (assuming 650KB/sec)\n", drive->name); capabilities->speed = 650; } if (!capabilities->max_speed) { printk(KERN_INFO "ide-tape: %s: overriding capabilities->max_speed (assuming 650KB/sec)\n", drive->name); capabilities->max_speed = 650; } tape->capabilities = *capabilities; /* Save us a copy */ if (capabilities->blk512) tape->tape_block_size = 512; else if (capabilities->blk1024) tape->tape_block_size = 1024; #if IDETAPE_DEBUG_INFO printk(KERN_INFO "ide-tape: Dumping the results of the MODE SENSE packet command\n"); printk(KERN_INFO "ide-tape: Mode Parameter Header:\n"); printk(KERN_INFO "ide-tape: Mode Data Length - %d\n",header->mode_data_length); printk(KERN_INFO "ide-tape: Medium Type - %d\n",header->medium_type); printk(KERN_INFO "ide-tape: Device Specific Parameter - %d\n",header->dsp); printk(KERN_INFO "ide-tape: Block Descriptor Length - %d\n",header->bdl); printk(KERN_INFO "ide-tape: Capabilities and Mechanical Status Page:\n"); printk(KERN_INFO "ide-tape: Page code - %d\n",capabilities->page_code); printk(KERN_INFO "ide-tape: Page length - %d\n",capabilities->page_length); printk(KERN_INFO "ide-tape: Read only - %s\n",capabilities->ro ? "Yes":"No"); printk(KERN_INFO "ide-tape: Supports reverse space - %s\n",capabilities->sprev ? "Yes":"No"); printk(KERN_INFO "ide-tape: Supports erase initiated formatting - %s\n",capabilities->efmt ? "Yes":"No"); printk(KERN_INFO "ide-tape: Supports QFA two Partition format - %s\n",capabilities->qfa ? "Yes":"No"); printk(KERN_INFO "ide-tape: Supports locking the medium - %s\n",capabilities->lock ? "Yes":"No"); printk(KERN_INFO "ide-tape: The volume is currently locked - %s\n",capabilities->locked ? "Yes":"No"); printk(KERN_INFO "ide-tape: The device defaults in the prevent state - %s\n",capabilities->prevent ? "Yes":"No"); printk(KERN_INFO "ide-tape: Supports ejecting the medium - %s\n",capabilities->eject ? "Yes":"No"); printk(KERN_INFO "ide-tape: Supports error correction - %s\n",capabilities->ecc ? "Yes":"No"); printk(KERN_INFO "ide-tape: Supports data compression - %s\n",capabilities->cmprs ? "Yes":"No"); printk(KERN_INFO "ide-tape: Supports 512 bytes block size - %s\n",capabilities->blk512 ? "Yes":"No"); printk(KERN_INFO "ide-tape: Supports 1024 bytes block size - %s\n",capabilities->blk1024 ? "Yes":"No"); printk(KERN_INFO "ide-tape: Supports 32768 bytes block size / Restricted byte count for PIO transfers - %s\n",capabilities->blk32768 ? "Yes":"No"); printk(KERN_INFO "ide-tape: Maximum supported speed in KBps - %d\n",capabilities->max_speed); printk(KERN_INFO "ide-tape: Continuous transfer limits in blocks - %d\n",capabilities->ctl); printk(KERN_INFO "ide-tape: Current speed in KBps - %d\n",capabilities->speed); printk(KERN_INFO "ide-tape: Buffer size - %d\n",capabilities->buffer_size*512); #endif /* IDETAPE_DEBUG_INFO */ } /* * ide_get_blocksize_from_block_descriptor does a mode sense page 0 with block descriptor * and if it succeeds sets the tape block size with the reported value */ static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; idetape_pc_t pc; idetape_mode_parameter_header_t *header; idetape_parameter_block_descriptor_t *block_descrp; idetape_create_mode_sense_cmd(&pc, IDETAPE_BLOCK_DESCRIPTOR); if (idetape_queue_pc_tail(drive, &pc)) { printk(KERN_ERR "ide-tape: Can't get block descriptor\n"); if (tape->tape_block_size == 0) { printk(KERN_WARNING "ide-tape: Cannot deal with zero block size, assume 32k\n"); tape->tape_block_size = 32768; } return; } header = (idetape_mode_parameter_header_t *) pc.buffer; block_descrp = (idetape_parameter_block_descriptor_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t)); tape->tape_block_size =( block_descrp->length[0]<<16) + (block_descrp->length[1]<<8) + block_descrp->length[2]; tape->drv_write_prot = (header->dsp & 0x80) >> 7; #if IDETAPE_DEBUG_INFO printk(KERN_INFO "ide-tape: Adjusted block size - %d\n", tape->tape_block_size); #endif /* IDETAPE_DEBUG_INFO */ } static void idetape_add_settings (ide_drive_t *drive) { idetape_tape_t *tape = drive->driver_data; /* * drive setting name read/write ioctl ioctl data type min max mul_factor div_factor data pointer set function */ ide_add_setting(drive, "buffer", SETTING_READ, -1, -1, TYPE_SHORT, 0, 0xffff, 1, 2, &tape->capabilities.buffer_size, NULL); ide_add_setting(drive, "pipeline_min", SETTING_RW, -1, -1, TYPE_INT, 1, 0xffff, tape->stage_size / 1024, 1, &tape->min_pipeline, NULL); ide_add_setting(drive, "pipeline", SETTING_RW, -1, -1, TYPE_INT, 1, 0xffff, tape->stage_size / 1024, 1, &tape->max_stages, NULL); ide_add_setting(drive, "pipeline_max", SETTING_RW, -1, -1, TYPE_INT, 1, 0xffff, tape->stage_size / 1024, 1, &tape->max_pipeline, NULL); ide_add_setting(drive, "pipeline_used",SETTING_READ, -1, -1, TYPE_INT, 0, 0xffff, tape->stage_size / 1024, 1, &tape->nr_stages, NULL); ide_add_setting(drive, "pipeline_pending",SETTING_READ,-1, -1, TYPE_INT, 0, 0xffff, tape->stage_size / 1024, 1, &tape->nr_pending_stages, NULL); ide_add_setting(drive, "speed", SETTING_READ, -1, -1, TYPE_SHORT, 0, 0xffff, 1, 1, &tape->capabilities.speed, NULL); ide_add_setting(drive, "stage", SETTING_READ, -1, -1, TYPE_INT, 0, 0xffff, 1, 1024, &tape->stage_size, NULL); ide_add_setting(drive, "tdsc", SETTING_RW, -1, -1, TYPE_INT, IDETAPE_DSC_RW_MIN, IDETAPE_DSC_RW_MAX, 1000, HZ, &tape->best_dsc_rw_frequency, NULL); ide_add_setting(drive, "dsc_overlap", SETTING_RW, -1, -1, TYPE_BYTE, 0, 1, 1, 1, &drive->dsc_overlap, NULL); ide_add_setting(drive, "pipeline_head_speed_c",SETTING_READ, -1, -1, TYPE_INT, 0, 0xffff, 1, 1, &tape->controlled_pipeline_head_speed, NULL); ide_add_setting(drive, "pipeline_head_speed_u",SETTING_READ, -1, -1, TYPE_INT, 0, 0xffff, 1, 1, &tape->uncontrolled_pipeline_head_speed, NULL); ide_add_setting(drive, "avg_speed", SETTING_READ, -1, -1, TYPE_INT, 0, 0xffff, 1, 1, &tape->avg_speed, NULL); ide_add_setting(drive, "debug_level",SETTING_RW, -1, -1, TYPE_INT, 0, 0xffff, 1, 1, &tape->debug_level, NULL); } /* * ide_setup is called to: * * 1. Initialize our various state variables. * 2. Ask the tape for its capabilities. * 3. Allocate a buffer which will be used for data * transfer. The buffer size is chosen based on * the recommendation which we received in step (2). * * Note that at this point ide.c already assigned us an irq, so that * we can queue requests here and wait for their completion. */ static void idetape_setup (ide_drive_t *drive, idetape_tape_t *tape, int