/* * Linux/PA-RISC Project (http://www.parisc-linux.org/) * * Floating-point emulation code * Copyright (C) 2001 Hewlett-Packard (Paul Bame) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifdef __NO_PA_HDRS PA header file -- do not include this header file for non-PA builds. #endif /* 32-bit word grabing functions */ #define Dbl_firstword(value) Dallp1(value) #define Dbl_secondword(value) Dallp2(value) #define Dbl_thirdword(value) dummy_location #define Dbl_fourthword(value) dummy_location #define Dbl_sign(object) Dsign(object) #define Dbl_exponent(object) Dexponent(object) #define Dbl_signexponent(object) Dsignexponent(object) #define Dbl_mantissap1(object) Dmantissap1(object) #define Dbl_mantissap2(object) Dmantissap2(object) #define Dbl_exponentmantissap1(object) Dexponentmantissap1(object) #define Dbl_allp1(object) Dallp1(object) #define Dbl_allp2(object) Dallp2(object) /* dbl_and_signs ands the sign bits of each argument and puts the result * into the first argument. dbl_or_signs ors those same sign bits */ #define Dbl_and_signs( src1dst, src2) \ Dallp1(src1dst) = (Dallp1(src2)|~((unsigned int)1<<31)) & Dallp1(src1dst) #define Dbl_or_signs( src1dst, src2) \ Dallp1(src1dst) = (Dallp1(src2)&((unsigned int)1<<31)) | Dallp1(src1dst) /* The hidden bit is always the low bit of the exponent */ #define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1) #define Dbl_clear_signexponent_set_hidden(srcdst) \ Deposit_dsignexponent(srcdst,1) #define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~((unsigned int)1<<31) #define Dbl_clear_signexponent(srcdst) \ Dallp1(srcdst) &= Dmantissap1((unsigned int)-1) /* Exponent field for doubles has already been cleared and may be * included in the shift. Here we need to generate two double width * variable shifts. The insignificant bits can be ignored. * MTSAR f(varamount) * VSHD srcdst.high,srcdst.low => srcdst.low * VSHD 0,srcdst.high => srcdst.high * This is very difficult to model with C expressions since the shift amount * could exceed 32. */ /* varamount must be less than 64 */ #define Dbl_rightshift(srcdstA, srcdstB, varamount) \ {if((varamount) >= 32) { \ Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32); \ Dallp1(srcdstA)=0; \ } \ else if(varamount > 0) { \ Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB), \ (varamount), Dallp2(srcdstB)); \ Dallp1(srcdstA) >>= varamount; \ } } /* varamount must be less than 64 */ #define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount) \ {if((varamount) >= 32) { \ Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> (varamount-32); \ Dallp1(srcdstA) &= ((unsigned int)1<<31); /* clear expmant field */ \ } \ else if(varamount > 0) { \ Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \ (varamount), Dallp2(srcdstB)); \ Deposit_dexponentmantissap1(srcdstA, \ (Dexponentmantissap1(srcdstA)>>varamount)); \ } } /* varamount must be less than 64 */ #define Dbl_leftshift(srcdstA, srcdstB, varamount) \ {if((varamount) >= 32) { \ Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32); \ Dallp2(srcdstB)=0; \ } \ else { \ if ((varamount) > 0) { \ Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) | \ (Dallp2(srcdstB) >> (32-(varamount))); \ Dallp2(srcdstB) <<= varamount; \ } \ } } #define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb) \ Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta)); \ Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb)) #define Dbl_rightshiftby1_withextent(leftb,right,dst) \ Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned int)Extall(right) >> 1) | \ Extlow(right) #define Dbl_arithrightshiftby1(srcdstA,srcdstB) \ Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\ Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1 /* Sign extend the sign bit with an integer destination */ #define