SELinux: generic hashtab entry counter
[linux-2.6.git] / security / selinux / ss / policydb.c
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *      Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *      Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for the policy capability bitmap
19  *
20  * Copyright (C) 2007 Hewlett-Packard Development Company, L.P.
21  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23  *      This program is free software; you can redistribute it and/or modify
24  *      it under the terms of the GNU General Public License as published by
25  *      the Free Software Foundation, version 2.
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/errno.h>
33 #include <linux/audit.h>
34 #include <linux/flex_array.h>
35 #include "security.h"
36
37 #include "policydb.h"
38 #include "conditional.h"
39 #include "mls.h"
40 #include "services.h"
41
42 #define _DEBUG_HASHES
43
44 #ifdef DEBUG_HASHES
45 static const char *symtab_name[SYM_NUM] = {
46         "common prefixes",
47         "classes",
48         "roles",
49         "types",
50         "users",
51         "bools",
52         "levels",
53         "categories",
54 };
55 #endif
56
57 static unsigned int symtab_sizes[SYM_NUM] = {
58         2,
59         32,
60         16,
61         512,
62         128,
63         16,
64         16,
65         16,
66 };
67
68 struct policydb_compat_info {
69         int version;
70         int sym_num;
71         int ocon_num;
72 };
73
74 /* These need to be updated if SYM_NUM or OCON_NUM changes */
75 static struct policydb_compat_info policydb_compat[] = {
76         {
77                 .version        = POLICYDB_VERSION_BASE,
78                 .sym_num        = SYM_NUM - 3,
79                 .ocon_num       = OCON_NUM - 1,
80         },
81         {
82                 .version        = POLICYDB_VERSION_BOOL,
83                 .sym_num        = SYM_NUM - 2,
84                 .ocon_num       = OCON_NUM - 1,
85         },
86         {
87                 .version        = POLICYDB_VERSION_IPV6,
88                 .sym_num        = SYM_NUM - 2,
89                 .ocon_num       = OCON_NUM,
90         },
91         {
92                 .version        = POLICYDB_VERSION_NLCLASS,
93                 .sym_num        = SYM_NUM - 2,
94                 .ocon_num       = OCON_NUM,
95         },
96         {
97                 .version        = POLICYDB_VERSION_MLS,
98                 .sym_num        = SYM_NUM,
99                 .ocon_num       = OCON_NUM,
100         },
101         {
102                 .version        = POLICYDB_VERSION_AVTAB,
103                 .sym_num        = SYM_NUM,
104                 .ocon_num       = OCON_NUM,
105         },
106         {
107                 .version        = POLICYDB_VERSION_RANGETRANS,
108                 .sym_num        = SYM_NUM,
109                 .ocon_num       = OCON_NUM,
110         },
111         {
112                 .version        = POLICYDB_VERSION_POLCAP,
113                 .sym_num        = SYM_NUM,
114                 .ocon_num       = OCON_NUM,
115         },
116         {
117                 .version        = POLICYDB_VERSION_PERMISSIVE,
118                 .sym_num        = SYM_NUM,
119                 .ocon_num       = OCON_NUM,
120         },
121         {
122                 .version        = POLICYDB_VERSION_BOUNDARY,
123                 .sym_num        = SYM_NUM,
124                 .ocon_num       = OCON_NUM,
125         },
126         {
127                 .version        = POLICYDB_VERSION_FILENAME_TRANS,
128                 .sym_num        = SYM_NUM,
129                 .ocon_num       = OCON_NUM,
130         },
131         {
132                 .version        = POLICYDB_VERSION_ROLETRANS,
133                 .sym_num        = SYM_NUM,
134                 .ocon_num       = OCON_NUM,
135         },
136 };
137
138 static struct policydb_compat_info *policydb_lookup_compat(int version)
139 {
140         int i;
141         struct policydb_compat_info *info = NULL;
142
143         for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
144                 if (policydb_compat[i].version == version) {
145                         info = &policydb_compat[i];
146                         break;
147                 }
148         }
149         return info;
150 }
151
152 /*
153  * Initialize the role table.
154  */
155 static int roles_init(struct policydb *p)
156 {
157         char *key = NULL;
158         int rc;
159         struct role_datum *role;
160
161         rc = -ENOMEM;
162         role = kzalloc(sizeof(*role), GFP_KERNEL);
163         if (!role)
164                 goto out;
165
166         rc = -EINVAL;
167         role->value = ++p->p_roles.nprim;
168         if (role->value != OBJECT_R_VAL)
169                 goto out;
170
171         rc = -ENOMEM;
172         key = kstrdup(OBJECT_R, GFP_KERNEL);
173         if (!key)
174                 goto out;
175
176         rc = hashtab_insert(p->p_roles.table, key, role);
177         if (rc)
178                 goto out;
179
180         return 0;
181 out:
182         kfree(key);
183         kfree(role);
184         return rc;
185 }
186
187 static u32 rangetr_hash(struct hashtab *h, const void *k)
188 {
189         const struct range_trans *key = k;
190         return (key->source_type + (key->target_type << 3) +
191                 (key->target_class << 5)) & (h->size - 1);
192 }
193
194 static int rangetr_cmp(struct hashtab *h, const void *k1, const void *k2)
195 {
196         const struct range_trans *key1 = k1, *key2 = k2;
197         int v;
198
199         v = key1->source_type - key2->source_type;
200         if (v)
201                 return v;
202
203         v = key1->target_type - key2->target_type;
204         if (v)
205                 return v;
206
207         v = key1->target_class - key2->target_class;
208
209         return v;
210 }
211
212 /*
213  * Initialize a policy database structure.
214  */
215 static int policydb_init(struct policydb *p)
216 {
217         int i, rc;
218
219         memset(p, 0, sizeof(*p));
220
221         for (i = 0; i < SYM_NUM; i++) {
222                 rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
223                 if (rc)
224                         goto out;
225         }
226
227         rc = avtab_init(&p->te_avtab);
228         if (rc)
229                 goto out;
230
231         rc = roles_init(p);
232         if (rc)
233                 goto out;
234
235         rc = cond_policydb_init(p);
236         if (rc)
237                 goto out;
238
239         p->range_tr = hashtab_create(rangetr_hash, rangetr_cmp, 256);
240         if (!p->range_tr)
241                 goto out;
242
243         ebitmap_init(&p->filename_trans_ttypes);
244         ebitmap_init(&p->policycaps);
245         ebitmap_init(&p->permissive_map);
246
247         return 0;
248 out:
249         for (i = 0; i < SYM_NUM; i++)
250                 hashtab_destroy(p->symtab[i].table);
251         return rc;
252 }
253
254 /*
255  * The following *_index functions are used to
256  * define the val_to_name and val_to_struct arrays
257  * in a policy database structure.  The val_to_name
258  * arrays are used when converting security context
259  * structures into string representations.  The
260  * val_to_struct arrays are used when the attributes
261  * of a class, role, or user are needed.
262  */
263
264 static int common_index(void *key, void *datum, void *datap)
265 {
266         struct policydb *p;
267         struct common_datum *comdatum;
268         struct flex_array *fa;
269
270         comdatum = datum;
271         p = datap;
272         if (!comdatum->value || comdatum->value > p->p_commons.nprim)
273                 return -EINVAL;
274
275         fa = p->sym_val_to_name[SYM_COMMONS];
276         if (flex_array_put_ptr(fa, comdatum->value - 1, key,
277                                GFP_KERNEL | __GFP_ZERO))
278                 BUG();
279         return 0;
280 }
281
282 static int class_index(void *key, void *datum, void *datap)
283 {
284         struct policydb *p;
285         struct class_datum *cladatum;
286         struct flex_array *fa;
287
288         cladatum = datum;
289         p = datap;
290         if (!cladatum->value || cladatum->value > p->p_classes.nprim)
291                 return -EINVAL;
292         fa = p->sym_val_to_name[SYM_CLASSES];
293         if (flex_array_put_ptr(fa, cladatum->value - 1, key,
294                                GFP_KERNEL | __GFP_ZERO))
295                 BUG();
296         p->class_val_to_struct[cladatum->value - 1] = cladatum;
297         return 0;
298 }
299
300 static int role_index(void *key, void *datum, void *datap)
301 {
302         struct policydb *p;
303         struct role_datum *role;
304         struct flex_array *fa;
305
306         role = datum;
307         p = datap;
308         if (!role->value
309             || role->value > p->p_roles.nprim
310             || role->bounds > p->p_roles.nprim)
311                 return -EINVAL;
312
313         fa = p->sym_val_to_name[SYM_ROLES];
314         if (flex_array_put_ptr(fa, role->value - 1, key,
315                                GFP_KERNEL | __GFP_ZERO))
316                 BUG();
317         p->role_val_to_struct[role->value - 1] = role;
318         return 0;
319 }
320
321 static int type_index(void *key, void *datum, void *datap)
322 {
323         struct policydb *p;
324         struct type_datum *typdatum;
325         struct flex_array *fa;
326
327         typdatum = datum;
328         p = datap;
329
330         if (typdatum->primary) {
331                 if (!typdatum->value
332                     || typdatum->value > p->p_types.nprim
333                     || typdatum->bounds > p->p_types.nprim)
334                         return -EINVAL;
335                 fa = p->sym_val_to_name[SYM_TYPES];
336                 if (flex_array_put_ptr(fa, typdatum->value - 1, key,
337                                        GFP_KERNEL | __GFP_ZERO))
338                         BUG();
339
340                 fa = p->type_val_to_struct_array;
341                 if (flex_array_put_ptr(fa, typdatum->value - 1, typdatum,
342                                        GFP_KERNEL | __GFP_ZERO))
343                         BUG();
344         }
345
346         return 0;
347 }
348
349 static int user_index(void *key, void *datum, void *datap)
350 {
351         struct policydb *p;
352         struct user_datum *usrdatum;
353         struct flex_array *fa;
354
355         usrdatum = datum;
356         p = datap;
357         if (!usrdatum->value
358             || usrdatum->value > p->p_users.nprim
359             || usrdatum->bounds > p->p_users.nprim)
360                 return -EINVAL;
361
362         fa = p->sym_val_to_name[SYM_USERS];
363         if (flex_array_put_ptr(fa, usrdatum->value - 1, key,
364                                GFP_KERNEL | __GFP_ZERO))
365                 BUG();
366         p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
367         return 0;
368 }
369
370 static int sens_index(void *key, void *datum, void *datap)
371 {
372         struct policydb *p;
373         struct level_datum *levdatum;
374         struct flex_array *fa;
375
376         levdatum = datum;
377         p = datap;
378
379         if (!levdatum->isalias) {
380                 if (!levdatum->level->sens ||
381                     levdatum->level->sens > p->p_levels.nprim)
382                         return -EINVAL;
383                 fa = p->sym_val_to_name[SYM_LEVELS];
384                 if (flex_array_put_ptr(fa, levdatum->level->sens - 1, key,
385                                        GFP_KERNEL | __GFP_ZERO))
386                         BUG();
387         }
388
389         return 0;
390 }
391
392 static int cat_index(void *key, void *datum, void *datap)
393 {
394         struct policydb *p;
395         struct cat_datum *catdatum;
396         struct flex_array *fa;
397
398         catdatum = datum;
399         p = datap;
400
401         if (!catdatum->isalias) {
402                 if (!catdatum->value || catdatum->value > p->p_cats.nprim)
403                         return -EINVAL;
404                 fa = p->sym_val_to_name[SYM_CATS];
405                 if (flex_array_put_ptr(fa, catdatum->value - 1, key,
406                                        GFP_KERNEL | __GFP_ZERO))
407                         BUG();
408         }
409
410         return 0;
411 }
412
413 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
414 {
415         common_index,
416         class_index,
417         role_index,
418         type_index,
419         user_index,
420         cond_index_bool,
421         sens_index,
422         cat_index,
423 };
424
425 #ifdef DEBUG_HASHES
426 static void hash_eval(struct hashtab *h, const char *hash_name)
427 {
428         struct hashtab_info info;
429
430         hashtab_stat(h, &info);
431         printk(KERN_DEBUG "SELinux: %s:  %d entries and %d/%d buckets used, "
432                "longest chain length %d\n", hash_name, h->nel,
433                info.slots_used, h->size, info.max_chain_len);
434 }
435
436 static void symtab_hash_eval(struct symtab *s)
437 {
438         int i;
439
440         for (i = 0; i < SYM_NUM; i++)
441                 hash_eval(s[i].table, symtab_name[i]);
442 }
443
444 #else
445 static inline void hash_eval(struct hashtab *h, char *hash_name)
446 {
447 }
448 #endif
449
450 /*
451  * Define the other val_to_name and val_to_struct arrays
452  * in a policy database structure.
453  *
454  * Caller must clean up on failure.