minor) { unsigned long t1, tmid, tn, t; int speed; struct idetape_id_gcw gcw; int stage_size; struct sysinfo si; spin_lock_init(&tape->spinlock); drive->dsc_overlap = 1; #ifdef CONFIG_BLK_DEV_IDEPCI if (HWIF(drive)->pci_dev != NULL) { /* * These two ide-pci host adapters appear to need DSC overlap disabled. * This probably needs further analysis. */ if ((HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_ARTOP_ATP850UF) || (HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_TTI_HPT343)) { printk(KERN_INFO "ide-tape: %s: disabling DSC overlap\n", tape->name); drive->dsc_overlap = 0; } } #endif /* CONFIG_BLK_DEV_IDEPCI */ /* Seagate Travan drives do not support DSC overlap. */ if (strstr(drive->id->model, "Seagate STT3401")) drive->dsc_overlap = 0; tape->minor = minor; tape->name[0] = 'h'; tape->name[1] = 't'; tape->name[2] = '0' + minor; tape->chrdev_direction = idetape_direction_none; tape->pc = tape->pc_stack; tape->max_insert_speed = 10000; tape->speed_control = 1; *((unsigned short *) &gcw) = drive->id->config; if (gcw.drq_type == 1) set_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags); tape->min_pipeline = tape->max_pipeline = tape->max_stages = 10; idetape_get_inquiry_results(drive); idetape_get_mode_sense_results(drive); idetape_get_blocksize_from_block_descriptor(drive); tape->user_bs_factor = 1; tape->stage_size = tape->capabilities.ctl * tape->tape_block_size; while (tape->stage_size > 0xffff) { printk(KERN_NOTICE "ide-tape: decreasing stage size\n"); tape->capabilities.ctl /= 2; tape->stage_size = tape->capabilities.ctl * tape->tape_block_size; } stage_size = tape->stage_size; tape->pages_per_stage = stage_size / PAGE_SIZE; if (stage_size % PAGE_SIZE) { tape->pages_per_stage++; tape->excess_bh_size = PAGE_SIZE - stage_size % PAGE_SIZE; } /* * Select the "best" DSC read/write polling frequency * and pipeline size. */ speed = max(tape->capabilities.speed, tape->capabilities.max_speed); tape->max_stages = speed * 1000 * 10 / tape->stage_size; /* * Limit memory use for pipeline to 10% of physical memory */ si_meminfo(&si); if (tape->max_stages * tape->stage_size > si.totalram * si.mem_unit / 10) tape->max_stages = si.totalram * si.mem_unit / (10 * tape->stage_size); tape->max_stages = min(tape->max_stages, IDETAPE_MAX_PIPELINE_STAGES); tape->min_pipeline = min(tape->max_stages, IDETAPE_MIN_PIPELINE_STAGES); tape->max_pipeline = min(tape->max_stages * 2, IDETAPE_MAX_PIPELINE_STAGES); if (tape->max_stages == 0) tape->max_stages = tape->min_pipeline = tape->max_pipeline = 1; t1 = (tape->stage_size * HZ) / (speed * 1000); tmid = (tape->capabilities.buffer_size * 32 * HZ) / (speed * 125); tn = (IDETAPE_FIFO_THRESHOLD * tape->stage_size * HZ) / (speed * 1000); if (tape->max_stages) t = tn; else t = t1; /* * Ensure that the number we got makes sense; limit * it within IDETAPE_DSC_RW_MIN and IDETAPE_DSC_RW_MAX. */ tape->best_dsc_rw_frequency = max_t(unsigned long, min_t(unsigned long, t, IDETAPE_DSC_RW_MAX), IDETAPE_DSC_RW_MIN); printk(KERN_INFO "ide-tape: %s <-> %s: %dKBps, %d*%dkB buffer, " "%dkB pipeline, %lums tDSC%s\n", drive->name, tape->name, tape->capabilities.speed, (tape->capabilities.buffer_size * 512) / tape->stage_size, tape->stage_size / 1024, tape->max_stages * tape->stage_size / 1024, tape->best_dsc_rw_frequency * 1000 / HZ, drive->using_dma ? ", DMA":""); idetape_add_settings(drive); } static int ide_tape_remove(struct device *dev) { ide_drive_t *drive = to_ide_device(dev); idetape_tape_t *tape = drive->driver_data; ide_unregister_subdriver(drive, tape->driver); ide_unregister_region(tape->disk); ide_tape_put(tape); return 0; } static void ide_tape_release(struct kref *kref) { struct ide_tape_obj *tape = to_ide_tape(kref); ide_drive_t *drive = tape->drive; struct gendisk *g = tape->disk; BUG_ON(tape->first_stage != NULL || tape->merge_stage_size); drive->dsc_overlap = 0; drive->driver_data = NULL; class_device_destroy(idetape_sysfs_class, MKDEV(IDETAPE_MAJOR, tape->minor)); class_device_destroy(idetape_sysfs_class, MKDEV(IDETAPE_MAJOR, tape->minor + 128)); devfs_remove("%s/mt", drive->devfs_name); devfs_remove("%s/mtn", drive->devfs_name); devfs_unregister_tape(g->number); idetape_devs[tape->minor] = NULL; g->private_data = NULL; put_disk(g); kfree(tape); } #ifdef CONFIG_PROC_FS static int proc_idetape_read_name (char *page, char **start, off_t off, int count, int *eof, void *data) { ide_drive_t *drive = (ide_drive_t *) data; idetape_tape_t *tape = drive->driver_data; char *out = page; int len; len = sprintf(out, "%s\n", tape->name); PROC_IDE_READ_RETURN(page, start, off, count, eof, len); } static ide_proc_entry_t idetape_proc[] = { { "capacity", S_IFREG|S_IRUGO, proc_ide_read_capacity, NULL }, { "name", S_IFREG|S_IRUGO, proc_idetape_read_name, NULL }, { NULL, 0, NULL, NULL } }; #else #define idetape_proc NULL #endif static int ide_tape_probe(struct device *); static ide_driver_t idetape_driver = { .gen_driver = { .owner = THIS_MODULE, .name = "ide-tape", .bus = &ide_bus_type, .probe = ide_tape_probe, .remove = ide_tape_remove, }, .version = IDETAPE_VERSION, .media = ide_tape, .supports_dsc_overlap = 1, .do_request = idetape_do_request, .end_request = idetape_end_request, .error = __ide_error, .abort = __ide_abort, .proc = idetape_proc, }; /* * Our character device supporting functions, passed to register_chrdev. */ static struct file_operations idetape_fops = { .owner = THIS_MODULE, .read = idetape_chrdev_read, .write = idetape_chrdev_write, .ioctl = idetape_chrdev_ioctl, .open = idetape_chrdev_open, .release = idetape_chrdev_release, }; static int idetape_open(struct inode *inode, struct file *filp) { struct gendisk *disk = inode->i_bdev->bd_disk; struct ide_tape_obj *tape; ide_drive_t *drive; if (!(tape = ide_tape_get(disk))) return -ENXIO; drive = tape->drive; drive->usage++; return 0; } static int idetape_release(struct inode *inode, struct file *filp) { struct gendisk *disk = inode->i_bdev->bd_disk; struct ide_tape_obj *tape = ide_tape_g(disk); ide_drive_t *drive = tape->drive; drive->usage--; ide_tape_put(tape); return 0; } static int idetape_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct block_device *bdev = inode->i_bdev; struct ide_tape_obj *tape = ide_tape_g(bdev->bd_disk); ide_drive_t *drive = tape->drive; int err = generic_ide_ioctl(drive, file, bdev, cmd, arg); if (err == -EINVAL) err = idetape_blkdev_ioctl(drive, cmd, arg); return err; } static struct