Dbl_signextendedsign(value) Dsignedsign(value) #define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0) /* Singles and doubles may include the sign and exponent fields. The * hidden bit and the hidden overflow must be included. */ #define Dbl_increment(dbl_valueA,dbl_valueB) \ if( (Dallp2(dbl_valueB) += 1) == 0 ) Dallp1(dbl_valueA) += 1 #define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \ if( (Dmantissap2(dbl_valueB) += 1) == 0 ) \ Deposit_dmantissap1(dbl_valueA,dbl_valueA+1) #define Dbl_decrement(dbl_valueA,dbl_valueB) \ if( Dallp2(dbl_valueB) == 0 ) Dallp1(dbl_valueA) -= 1; \ Dallp2(dbl_valueB) -= 1 #define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0) #define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0) #define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0) #define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0) #define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0) #define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff) #define Dbl_isnotzero(dbl_valueA,dbl_valueB) \ (Dallp1(dbl_valueA) || Dallp2(dbl_valueB)) #define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \ (Dhiddenhigh7mantissa(dbl_value)!=0) #define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0) #define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \ (Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB)) #define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0) #define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0) #define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \ (Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB)) #define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0) #define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \ Dallp2(dbl_valueB)==0) #define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0) #define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0) #define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0) #define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0) #define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \ (Dhiddenhigh3mantissa(dbl_value)==0) #define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \ (Dhiddenhigh7mantissa(dbl_value)==0) #define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0) #define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0) #define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \ (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0) #define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \ (Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0) #define Dbl_isinfinity_exponent(dbl_value) \ (Dexponent(dbl_value)==DBL_INFINITY_EXPONENT) #define Dbl_isnotinfinity_exponent(dbl_value) \ (Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT) #define Dbl_isinfinity(dbl_valueA,dbl_valueB) \ (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT && \ Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0) #define Dbl_isnan(dbl_valueA,dbl_valueB) \ (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT && \ (Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0)) #define Dbl_isnotnan(dbl_valueA,dbl_valueB) \ (Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT || \ (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)) #define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \ (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) || \ (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \ Dallp2(dbl_op1b) < Dallp2(dbl_op2b))) #define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \ (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) || \ (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \ Dallp2(dbl_op1b) > Dallp2(dbl_op2b))) #define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \ (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) || \ (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \ Dallp2(dbl_op1b) >= Dallp2(dbl_op2b))) #define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \ (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) || \ (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \ Dallp2(dbl_op1b) <= Dallp2(dbl_op2b))) #define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \ ((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) && \ (Dallp2(dbl_op1b) == Dallp2(dbl_op2b))) #define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \ Dallp2(dbl_valueB) <<= 8 #define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \ Dallp2(dbl_valueB) <<= 7 #define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \ Dallp2(dbl_valueB) <<= 4 #define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \ Dallp2(dbl_valueB) <<= 3 #define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \ Dallp2(dbl_valueB) <<= 2 #define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \ Dallp2(dbl_valueB) <<= 1 #define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \ Dallp1(dbl_valueA) >>= 8 #define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \ Dallp1(dbl_valueA) >>= 4 #define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \ Dallp1(dbl_valueA) >>= 2 #define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \ Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \ Dallp1(dbl_valueA) >>= 1 /* This magnitude comparison uses the signless first words and * the regular part2 words. The comparison is graphically: * * 1st greater? ------------- * | * 1st less?-----------------+--------- * | | * 2nd greater or equal----->| | * False True */ #define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \ ((signlessleft <= signlessright) && \ ( (signlessleft < signlessright) || (Dallp2(leftB)wd0; \ Dallp2(destb) = src->wd1 #define Dbl_copytoptr(srca,srcb,dest) \ dest->wd0 = Dallp1(srca); \ dest->wd1 = Dallp2(srcb) /* An infinity is represented with the max exponent and a zero mantissa */ #define Dbl_setinfinity_exponent(dbl_value) \ Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT) #define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB) \ Deposit_dexponentmantissap1(dbl_valueA, \ (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)))); \ Dmantissap2(dbl_valueB) = 0 #define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB) \ Dallp1(dbl_valueA) \ = (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \ Dmantissap2(dbl_valueB) = 0 #define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB) \ Dallp1(dbl_valueA) = ((unsigned int)1<<31) | \ (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \ Dmantissap2(dbl_valueB) = 0 #define Dbl_setinfinity(dbl_valueA,dbl_valueB,sign) \ Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | \ (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \ Dmantissap2(dbl_valueB) = 0 #define Dbl_sethigh4bits(dbl_value, extsign) Deposit_dhigh4p1(dbl_value,extsign) #define Dbl_set_sign(dbl_value,sign) Deposit_dsign(dbl_value,sign) #define Dbl_invert_sign(dbl_value) Deposit_dsign(dbl_value,~Dsign(dbl_value)) #define Dbl_setone_sign(dbl_value) Deposit_dsign(dbl_value,1) #define Dbl_setone_lowmantissap2(dbl_value) Deposit_dlowp2(dbl_value,1) #define Dbl_setzero_sign(dbl_value) Dallp1(dbl_value) &= 0x7fffffff #define Dbl_setzero_exponent(dbl_value) \ Dallp1(dbl_value) &= 0x800fffff #define Dbl_setzero_mantissa(dbl_valueA,dbl_valueB) \ Dallp1(dbl_valueA) &= 0xfff00000; \ Dallp2(dbl_valueB) = 0 #define Dbl_setzero_mantissap1(dbl_value) Dallp1(dbl_value) &= 0xfff00000 #define Dbl_setzero_mantissap2(dbl_value) Dallp2(dbl_value) = 0 #define Dbl_setzero_exponentmantissa(dbl_valueA,dbl_valueB) \ Dallp1(dbl_valueA) &= 0x80000000; \ Dallp2(dbl_valueB) = 0 #define Dbl_setzero_exponentmantissap1(dbl_valueA) \ Dallp1(dbl_valueA) &= 0x80000000 #define