a4862a0730fa52690afbae320c72f0409d3c1acd
[linux-2.6.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79 #include <linux/syslog.h>
80
81 #include "avc.h"
82 #include "objsec.h"
83 #include "netif.h"
84 #include "netnode.h"
85 #include "netport.h"
86 #include "xfrm.h"
87 #include "netlabel.h"
88 #include "audit.h"
89
90 #define XATTR_SELINUX_SUFFIX "selinux"
91 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
92
93 #define NUM_SEL_MNT_OPTS 5
94
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106         unsigned long enforcing;
107         if (!strict_strtoul(str, 0, &enforcing))
108                 selinux_enforcing = enforcing ? 1 : 0;
109         return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119         unsigned long enabled;
120         if (!strict_strtoul(str, 0, &enabled))
121                 selinux_enabled = enabled ? 1 : 0;
122         return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129
130 /*
131  * Minimal support for a secondary security module,
132  * just to allow the use of the capability module.
133  */
134 static struct security_operations *secondary_ops;
135
136 /* Lists of inode and superblock security structures initialized
137    before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
140
141 static struct kmem_cache *sel_inode_cache;
142
143 /**
144  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145  *
146  * Description:
147  * This function checks the SECMARK reference counter to see if any SECMARK
148  * targets are currently configured, if the reference counter is greater than
149  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
150  * enabled, false (0) if SECMARK is disabled.
151  *
152  */
153 static int selinux_secmark_enabled(void)
154 {
155         return (atomic_read(&selinux_secmark_refcount) > 0);
156 }
157
158 /*
159  * initialise the security for the init task
160  */
161 static void cred_init_security(void)
162 {
163         struct cred *cred = (struct cred *) current->real_cred;
164         struct task_security_struct *tsec;
165
166         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
167         if (!tsec)
168                 panic("SELinux:  Failed to initialize initial task.\n");
169
170         tsec->osid = tsec->sid = SECINITSID_KERNEL;
171         cred->security = tsec;
172 }
173
174 /*
175  * get the security ID of a set of credentials
176  */
177 static inline u32 cred_sid(const struct cred *cred)
178 {
179         const struct task_security_struct *tsec;
180
181         tsec = cred->security;
182         return tsec->sid;
183 }
184
185 /*
186  * get the objective security ID of a task
187  */
188 static inline u32 task_sid(const struct task_struct *task)
189 {
190         u32 sid;
191
192         rcu_read_lock();
193         sid = cred_sid(__task_cred(task));
194         rcu_read_unlock();
195         return sid;
196 }
197
198 /*
199  * get the subjective security ID of the current task
200  */
201 static inline u32 current_sid(void)
202 {
203         const struct task_security_struct *tsec = current_cred()->security;
204
205         return tsec->sid;
206 }
207
208 /* Allocate and free functions for each kind of security blob. */
209
210 static int inode_alloc_security(struct inode *inode)
211 {
212         struct inode_security_struct *isec;
213         u32 sid = current_sid();
214
215         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
216         if (!isec)
217                 return -ENOMEM;
218
219         mutex_init(&isec->lock);
220         INIT_LIST_HEAD(&isec->list);
221         isec->inode = inode;
222         isec->sid = SECINITSID_UNLABELED;
223         isec->sclass = SECCLASS_FILE;
224         isec->task_sid = sid;
225         inode->i_security = isec;
226
227         return 0;
228 }
229
230 static void inode_free_security(struct inode *inode)
231 {
232         struct inode_security_struct *isec = inode->i_security;
233         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
234
235         spin_lock(&sbsec->isec_lock);
236         if (!list_empty(&isec->list))
237                 list_del_init(&isec->list);
238         spin_unlock(&sbsec->isec_lock);
239
240         inode->i_security = NULL;
241         kmem_cache_free(sel_inode_cache, isec);
242 }
243
244 static int file_alloc_security(struct file *file)
245 {
246         struct file_security_struct *fsec;
247         u32 sid = current_sid();
248
249         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