455  */
456 static int policydb_index(struct policydb *p)
457 {
458         int i, rc;
459
460         printk(KERN_DEBUG "SELinux:  %d users, %d roles, %d types, %d bools",
461                p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
462         if (p->mls_enabled)
463                 printk(", %d sens, %d cats", p->p_levels.nprim,
464                        p->p_cats.nprim);
465         printk("\n");
466
467         printk(KERN_DEBUG "SELinux:  %d classes, %d rules\n",
468                p->p_classes.nprim, p->te_avtab.nel);
469
470 #ifdef DEBUG_HASHES
471         avtab_hash_eval(&p->te_avtab, "rules");
472         symtab_hash_eval(p->symtab);
473 #endif
474
475         rc = -ENOMEM;
476         p->class_val_to_struct =
477                 kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)),
478                         GFP_KERNEL);
479         if (!p->class_val_to_struct)
480                 goto out;
481
482         rc = -ENOMEM;
483         p->role_val_to_struct =
484                 kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
485                         GFP_KERNEL);
486         if (!p->role_val_to_struct)
487                 goto out;
488
489         rc = -ENOMEM;
490         p->user_val_to_struct =
491                 kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
492                         GFP_KERNEL);
493         if (!p->user_val_to_struct)
494                 goto out;
495
496         /* Yes, I want the sizeof the pointer, not the structure */
497         rc = -ENOMEM;
498         p->type_val_to_struct_array = flex_array_alloc(sizeof(struct type_datum *),
499                                                        p->p_types.nprim,
500                                                        GFP_KERNEL | __GFP_ZERO);
501         if (!p->type_val_to_struct_array)
502                 goto out;
503
504         rc = flex_array_prealloc(p->type_val_to_struct_array, 0,
505                                  p->p_types.nprim - 1, GFP_KERNEL | __GFP_ZERO);
506         if (rc)
507                 goto out;
508
509         rc = cond_init_bool_indexes(p);
510         if (rc)
511                 goto out;
512
513         for (i = 0; i < SYM_NUM; i++) {
514                 rc = -ENOMEM;
515                 p->sym_val_to_name[i] = flex_array_alloc(sizeof(char *),
516                                                          p->symtab[i].nprim,
517                                                          GFP_KERNEL | __GFP_ZERO);
518                 if (!p->sym_val_to_name[i])
519                         goto out;
520
521                 rc = flex_array_prealloc(p->sym_val_to_name[i],
522                                          0, p->symtab[i].nprim - 1,
523                                          GFP_KERNEL | __GFP_ZERO);
524                 if (rc)
525                         goto out;
526
527                 rc = hashtab_map(p->symtab[i].table, index_f[i], p);
528                 if (rc)
529                         goto out;
530         }
531         rc = 0;
532 out:
533         return rc;
534 }
535
536 /*
537  * The following *_destroy functions are used to
538  * free any memory allocated for each kind of
539  * symbol data in the policy database.
540  */
541
542 static int perm_destroy(void *key, void *datum, void *p)
543 {
544         kfree(key);
545         kfree(datum);
546         return 0;
547 }
548
549 static int common_destroy(void *key, void *datum, void *p)
550 {
551         struct common_datum *comdatum;
552
553         kfree(key);
554         if (datum) {
555                 comdatum = datum;
556                 hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
557                 hashtab_destroy(comdatum->permissions.table);
558         }
559         kfree(datum);
560         return 0;
561 }
562
563 static int cls_destroy(void *key, void *datum, void *p)
564 {
565         struct class_datum *cladatum;
566         struct constraint_node *constraint, *ctemp;
567         struct constraint_expr *e, *etmp;
568
569         kfree(key);
570         if (datum) {
571                 cladatum = datum;
572                 hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
573                 hashtab_destroy(cladatum->permissions.table);
574                 constraint = cladatum->constraints;
575                 while (constraint) {
576                         e = constraint->expr;
577                         while (e) {
578                                 ebitmap_destroy(&e->names);
579                                 etmp = e;
580                                 e = e->next;
581                                 kfree(etmp);
582                         }
583                         ctemp = constraint;
584                         constraint = constraint->next;
585                         kfree(ctemp);
586                 }
587
588                 constraint = cladatum->validatetrans;
589                 while (constraint) {
590                         e = constraint->expr;
591                         while (e) {
592                                 ebitmap_destroy(&e->names);
593                                 etmp = e;
594                                 e = e->next;
595                                 kfree(etmp);
596                         }
597                         ctemp = constraint;
598                         constraint = constraint->next;
599                         kfree(ctemp);
600                 }
601
602                 kfree(cladatum->comkey);
603         }
604         kfree(datum);
605         return 0;
606 }
607
608 static int role_destroy(void *key, void *datum, void *p)
609 {
610         struct role_datum *role;
611
612         kfree(key);
613         if (datum) {
614                 role = datum;
615                 ebitmap_destroy(&role->dominates);
616                 ebitmap_destroy(&role->types);
617         }
618         kfree(datum);
619         return 0;
620 }
621
622 static int type_destroy(void *key, void *datum, void *p)
623 {
624         kfree(key);
625         kfree(datum);
626         return 0;
627 }
628
629 static int user_destroy(void *key, void *datum, void *p)
630 {
631         struct user_datum *usrdatum;
632
633         kfree(key);
634         if (datum) {
635                 usrdatum = datum;
636                 ebitmap_destroy(&usrdatum->roles);
637                 ebitmap_destroy(&usrdatum->range.level[0].cat);
638                 ebitmap_destroy(&usrdatum->range.level[1].cat);
639                 ebitmap_destroy(&usrdatum->dfltlevel.cat);
640         }
641         kfree(datum);
642         return 0;
643 }
644
645 static int sens_destroy(void *key, void *datum, void *p)
646 {
647         struct level_datum *levdatum;
648
649         kfree(key);
650         if (datum) {
651                 levdatum = datum;
652                 ebitmap_destroy(&levdatum->level->cat);
653                 kfree(levdatum->level);
654         }
655         kfree(datum);
656         return 0;
657 }
658
659 static int cat_destroy(void *key, void *datum, void *p)
660 {
661         kfree(key);
662         kfree(datum);
663         return 0;
664 }
665
666 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
667 {
668         common_destroy,
669         cls_destroy,
670         role_destroy,
671         type_destroy,
672         user_destroy,
673         cond_destroy_bool,
674         sens_destroy,
675         cat_destroy,
676 };
677
678 static int range_tr_destroy(void *key, void *datum, void *p)
679 {
680         struct mls_range *rt = datum;
681         kfree(key);
682         ebitmap_destroy(&rt->level[0].cat);
683         ebitmap_destroy(&rt->level[1].cat);
684         kfree(datum);
685         cond_resched();
686         return 0;
687 }
688
689 static void ocontext_destroy(struct ocontext *c, int i)
690 {
691         if (!c)
692                 return;
693
694         context_destroy(&c->context[0]);
695         context_destroy(&c->context[1]);
696         if (i == OCON_ISID || i == OCON_FS ||
697             i == OCON_NETIF || i == OCON_FSUSE)
698                 kfree(c->u.name);
699         kfree(c);
700 }
701
702 /*
703  * Free any memory allocated by a policy database structure.
704  */
705 void policydb_destroy(struct policydb *p)
706 {
707         struct ocontext *c, *ctmp;
708         struct genfs *g, *gtmp;
709         int i;
710         struct role_allow *ra, *lra = NULL;
711         struct role_trans *tr, *ltr = NULL;
712         struct filename_trans *ft, *nft;
713
714         for (i = 0; i < SYM_NUM; i++) {
715                 cond_resched();
716                 hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
717                 hashtab_destroy(p->symtab[i].table);
718         }
719
720         for (i = 0; i < SYM_NUM; i++) {
721                 if (p->sym_val_to_name[i])
722                         flex_array_free(p->sym_val_to_name[i]);
723         }
724
725         kfree(p->class_val_to_struct);
726         kfree(p->role_val_to_struct);
727         kfree(p->user_val_to_struct);
728         if (p->type_val_to_struct_array)
729                 flex_array_free(p->type_val_to_struct_array);
730
731         avtab_destroy(&p->te_avtab);
732
733         for (i = 0; i < OCON_NUM; i++) {
734                 cond_resched();
735                 c = p->ocontexts[i];
736                 while (c) {
737                         ctmp = c;
738                         c = c->next;
739                         ocontext_destroy(ctmp, i);
740                 }
741                 p->ocontexts[i] = NULL;
742         }
743
744         g = p->genfs;
745         while (g) {
746                 cond_resched();
747                 kfree(g->fstype);
748                 c = g->head;
749                 while (c) {
750                         ctmp = c;
751                         c = c->next;
752                         ocontext_destroy(ctmp, OCON_FSUSE);
753                 }
754                 gtmp = g;
755                 g = g->next;
756                 kfree(gtmp);
757         }
758         p->genfs = NULL;
759
760         cond_policydb_destroy(p);
761
762         for (tr = p->role_tr; tr; tr = tr->next) {
763                 cond_resched();
764                 kfree(ltr);
765                 ltr = tr;
766         }
767         kfree(ltr);
768
769         for (ra = p->role_allow; ra; ra = ra->next) {
770                 cond_resched();
771                 kfree(lra);
772                 lra = ra;
773         }
774         kfree(lra);
775
776         hashtab_map(p->range_tr, range_tr_destroy, NULL);
777         hashtab_destroy(p->range_tr);
778
779         if (p->type_attr_map_array) {
780                 for (i = 0; i < p->p_types.nprim; i++) {
781                         struct ebitmap *e;
782
783                         e = flex_array_get(p->type_attr_map_array, i);
784                         if (!e)
785                                 continue;
786                         ebitmap_destroy(e);
787                 }
788                 flex_array_free(p->type_attr_map_array);
789         }
790
791         ft = p->filename_trans;
792         while (ft) {
793                 nft = ft->next;
794                 kfree(ft->name);
795                 kfree(ft);
796                 ft = nft;
797         }
798
799         ebitmap_destroy(&p->filename_trans_ttypes);
800         ebitmap_destroy(&p->policycaps);
801         ebitmap_destroy(&p->permissive_map);
802
803         return;
804 }
805
806 /*
807  * Load the initial SIDs specified in a policy database
808  * structure into a SID table.
809  */
810 int policydb_load_isids(struct policydb *p, struct sidtab *s)
811 {
812         struct ocontext *head, *c;
813         int rc;
814
815         rc = sidtab_init(s);
816         if (rc) {
817                 printk(KERN_ERR "SELinux:  out of memory on SID table init\n");
818                 goto out;
819         }
820
821         head = p->ocontexts[OCON_ISID];
822         for (c = head; c; c = c->next) {
823                 rc = -EINVAL;
824                 if (!c->context[0].user) {
825                         printk(KERN_ERR "SELinux:  SID %s was never defined.\n",
826                                 c->u.name);
827                         goto out;
828                 }
829
830                 rc = sidtab_insert(s, c->sid[0], &c->context[0]);
831                 if (rc) {
832                         printk(KERN_ERR "SELinux:  unable to load initial SID %s.\n",
833                                 c->u.name);
834                         goto out;
835                 }
836         }
837         rc = 0;
838 out:
839         return rc;
840 }
841
842 int policydb_class_isvalid(struct policydb *p, unsigned int class)
843 {
844         if (!class || class > p->p_classes.nprim)
845                 return 0;
846         return 1;
847 }
848
849 int policydb_role_isvalid(struct policydb *p, unsigned int role)
850 {
851         if (!role || role > p->p_roles.nprim)
852                 return 0;
853         return 1;
854 }
855
856 int policydb_type_isvalid(struct policydb *p, unsigned int type)
857 {
858         if (!type || type > p->p_types.nprim)
859                 return 0;
860         return 1;
861 }
862
863 /*
864  * Return 1 if the fields in the security context
865  * structure `c' are valid.  Return 0 otherwise.
866  */
867 int policydb_context_isvalid(struct policydb *p, struct context *c)
868 {
869         struct role_datum *role;
870         struct user_datum *usrdatum;
871
872         if (!c->role || c->role > p->p_roles.nprim)
873                 return 0;
874
875         if (!c->user || c->user > p->p_users.nprim)
876                 return 0;
877
878         if (!c->type || c->type > p->p_types.nprim)
879                 return 0;
880
881         if (c->role != OBJECT_R_VAL) {
882                 /*
883                  * Role must be authorized for the type.
884                  */
885                 role = p->role_val_to_struct[c->role - 1];
886                 if (!ebitmap_get_bit(&role->types, c->type - 1))
887                         /* role may not be associated with type */
888                         return 0;
889
890                 /*
891                  * User must be authorized for the role.
892                  */
893                 usrdatum = p->user_val_to_struct[c->user - 1];
894                 if (!usrdatum)
895                         return 0;
896
897                 if (!ebitmap_get_bit(&usrdatum->roles, c->role - 1))
898                         /* user may not be associated with role */
899                         return 0;
900         }
901
902         if (!mls_context_isvalid(p, c))
903                 return 0;
904
905         return 1;
906 }
907
908 /*
909  * Read a MLS range structure from a policydb binary
910  * representation file.