Dbl_setzero(dbl_valueA,dbl_valueB) \ Dallp1(dbl_valueA) = 0; Dallp2(dbl_valueB) = 0 #define Dbl_setzerop1(dbl_value) Dallp1(dbl_value) = 0 #define Dbl_setzerop2(dbl_value) Dallp2(dbl_value) = 0 #define Dbl_setnegativezero(dbl_value) \ Dallp1(dbl_value) = (unsigned int)1 << 31; Dallp2(dbl_value) = 0 #define Dbl_setnegativezerop1(dbl_value) Dallp1(dbl_value) = (unsigned int)1<<31 /* Use the following macro for both overflow & underflow conditions */ #define ovfl - #define unfl + #define Dbl_setwrapped_exponent(dbl_value,exponent,op) \ Deposit_dexponent(dbl_value,(exponent op DBL_WRAP)) #define Dbl_setlargestpositive(dbl_valueA,dbl_valueB) \ Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \ | ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ); \ Dallp2(dbl_valueB) = 0xFFFFFFFF #define Dbl_setlargestnegative(dbl_valueA,dbl_valueB) \ Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \ | ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ) \ | ((unsigned int)1<<31); \ Dallp2(dbl_valueB) = 0xFFFFFFFF #define Dbl_setlargest_exponentmantissa(dbl_valueA,dbl_valueB) \ Deposit_dexponentmantissap1(dbl_valueA, \ (((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \ | ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ))); \ Dallp2(dbl_valueB) = 0xFFFFFFFF #define Dbl_setnegativeinfinity(dbl_valueA,dbl_valueB) \ Dallp1(dbl_valueA) = ((1<= 32 ) \ { \ /* Big shift requires examining the portion shift off \ the end to properly set inexact. */ \ if(shift < 64) \ { \ if(shift > 32) \ { \ Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB), \ shift-32, Extall(extent)); \ if(Dallp2(srcdstB) << 64 - (shift)) Ext_setone_low(extent); \ } \ else Extall(extent) = Dallp2(srcdstB); \ Dallp2(srcdstB) = Dallp1(srcdstA) >> (shift - 32); \ } \ else \ { \ Extall(extent) = Dallp1(srcdstA); \ if(Dallp2(srcdstB)) Ext_setone_low(extent); \ Dallp2(srcdstB) = 0; \ } \ Dallp1(srcdstA) = 0; \ } \ else \ { \ /* Small alignment is simpler. Extension is easily set. */ \ if (shift > 0) \ { \ Extall(extent) = Dallp2(srcdstB) << 32 - (shift); \ Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),shift, \ Dallp2(srcdstB)); \ Dallp1(srcdstA) >>= shift; \ } \ else Extall(extent) = 0; \ } /* * Here we need to shift the result right to correct for an overshift * (due to the exponent becoming negative) during normalization. */ #define Dbl_fix_overshift(srcdstA,srcdstB,shift,extent) \ Extall(extent) = Dallp2(srcdstB) << 32 - (shift); \ Dallp2(srcdstB) = (Dallp1(srcdstA) << 32 - (shift)) | \ (Dallp2(srcdstB) >> (shift)); \ Dallp1(srcdstA) = Dallp1(srcdstA) >> shift #define Dbl_hiddenhigh3mantissa(dbl_value) Dhiddenhigh3mantissa(dbl_value) #define Dbl_hidden(dbl_value) Dhidden(dbl_value) #define Dbl_lowmantissap2(dbl_value) Dlowp2(dbl_value) /* The left argument is never smaller than the right argument */ #define Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb) \ if( Dallp2(rightb) > Dallp2(leftb) ) Dallp1(lefta)--; \ Dallp2(resultb) = Dallp2(leftb) - Dallp2(rightb); \ Dallp1(resulta) = Dallp1(lefta) - Dallp1(righta) /* Subtract right augmented with extension from left augmented with zeros and * store into result and extension. */ #define Dbl_subtract_withextension(lefta,leftb,righta,rightb,extent,resulta,resultb) \ Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb); \ if( (Extall(extent) = 0-Extall(extent)) ) \ { \ if((Dallp2(resultb)--) == 0) Dallp1(resulta)--; \ } #define Dbl_addition(lefta,leftb,righta,rightb,resulta,resultb) \ /* If the sum of the low words is less than either source, then \ * an overflow into the next word occurred. */ \ Dallp1(resulta) = Dallp1(lefta) + Dallp1(righta); \ if((Dallp2(resultb) = Dallp2(leftb) + Dallp2(rightb)) < Dallp2(rightb)) \ Dallp1(resulta)++ #define Dbl_xortointp1(left,right,result) \ result = Dallp1(left) XOR Dallp1(right) #define