250         if (!fsec)
251                 return -ENOMEM;
252
253         fsec->sid = sid;
254         fsec->fown_sid = sid;
255         file->f_security = fsec;
256
257         return 0;
258 }
259
260 static void file_free_security(struct file *file)
261 {
262         struct file_security_struct *fsec = file->f_security;
263         file->f_security = NULL;
264         kfree(fsec);
265 }
266
267 static int superblock_alloc_security(struct super_block *sb)
268 {
269         struct superblock_security_struct *sbsec;
270
271         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
272         if (!sbsec)
273                 return -ENOMEM;
274
275         mutex_init(&sbsec->lock);
276         INIT_LIST_HEAD(&sbsec->list);
277         INIT_LIST_HEAD(&sbsec->isec_head);
278         spin_lock_init(&sbsec->isec_lock);
279         sbsec->sb = sb;
280         sbsec->sid = SECINITSID_UNLABELED;
281         sbsec->def_sid = SECINITSID_FILE;
282         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
283         sb->s_security = sbsec;
284
285         return 0;
286 }
287
288 static void superblock_free_security(struct super_block *sb)
289 {
290         struct superblock_security_struct *sbsec = sb->s_security;
291
292         spin_lock(&sb_security_lock);
293         if (!list_empty(&sbsec->list))
294                 list_del_init(&sbsec->list);
295         spin_unlock(&sb_security_lock);
296
297         sb->s_security = NULL;
298         kfree(sbsec);
299 }
300
301 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
302 {
303         struct sk_security_struct *ssec;
304
305         ssec = kzalloc(sizeof(*ssec), priority);
306         if (!ssec)
307                 return -ENOMEM;
308
309         ssec->peer_sid = SECINITSID_UNLABELED;
310         ssec->sid = SECINITSID_UNLABELED;
311         sk->sk_security = ssec;
312
313         selinux_netlbl_sk_security_reset(ssec);
314
315         return 0;
316 }
317
318 static void sk_free_security(struct sock *sk)
319 {
320         struct sk_security_struct *ssec = sk->sk_security;
321
322         sk->sk_security = NULL;
323         selinux_netlbl_sk_security_free(ssec);
324         kfree(ssec);
325 }
326
327 /* The security server must be initialized before
328    any labeling or access decisions can be provided. */
329 extern int ss_initialized;
330
331 /* The file system's label must be initialized prior to use. */
332
333 static char *labeling_behaviors[6] = {
334         "uses xattr",
335         "uses transition SIDs",
336         "uses task SIDs",
337         "uses genfs_contexts",
338         "not configured for labeling",
339         "uses mountpoint labeling",
340 };
341
342 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
343
344 static inline int inode_doinit(struct inode *inode)
345 {
346         return inode_doinit_with_dentry(inode, NULL);
347 }
348
349 enum {
350         Opt_error = -1,
351         Opt_context = 1,
352         Opt_fscontext = 2,
353         Opt_defcontext = 3,
354         Opt_rootcontext = 4,
355         Opt_labelsupport = 5,
356 };
357
358 static const match_table_t tokens = {
359         {Opt_context, CONTEXT_STR "%s"},
360         {Opt_fscontext, FSCONTEXT_STR "%s"},
361         {Opt_defcontext, DEFCONTEXT_STR "%s"},
362         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
363         {Opt_labelsupport, LABELSUPP_STR},
364         {Opt_error, NULL},
365 };
366
367 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
368
369 static int may_context_mount_sb_relabel(u32 sid,
370                         struct superblock_security_struct *sbsec,
371                         const struct cred *cred)
372 {
373         const struct task_security_struct *tsec = cred->security;
374         int rc;
375
376         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
377                           FILESYSTEM__RELABELFROM, NULL);
378         if (rc)
379                 return rc;
380
381         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
382                           FILESYSTEM__RELABELTO, NULL);
383         return rc;
384 }
385
386 static int may_context_mount_inode_relabel(u32 sid,
387                         struct superblock_security_struct *sbsec,
388                         const struct cred *cred)
389 {
390         const struct task_security_struct *tsec = cred->security;
391         int rc;
392         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