911  */
912 static int mls_read_range_helper(struct mls_range *r, void *fp)
913 {
914         __le32 buf[2];
915         u32 items;
916         int rc;
917
918         rc = next_entry(buf, fp, sizeof(u32));
919         if (rc)
920                 goto out;
921
922         rc = -EINVAL;
923         items = le32_to_cpu(buf[0]);
924         if (items > ARRAY_SIZE(buf)) {
925                 printk(KERN_ERR "SELinux: mls:  range overflow\n");
926                 goto out;
927         }
928
929         rc = next_entry(buf, fp, sizeof(u32) * items);
930         if (rc) {
931                 printk(KERN_ERR "SELinux: mls:  truncated range\n");
932                 goto out;
933         }
934
935         r->level[0].sens = le32_to_cpu(buf[0]);
936         if (items > 1)
937                 r->level[1].sens = le32_to_cpu(buf[1]);
938         else
939                 r->level[1].sens = r->level[0].sens;
940
941         rc = ebitmap_read(&r->level[0].cat, fp);
942         if (rc) {
943                 printk(KERN_ERR "SELinux: mls:  error reading low categories\n");
944                 goto out;
945         }
946         if (items > 1) {
947                 rc = ebitmap_read(&r->level[1].cat, fp);
948                 if (rc) {
949                         printk(KERN_ERR "SELinux: mls:  error reading high categories\n");
950                         goto bad_high;
951                 }
952         } else {
953                 rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
954                 if (rc) {
955                         printk(KERN_ERR "SELinux: mls:  out of memory\n");
956                         goto bad_high;
957                 }
958         }
959
960         return 0;
961 bad_high:
962         ebitmap_destroy(&r->level[0].cat);
963 out:
964         return rc;
965 }
966
967 /*
968  * Read and validate a security context structure
969  * from a policydb binary representation file.
970  */
971 static int context_read_and_validate(struct context *c,
972                                      struct policydb *p,
973                                      void *fp)
974 {
975         __le32 buf[3];
976         int rc;
977
978         rc = next_entry(buf, fp, sizeof buf);
979         if (rc) {
980                 printk(KERN_ERR "SELinux: context truncated\n");
981                 goto out;
982         }
983         c->user = le32_to_cpu(buf[0]);
984         c->role = le32_to_cpu(buf[1]);
985         c->type = le32_to_cpu(buf[2]);
986         if (p->policyvers >= POLICYDB_VERSION_MLS) {
987                 rc = mls_read_range_helper(&c->range, fp);
988                 if (rc) {
989                         printk(KERN_ERR "SELinux: error reading MLS range of context\n");
990                         goto out;
991                 }
992         }
993
994         rc = -EINVAL;
995         if (!policydb_context_isvalid(p, c)) {
996                 printk(KERN_ERR "SELinux:  invalid security context\n");
997                 context_destroy(c);
998                 goto out;
999         }
1000         rc = 0;
1001 out:
1002         return rc;
1003 }
1004
1005 /*
1006  * The following *_read functions are used to
1007  * read the symbol data from a policy database
1008  * binary representation file.
1009  */
1010
1011 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
1012 {
1013         char *key = NULL;
1014         struct perm_datum *perdatum;
1015         int rc;
1016         __le32 buf[2];
1017         u32 len;
1018
1019         rc = -ENOMEM;
1020         perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
1021         if (!perdatum)
1022                 goto bad;
1023
1024         rc = next_entry(buf, fp, sizeof buf);
1025         if (rc)
1026                 goto bad;
1027
1028         len = le32_to_cpu(buf[0]);
1029         perdatum->value = le32_to_cpu(buf[1]);
1030
1031         rc = -ENOMEM;
1032         key = kmalloc(len + 1, GFP_KERNEL);
1033         if (!key)
1034                 goto bad;
1035
1036         rc = next_entry(key, fp, len);
1037         if (rc)
1038                 goto bad;
1039         key[len] = '\0';
1040
1041         rc = hashtab_insert(h, key, perdatum);
1042         if (rc)
1043                 goto bad;
1044
1045         return 0;
1046 bad:
1047         perm_destroy(key, perdatum, NULL);
1048         return rc;
1049 }
1050
1051 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
1052 {
1053         char *key = NULL;
1054         struct common_datum *comdatum;
1055         __le32 buf[4];
1056         u32 len, nel;
1057         int i, rc;
1058
1059         rc = -ENOMEM;
1060         comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
1061         if (!comdatum)
1062                 goto bad;
1063
1064         rc = next_entry(buf, fp, sizeof buf);
1065         if (rc)
1066                 goto bad;
1067
1068         len = le32_to_cpu(buf[0]);
1069         comdatum->value = le32_to_cpu(buf[1]);
1070
1071         rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
1072         if (rc)
1073                 goto bad;
1074         comdatum->permissions.nprim = le32_to_cpu(buf[2]);
1075         nel = le32_to_cpu(buf[3]);
1076
1077         rc = -ENOMEM;
1078         key = kmalloc(len + 1, GFP_KERNEL);
1079         if (!key)
1080                 goto bad;
1081
1082         rc = next_entry(key, fp, len);
1083         if (rc)
1084                 goto bad;
1085         key[len] = '\0';
1086
1087         for (i = 0; i < nel; i++) {
1088                 rc = perm_read(p, comdatum->permissions.table, fp);
1089                 if (rc)
1090                         goto bad;
1091         }
1092
1093         rc = hashtab_insert(h, key, comdatum);
1094         if (rc)
1095                 goto bad;
1096         return 0;
1097 bad:
1098         common_destroy(key, comdatum, NULL);
1099         return rc;
1100 }
1101
1102 static int read_cons_helper(struct constraint_node **nodep, int ncons,
1103                             int allowxtarget, void *fp)
1104 {
1105         struct constraint_node *c, *lc;
1106         struct constraint_expr *e, *le;
1107         __le32 buf[3];
1108         u32 nexpr;
1109         int rc, i, j, depth;
1110
1111         lc = NULL;
1112         for (i = 0; i < ncons; i++) {
1113                 c = kzalloc(sizeof(*c), GFP_KERNEL);
1114                 if (!c)
1115                         return -ENOMEM;
1116
1117                 if (lc)
1118                         lc->next = c;
1119                 else
1120                         *nodep = c;
1121
1122                 rc = next_entry(buf, fp, (sizeof(u32) * 2));
1123                 if (rc)
1124                         return rc;
1125                 c->permissions = le32_to_cpu(buf[0]);
1126                 nexpr = le32_to_cpu(buf[1]);
1127                 le = NULL;
1128                 depth = -1;
1129                 for (j = 0; j < nexpr; j++) {
1130                         e = kzalloc(sizeof(*e), GFP_KERNEL);
1131                         if (!e)
1132                                 return -ENOMEM;
1133
1134                         if (le)
1135                                 le->next = e;
1136                         else
1137                                 c->expr = e;
1138
1139                         rc = next_entry(buf, fp, (sizeof(u32) * 3));
1140                         if (rc)
1141                                 return rc;
1142                         e->expr_type = le32_to_cpu(buf[0]);
1143                         e->attr = le32_to_cpu(buf[1]);
1144                         e->op = le32_to_cpu(buf[2]);
1145
1146                         switch (e->expr_type) {
1147                         case CEXPR_NOT:
1148                                 if (depth < 0)
1149                                         return -EINVAL;
1150                                 break;
1151                         case CEXPR_AND:
1152                         case CEXPR_OR:
1153                                 if (depth < 1)
1154                                         return -EINVAL;
1155                                 depth--;
1156                                 break;
1157                         case CEXPR_ATTR:
1158                                 if (depth == (CEXPR_MAXDEPTH - 1))
1159                                         return -EINVAL;
1160                                 depth++;
1161                                 break;
1162                         case CEXPR_NAMES:
1163                                 if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1164                                         return -EINVAL;
1165                                 if (depth == (CEXPR_MAXDEPTH - 1))
1166                                         return -EINVAL;
1167                                 depth++;
1168                                 rc = ebitmap_read(&e->names, fp);
1169                                 if (rc)
1170                                         return rc;
1171                                 break;
1172                         default:
1173                                 return -EINVAL;
1174                         }
1175                         le = e;
1176                 }
1177                 if (depth != 0)
1178                         return -EINVAL;
1179                 lc = c;
1180         }
1181
1182         return 0;
1183 }
1184
1185 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1186 {
1187         char *key = NULL;
1188         struct class_datum *cladatum;
1189         __le32 buf[6];
1190         u32 len, len2, ncons, nel;
1191         int i, rc;
1192
1193         rc = -ENOMEM;
1194         cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1195         if (!cladatum)
1196                 goto bad;
1197
1198         rc = next_entry(buf, fp, sizeof(u32)*6);
1199         if (rc)
1200                 goto bad;
1201
1202         len = le32_to_cpu(buf[0]);
1203         len2 = le32_to_cpu(buf[1]);
1204         cladatum->value = le32_to_cpu(buf[2]);
1205
1206         rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1207         if (rc)
1208                 goto bad;
1209         cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1210         nel = le32_to_cpu(buf[4]);
1211
1212         ncons = le32_to_cpu(buf[5]);
1213
1214         rc = -ENOMEM;
1215         key = kmalloc(len + 1, GFP_KERNEL);
1216         if (!key)
1217                 goto bad;
1218
1219         rc = next_entry(key, fp, len);
1220         if (rc)
1221                 goto bad;
1222         key[len] = '\0';
1223
1224         if (len2) {
1225                 rc = -ENOMEM;
1226                 cladatum->comkey = kmalloc(len2 + 1, GFP_KERNEL);
1227                 if (!cladatum->comkey)
1228                         goto bad;
1229                 rc = next_entry(cladatum->comkey, fp, len2);
1230                 if (rc)
1231                         goto bad;
1232                 cladatum->comkey[len2] = '\0';
1233
1234                 rc = -EINVAL;
1235                 cladatum->comdatum = hashtab_search(p->p_commons.table, cladatum->comkey);
1236                 if (!cladatum->comdatum) {
1237                         printk(KERN_ERR "SELinux:  unknown common %s\n", cladatum->comkey);
1238                         goto bad;
1239                 }
1240         }
1241         for (i = 0; i < nel; i++) {
1242                 rc = perm_read(p, cladatum->permissions.table, fp);
1243                 if (rc)
1244                         goto bad;
1245         }
1246
1247         rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1248         if (rc)
1249                 goto bad;
1250
1251         if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1252                 /* grab the validatetrans rules */
1253                 rc = next_entry(buf, fp, sizeof(u32));
1254                 if (rc)
1255                         goto bad;
1256                 ncons = le32_to_cpu(buf[0]);
1257                 rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1258                 if (rc)
1259                         goto bad;
1260         }
1261
1262         rc = hashtab_insert(h, key, cladatum);
1263         if (rc)
1264                 goto bad;
1265
1266         return 0;
1267 bad:
1268         cls_destroy(key, cladatum, NULL);
1269         return rc;
1270 }
1271
1272 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1273 {
1274         char *key = NULL;
1275         struct role_datum *role;
1276         int rc, to_read = 2;
1277         __le32 buf[3];
1278         u32 len;
1279
1280         rc = -ENOMEM;
1281         role = kzalloc(sizeof(*role), GFP_KERNEL);
1282         if (!role)
1283                 goto bad;
1284
1285         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1286                 to_read = 3;
1287
1288         rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1289         if (rc)
1290                 goto bad;
1291
1292         len = le32_to_cpu(buf[0]);
1293         role->value = le32_to_cpu(buf[1]);
1294         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1295                 role->bounds = le32_to_cpu(buf[2]);
1296
1297         rc = -ENOMEM;
1298         key = kmalloc(len + 1, GFP_KERNEL);
1299         if (!key)
1300                 goto bad;
1301
1302         rc = next_entry(key, fp, len);
1303         if (rc)
1304                 goto bad;
1305         key[len] = '\0';
1306
1307         rc = ebitmap_read(&role->dominates, fp);
1308         if (rc)
1309                 goto bad;
1310
1311         rc = ebitmap_read(&role->types, fp);
1312         if (rc)
1313                 goto bad;
1314
1315         if (strcmp(key, OBJECT_R) == 0) {
1316                 rc = -EINVAL;
1317                 if (role->value != OBJECT_R_VAL) {
1318                         printk(KERN_ERR "SELinux: Role %s has wrong value %d\n",
1319                                OBJECT_R, role->value);
1320                         goto bad;
1321                 }
1322                 rc = 0;
1323                 goto bad;
1324         }
1325
1326         rc = hashtab_insert(h, key, role);
1327         if (rc)
1328                 goto bad;
1329         return 0;
1330 bad:
1331         role_destroy(key, role, NULL);
1332         return rc;
1333 }
1334
1335 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1336 {
1337         char *key = NULL;
1338         struct type_datum *typdatum;
1339         int rc, to_read = 3;
1340         __le32 buf[4];
1341         u32 len;
1342
1343         rc = -ENOMEM;
1344         typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL);
1345         if (!typdatum)
1346                 goto bad;
1347
1348         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1349                 to_read = 4;
1350
1351         rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1352         if (rc)
1353                 goto bad;
1354
1355         len = le32_to_cpu(buf[0]);
1356         typdatum->value = le32_to_cpu(buf[1]);
1357         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
1358                 u32 prop = le32_to_cpu(buf[2]);
1359
1360                 if (prop & TYPEDATUM_PROPERTY_PRIMARY)
1361                         typdatum->primary = 1;
1362                 if (prop & TYPEDATUM_PROPERTY_ATTRIBUTE)
1363                         typdatum->attribute = 1;
1364
1365                 typdatum->bounds = le32_to_cpu(buf[3]);
1366         } else {
1367                 typdatum->primary = le32_to_cpu(buf[2]);
1368         }
1369
1370         rc = -ENOMEM;
1371         key = kmalloc(len + 1, GFP_KERNEL);
1372         if (!key)
1373                 goto bad;
1374         rc = next_entry(key, fp, len);
1375         if (rc)
1376                 goto bad;
1377         key[len] = '\0';
1378
1379         rc = hashtab_insert(h, key, typdatum);
1380         if (rc)
1381                 goto bad;
1382         return 0;
1383 bad:
1384         type_destroy(key, typdatum, NULL);
1385         return rc;
1386 }
1387
1388
1389 /*
1390  * Read a MLS level structure from a policydb binary
1391  * representation file.