Dbl_xorfromintp1(left,right,result) \ Dallp1(result) = left XOR Dallp1(right) #define Dbl_swap_lower(left,right) \ Dallp2(left) = Dallp2(left) XOR Dallp2(right); \ Dallp2(right) = Dallp2(left) XOR Dallp2(right); \ Dallp2(left) = Dallp2(left) XOR Dallp2(right) /* Need to Initialize */ #define Dbl_makequietnan(desta,destb) \ Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH)) \ | (1<<(32-(1+DBL_EXP_LENGTH+2))); \ Dallp2(destb) = 0 #define Dbl_makesignalingnan(desta,destb) \ Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH)) \ | (1<<(32-(1+DBL_EXP_LENGTH+1))); \ Dallp2(destb) = 0 #define Dbl_normalize(dbl_opndA,dbl_opndB,exponent) \ while(Dbl_iszero_hiddenhigh7mantissa(dbl_opndA)) { \ Dbl_leftshiftby8(dbl_opndA,dbl_opndB); \ exponent -= 8; \ } \ if(Dbl_iszero_hiddenhigh3mantissa(dbl_opndA)) { \ Dbl_leftshiftby4(dbl_opndA,dbl_opndB); \ exponent -= 4; \ } \ while(Dbl_iszero_hidden(dbl_opndA)) { \ Dbl_leftshiftby1(dbl_opndA,dbl_opndB); \ exponent -= 1; \ } #define Twoword_add(src1dstA,src1dstB,src2A,src2B) \ /* \ * want this macro to generate: \ * ADD src1dstB,src2B,src1dstB; \ * ADDC src1dstA,src2A,src1dstA; \ */ \ if ((src1dstB) + (src2B) < (src1dstB)) Dallp1(src1dstA)++; \ Dallp1(src1dstA) += (src2A); \ Dallp2(src1dstB) += (src2B) #define Twoword_subtract(src1dstA,src1dstB,src2A,src2B) \ /* \ * want this macro to generate: \ * SUB src1dstB,src2B,src1dstB; \ * SUBB src1dstA,src2A,src1dstA; \ */ \ if ((src1dstB) < (src2B)) Dallp1(src1dstA)--; \ Dallp1(src1dstA) -= (src2A); \ Dallp2(src1dstB) -= (src2B) #define Dbl_setoverflow(resultA,resultB) \ /* set result to infinity or largest number */ \ switch (Rounding_mode()) { \ case ROUNDPLUS: \ if (Dbl_isone_sign(resultA)) { \ Dbl_setlargestnegative(resultA,resultB); \ } \ else { \ Dbl_setinfinitypositive(resultA,resultB); \ } \ break; \ case ROUNDMINUS: \ if (Dbl_iszero_sign(resultA)) { \ Dbl_setlargestpositive(resultA,resultB); \ } \ else { \ Dbl_setinfinitynegative(resultA,resultB); \ } \ break; \ case ROUNDNEAREST: \ Dbl_setinfinity_exponentmantissa(resultA,resultB); \ break; \ case ROUNDZERO: \ Dbl_setlargest_exponentmantissa(resultA,resultB); \ } #define Dbl_denormalize(opndp1,opndp2,exponent,guard,sticky,inexact) \ Dbl_clear_signexponent_set_hidden(opndp1); \ if (exponent >= (1-DBL_P)) { \ if (exponent >= -31) { \ guard = (Dallp2(opndp2) >> -exponent) & 1; \ if (exponent < 0) sticky |= Dallp2(opndp2) << (32+exponent); \ if (exponent > -31) { \ Variable_shift_double(opndp1,opndp2,1-exponent,opndp2); \ Dallp1(opndp1) >>= 1-exponent; \ } \ else { \ Dallp2(opndp2) = Dallp1(opndp1); \ Dbl_setzerop1(opndp1); \ } \ } \ else { \ guard = (Dallp1(opndp1) >> -32-exponent) & 1; \ if (exponent == -32) sticky |= Dallp2(opndp2); \ else sticky |= (Dallp2(opndp2) | Dallp1(opndp1) << 64+exponent); \ Dallp2(opndp2) = Dallp1(opndp1) >> -31-exponent; \ Dbl_setzerop1(opndp1); \ } \ inexact = guard | sticky; \ } \ else { \ guard = 0; \ sticky |= (Dallp1(opndp1) | Dallp2(opndp2)); \ Dbl_setzero(opndp1,opndp2); \ inexact = sticky; \ } /* * The fused multiply add instructions requires a double extended format, * with 106 bits of mantissa. */ #define DBLEXT_THRESHOLD 106 #define Dblext_setzero(valA,valB,valC,valD) \ Dextallp1(valA) = 0; Dextallp2(valB) = 0; \ Dextallp3(valC) = 0; Dextallp4(valD) = 0 #define Dblext_isnotzero_mantissap3(valC) (Dextallp3(valC)!=0) #define Dblext_isnotzero_mantissap4(valD) (Dextallp3(valD)!=0) #define Dblext_isone_lowp2(val) (Dextlowp2(val)!=0) #define Dblext_isone_highp3(val) (Dexthighp3(val)!=0) #define Dblext_isnotzero_low31p3(val) (Dextlow31p3(val)!