393                           FILESYSTEM__RELABELFROM, NULL);
394         if (rc)
395                 return rc;
396
397         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
398                           FILESYSTEM__ASSOCIATE, NULL);
399         return rc;
400 }
401
402 static int sb_finish_set_opts(struct super_block *sb)
403 {
404         struct superblock_security_struct *sbsec = sb->s_security;
405         struct dentry *root = sb->s_root;
406         struct inode *root_inode = root->d_inode;
407         int rc = 0;
408
409         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
410                 /* Make sure that the xattr handler exists and that no
411                    error other than -ENODATA is returned by getxattr on
412                    the root directory.  -ENODATA is ok, as this may be
413                    the first boot of the SELinux kernel before we have
414                    assigned xattr values to the filesystem. */
415                 if (!root_inode->i_op->getxattr) {
416                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
417                                "xattr support\n", sb->s_id, sb->s_type->name);
418                         rc = -EOPNOTSUPP;
419                         goto out;
420                 }
421                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
422                 if (rc < 0 && rc != -ENODATA) {
423                         if (rc == -EOPNOTSUPP)
424                                 printk(KERN_WARNING "SELinux: (dev %s, type "
425                                        "%s) has no security xattr handler\n",
426                                        sb->s_id, sb->s_type->name);
427                         else
428                                 printk(KERN_WARNING "SELinux: (dev %s, type "
429                                        "%s) getxattr errno %d\n", sb->s_id,
430                                        sb->s_type->name, -rc);
431                         goto out;
432                 }
433         }
434
435         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
436
437         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
438                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
439                        sb->s_id, sb->s_type->name);
440         else
441                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
442                        sb->s_id, sb->s_type->name,
443                        labeling_behaviors[sbsec->behavior-1]);
444
445         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
446             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
447             sbsec->behavior == SECURITY_FS_USE_NONE ||
448             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
449                 sbsec->flags &= ~SE_SBLABELSUPP;
450
451         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
452         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
453                 sbsec->flags |= SE_SBLABELSUPP;
454
455         /* Initialize the root inode. */
456         rc = inode_doinit_with_dentry(root_inode, root);
457
458         /* Initialize any other inodes associated with the superblock, e.g.
459            inodes created prior to initial policy load or inodes created
460            during get_sb by a pseudo filesystem that directly
461            populates itself. */
462         spin_lock(&sbsec->isec_lock);
463 next_inode:
464         if (!list_empty(&sbsec->isec_head)) {
465                 struct inode_security_struct *isec =
466                                 list_entry(sbsec->isec_head.next,
467                                            struct inode_security_struct, list);
468                 struct inode *inode = isec->inode;
469                 spin_unlock(&sbsec->isec_lock);
470                 inode = igrab(inode);
471                 if (inode) {
472                         if (!IS_PRIVATE(inode))
473                                 inode_doinit(inode);
474                         iput(inode);
475                 }
476                 spin_lock(&sbsec->isec_lock);
477                 list_del_init(&isec->list);
478                 goto next_inode;
479         }
480         spin_unlock(&sbsec->isec_lock);
481 out:
482         return rc;
483 }
484
485 /*
486  * This function should allow an FS to ask what it's mount security
487  * options were so it can use those later for submounts, displaying
488  * mount options, or whatever.