block_device_operations idetape_block_ops = { .owner = THIS_MODULE, .open = idetape_open, .release = idetape_release, .ioctl = idetape_ioctl, }; static int ide_tape_probe(struct device *dev) { ide_drive_t *drive = to_ide_device(dev); idetape_tape_t *tape; struct gendisk *g; int minor; if (!strstr("ide-tape", drive->driver_req)) goto failed; if (!drive->present) goto failed; if (drive->media != ide_tape) goto failed; if (!idetape_identify_device (drive)) { printk(KERN_ERR "ide-tape: %s: not supported by this version of ide-tape\n", drive->name); goto failed; } if (drive->scsi) { printk("ide-tape: passing drive %s to ide-scsi emulation.\n", drive->name); goto failed; } if (strstr(drive->id->model, "OnStream DI-")) { printk(KERN_WARNING "ide-tape: Use drive %s with ide-scsi emulation and osst.\n", drive->name); printk(KERN_WARNING "ide-tape: OnStream support will be removed soon from ide-tape!\n"); } tape = (idetape_tape_t *) kzalloc (sizeof (idetape_tape_t), GFP_KERNEL); if (tape == NULL) { printk(KERN_ERR "ide-tape: %s: Can't allocate a tape structure\n", drive->name); goto failed; } g = alloc_disk(1 << PARTN_BITS); if (!g) goto out_free_tape; ide_init_disk(g, drive); ide_register_subdriver(drive, &idetape_driver); kref_init(&tape->kref); tape->drive = drive; tape->driver = &idetape_driver; tape->disk = g; g->private_data = &tape->driver; drive->driver_data = tape; down(&idetape_ref_sem); for (minor = 0; idetape_devs[minor]; minor++) ; idetape_devs[minor] = tape; up(&idetape_ref_sem); idetape_setup(drive, tape, minor); class_device_create(idetape_sysfs_class, NULL, MKDEV(IDETAPE_MAJOR, minor), dev, "%s", tape->name); class_device_create(idetape_sysfs_class, NULL, MKDEV(IDETAPE_MAJOR, minor + 128), dev, "n%s", tape->name); devfs_mk_cdev(MKDEV(HWIF(drive)->major, minor), S_IFCHR | S_IRUGO | S_IWUGO, "%s/mt", drive->devfs_name); devfs_mk_cdev(MKDEV(HWIF(drive)->major, minor + 128), S_IFCHR | S_IRUGO | S_IWUGO, "%s/mtn", drive->devfs_name); g->number = devfs_register_tape(drive->devfs_name); g->fops = &idetape_block_ops; ide_register_region(g); return 0; out_free_tape: kfree(tape); failed: return -ENODEV; } MODULE_DESCRIPTION("ATAPI Streaming TAPE Driver"); MODULE_LICENSE("GPL"); static void __exit idetape_exit (void) { driver_unregister(&idetape_driver.gen_driver); class_destroy(idetape_sysfs_class); unregister_chrdev(IDETAPE_MAJOR, "ht"); } /* * idetape_init will register the driver for each tape. */ static int idetape_init (void) { int error = 1; idetape_sysfs_class = class_create(THIS_MODULE, "ide_tape"); if (IS_ERR(idetape_sysfs_class)) { idetape_sysfs_class = NULL; printk(KERN_ERR "Unable to create sysfs class for ide tapes\n"); error = -EBUSY; goto out; } if (register_chrdev(IDETAPE_MAJOR, "ht", &idetape_fops)) { printk(KERN_ERR "ide-tape: Failed to register character device interface\n"); error = -EBUSY; goto out_free_class; } error = driver_register(&idetape_driver.gen_driver); if (error) goto out_free_driver; return 0; out_free_driver: driver_unregister(&idetape_driver.gen_driver); out_free_class: class_destroy(idetape_sysfs_class); out: return error; } module_init(idetape_init); module_exit(idetape_exit); MODULE_ALIAS_CHARDEV_MAJOR(IDETAPE_MAJOR);