=0) #define Dblext_iszero(valA,valB,valC,valD) (Dextallp1(valA)==0 && \ Dextallp2(valB)==0 && Dextallp3(valC)==0 && Dextallp4(valD)==0) #define Dblext_copy(srca,srcb,srcc,srcd,desta,destb,destc,destd) \ Dextallp1(desta) = Dextallp4(srca); \ Dextallp2(destb) = Dextallp4(srcb); \ Dextallp3(destc) = Dextallp4(srcc); \ Dextallp4(destd) = Dextallp4(srcd) #define Dblext_swap_lower(leftp2,leftp3,leftp4,rightp2,rightp3,rightp4) \ Dextallp2(leftp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2); \ Dextallp2(rightp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2); \ Dextallp2(leftp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2); \ Dextallp3(leftp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3); \ Dextallp3(rightp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3); \ Dextallp3(leftp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3); \ Dextallp4(leftp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4); \ Dextallp4(rightp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4); \ Dextallp4(leftp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4) #define Dblext_setone_lowmantissap4(dbl_value) Deposit_dextlowp4(dbl_value,1) /* The high bit is always zero so arithmetic or logical shifts will work. */ #define Dblext_right_align(srcdstA,srcdstB,srcdstC,srcdstD,shift) \ {int shiftamt, sticky; \ shiftamt = shift % 32; \ sticky = 0; \ switch (shift/32) { \ case 0: if (shiftamt > 0) { \ sticky = Dextallp4(srcdstD) << 32 - (shiftamt); \ Variable_shift_double(Dextallp3(srcdstC), \ Dextallp4(srcdstD),shiftamt,Dextallp4(srcdstD)); \ Variable_shift_double(Dextallp2(srcdstB), \ Dextallp3(srcdstC),shiftamt,Dextallp3(srcdstC)); \ Variable_shift_double(Dextallp1(srcdstA), \ Dextallp2(srcdstB),shiftamt,Dextallp2(srcdstB)); \ Dextallp1(srcdstA) >>= shiftamt; \ } \ break; \ case 1: if (shiftamt > 0) { \ sticky = (Dextallp3(srcdstC) << 31 - shiftamt) | \ Dextallp4(srcdstD); \ Variable_shift_double(Dextallp2(srcdstB), \ Dextallp3(srcdstC),shiftamt,Dextallp4(srcdstD)); \ Variable_shift_double(Dextallp1(srcdstA), \ Dextallp2(srcdstB),shiftamt,Dextallp3(srcdstC)); \ } \ else { \ sticky = Dextallp4(srcdstD); \ Dextallp4(srcdstD) = Dextallp3(srcdstC); \ Dextallp3(srcdstC) = Dextallp2(srcdstB); \ } \ Dextallp2(srcdstB) = Dextallp1(srcdstA) >> shiftamt; \ Dextallp1(srcdstA) = 0; \ break; \ case 2: if (shiftamt > 0) { \ sticky = (Dextallp2(srcdstB) << 31 - shiftamt) | \ Dextallp3(srcdstC) | Dextallp4(srcdstD); \ Variable_shift_double(Dextallp1(srcdstA), \ Dextallp2(srcdstB),shiftamt,Dextallp4(srcdstD)); \ } \ else { \ sticky = Dextallp3(srcdstC) | Dextallp4(srcdstD); \ Dextallp4(srcdstD) = Dextallp2(srcdstB); \ } \ Dextallp3(srcdstC) = Dextallp1(srcdstA) >> shiftamt; \ Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0; \ break; \ case 3: if (shiftamt > 0) { \ sticky = (Dextallp1(srcdstA) << 31 - shiftamt) | \ Dextallp2(srcdstB) | Dextallp3(srcdstC) | \ Dextallp4(srcdstD); \ } \ else { \ sticky = Dextallp2(srcdstB) | Dextallp3(srcdstC) | \ Dextallp4(srcdstD); \ } \ Dextallp4(srcdstD) = Dextallp1(srcdstA) >> shiftamt; \ Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0; \ Dextallp3(srcdstC) = 0; \ break; \ } \ if (sticky) Dblext_setone_lowmantissap4(srcdstD); \ } /* The left argument is never smaller than the right argument */ #define Dblext_subtract(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \ if( Dextallp4(rightd) > Dextallp4(leftd) ) \ if( (Dextallp3(leftc)--) == 0) \ if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--; \ Dextallp4(resultd) = Dextallp4(leftd) - Dextallp4(rightd); \ if( Dextallp3(rightc) > Dextallp3(leftc) ) \ if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--; \ Dextallp3(resultc) = Dextallp3(leftc) - Dextallp3(rightc); \ if( Dextallp2(rightb) > Dextallp2(leftb) ) Dextallp1(lefta)--; \ Dextallp2(resultb) = Dextallp2(leftb) - Dextallp2(rightb); \ Dextallp1(resulta) = Dextallp1(lefta) - Dextallp1(righta) #define Dblext_addition(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \ /* If the sum of the low words is less than either source, then \ * an