1392  */
1393 static int mls_read_level(struct mls_level *lp, void *fp)
1394 {
1395         __le32 buf[1];
1396         int rc;
1397
1398         memset(lp, 0, sizeof(*lp));
1399
1400         rc = next_entry(buf, fp, sizeof buf);
1401         if (rc) {
1402                 printk(KERN_ERR "SELinux: mls: truncated level\n");
1403                 return rc;
1404         }
1405         lp->sens = le32_to_cpu(buf[0]);
1406
1407         rc = ebitmap_read(&lp->cat, fp);
1408         if (rc) {
1409                 printk(KERN_ERR "SELinux: mls:  error reading level categories\n");
1410                 return rc;
1411         }
1412         return 0;
1413 }
1414
1415 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1416 {
1417         char *key = NULL;
1418         struct user_datum *usrdatum;
1419         int rc, to_read = 2;
1420         __le32 buf[3];
1421         u32 len;
1422
1423         rc = -ENOMEM;
1424         usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1425         if (!usrdatum)
1426                 goto bad;
1427
1428         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1429                 to_read = 3;
1430
1431         rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1432         if (rc)
1433                 goto bad;
1434
1435         len = le32_to_cpu(buf[0]);
1436         usrdatum->value = le32_to_cpu(buf[1]);
1437         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1438                 usrdatum->bounds = le32_to_cpu(buf[2]);
1439
1440         rc = -ENOMEM;
1441         key = kmalloc(len + 1, GFP_KERNEL);
1442         if (!key)
1443                 goto bad;
1444         rc = next_entry(key, fp, len);
1445         if (rc)
1446                 goto bad;
1447         key[len] = '\0';
1448
1449         rc = ebitmap_read(&usrdatum->roles, fp);
1450         if (rc)
1451                 goto bad;
1452
1453         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1454                 rc = mls_read_range_helper(&usrdatum->range, fp);
1455                 if (rc)
1456                         goto bad;
1457                 rc = mls_read_level(&usrdatum->dfltlevel, fp);
1458                 if (rc)
1459                         goto bad;
1460         }
1461
1462         rc = hashtab_insert(h, key, usrdatum);
1463         if (rc)
1464                 goto bad;
1465         return 0;
1466 bad:
1467         user_destroy(key, usrdatum, NULL);
1468         return rc;
1469 }
1470
1471 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1472 {
1473         char *key = NULL;
1474         struct level_datum *levdatum;
1475         int rc;
1476         __le32 buf[2];
1477         u32 len;
1478
1479         rc = -ENOMEM;
1480         levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1481         if (!levdatum)
1482                 goto bad;
1483
1484         rc = next_entry(buf, fp, sizeof buf);
1485         if (rc)
1486                 goto bad;
1487
1488         len = le32_to_cpu(buf[0]);
1489         levdatum->isalias = le32_to_cpu(buf[1]);
1490
1491         rc = -ENOMEM;
1492         key = kmalloc(len + 1, GFP_ATOMIC);
1493         if (!key)
1494                 goto bad;
1495         rc = next_entry(key, fp, len);
1496         if (rc)
1497                 goto bad;
1498         key[len] = '\0';
1499
1500         rc = -ENOMEM;
1501         levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1502         if (!levdatum->level)
1503                 goto bad;
1504
1505         rc = mls_read_level(levdatum->level, fp);
1506         if (rc)
1507                 goto bad;
1508
1509         rc = hashtab_insert(h, key, levdatum);
1510         if (rc)
1511                 goto bad;
1512         return 0;
1513 bad:
1514         sens_destroy(key, levdatum, NULL);
1515         return rc;
1516 }
1517
1518 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1519 {
1520         char *key = NULL;
1521         struct cat_datum *catdatum;
1522         int rc;
1523         __le32 buf[3];
1524         u32 len;
1525
1526         rc = -ENOMEM;
1527         catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1528         if (!catdatum)
1529                 goto bad;
1530
1531         rc = next_entry(buf, fp, sizeof buf);
1532         if (rc)
1533                 goto bad;
1534
1535         len = le32_to_cpu(buf[0]);
1536         catdatum->value = le32_to_cpu(buf[1]);
1537         catdatum->isalias = le32_to_cpu(buf[2]);
1538
1539         rc = -ENOMEM;
1540         key = kmalloc(len + 1, GFP_ATOMIC);
1541         if (!key)
1542                 goto bad;
1543         rc = next_entry(key, fp, len);
1544         if (rc)
1545                 goto bad;
1546         key[len] = '\0';
1547
1548         rc = hashtab_insert(h, key, catdatum);
1549         if (rc)
1550                 goto bad;
1551         return 0;
1552 bad:
1553         cat_destroy(key, catdatum, NULL);
1554         return rc;
1555 }
1556
1557 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1558 {
1559         common_read,
1560         class_read,
1561         role_read,
1562         type_read,
1563         user_read,
1564         cond_read_bool,
1565         sens_read,
1566         cat_read,
1567 };
1568
1569 static int user_bounds_sanity_check(void *key, void *datum, void *datap)
1570 {
1571         struct user_datum *upper, *user;
1572         struct policydb *p = datap;
1573         int depth = 0;
1574
1575         upper = user = datum;
1576         while (upper->bounds) {
1577                 struct ebitmap_node *node;
1578                 unsigned long bit;
1579
1580                 if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1581                         printk(KERN_ERR "SELinux: user %s: "
1582                                "too deep or looped boundary",
1583                                (char *) key);
1584                         return -EINVAL;
1585                 }
1586
1587                 upper = p->user_val_to_struct[upper->bounds - 1];
1588                 ebitmap_for_each_positive_bit(&user->roles, node, bit) {
1589                         if (ebitmap_get_bit(&upper->roles, bit))
1590                                 continue;
1591
1592                         printk(KERN_ERR
1593                                "SELinux: boundary violated policy: "
1594                                "user=%s role=%s bounds=%s\n",
1595                                sym_name(p, SYM_USERS, user->value - 1),
1596                                sym_name(p, SYM_ROLES, bit),
1597                                sym_name(p, SYM_USERS, upper->value - 1));
1598
1599                         return -EINVAL;
1600                 }
1601         }
1602
1603         return 0;
1604 }
1605
1606 static int role_bounds_sanity_check(void *key, void *datum, void *datap)
1607 {
1608         struct role_datum *upper, *role;
1609         struct policydb *p = datap;
1610         int depth = 0;
1611
1612         upper = role = datum;
1613         while (upper->bounds) {
1614                 struct ebitmap_node *node;
1615                 unsigned long bit;
1616
1617                 if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1618                         printk(KERN_ERR "SELinux: role %s: "
1619                                "too deep or looped bounds\n",
1620                                (char *) key);
1621                         return -EINVAL;
1622                 }
1623
1624                 upper = p->role_val_to_struct[upper->bounds - 1];
1625                 ebitmap_for_each_positive_bit(&role->types, node, bit) {
1626                         if (ebitmap_get_bit(&upper->types, bit))
1627                                 continue;
1628
1629                         printk(KERN_ERR
1630                                "SELinux: boundary violated policy: "
1631                                "role=%s type=%s bounds=%s\n",
1632                                sym_name(p, SYM_ROLES, role->value - 1),
1633                                sym_name(p, SYM_TYPES, bit),
1634                                sym_name(p, SYM_ROLES, upper->value - 1));
1635
1636                         return -EINVAL;
1637                 }
1638         }
1639
1640         return 0;
1641 }
1642
1643 static int type_bounds_sanity_check(void *key, void *datum, void *datap)
1644 {
1645         struct type_datum *upper;
1646         struct policydb *p = datap;
1647         int depth = 0;
1648
1649         upper = datum;
1650         while (upper->bounds) {
1651                 if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1652                         printk(KERN_ERR "SELinux: type %s: "
1653                                "too deep or looped boundary\n",
1654                                (char *) key);
1655                         return -EINVAL;
1656                 }
1657
1658                 upper = flex_array_get_ptr(p->type_val_to_struct_array,
1659                                            upper->bounds - 1);
1660                 BUG_ON(!upper);
1661
1662                 if (upper->attribute) {
1663                         printk(KERN_ERR "SELinux: type %s: "
1664                                "bounded by attribute %s",
1665                                (char *) key,
1666                                sym_name(p, SYM_TYPES, upper->value - 1));
1667                         return -EINVAL;
1668                 }
1669         }
1670
1671         return 0;
1672 }
1673
1674 static int policydb_bounds_sanity_check(struct policydb *p)
1675 {
1676         int rc;
1677
1678         if (p->policyvers < POLICYDB_VERSION_BOUNDARY)
1679                 return 0;
1680
1681         rc = hashtab_map(p->p_users.table,
1682                          user_bounds_sanity_check, p);
1683         if (rc)
1684                 return rc;
1685
1686         rc = hashtab_map(p->p_roles.table,
1687                          role_bounds_sanity_check, p);
1688         if (rc)
1689                 return rc;
1690
1691         rc = hashtab_map(p->p_types.table,
1692                          type_bounds_sanity_check, p);
1693         if (rc)
1694                 return rc;
1695
1696         return 0;
1697 }
1698
1699 extern int ss_initialized;
1700
1701 u16 string_to_security_class(struct policydb *p, const char *name)
1702 {
1703         struct class_datum *cladatum;
1704
1705         cladatum = hashtab_search(p->p_classes.table, name);
1706         if (!cladatum)
1707                 return 0;
1708
1709         return cladatum->value;
1710 }
1711
1712 u32 string_to_av_perm(struct policydb *p, u16 tclass, const char *name)
1713 {
1714         struct class_datum *cladatum;
1715         struct perm_datum *perdatum = NULL;
1716         struct common_datum *comdatum;
1717
1718         if (!tclass || tclass > p->p_classes.nprim)
1719                 return 0;
1720
1721         cladatum = p->class_val_to_struct[tclass-1];
1722         comdatum = cladatum->comdatum;
1723         if (comdatum)
1724                 perdatum = hashtab_search(comdatum->permissions.table,
1725                                           name);
1726         if (!perdatum)
1727                 perdatum = hashtab_search(cladatum->permissions.table,
1728                                           name);
1729         if (!perdatum)
1730                 return 0;
1731
1732         return 1U << (perdatum->value-1);
1733 }
1734
1735 static int range_read(struct policydb *p, void *fp)
1736 {
1737         struct range_trans *rt = NULL;
1738         struct mls_range *r = NULL;
1739         int i, rc;
1740         __le32 buf[2];
1741         u32 nel;
1742
1743         if (p->policyvers < POLICYDB_VERSION_MLS)
1744                 return 0;
1745
1746         rc = next_entry(buf, fp, sizeof(u32));
1747         if (rc)
1748                 goto out;
1749
1750         nel = le32_to_cpu(buf[0]);
1751         for (i = 0; i < nel; i++) {
1752                 rc = -ENOMEM;
1753                 rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1754                 if (!rt)
1755                         goto out;
1756
1757                 rc = next_entry(buf, fp, (sizeof(u32) * 2));
1758                 if (rc)
1759                         goto out;
1760
1761                 rt->source_type = le32_to_cpu(buf[0]);
1762                 rt->target_type = le32_to_cpu(buf[1]);
1763                 if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
1764                         rc = next_entry(buf, fp, sizeof(u32));
1765                         if (rc)
1766                                 goto out;
1767                         rt->target_class = le32_to_cpu(buf[0]);
1768                 } else
1769                         rt->target_class = p->process_class;
1770
1771                 rc = -EINVAL;
1772                 if (!policydb_type_isvalid(p, rt->source_type) ||
1773                     !policydb_type_isvalid(p, rt->target_type) ||
1774                     !policydb_class_isvalid(p, rt->target_class))
1775                         goto out;
1776
1777                 rc = -ENOMEM;
1778                 r = kzalloc(sizeof(*r), GFP_KERNEL);
1779                 if (!r)
1780                         goto out;
1781
1782                 rc = mls_read_range_helper(r, fp);
1783                 if (rc)
1784                         goto out;
1785
1786                 rc = -EINVAL;
1787                 if (!mls_range_isvalid(p, r)) {
1788                         printk(KERN_WARNING "SELinux:  rangetrans:  invalid range\n");
1789                         goto out;
1790                 }
1791
1792                 rc = hashtab_insert(p->range_tr, rt, r);
1793                 if (rc)
1794                         goto out;
1795
1796                 rt = NULL;
1797                 r = NULL;
1798         }
1799         hash_eval(p->range_tr, "rangetr");
1800         rc = 0;
1801 out:
1802         kfree(rt);
1803         kfree(r);
1804         return rc;
1805 }
1806
1807 static int filename_trans_read(struct policydb *p, void *fp)