489  */
490 static int selinux_get_mnt_opts(const struct super_block *sb,
491                                 struct security_mnt_opts *opts)
492 {
493         int rc = 0, i;
494         struct superblock_security_struct *sbsec = sb->s_security;
495         char *context = NULL;
496         u32 len;
497         char tmp;
498
499         security_init_mnt_opts(opts);
500
501         if (!(sbsec->flags & SE_SBINITIALIZED))
502                 return -EINVAL;
503
504         if (!ss_initialized)
505                 return -EINVAL;
506
507         tmp = sbsec->flags & SE_MNTMASK;
508         /* count the number of mount options for this sb */
509         for (i = 0; i < 8; i++) {
510                 if (tmp & 0x01)
511                         opts->num_mnt_opts++;
512                 tmp >>= 1;
513         }
514         /* Check if the Label support flag is set */
515         if (sbsec->flags & SE_SBLABELSUPP)
516                 opts->num_mnt_opts++;
517
518         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
519         if (!opts->mnt_opts) {
520                 rc = -ENOMEM;
521                 goto out_free;
522         }
523
524         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
525         if (!opts->mnt_opts_flags) {
526                 rc = -ENOMEM;
527                 goto out_free;
528         }
529
530         i = 0;
531         if (sbsec->flags & FSCONTEXT_MNT) {
532                 rc = security_sid_to_context(sbsec->sid, &context, &len);
533                 if (rc)
534                         goto out_free;
535                 opts->mnt_opts[i] = context;
536                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
537         }
538         if (sbsec->flags & CONTEXT_MNT) {
539                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
540                 if (rc)
541                         goto out_free;
542                 opts->mnt_opts[i] = context;
543                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
544         }
545         if (sbsec->flags & DEFCONTEXT_MNT) {
546                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
547                 if (rc)
548                         goto out_free;
549                 opts->mnt_opts[i] = context;
550                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
551         }
552         if (sbsec->flags & ROOTCONTEXT_MNT) {
553                 struct inode *root = sbsec->sb->s_root->d_inode;
554                 struct inode_security_struct *isec = root->i_security;
555
556                 rc = security_sid_to_context(isec->sid, &context, &len);
557                 if (rc)
558                         goto out_free;
559                 opts->mnt_opts[i] = context;
560                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
561         }
562         if (sbsec->flags & SE_SBLABELSUPP) {
563                 opts->mnt_opts[i] = NULL;
564                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
565         }
566
567         BUG_ON(i != opts->num_mnt_opts);
568
569         return 0;
570
571 out_free:
572         security_free_mnt_opts(opts);
573         return rc;
574 }
575
576 static int bad_option(struct superblock_security_struct *sbsec, char flag,
577                       u32 old_sid, u32 new_sid)
578 {
579         char mnt_flags = sbsec->flags & SE_MNTMASK;
580
581         /* check if the old mount command had the same options */
582         if (sbsec->flags & SE_SBINITIALIZED)
583                 if (!(sbsec->flags & flag) ||
584                     (old_sid != new_sid))
585                         return 1;
586
587         /* check if we were passed the same options twice,
588          * aka someone passed context=a,context=b
589          */
590         if (!(sbsec->flags & SE_SBINITIALIZED))
591                 if (mnt_flags & flag)
592                         return 1;
593         return 0;
594 }
595
596 /*
597  * Allow filesystems with binary mount data to explicitly set mount point
598  * labeling information.
599  */
600 static int selinux_set_mnt_opts(struct super_block *sb,
601                                 struct security_mnt_opts *opts)
602 {
603         const struct cred *cred = current_cred();
604         int rc = 0, i;
605         struct superblock_security_struct *sbsec = sb->s_security;
606         const char *name = sb->s_type->name;
607         struct inode *inode = sbsec->sb->s_root->d_inode;
608         struct inode_security_struct *root_isec = inode->i_security;
609         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
610         u32 defcontext_sid = 0;
611         char **mount_options = opts->mnt_opts;
612         int *flags = opts->mnt_opts_flags;
613         int num_opts = opts->num_mnt_opts;
614
615         mutex_lock(&sbsec->lock);
616
617         if (!ss_initialized) {
618                 if (!num_opts) {
619                         /* Defer initialization until selinux_complete_init,
620                            after the initial policy is loaded and the security
621                            server is ready to handle calls. */
622                         spin_lock(&sb_security_lock);
623                         if (list_empty(&sbsec->list))
624                                 list_add(&sbsec->list, &superblock_security_head);
625                         spin_unlock(&sb_security_lock);
626                         goto out;
627                 }
628                 rc = -EINVAL;
629                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
630                         "before the security server is initialized\n");
631                 goto out;
632         }
633
634         /*
635          * Binary mount data FS will come through this function twice.  Once
636          * from an explicit call and once from the generic calls from the vfs.
637          * Since the generic VFS calls will not contain any security mount data
638          * we need to skip the double mount verification.
639          *
640          * This does open a hole in which we will not notice if the first
641          * mount using this sb set explict options and a second mount using
642          * this sb does not set any security options.  (The first options
643          * will be used for both mounts)
644          */
645         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
646             && (num_opts == 0))
647                 goto out;
648
649         /*
650          * parse the mount options, check if they are valid sids.