overflow into the next word occurred. */ \ if ((Dextallp4(resultd) = Dextallp4(leftd)+Dextallp4(rightd)) < \ Dextallp4(rightd)) \ if((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)+1) <= \ Dextallp3(rightc)) \ if((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \ <= Dextallp2(rightb)) \ Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \ else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \ else \ if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \ Dextallp2(rightb)) \ Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \ else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \ else \ if ((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)) < \ Dextallp3(rightc)) \ if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \ <= Dextallp2(rightb)) \ Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \ else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \ else \ if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \ Dextallp2(rightb)) \ Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \ else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta) #define Dblext_arithrightshiftby1(srcdstA,srcdstB,srcdstC,srcdstD) \ Shiftdouble(Dextallp3(srcdstC),Dextallp4(srcdstD),1,Dextallp4(srcdstD)); \ Shiftdouble(Dextallp2(srcdstB),Dextallp3(srcdstC),1,Dextallp3(srcdstC)); \ Shiftdouble(Dextallp1(srcdstA),Dextallp2(srcdstB),1,Dextallp2(srcdstB)); \ Dextallp1(srcdstA) = (int)Dextallp1(srcdstA) >> 1 #define Dblext_leftshiftby8(valA,valB,valC,valD) \ Shiftdouble(Dextallp1(valA),Dextallp2(valB),24,Dextallp1(valA)); \ Shiftdouble(Dextallp2(valB),Dextallp3(valC),24,Dextallp2(valB)); \ Shiftdouble(Dextallp3(valC),Dextallp4(valD),24,Dextallp3(valC)); \ Dextallp4(valD) <<= 8 #define Dblext_leftshiftby4(valA,valB,valC,valD) \ Shiftdouble(Dextallp1(valA),Dextallp2(valB),28,Dextallp1(valA)); \ Shiftdouble(Dextallp2(valB),Dextallp3(valC),28,Dextallp2(valB)); \ Shiftdouble(Dextallp3(valC),Dextallp4(valD),28,Dextallp3(valC)); \ Dextallp4(valD) <<= 4 #define Dblext_leftshiftby3(valA,valB,valC,valD) \ Shiftdouble(Dextallp1(valA),Dextallp2(valB),29,Dextallp1(valA)); \ Shiftdouble(Dextallp2(valB),Dextallp3(valC),29,Dextallp2(valB)); \ Shiftdouble(Dextallp3(valC),Dextallp4(valD),29,Dextallp3(valC)); \ Dextallp4(valD) <<= 3 #define Dblext_leftshiftby2(valA,valB,valC,valD) \ Shiftdouble(Dextallp1(valA),Dextallp2(valB),30,Dextallp1(valA)); \ Shiftdouble(Dextallp2(valB),Dextallp3(valC),30,Dextallp2(valB)); \ Shiftdouble(Dextallp3(valC),Dextallp4(valD),30,Dextallp3(valC)); \ Dextallp4(valD) <<= 2 #define Dblext_leftshiftby1(valA,valB,valC,valD) \ Shiftdouble(Dextallp1(valA),Dextallp2(valB),31,Dextallp1(valA)); \ Shiftdouble(Dextallp2(valB),Dextallp3(valC),31,Dextallp2(valB)); \ Shiftdouble(Dextallp3(valC),Dextallp4(valD),31,Dextallp3(valC)); \ Dextallp4(valD) <<= 1 #define Dblext_rightshiftby4(valueA,valueB,valueC,valueD) \ Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),4,Dextallp4(valueD)); \ Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),4,Dextallp3(valueC)); \ Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),4,Dextallp2(valueB)); \ Dextallp1(valueA) >>= 4 #define Dblext_rightshiftby1(valueA,valueB,valueC,valueD) \ Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),1,Dextallp4(valueD)); \ Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),1,Dextallp3(valueC)); \ Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),1,Dextallp2(valueB)); \ Dextallp1(valueA) >>= 1 #define Dblext_xortointp1(left,right,result) Dbl_xortointp1(left,right,result) #define Dblext_xorfromintp1(left,right,result) \ Dbl_xorfromintp1(left,right,result) #define Dblext_copytoint_exponentmantissap1(src,dest) \ Dbl_copytoint_exponentmantissap1(src,dest) #define Dblext_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \ Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright) #define