1808 {
1809         struct filename_trans *ft, *last;
1810         u32 nel, len;
1811         char *name;
1812         __le32 buf[4];
1813         int rc, i;
1814
1815         if (p->policyvers < POLICYDB_VERSION_FILENAME_TRANS)
1816                 return 0;
1817
1818         rc = next_entry(buf, fp, sizeof(u32));
1819         if (rc)
1820                 goto out;
1821         nel = le32_to_cpu(buf[0]);
1822
1823         last = p->filename_trans;
1824         while (last && last->next)
1825                 last = last->next;
1826
1827         for (i = 0; i < nel; i++) {
1828                 rc = -ENOMEM;
1829                 ft = kzalloc(sizeof(*ft), GFP_KERNEL);
1830                 if (!ft)
1831                         goto out;
1832
1833                 /* add it to the tail of the list */
1834                 if (!last)
1835                         p->filename_trans = ft;
1836                 else
1837                         last->next = ft;
1838                 last = ft;
1839
1840                 /* length of the path component string */
1841                 rc = next_entry(buf, fp, sizeof(u32));
1842                 if (rc)
1843                         goto out;
1844                 len = le32_to_cpu(buf[0]);
1845
1846                 rc = -ENOMEM;
1847                 name = kmalloc(len + 1, GFP_KERNEL);
1848                 if (!name)
1849                         goto out;
1850
1851                 ft->name = name;
1852
1853                 /* path component string */
1854                 rc = next_entry(name, fp, len);
1855                 if (rc)
1856                         goto out;
1857                 name[len] = 0;
1858
1859                 rc = next_entry(buf, fp, sizeof(u32) * 4);
1860                 if (rc)
1861                         goto out;
1862
1863                 ft->stype = le32_to_cpu(buf[0]);
1864                 ft->ttype = le32_to_cpu(buf[1]);
1865                 ft->tclass = le32_to_cpu(buf[2]);
1866                 ft->otype = le32_to_cpu(buf[3]);
1867
1868                 rc = ebitmap_set_bit(&p->filename_trans_ttypes, ft->ttype, 1);
1869                 if (rc)
1870                         goto out;
1871         }
1872         rc = 0;
1873 out:
1874         return rc;
1875 }
1876
1877 static int genfs_read(struct policydb *p, void *fp)
1878 {
1879         int i, j, rc;
1880         u32 nel, nel2, len, len2;
1881         __le32 buf[1];
1882         struct ocontext *l, *c;
1883         struct ocontext *newc = NULL;
1884         struct genfs *genfs_p, *genfs;
1885         struct genfs *newgenfs = NULL;
1886
1887         rc = next_entry(buf, fp, sizeof(u32));
1888         if (rc)
1889                 goto out;
1890         nel = le32_to_cpu(buf[0]);
1891
1892         for (i = 0; i < nel; i++) {
1893                 rc = next_entry(buf, fp, sizeof(u32));
1894                 if (rc)
1895                         goto out;
1896                 len = le32_to_cpu(buf[0]);
1897
1898                 rc = -ENOMEM;
1899                 newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1900                 if (!newgenfs)
1901                         goto out;
1902
1903                 rc = -ENOMEM;
1904                 newgenfs->fstype = kmalloc(len + 1, GFP_KERNEL);
1905                 if (!newgenfs->fstype)
1906                         goto out;
1907
1908                 rc = next_entry(newgenfs->fstype, fp, len);
1909                 if (rc)
1910                         goto out;
1911
1912                 newgenfs->fstype[len] = 0;
1913
1914                 for (genfs_p = NULL, genfs = p->genfs; genfs;
1915                      genfs_p = genfs, genfs = genfs->next) {
1916                         rc = -EINVAL;
1917                         if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1918                                 printk(KERN_ERR "SELinux:  dup genfs fstype %s\n",
1919                                        newgenfs->fstype);
1920                                 goto out;
1921                         }
1922                         if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1923                                 break;
1924                 }
1925                 newgenfs->next = genfs;
1926                 if (genfs_p)
1927                         genfs_p->next = newgenfs;
1928                 else
1929                         p->genfs = newgenfs;
1930                 genfs = newgenfs;
1931                 newgenfs = NULL;
1932
1933                 rc = next_entry(buf, fp, sizeof(u32));
1934                 if (rc)
1935                         goto out;
1936
1937                 nel2 = le32_to_cpu(buf[0]);
1938                 for (j = 0; j < nel2; j++) {
1939                         rc = next_entry(buf, fp, sizeof(u32));
1940                         if (rc)
1941                                 goto out;
1942                         len = le32_to_cpu(buf[0]);
1943
1944                         rc = -ENOMEM;
1945                         newc = kzalloc(sizeof(*newc), GFP_KERNEL);
1946                         if (!newc)
1947                                 goto out;
1948
1949                         rc = -ENOMEM;
1950                         newc->u.name = kmalloc(len + 1, GFP_KERNEL);
1951                         if (!newc->u.name)
1952                                 goto out;
1953
1954                         rc = next_entry(newc->u.name, fp, len);
1955                         if (rc)
1956                                 goto out;
1957                         newc->u.name[len] = 0;
1958
1959                         rc = next_entry(buf, fp, sizeof(u32));
1960                         if (rc)
1961                                 goto out;
1962
1963                         newc->v.sclass = le32_to_cpu(buf[0]);
1964                         rc = context_read_and_validate(&newc->context[0], p, fp);
1965                         if (rc)
1966                                 goto out;
1967
1968                         for (l = NULL, c = genfs->head; c;
1969                              l = c, c = c->next) {
1970                                 rc = -EINVAL;
1971                                 if (!strcmp(newc->u.name, c->u.name) &&
1972                                     (!c->v.sclass || !newc->v.sclass ||
1973                                      newc->v.sclass == c->v.sclass)) {
1974                                         printk(KERN_ERR "SELinux:  dup genfs entry (%s,%s)\n",
1975                                                genfs->fstype, c->u.name);
1976                                         goto out;
1977                                 }
1978                                 len = strlen(newc->u.name);
1979                                 len2 = strlen(c->u.name);
1980                                 if (len > len2)
1981                                         break;
1982                         }
1983
1984                         newc->next = c;
1985                         if (l)
1986                                 l->next = newc;
1987                         else
1988                                 genfs->head = newc;
1989                         newc = NULL;
1990                 }
1991         }
1992         rc = 0;
1993 out:
1994         if (newgenfs)
1995                 kfree(newgenfs->fstype);
1996         kfree(newgenfs);
1997         ocontext_destroy(newc, OCON_FSUSE);
1998
1999         return rc;
2000 }
2001
2002 static int ocontext_read(struct policydb *p, struct policydb_compat_info *info,
2003                          void *fp)
2004 {
2005         int i, j, rc;
2006         u32 nel, len;
2007         __le32 buf[3];
2008         struct ocontext *l, *c;
2009         u32 nodebuf[8];
2010
2011         for (i = 0; i < info->ocon_num; i++) {
2012                 rc = next_entry(buf, fp, sizeof(u32));
2013                 if (rc)
2014                         goto out;
2015                 nel = le32_to_cpu(buf[0]);
2016
2017                 l = NULL;
2018                 for (j = 0; j < nel; j++) {
2019                         rc = -ENOMEM;
2020                         c = kzalloc(sizeof(*c), GFP_KERNEL);
2021                         if (!c)
2022                                 goto out;
2023                         if (l)
2024                                 l->next = c;
2025                         else
2026                                 p->ocontexts[i] = c;
2027                         l = c;
2028
2029                         switch (i) {
2030                         case OCON_ISID:
2031                                 rc = next_entry(buf, fp, sizeof(u32));
2032                                 if (rc)
2033                                         goto out;
2034
2035                                 c->sid[0] = le32_to_cpu(buf[0]);
2036                                 rc = context_read_and_validate(&c->context[0], p, fp);
2037                                 if (rc)
2038                                         goto out;
2039                                 break;
2040                         case OCON_FS:
2041                         case OCON_NETIF:
2042                                 rc = next_entry(buf, fp, sizeof(u32));
2043                                 if (rc)
2044                                         goto out;
2045                                 len = le32_to_cpu(buf[0]);
2046
2047                                 rc = -ENOMEM;
2048                                 c->u.name = kmalloc(len + 1, GFP_KERNEL);
2049                                 if (!c->u.name)
2050                                         goto out;
2051
2052                                 rc = next_entry(c->u.name, fp, len);
2053                                 if (rc)
2054                                         goto out;
2055
2056                                 c->u.name[len] = 0;
2057                                 rc = context_read_and_validate(&c->context[0], p, fp);
2058                                 if (rc)
2059                                         goto out;
2060                                 rc = context_read_and_validate(&c->context[1], p, fp);
2061                                 if (rc)
2062                                         goto out;
2063                                 break;
2064                         case OCON_PORT:
2065                                 rc = next_entry(buf, fp, sizeof(u32)*3);
2066                                 if (rc)
2067                                         goto out;
2068                                 c->u.port.protocol = le32_to_cpu(buf[0]);
2069                                 c->u.port.low_port = le32_to_cpu(buf[1]);
2070                                 c->u.port.high_port = le32_to_cpu(buf[2]);
2071                                 rc = context_read_and_validate(&c->context[0], p, fp);
2072                                 if (rc)
2073                                         goto out;
2074                                 break;
2075                         case OCON_NODE:
2076                                 rc = next_entry(nodebuf, fp, sizeof(u32) * 2);
2077                                 if (rc)
2078                                         goto out;
2079                                 c->u.node.addr = nodebuf[0]; /* network order */
2080                                 c->u.node.mask = nodebuf[1]; /* network order */
2081                                 rc = context_read_and_validate(&c->context[0], p, fp);
2082                                 if (rc)
2083                                         goto out;
2084                                 break;
2085                         case OCON_FSUSE:
2086                                 rc = next_entry(buf, fp, sizeof(u32)*2);
2087                                 if (rc)
2088                                         goto out;
2089
2090                                 rc = -EINVAL;
2091                                 c->v.behavior = le32_to_cpu(buf[0]);
2092                                 if (c->v.behavior > SECURITY_FS_USE_NONE)
2093                                         goto out;
2094
2095                                 rc = -ENOMEM;
2096                                 len = le32_to_cpu(buf[1]);
2097                                 c->u.name = kmalloc(len + 1, GFP_KERNEL);
2098                                 if (!c->u.name)
2099                                         goto out;
2100
2101                                 rc = next_entry(c->u.name, fp, len);
2102                                 if (rc)
2103                                         goto out;
2104                                 c->u.name[len] = 0;
2105                                 rc = context_read_and_validate(&c->context[0], p, fp);
2106                                 if (rc)
2107                                         goto out;
2108                                 break;
2109                         case OCON_NODE6: {
2110                                 int k;
2111
2112                                 rc = next_entry(nodebuf, fp, sizeof(u32) * 8);
2113                                 if (rc)
2114                                         goto out;
2115                                 for (k = 0; k < 4; k++)
2116                                         c->u.node6.addr[k] = nodebuf[k];
2117                                 for (k = 0; k < 4; k++)
2118                                         c->u.node6.mask[k] = nodebuf[k+4];
2119                                 rc = context_read_and_validate(&c->context[0], p, fp);
2120                                 if (rc)
2121                                         goto out;
2122                                 break;
2123                         }
2124                         }
2125                 }
2126         }
2127         rc = 0;
2128 out:
2129         return rc;
2130 }
2131
2132 /*
2133  * Read the configuration data from a policy database binary
2134  * representation file into a policy database structure.