651          * also check if someone is trying to mount the same sb more
652          * than once with different security options.
653          */
654         for (i = 0; i < num_opts; i++) {
655                 u32 sid;
656
657                 if (flags[i] == SE_SBLABELSUPP)
658                         continue;
659                 rc = security_context_to_sid(mount_options[i],
660                                              strlen(mount_options[i]), &sid);
661                 if (rc) {
662                         printk(KERN_WARNING "SELinux: security_context_to_sid"
663                                "(%s) failed for (dev %s, type %s) errno=%d\n",
664                                mount_options[i], sb->s_id, name, rc);
665                         goto out;
666                 }
667                 switch (flags[i]) {
668                 case FSCONTEXT_MNT:
669                         fscontext_sid = sid;
670
671                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
672                                         fscontext_sid))
673                                 goto out_double_mount;
674
675                         sbsec->flags |= FSCONTEXT_MNT;
676                         break;
677                 case CONTEXT_MNT:
678                         context_sid = sid;
679
680                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
681                                         context_sid))
682                                 goto out_double_mount;
683
684                         sbsec->flags |= CONTEXT_MNT;
685                         break;
686                 case ROOTCONTEXT_MNT:
687                         rootcontext_sid = sid;
688
689                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
690                                         rootcontext_sid))
691                                 goto out_double_mount;
692
693                         sbsec->flags |= ROOTCONTEXT_MNT;
694
695                         break;
696                 case DEFCONTEXT_MNT:
697                         defcontext_sid = sid;
698
699                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
700                                         defcontext_sid))
701                                 goto out_double_mount;
702
703                         sbsec->flags |= DEFCONTEXT_MNT;
704
705                         break;
706                 default:
707                         rc = -EINVAL;
708                         goto out;
709                 }
710         }
711
712         if (sbsec->flags & SE_SBINITIALIZED) {
713                 /* previously mounted with options, but not on this attempt? */
714                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
715                         goto out_double_mount;
716                 rc = 0;
717                 goto out;
718         }
719
720         if (strcmp(sb->s_type->name, "proc") == 0)
721                 sbsec->flags |= SE_SBPROC;
722
723         /* Determine the labeling behavior to use for this filesystem type. */
724         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
725         if (rc) {
726                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
727                        __func__, sb->s_type->name, rc);
728                 goto out;
729         }
730
731         /* sets the context of the superblock for the fs being mounted. */
732         if (fscontext_sid) {
733                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
734                 if (rc)
735                         goto out;
736
737                 sbsec->sid = fscontext_sid;
738         }
739
740         /*
741          * Switch to using mount point labeling behavior.
742          * sets the label used on all file below the mountpoint, and will set
743          * the superblock context if not already set.
744          */
745         if (context_sid) {
746                 if (!fscontext_sid) {
747                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
748                                                           cred);
749                         if (rc)
750                                 goto out;
751                         sbsec->sid = context_sid;
752                 } else {
753                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
754                                                              cred);
755                         if (rc)
756                                 goto out;
757                 }
758                 if (!rootcontext_sid)
759                         rootcontext_sid = context_sid;
760
761                 sbsec->mntpoint_sid = context_sid;
762                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
763         }
764
765         if (rootcontext_sid) {
766                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
767                                                      cred);
768                 if (rc)
769                         goto out;
770
771                 root_isec->sid = rootcontext_sid;
772                 root_isec->initialized = 1;
773         }
774
775         if (defcontext_sid) {
776                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
777                         rc = -EINVAL;
778                         printk(KERN_WARNING "SELinux: defcontext option is "
779                                "invalid for this filesystem type\n");
780                         goto out;
781                 }