Dbl_copyto_dblext(src1,src2,dest1,dest2,dest3,dest4) \ Dextallp1(dest1) = Dallp1(src1); Dextallp2(dest2) = Dallp2(src2); \ Dextallp3(dest3) = 0; Dextallp4(dest4) = 0 #define Dblext_set_sign(dbl_value,sign) Dbl_set_sign(dbl_value,sign) #define Dblext_clear_signexponent_set_hidden(srcdst) \ Dbl_clear_signexponent_set_hidden(srcdst) #define Dblext_clear_signexponent(srcdst) Dbl_clear_signexponent(srcdst) #define Dblext_clear_sign(srcdst) Dbl_clear_sign(srcdst) #define Dblext_isone_hidden(dbl_value) Dbl_isone_hidden(dbl_value) /* * The Fourword_add() macro assumes that integers are 4 bytes in size. * It will break if this is not the case. */ #define Fourword_add(src1dstA,src1dstB,src1dstC,src1dstD,src2A,src2B,src2C,src2D) \ /* \ * want this macro to generate: \ * ADD src1dstD,src2D,src1dstD; \ * ADDC src1dstC,src2C,src1dstC; \ * ADDC src1dstB,src2B,src1dstB; \ * ADDC src1dstA,src2A,src1dstA; \ */ \ if ((unsigned int)(src1dstD += (src2D)) < (unsigned int)(src2D)) { \ if ((unsigned int)(src1dstC += (src2C) + 1) <= \ (unsigned int)(src2C)) { \ if ((unsigned int)(src1dstB += (src2B) + 1) <= \ (unsigned int)(src2B)) src1dstA++; \ } \ else if ((unsigned int)(src1dstB += (src2B)) < \ (unsigned int)(src2B)) src1dstA++; \ } \ else { \ if ((unsigned int)(src1dstC += (src2C)) < \ (unsigned int)(src2C)) { \ if ((unsigned int)(src1dstB += (src2B) + 1) <= \ (unsigned int)(src2B)) src1dstA++; \ } \ else if ((unsigned int)(src1dstB += (src2B)) < \ (unsigned int)(src2B)) src1dstA++; \ } \ src1dstA += (src2A) #define Dblext_denormalize(opndp1,opndp2,opndp3,opndp4,exponent,is_tiny) \ {int shiftamt, sticky; \ is_tiny = TRUE; \ if (exponent == 0 && (Dextallp3(opndp3) || Dextallp4(opndp4))) { \ switch (Rounding_mode()) { \ case ROUNDPLUS: \ if (Dbl_iszero_sign(opndp1)) { \ Dbl_increment(opndp1,opndp2); \ if (Dbl_isone_hiddenoverflow(opndp1)) \ is_tiny = FALSE; \ Dbl_decrement(opndp1,opndp2); \ } \ break; \ case ROUNDMINUS: \ if (Dbl_isone_sign(opndp1)) { \ Dbl_increment(opndp1,opndp2); \ if (Dbl_isone_hiddenoverflow(opndp1)) \ is_tiny = FALSE; \ Dbl_decrement(opndp1,opndp2); \ } \ break; \ case ROUNDNEAREST: \ if (Dblext_isone_highp3(opndp3) && \ (Dblext_isone_lowp2(opndp2) || \ Dblext_isnotzero_low31p3(opndp3))) { \ Dbl_increment(opndp1,opndp2); \ if (Dbl_isone_hiddenoverflow(opndp1)) \ is_tiny = FALSE; \ Dbl_decrement(opndp1,opndp2); \ } \ break; \ } \ } \ Dblext_clear_signexponent_set_hidden(opndp1); \ if (exponent >= (1-QUAD_P)) { \ shiftamt = (1-exponent) % 32; \ switch((1-exponent)/32) { \ case 0: sticky = Dextallp4(opndp4) << 32-(shiftamt); \ Variableshiftdouble(opndp3,opndp4,shiftamt,opndp4); \ Variableshiftdouble(opndp2,opndp3,shiftamt,opndp3); \ Variableshiftdouble(opndp1,opndp2,shiftamt,opndp2); \ Dextallp1(opndp1) >>= shiftamt; \ break; \ case 1: sticky = (Dextallp3(opndp3) << 32-(shiftamt)) | \ Dextallp4(opndp4); \ Variableshiftdouble(opndp2,opndp3,shiftamt,opndp4); \ Variableshiftdouble(opndp1,opndp2,shiftamt,opndp3); \ Dextallp2(opndp2) = Dextallp1(opndp1) >> shiftamt; \ Dextallp1(opndp1) = 0; \ break; \ case 2: sticky = (Dextallp2(opndp2) << 32-(shiftamt)) | \ Dextallp3(opndp3) | Dextallp4(opndp4); \ Variableshiftdouble(opndp1,opndp2,shiftamt,opndp4); \ Dextallp3(opndp3) = Dextallp1(opndp1) >> shiftamt; \ Dextallp1(opndp1) = Dextallp2(opndp2) = 0; \ break; \ case 3: sticky = (Dextallp1(opndp1) << 32-(shiftamt)) | \ Dextallp2(opndp2) | Dextallp3(opndp3) | \ Dextallp4(opndp4); \ Dextallp4(opndp4) = Dextallp1(opndp1) >> shiftamt; \ Dextallp1(opndp1) = Dextallp2(opndp2) = 0; \ Dextallp3(opndp3) = 0; \ break; \ } \ } \ else { \ sticky = Dextallp1(opndp1) | Dextallp2(opndp2) | \ Dextallp3(opndp3) | Dextallp4(opndp4); \ Dblext_setzero(opndp1,opndp2,opndp3,opndp4); \ } \ if (sticky) Dblext_setone_lowmantissap4(opndp4); \ exponent = 0; \ }