2135  */
2136 int policydb_read(struct policydb *p, void *fp)
2137 {
2138         struct role_allow *ra, *lra;
2139         struct role_trans *tr, *ltr;
2140         int i, j, rc;
2141         __le32 buf[4];
2142         u32 len, nprim, nel;
2143
2144         char *policydb_str;
2145         struct policydb_compat_info *info;
2146
2147         rc = policydb_init(p);
2148         if (rc)
2149                 return rc;
2150
2151         /* Read the magic number and string length. */
2152         rc = next_entry(buf, fp, sizeof(u32) * 2);
2153         if (rc)
2154                 goto bad;
2155
2156         rc = -EINVAL;
2157         if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
2158                 printk(KERN_ERR "SELinux:  policydb magic number 0x%x does "
2159                        "not match expected magic number 0x%x\n",
2160                        le32_to_cpu(buf[0]), POLICYDB_MAGIC);
2161                 goto bad;
2162         }
2163
2164         rc = -EINVAL;
2165         len = le32_to_cpu(buf[1]);
2166         if (len != strlen(POLICYDB_STRING)) {
2167                 printk(KERN_ERR "SELinux:  policydb string length %d does not "
2168                        "match expected length %Zu\n",
2169                        len, strlen(POLICYDB_STRING));
2170                 goto bad;
2171         }
2172
2173         rc = -ENOMEM;
2174         policydb_str = kmalloc(len + 1, GFP_KERNEL);
2175         if (!policydb_str) {
2176                 printk(KERN_ERR "SELinux:  unable to allocate memory for policydb "
2177                        "string of length %d\n", len);
2178                 goto bad;
2179         }
2180
2181         rc = next_entry(policydb_str, fp, len);
2182         if (rc) {
2183                 printk(KERN_ERR "SELinux:  truncated policydb string identifier\n");
2184                 kfree(policydb_str);
2185                 goto bad;
2186         }
2187
2188         rc = -EINVAL;
2189         policydb_str[len] = '\0';
2190         if (strcmp(policydb_str, POLICYDB_STRING)) {
2191                 printk(KERN_ERR "SELinux:  policydb string %s does not match "
2192                        "my string %s\n", policydb_str, POLICYDB_STRING);
2193                 kfree(policydb_str);
2194                 goto bad;
2195         }
2196         /* Done with policydb_str. */
2197         kfree(policydb_str);
2198         policydb_str = NULL;
2199
2200         /* Read the version and table sizes. */
2201         rc = next_entry(buf, fp, sizeof(u32)*4);
2202         if (rc)
2203                 goto bad;
2204
2205         rc = -EINVAL;
2206         p->policyvers = le32_to_cpu(buf[0]);
2207         if (p->policyvers < POLICYDB_VERSION_MIN ||
2208             p->policyvers > POLICYDB_VERSION_MAX) {
2209                 printk(KERN_ERR "SELinux:  policydb version %d does not match "
2210                        "my version range %d-%d\n",
2211                        le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
2212                 goto bad;
2213         }
2214
2215         if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
2216                 p->mls_enabled = 1;
2217
2218                 rc = -EINVAL;
2219                 if (p->policyvers < POLICYDB_VERSION_MLS) {
2220                         printk(KERN_ERR "SELinux: security policydb version %d "
2221                                 "(MLS) not backwards compatible\n",
2222                                 p->policyvers);
2223                         goto bad;
2224                 }
2225         }
2226         p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
2227         p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
2228
2229         if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
2230                 rc = ebitmap_read(&p->policycaps, fp);
2231                 if (rc)
2232                         goto bad;
2233         }
2234
2235         if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
2236                 rc = ebitmap_read(&p->permissive_map, fp);
2237                 if (rc)
2238                         goto bad;
2239         }
2240
2241         rc = -EINVAL;
2242         info = policydb_lookup_compat(p->policyvers);
2243         if (!info) {
2244                 printk(KERN_ERR "SELinux:  unable to find policy compat info "
2245                        "for version %d\n", p->policyvers);
2246                 goto bad;
2247         }
2248
2249         rc = -EINVAL;
2250         if (le32_to_cpu(buf[2]) != info->sym_num ||
2251                 le32_to_cpu(buf[3]) != info->ocon_num) {
2252                 printk(KERN_ERR "SELinux:  policydb table sizes (%d,%d) do "
2253                        "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
2254                         le32_to_cpu(buf[3]),
2255                        info->sym_num, info->ocon_num);
2256                 goto bad;
2257         }
2258
2259         for (i = 0; i < info->sym_num; i++) {
2260                 rc = next_entry(buf, fp, sizeof(u32)*2);
2261                 if (rc)
2262                         goto bad;
2263                 nprim = le32_to_cpu(buf[0]);
2264                 nel = le32_to_cpu(buf[1]);
2265                 for (j = 0; j < nel; j++) {
2266                         rc = read_f[i](p, p->symtab[i].table, fp);
2267                         if (rc)
2268                                 goto bad;
2269                 }
2270
2271                 p->symtab[i].nprim = nprim;
2272         }
2273
2274         rc = -EINVAL;
2275         p->process_class = string_to_security_class(p, "process");
2276         if (!p->process_class)
2277                 goto bad;
2278
2279         rc = avtab_read(&p->te_avtab, fp, p);
2280         if (rc)
2281                 goto bad;
2282
2283         if (p->policyvers >= POLICYDB_VERSION_BOOL) {
2284                 rc = cond_read_list(p, fp);
2285                 if (rc)
2286                         goto bad;
2287         }
2288
2289         rc = next_entry(buf, fp, sizeof(u32));
2290         if (rc)
2291                 goto bad;
2292         nel = le32_to_cpu(buf[0]);
2293         ltr = NULL;
2294         for (i = 0; i < nel; i++) {
2295                 rc = -ENOMEM;
2296                 tr = kzalloc(sizeof(*tr), GFP_KERNEL);
2297                 if (!tr)
2298                         goto bad;
2299                 if (ltr)
2300                         ltr->next = tr;
2301                 else
2302                         p->role_tr = tr;
2303                 rc = next_entry(buf, fp, sizeof(u32)*3);
2304                 if (rc)
2305                         goto bad;
2306
2307                 rc = -EINVAL;
2308                 tr->role = le32_to_cpu(buf[0]);
2309                 tr->type = le32_to_cpu(buf[1]);
2310                 tr->new_role = le32_to_cpu(buf[2]);
2311                 if (p->policyvers >= POLICYDB_VERSION_ROLETRANS) {
2312                         rc = next_entry(buf, fp, sizeof(u32));
2313                         if (rc)
2314                                 goto bad;
2315                         tr->tclass = le32_to_cpu(buf[0]);
2316                 } else
2317                         tr->tclass = p->process_class;
2318
2319                 if (!policydb_role_isvalid(p, tr->role) ||
2320                     !policydb_type_isvalid(p, tr->type) ||
2321                     !policydb_class_isvalid(p, tr->tclass) ||
2322                     !policydb_role_isvalid(p, tr->new_role))
2323                         goto bad;
2324                 ltr = tr;
2325         }
2326
2327         rc = next_entry(buf, fp, sizeof(u32));
2328         if (rc)
2329                 goto bad;
2330         nel = le32_to_cpu(buf[0]);
2331         lra = NULL;
2332         for (i = 0; i < nel; i++) {
2333                 rc = -ENOMEM;
2334                 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
2335                 if (!ra)
2336                         goto bad;
2337                 if (lra)
2338                         lra->next = ra;
2339                 else
2340                         p->role_allow = ra;
2341                 rc = next_entry(buf, fp, sizeof(u32)*2);
2342                 if (rc)
2343                         goto bad;
2344
2345                 rc = -EINVAL;
2346                 ra->role = le32_to_cpu(buf[0]);
2347                 ra->new_role = le32_to_cpu(buf[1]);
2348                 if (!policydb_role_isvalid(p, ra->role) ||
2349                     !policydb_role_isvalid(p, ra->new_role))
2350                         goto bad;
2351                 lra = ra;
2352         }
2353
2354         rc = filename_trans_read(p, fp);
2355         if (rc)
2356                 goto bad;
2357
2358         rc = policydb_index(p);
2359         if (rc)
2360                 goto bad;
2361
2362         rc = -EINVAL;
2363         p->process_trans_perms = string_to_av_perm(p, p->process_class, "transition");
2364         p->process_trans_perms |= string_to_av_perm(p, p->process_class, "dyntransition");
2365         if (!p->process_trans_perms)
2366                 goto bad;
2367
2368         rc = ocontext_read(p, info, fp);
2369         if (rc)
2370                 goto bad;
2371
2372         rc = genfs_read(p, fp);
2373         if (rc)
2374                 goto bad;
2375
2376         rc = range_read(p, fp);
2377         if (rc)
2378                 goto bad;
2379
2380         rc = -ENOMEM;
2381         p->type_attr_map_array = flex_array_alloc(sizeof(struct ebitmap),
2382                                                   p->p_types.nprim,
2383                                                   GFP_KERNEL | __GFP_ZERO);
2384         if (!p->type_attr_map_array)
2385                 goto bad;
2386
2387         /* preallocate so we don't have to worry about the put ever failing */
2388         rc = flex_array_prealloc(p->type_attr_map_array, 0, p->p_types.nprim - 1,
2389                                  GFP_KERNEL | __GFP_ZERO);
2390         if (rc)
2391                 goto bad;
2392
2393         for (i = 0; i < p->p_types.nprim; i++) {
2394                 struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
2395
2396                 BUG_ON(!e);
2397                 ebitmap_init(e);
2398                 if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
2399                         rc = ebitmap_read(e, fp);
2400                         if (rc)
2401                                 goto bad;
2402                 }
2403                 /* add the type itself as the degenerate case */
2404                 rc = ebitmap_set_bit(e, i, 1);
2405                 if (rc)
2406                         goto bad;
2407         }
2408
2409         rc = policydb_bounds_sanity_check(p);
2410         if (rc)
2411                 goto bad;
2412
2413         rc = 0;
2414 out:
2415         return rc;
2416 bad:
2417         policydb_destroy(p);
2418         goto out;
2419 }
2420
2421 /*
2422  * Write a MLS level structure to a policydb binary
2423  * representation file.
2424  */
2425 static int mls_write_level(struct mls_level *l, void *fp)
2426 {
2427         __le32 buf[1];
2428         int rc;
2429
2430         buf[0] = cpu_to_le32(l->sens);
2431         rc = put_entry(buf, sizeof(u32), 1, fp);
2432         if (rc)
2433                 return rc;
2434
2435         rc = ebitmap_write(&l->cat, fp);
2436         if (rc)
2437                 return rc;
2438
2439         return 0;
2440 }
2441
2442 /*
2443  * Write a MLS range structure to a policydb binary
2444  * representation file.
2445  */
2446 static int mls_write_range_helper(struct mls_range *r, void *fp)
2447 {
2448         __le32 buf[3];
2449         size_t items;
2450         int rc, eq;
2451
2452         eq = mls_level_eq(&r->level[1], &r->level[0]);
2453
2454         if (eq)
2455                 items = 2;
2456         else
2457                 items = 3;
2458         buf[0] = cpu_to_le32(items-1);
2459         buf[1] = cpu_to_le32(r->level[0].sens);
2460         if (!eq)
2461                 buf[2] = cpu_to_le32(r->level[1].sens);
2462
2463         BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
2464
2465         rc = put_entry(buf, sizeof(u32), items, fp);
2466         if (rc)
2467                 return rc;
2468
2469         rc = ebitmap_write(&r->level[0].cat, fp);
2470         if (rc)
2471                 return rc;
2472         if (!eq) {
2473                 rc = ebitmap_write(&r->level[1].cat, fp);
2474                 if (rc)
2475                         return rc;
2476         }
2477
2478         return 0;
2479 }
2480
2481 static int sens_write(void *vkey, void *datum, void *ptr)
2482 {
2483         char *key = vkey;
2484         struct level_datum *levdatum = datum;
2485         struct policy_data *pd = ptr;
2486         void *fp = pd->fp;
2487         __le32 buf[2];
2488         size_t len;
2489         int rc;
2490
2491         len = strlen(key);
2492         buf[0] = cpu_to_le32(len);
2493         buf[1] = cpu_to_le32(levdatum->isalias);
2494         rc = put_entry(buf, sizeof(u32), 2, fp);
2495         if (rc)
2496                 return rc;
2497
2498         rc = put_entry(key, 1, len, fp);
2499         if (rc)
2500                 return rc;
2501
2502         rc = mls_write_level(levdatum->level, fp);
2503         if (rc)
2504                 return rc;
2505
2506         return 0;
2507 }
2508
2509 static int cat_write(void *vkey, void *datum, void *ptr)
2510 {
2511         char *key = vkey;
2512         struct cat_datum *catdatum = datum;
2513         struct policy_data *pd = ptr;
2514         void *fp = pd->fp;
2515         __le32 buf[3];
2516         size_t len;
2517         int rc;
2518
2519         len = strlen(key);
2520         buf[0] = cpu_to_le32(len);
2521         buf[1] = cpu_to_le32(catdatum->value);
2522         buf[2] = cpu_to_le32(catdatum->isalias);
2523         rc = put_entry(buf, sizeof(u32), 3, fp);
2524         if (rc)
2525                 return rc;
2526
2527         rc = put_entry(key, 1, len, fp);
2528         if (rc)
2529                 return rc;
2530
2531         return 0;
2532 }
2533
2534 static int role_trans_write(struct policydb *p, void *fp)
2535 {
2536         struct role_trans *r = p->role_tr;
2537         struct role_trans *tr;
2538         u32 buf[3];
2539         size_t nel;
2540         int rc;
2541
2542         nel = 0;
2543         for (tr = r; tr; tr = tr->next)
2544                 nel++;
2545         buf[0] = cpu_to_le32(nel);
2546         rc = put_entry(buf, sizeof(u32), 1, fp);
2547         if (rc)
2548                 return rc;
2549         for (tr = r; tr; tr = tr->next) {
2550                 buf[0] = cpu_to_le32(tr->role);
2551                 buf[1] = cpu_to_le32(tr->type);
2552                 buf[2] = cpu_to_le32(tr->new_role);
2553                 rc = put_entry(buf, sizeof(u32), 3, fp);
2554                 if (rc)
2555                         return rc;
2556                 if (p->policyvers >= POLICYDB_VERSION_ROLETRANS) {
2557                         buf[0] = cpu_to_le32(tr->tclass);
2558                         rc = put_entry(buf, sizeof(u32), 1, fp);
2559                         if (rc)
2560                                 return rc;
2561                 }
2562         }
2563
2564         return 0;
2565 }
2566
2567 static int role_allow_write(struct role_allow *r, void *fp)
2568 {
2569         struct role_allow *ra;
2570         u32 buf[2];
2571         size_t nel;
2572         int rc;
2573
2574         nel = 0;
2575         for (ra = r; ra; ra = ra->next)
2576                 nel++;
2577         buf[0] = cpu_to_le32(nel);
2578         rc = put_entry(buf, sizeof(u32), 1, fp);
2579         if (rc)
2580                 return rc;
2581         for (ra = r; ra; ra = ra->next) {
2582                 buf[0] = cpu_to_le32(ra->role);
2583                 buf[1] = cpu_to_le32(ra->new_role);
2584                 rc = put_entry(buf, sizeof(u32), 2, fp);
2585                 if (rc)
2586                         return rc;
2587         }
2588         return 0;
2589 }
2590
2591 /*
2592  * Write a security context structure
2593  * to a policydb binary representation file.