782
783                 if (defcontext_sid != sbsec->def_sid) {
784                         rc = may_context_mount_inode_relabel(defcontext_sid,
785                                                              sbsec, cred);
786                         if (rc)
787                                 goto out;
788                 }
789
790                 sbsec->def_sid = defcontext_sid;
791         }
792
793         rc = sb_finish_set_opts(sb);
794 out:
795         mutex_unlock(&sbsec->lock);
796         return rc;
797 out_double_mount:
798         rc = -EINVAL;
799         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
800                "security settings for (dev %s, type %s)\n", sb->s_id, name);
801         goto out;
802 }
803
804 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
805                                         struct super_block *newsb)
806 {
807         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
808         struct superblock_security_struct *newsbsec = newsb->s_security;
809
810         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
811         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
812         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
813
814         /*
815          * if the parent was able to be mounted it clearly had no special lsm
816          * mount options.  thus we can safely put this sb on the list and deal
817          * with it later
818          */
819         if (!ss_initialized) {
820                 spin_lock(&sb_security_lock);
821                 if (list_empty(&newsbsec->list))
822                         list_add(&newsbsec->list, &superblock_security_head);
823                 spin_unlock(&sb_security_lock);
824                 return;
825         }
826
827         /* how can we clone if the old one wasn't set up?? */
828         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
829
830         /* if fs is reusing a sb, just let its options stand... */
831         if (newsbsec->flags & SE_SBINITIALIZED)
832                 return;
833
834         mutex_lock(&newsbsec->lock);
835
836         newsbsec->flags = oldsbsec->flags;
837
838         newsbsec->sid = oldsbsec->sid;
839         newsbsec->def_sid = oldsbsec->def_sid;
840         newsbsec->behavior = oldsbsec->behavior;
841
842         if (set_context) {
843                 u32 sid = oldsbsec->mntpoint_sid;
844
845                 if (!set_fscontext)
846                         newsbsec->sid = sid;
847                 if (!set_rootcontext) {
848                         struct inode *newinode = newsb->s_root->d_inode;
849                         struct inode_security_struct *newisec = newinode->i_security;
850                         newisec->sid = sid;
851                 }
852                 newsbsec->mntpoint_sid = sid;
853         }
854         if (set_rootcontext) {
855                 const struct inode *oldinode = oldsb->s_root->d_inode;
856                 const struct inode_security_struct *oldisec = oldinode->i_security;
857                 struct inode *newinode = newsb->s_root->d_inode;
858                 struct inode_security_struct *newisec = newinode->i_security;
859
860                 newisec->sid = oldisec->sid;
861         }
862
863         sb_finish_set_opts(newsb);
864         mutex_unlock(&newsbsec->lock);
865 }
866
867 static int selinux_parse_opts_str(char *options,
868                                   struct security_mnt_opts *opts)
869 {
870         char *p;
871         char *context = NULL, *defcontext = NULL;
872         char *fscontext = NULL, *rootcontext = NULL;
873         int rc, num_mnt_opts = 0;
874
875         opts->num_mnt_opts = 0;
876
877         /* Standard string-based options. */
878         while ((p = strsep(&options, "|")) != NULL) {
879                 int token;
880                 substring_t args[MAX_OPT_ARGS];
881
882                 if (!*p)
883                         continue;
884
885                 token = match_token(p, tokens, args);
886
887                 switch (token) {
888                 case Opt_context:
889                         if (context || defcontext) {
890                                 rc = -EINVAL;
891                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
892                                 goto out_err;
893                         }
894                         context = match_strdup(&args[0]);
895                         if (!context) {
896                                 rc = -ENOMEM;
897                                 goto out_err;
898                         }
899                         break;
900
901                 case Opt_fscontext:
902                         if (fscontext) {
903                                 rc = -EINVAL;
904                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
905                                 goto out_err;
906                         }
907                         fscontext = match_strdup(&args[0]);
908                         if (!fscontext) {
909                                 rc = -ENOMEM;
910                                 goto out_err;
911                         }
912                         break;
913
914                 case Opt_rootcontext:
915                         if (rootcontext) {
916                                 rc = -EINVAL;
917                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
918                                 goto out_err;
919                         }