2594  */
2595 static int context_write(struct policydb *p, struct context *c,
2596                          void *fp)
2597 {
2598         int rc;
2599         __le32 buf[3];
2600
2601         buf[0] = cpu_to_le32(c->user);
2602         buf[1] = cpu_to_le32(c->role);
2603         buf[2] = cpu_to_le32(c->type);
2604
2605         rc = put_entry(buf, sizeof(u32), 3, fp);
2606         if (rc)
2607                 return rc;
2608
2609         rc = mls_write_range_helper(&c->range, fp);
2610         if (rc)
2611                 return rc;
2612
2613         return 0;
2614 }
2615
2616 /*
2617  * The following *_write functions are used to
2618  * write the symbol data to a policy database
2619  * binary representation file.
2620  */
2621
2622 static int perm_write(void *vkey, void *datum, void *fp)
2623 {
2624         char *key = vkey;
2625         struct perm_datum *perdatum = datum;
2626         __le32 buf[2];
2627         size_t len;
2628         int rc;
2629
2630         len = strlen(key);
2631         buf[0] = cpu_to_le32(len);
2632         buf[1] = cpu_to_le32(perdatum->value);
2633         rc = put_entry(buf, sizeof(u32), 2, fp);
2634         if (rc)
2635                 return rc;
2636
2637         rc = put_entry(key, 1, len, fp);
2638         if (rc)
2639                 return rc;
2640
2641         return 0;
2642 }
2643
2644 static int common_write(void *vkey, void *datum, void *ptr)
2645 {
2646         char *key = vkey;
2647         struct common_datum *comdatum = datum;
2648         struct policy_data *pd = ptr;
2649         void *fp = pd->fp;
2650         __le32 buf[4];
2651         size_t len;
2652         int rc;
2653
2654         len = strlen(key);
2655         buf[0] = cpu_to_le32(len);
2656         buf[1] = cpu_to_le32(comdatum->value);
2657         buf[2] = cpu_to_le32(comdatum->permissions.nprim);
2658         buf[3] = cpu_to_le32(comdatum->permissions.table->nel);
2659         rc = put_entry(buf, sizeof(u32), 4, fp);
2660         if (rc)
2661                 return rc;
2662
2663         rc = put_entry(key, 1, len, fp);
2664         if (rc)
2665                 return rc;
2666
2667         rc = hashtab_map(comdatum->permissions.table, perm_write, fp);
2668         if (rc)
2669                 return rc;
2670
2671         return 0;
2672 }
2673
2674 static int write_cons_helper(struct policydb *p, struct constraint_node *node,
2675                              void *fp)
2676 {
2677         struct constraint_node *c;
2678         struct constraint_expr *e;
2679         __le32 buf[3];
2680         u32 nel;
2681         int rc;
2682
2683         for (c = node; c; c = c->next) {
2684                 nel = 0;
2685                 for (e = c->expr; e; e = e->next)
2686                         nel++;
2687                 buf[0] = cpu_to_le32(c->permissions);
2688                 buf[1] = cpu_to_le32(nel);
2689                 rc = put_entry(buf, sizeof(u32), 2, fp);
2690                 if (rc)
2691                         return rc;
2692                 for (e = c->expr; e; e = e->next) {
2693                         buf[0] = cpu_to_le32(e->expr_type);
2694                         buf[1] = cpu_to_le32(e->attr);
2695                         buf[2] = cpu_to_le32(e->op);
2696                         rc = put_entry(buf, sizeof(u32), 3, fp);
2697                         if (rc)
2698                                 return rc;
2699
2700                         switch (e->expr_type) {
2701                         case CEXPR_NAMES:
2702                                 rc = ebitmap_write(&e->names, fp);
2703                                 if (rc)
2704                                         return rc;
2705                                 break;
2706                         default:
2707                                 break;
2708                         }
2709                 }
2710         }
2711
2712         return 0;
2713 }
2714
2715 static int class_write(void *vkey, void *datum, void *ptr)
2716 {
2717         char *key = vkey;
2718         struct class_datum *cladatum = datum;
2719         struct policy_data *pd = ptr;
2720         void *fp = pd->fp;
2721         struct policydb *p = pd->p;
2722         struct constraint_node *c;
2723         __le32 buf[6];
2724         u32 ncons;
2725         size_t len, len2;
2726         int rc;
2727
2728         len = strlen(key);
2729         if (cladatum->comkey)
2730                 len2 = strlen(cladatum->comkey);
2731         else
2732                 len2 = 0;
2733
2734         ncons = 0;
2735         for (c = cladatum->constraints; c; c = c->next)
2736                 ncons++;
2737
2738         buf[0] = cpu_to_le32(len);
2739         buf[1] = cpu_to_le32(len2);
2740         buf[2] = cpu_to_le32(cladatum->value);
2741         buf[3] = cpu_to_le32(cladatum->permissions.nprim);
2742         if (cladatum->permissions.table)
2743                 buf[4] = cpu_to_le32(cladatum->permissions.table->nel);
2744         else
2745                 buf[4] = 0;
2746         buf[5] = cpu_to_le32(ncons);
2747         rc = put_entry(buf, sizeof(u32), 6, fp);
2748         if (rc)
2749                 return rc;
2750
2751         rc = put_entry(key, 1, len, fp);
2752         if (rc)
2753                 return rc;
2754
2755         if (cladatum->comkey) {
2756                 rc = put_entry(cladatum->comkey, 1, len2, fp);
2757                 if (rc)
2758                         return rc;
2759         }
2760
2761         rc = hashtab_map(cladatum->permissions.table, perm_write, fp);
2762         if (rc)
2763                 return rc;
2764
2765         rc = write_cons_helper(p, cladatum->constraints, fp);
2766         if (rc)
2767                 return rc;
2768
2769         /* write out the validatetrans rule */
2770         ncons = 0;
2771         for (c = cladatum->validatetrans; c; c = c->next)
2772                 ncons++;
2773
2774         buf[0] = cpu_to_le32(ncons);
2775         rc = put_entry(buf, sizeof(u32), 1, fp);
2776         if (rc)
2777                 return rc;
2778
2779         rc = write_cons_helper(p, cladatum->validatetrans, fp);
2780         if (rc)
2781                 return rc;
2782
2783         return 0;
2784 }
2785
2786 static int role_write(void *vkey, void *datum, void *ptr)
2787 {
2788         char *key = vkey;
2789         struct role_datum *role = datum;
2790         struct policy_data *pd = ptr;
2791         void *fp = pd->fp;
2792         struct policydb *p = pd->p;
2793         __le32 buf[3];
2794         size_t items, len;
2795         int rc;
2796
2797         len = strlen(key);
2798         items = 0;
2799         buf[items++] = cpu_to_le32(len);
2800         buf[items++] = cpu_to_le32(role->value);
2801         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
2802                 buf[items++] = cpu_to_le32(role->bounds);
2803
2804         BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
2805
2806         rc = put_entry(buf, sizeof(u32), items, fp);
2807         if (rc)
2808                 return rc;
2809
2810         rc = put_entry(key, 1, len, fp);
2811         if (rc)
2812                 return rc;
2813
2814         rc = ebitmap_write(&role->dominates, fp);
2815         if (rc)
2816                 return rc;
2817
2818         rc = ebitmap_write(&role->types, fp);
2819         if (rc)
2820                 return rc;
2821
2822         return 0;
2823 }
2824
2825 static int type_write(void *vkey, void *datum, void *ptr)
2826 {
2827         char *key = vkey;
2828         struct type_datum *typdatum = datum;
2829         struct policy_data *pd = ptr;
2830         struct policydb *p = pd->p;
2831         void *fp = pd->fp;
2832         __le32 buf[4];
2833         int rc;
2834         size_t items, len;
2835
2836         len = strlen(key);
2837         items = 0;
2838         buf[items++] = cpu_to_le32(len);
2839         buf[items++] = cpu_to_le32(typdatum->value);
2840         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
2841                 u32 properties = 0;
2842
2843                 if (typdatum->primary)
2844                         properties |= TYPEDATUM_PROPERTY_PRIMARY;
2845
2846                 if (typdatum->attribute)
2847                         properties |= TYPEDATUM_PROPERTY_ATTRIBUTE;
2848
2849                 buf[items++] = cpu_to_le32(properties);
2850                 buf[items++] = cpu_to_le32(typdatum->bounds);
2851         } else {
2852                 buf[items++] = cpu_to_le32(typdatum->primary);
2853         }
2854         BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
2855         rc = put_entry(buf, sizeof(u32), items, fp);
2856         if (rc)
2857                 return rc;
2858
2859         rc = put_entry(key, 1, len, fp);
2860         if (rc)
2861                 return rc;
2862
2863         return 0;
2864 }
2865
2866 static int user_write(void *vkey, void *datum, void *ptr)
2867 {
2868         char *key = vkey;
2869         struct user_datum *usrdatum = datum;
2870         struct policy_data *pd = ptr;
2871         struct policydb *p = pd->p;
2872         void *fp = pd->fp;
2873         __le32 buf[3];
2874         size_t items, len;
2875         int rc;
2876
2877         len = strlen(key);
2878         items = 0;
2879         buf[items++] = cpu_to_le32(len);
2880         buf[items++] = cpu_to_le32(usrdatum->value);
2881         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
2882                 buf[items++] = cpu_to_le32(usrdatum->bounds);
2883         BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
2884         rc = put_entry(buf, sizeof(u32), items, fp);
2885         if (rc)
2886                 return rc;
2887
2888         rc = put_entry(key, 1, len, fp);
2889         if (rc)
2890                 return rc;
2891
2892         rc = ebitmap_write(&usrdatum->roles, fp);
2893         if (rc)
2894                 return rc;
2895
2896         rc = mls_write_range_helper(&usrdatum->range, fp);
2897         if (rc)
2898                 return rc;
2899
2900         rc = mls_write_level(&usrdatum->dfltlevel, fp);
2901         if (rc)
2902                 return rc;
2903
2904         return 0;
2905 }
2906
2907 static int (*write_f[SYM_NUM]) (void *key, void *datum,
2908                                 void *datap) =
2909 {
2910         common_write,
2911         class_write,
2912         role_write,
2913         type_write,
2914         user_write,
2915         cond_write_bool,
2916         sens_write,
2917         cat_write,
2918 };
2919
2920 static int ocontext_write(struct policydb *p, struct policydb_compat_info *info,
2921                           void *fp)
2922 {
2923         unsigned int i, j, rc;
2924         size_t nel, len;
2925         __le32 buf[3];
2926         u32 nodebuf[8];
2927         struct ocontext *c;
2928         for (i = 0; i < info->ocon_num; i++) {
2929                 nel = 0;
2930                 for (c = p->ocontexts[i]; c; c = c->next)
2931                         nel++;
2932                 buf[0] = cpu_to_le32(nel);
2933                 rc = put_entry(buf, sizeof(u32), 1, fp);
2934                 if (rc)
2935                         return rc;
2936                 for (c = p->ocontexts[i]; c; c = c->next) {
2937                         switch (i) {
2938                         case OCON_ISID:
2939                                 buf[0] = cpu_to_le32(c->sid[0]);
2940                                 rc = put_entry(buf, sizeof(u32), 1, fp);
2941                                 if (rc)
2942                                         return rc;
2943                                 rc = context_write(p, &c->context[0], fp);
2944                                 if (rc)
2945                                         return rc;
2946                                 break;
2947                         case OCON_FS:
2948                         case OCON_NETIF:
2949                                 len = strlen(c->u.name);
2950                                 buf[0] = cpu_to_le32(len);
2951                                 rc = put_entry(buf, sizeof(u32), 1, fp);
2952                                 if (rc)
2953                                         return rc;
2954                                 rc = put_entry(c->u.name, 1, len, fp);
2955                                 if (rc)
2956                                         return rc;
2957                                 rc = context_write(p, &c->context[0], fp);
2958                                 if (rc)
2959                                         return rc;
2960                                 rc = context_write(p, &c->context[1], fp);
2961                                 if (rc)
2962                                         return rc;
2963                                 break;
2964                         case OCON_PORT:
2965                                 buf[0] = cpu_to_le32(c->u.port.protocol);
2966                                 buf[1] = cpu_to_le32(c->u.port.low_port);
2967                                 buf[2] = cpu_to_le32(c->u.port.high_port);
2968                                 rc = put_entry(buf, sizeof(u32), 3, fp);
2969                                 if (rc)
2970                                         return rc;
2971                                 rc = context_write(p, &c->context[0], fp);
2972                                 if (rc)
2973                                         return rc;
2974                                 break;
2975                         case OCON_NODE:
2976                                 nodebuf[0] = c->u.node.addr; /* network order */
2977                                 nodebuf[1] = c->u.node.mask; /* network order */
2978                                 rc = put_entry(nodebuf, sizeof(u32), 2, fp);
2979                                 if (rc)
2980                                         return rc;
2981                                 rc = context_write(p, &c->context[0], fp);
2982                                 if (rc)
2983                                         return rc;
2984                                 break;
2985                         case OCON_FSUSE:
2986                                 buf[0] = cpu_to_le32(c->v.behavior);
2987                                 len = strlen(c->u.name);
2988                                 buf[1] = cpu_to_le32(len);
2989                                 rc = put_entry(buf, sizeof(u32), 2, fp);
2990                                 if (rc)
2991                                         return rc;
2992                                 rc = put_entry(c->u.name, 1, len, fp);
2993                                 if (rc)
2994                                         return rc;
2995                                 rc = context_write(p, &c->context[0], fp);
2996                                 if (rc)
2997                                         return rc;
2998                                 break;
2999                         case OCON_NODE6:
3000                                 for (j = 0; j < 4; j++)
3001                                         nodebuf[j] = c->u.node6.addr[j]; /* network order */
3002                                 for (j = 0; j < 4; j++)
3003                                         nodebuf[j + 4] = c->u.node6.mask[j]; /* network order */
3004                                 rc = put_entry(nodebuf, sizeof(u32), 8, fp);
3005                                 if (rc)
3006                                         return rc;
3007                                 rc = context_write(p, &c->context[0], fp);
3008                                 if (rc)
3009                                         return rc;
3010                                 break;
3011                         }
3012                 }
3013         }
3014         return 0;
3015 }
3016
3017 static int genfs_write(struct policydb *p, void *fp)
3018 {
3019         struct genfs *genfs;
3020         struct ocontext *c;
3021         size_t len;
3022         __le32 buf[1];
3023         int rc;
3024
3025         len = 0;
3026         for (genfs = p->genfs; genfs; genfs = genfs->next)
3027                 len++;
3028         buf[0] = cpu_to_le32(len);
3029         rc = put_entry(buf, sizeof(u32), 1, fp);
3030         if (rc)
3031                 return rc;
3032         for (genfs = p->genfs; genfs; genfs = genfs->next) {
3033                 len = strlen(genfs->fstype);
3034                 buf[0] = cpu_to_le32(len);
3035                 rc = put_entry(buf, sizeof(u32), 1, fp);
3036                 if (rc)
3037                         return rc;
3038                 rc = put_entry(genfs->fstype, 1, len, fp);
3039                 if (rc)
3040                         return rc;
3041                 len = 0;
3042                 for (c = genfs->head; c; c = c->next)
3043                         len++;
3044                 buf[0] = cpu_to_le32(len);
3045                 rc = put_entry(buf, sizeof(u32), 1, fp);
3046                 if (rc)
3047                         return rc;
3048                 for (c = genfs->head; c; c = c->next) {
3049                         len = strlen(c->u.name);
3050                         buf[0] = cpu_to_le32(len);
3051                         rc = put_entry(buf, sizeof(u32), 1, fp);
3052                         if (rc)
3053                                 return rc;
3054                         rc = put_entry(c->u.name, 1, len, fp);
3055                         if (rc)
3056                                 return rc;
3057                         buf[0] = cpu_to_le32(c->v.sclass);
3058                         rc = put_entry(buf, sizeof(u32), 1, fp);
3059                         if (rc)
3060                                 return rc;
3061                         rc = context_write(p, &c->context[0], fp);
3062                         if (rc)
3063                                 return rc;
3064                 }
3065         }
3066         return 0;
3067 }
3068
3069 static int hashtab_cnt(void *key, void *data, void *ptr)
3070 {
3071         int *cnt = ptr;
3072         *cnt = *cnt + 1;
3073
3074         return 0;
3075 }
3076
3077 static int range_write_helper(void *key, void *data, void *ptr)
3078 {
3079         __le32 buf[2];
3080         struct range_trans *rt = key;
3081         struct mls_range *r = data;
3082         struct policy_data *pd = ptr;
3083         void *fp = pd->fp;
3084         struct policydb *p = pd->p;
3085         int rc;
3086
3087         buf[0] = cpu_to_le32(rt->source_type);
3088         buf[1] = cpu_to_le32(rt->target_type);
3089         rc = put_entry(buf, sizeof(u32), 2, fp);
3090         if (rc)
3091                 return rc;
3092         if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
3093                 buf[0] = cpu_to_le32(rt->target_class);
3094                 rc = put_entry(buf, sizeof(u32), 1, fp);
3095                 if (rc)
3096                         return rc;
3097         }
3098         rc = mls_write_range_helper(r, fp);
3099         if (rc)
3100                 return rc;
3101
3102         return 0;
3103 }
3104
3105 static int range_write(struct policydb *p, void *fp)
3106 {
3107         size_t nel;
3108         __le32 buf[1];
3109         int rc;
3110         struct policy_data pd;
3111
3112         pd.p = p;
3113         pd.fp = fp;
3114
3115         /* count the number of entries in the hashtab */
3116         nel = 0;
3117         rc = hashtab_map(p->range_tr, hashtab_cnt, &nel);
3118         if (rc)
3119                 return rc;
3120
3121         buf[0] = cpu_to_le32(nel);
3122         rc = put_entry(buf, sizeof(u32), 1, fp);
3123         if (rc)
3124                 return rc;
3125
3126         /* actually write all of the entries */
3127         rc = hashtab_map(p->range_tr, range_write_helper, &pd);
3128         if (rc)
3129                 return rc;
3130
3131         return 0;
3132 }
3133
3134 static int filename_trans_write(struct policydb *p, void *fp)
3135 {
3136         struct filename_trans *ft;
3137         u32 len, nel = 0;
3138         __le32 buf[4];
3139         int rc;
3140
3141         for (ft = p->filename_trans; ft; ft = ft->next)
3142                 nel++;
3143
3144         buf[0] = cpu_to_le32(nel);
3145         rc = put_entry(buf, sizeof(u32), 1, fp);
3146         if (rc)
3147                 return rc;
3148
3149         for (ft = p->filename_trans; ft; ft = ft->next) {
3150                 len = strlen(ft->name);
3151                 buf[0] = cpu_to_le32(len);
3152                 rc = put_entry(buf, sizeof(u32), 1, fp);
3153                 if (rc)
3154                         return rc;
3155
3156                 rc = put_entry(ft->name, sizeof(char), len, fp);
3157                 if (rc)
3158                         return rc;
3159
3160                 buf[0] = ft->stype;
3161                 buf[1] = ft->ttype;
3162                 buf[2] = ft->tclass;
3163                 buf[3] = ft->otype;
3164
3165                 rc = put_entry(buf, sizeof(u32), 4, fp);
3166                 if (rc)
3167                         return rc;
3168         }
3169         return 0;
3170 }
3171 /*
3172  * Write the configuration data in a policy database
3173  * structure to a policy database binary representation
3174  * file.
3175  */
3176 int policydb_write(struct policydb *p, void *fp)
3177 {
3178         unsigned int i, num_syms;
3179         int rc;
3180         __le32 buf[4];
3181         u32 config;
3182         size_t len;
3183         struct policydb_compat_info *info;
3184
3185         /*
3186          * refuse to write policy older than compressed avtab
3187          * to simplify the writer.  There are other tests dropped
3188          * since we assume this throughout the writer code.  Be
3189          * careful if you ever try to remove this restriction
3190          */
3191         if (p->policyvers < POLICYDB_VERSION_AVTAB) {
3192                 printk(KERN_ERR "SELinux: refusing to write policy version %d."
3193                        "  Because it is less than version %d\n", p->policyvers,
3194                        POLICYDB_VERSION_AVTAB);
3195                 return -EINVAL;
3196         }
3197
3198         config = 0;
3199         if (p->mls_enabled)
3200                 config |= POLICYDB_CONFIG_MLS;
3201
3202         if (p->reject_unknown)
3203                 config |= REJECT_UNKNOWN;
3204         if (p->allow_unknown)
3205                 config |= ALLOW_UNKNOWN;
3206
3207         /* Write the magic number and string identifiers. */
3208         buf[0] = cpu_to_le32(POLICYDB_MAGIC);
3209         len = strlen(POLICYDB_STRING);
3210         buf[1] = cpu_to_le32(len);
3211         rc = put_entry(buf, sizeof(u32), 2, fp);
3212         if (rc)
3213                 return rc;
3214         rc = put_entry(POLICYDB_STRING, 1, len, fp);
3215         if (rc)
3216                 return rc;
3217
3218         /* Write the version, config, and table sizes. */
3219         info = policydb_lookup_compat(p->policyvers);
3220         if (!info) {
3221                 printk(KERN_ERR "SELinux: compatibility lookup failed for policy "
3222                     "version %d", p->policyvers);
3223                 return -EINVAL;
3224         }
3225
3226         buf[0] = cpu_to_le32(p->policyvers);
3227         buf[1] = cpu_to_le32(config);
3228         buf[2] = cpu_to_le32(info->sym_num);
3229         buf[3] = cpu_to_le32(info->ocon_num);
3230
3231         rc = put_entry(buf, sizeof(u32), 4, fp);
3232         if (rc)
3233                 return rc;
3234
3235         if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
3236                 rc = ebitmap_write(&p->policycaps, fp);
3237                 if (rc)
3238                         return rc;
3239         }
3240
3241         if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
3242                 rc = ebitmap_write(&p->permissive_map, fp);
3243                 if (rc)
3244                         return rc;
3245         }
3246
3247         num_syms = info->sym_num;
3248         for (i = 0; i < num_syms; i++) {
3249                 struct policy_data pd;
3250
3251                 pd.fp = fp;
3252                 pd.p = p;
3253
3254                 buf[0] = cpu_to_le32(p->symtab[i].nprim);
3255                 buf[1] = cpu_to_le32(p->symtab[i].table->nel);
3256
3257                 rc = put_entry(buf, sizeof(u32), 2, fp);
3258                 if (rc)
3259                         return rc;
3260                 rc = hashtab_map(p->symtab[i].table, write_f[i], &pd);
3261                 if (rc)
3262                         return rc;
3263         }
3264
3265         rc = avtab_write(p, &p->te_avtab, fp);
3266         if (rc)
3267                 return rc;
3268
3269         rc = cond_write_list(p, p->cond_list, fp);
3270         if (rc)
3271                 return rc;
3272
3273         rc = role_trans_write(p, fp);
3274         if (rc)
3275                 return rc;
3276
3277         rc = role_allow_write(p->role_allow, fp);
3278         if (rc)
3279                 return rc;
3280
3281         rc = filename_trans_write(p, fp);
3282         if (rc)
3283                 return rc;
3284
3285         rc = ocontext_write(p, info, fp);
3286         if (rc)
3287                 return rc;
3288
3289         rc = genfs_write(p, fp);
3290         if (rc)
3291                 return rc;
3292
3293         rc = range_write(p, fp);
3294         if (rc)
3295                 return rc;
3296
3297         for (i = 0; i < p->p_types.nprim; i++) {
3298                 struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
3299
3300                 BUG_ON(!e);
3301                 rc = ebitmap_write(e, fp);
3302                 if (rc)
3303                         return rc;
3304         }
3305
3306         return 0;
3307 }