920                         rootcontext = match_strdup(&args[0]);
921                         if (!rootcontext) {
922                                 rc = -ENOMEM;
923                                 goto out_err;
924                         }
925                         break;
926
927                 case Opt_defcontext:
928                         if (context || defcontext) {
929                                 rc = -EINVAL;
930                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
931                                 goto out_err;
932                         }
933                         defcontext = match_strdup(&args[0]);
934                         if (!defcontext) {
935                                 rc = -ENOMEM;
936                                 goto out_err;
937                         }
938                         break;
939                 case Opt_labelsupport:
940                         break;
941                 default:
942                         rc = -EINVAL;
943                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
944                         goto out_err;
945
946                 }
947         }
948
949         rc = -ENOMEM;
950         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
951         if (!opts->mnt_opts)
952                 goto out_err;
953
954         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
955         if (!opts->mnt_opts_flags) {
956                 kfree(opts->mnt_opts);
957                 goto out_err;
958         }
959
960         if (fscontext) {
961                 opts->mnt_opts[num_mnt_opts] = fscontext;
962                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
963         }
964         if (context) {
965                 opts->mnt_opts[num_mnt_opts] = context;
966                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
967         }
968         if (rootcontext) {
969                 opts->mnt_opts[num_mnt_opts] = rootcontext;
970                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
971         }
972         if (defcontext) {
973                 opts->mnt_opts[num_mnt_opts] = defcontext;
974                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
975         }
976
977         opts->num_mnt_opts = num_mnt_opts;
978         return 0;
979
980 out_err:
981         kfree(context);
982         kfree(defcontext);
983         kfree(fscontext);
984         kfree(rootcontext);
985         return rc;
986 }
987 /*
988  * string mount options parsing and call set the sbsec
989  */
990 static int superblock_doinit(struct super_block *sb, void *data)
991 {
992         int rc = 0;
993         char *options = data;
994         struct security_mnt_opts opts;
995
996         security_init_mnt_opts(&opts);
997
998         if (!data)
999                 goto out;
1000
1001         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1002
1003         rc = selinux_parse_opts_str(options, &opts);
1004         if (rc)
1005                 goto out_err;
1006
1007 out:
1008         rc = selinux_set_mnt_opts(sb, &opts);
1009
1010 out_err:
1011         security_free_mnt_opts(&opts);
1012         return rc;
1013 }
1014
1015 static void selinux_write_opts(struct seq_file *m,
1016                                struct security_mnt_opts *opts)
1017 {
1018         int i;
1019         char *prefix;
1020
1021         for (i = 0; i < opts->num_mnt_opts; i++) {
1022                 char *has_comma;
1023
1024                 if (opts->mnt_opts[i])
1025                         has_comma = strchr(opts->mnt_opts[i], ',');
1026                 else
1027                         has_comma = NULL;
1028
1029                 switch (opts->mnt_opts_flags[i]) {
1030                 case CONTEXT_MNT:
1031                         prefix = CONTEXT_STR;
1032                         break;
1033                 case FSCONTEXT_MNT:
1034                         prefix = FSCONTEXT_STR;
1035                         break;
1036                 case ROOTCONTEXT_MNT:
1037                         prefix = ROOTCONTEXT_STR;
1038                         break;
1039                 case DEFCONTEXT_MNT:
1040                         prefix = DEFCONTEXT_STR;
1041                         break;
1042                 case SE_SBLABELSUPP:
1043                         seq_putc(m, ',');
1044                         seq_puts(m, LABELSUPP_STR);
1045                         continue;
1046                 default:
1047                         BUG();
1048                 };
1049                 /* we need a comma before each option */
1050                 seq_putc(m, ',');
1051                 seq_puts(m, prefix);
1052                 if (has_comma)
1053                         seq_putc(m, '\"');
1054                 seq_puts(m, opts->mnt_opts[i]);
1055                 if (has_comma)
1056                         seq_putc(m, '\"');
1057         }
1058 }
1059
1060 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1061 {
1062         struct security_mnt_opts opts;
1063         int rc;
1064
1065         rc = selinux_get_mnt_opts(sb, &opts);
1066         if (rc) {
1067                 /* before policy load we may get EINVAL, don't show anything */
1068                 if (rc == -EINVAL)
1069                         rc = 0;
1070                 return rc;
1071         }
1072
1073         selinux_write_opts(m, &opts);
1074
1075         security_free_mnt_opts(&opts);
1076
1077         return rc;
1078 }
1079
1080 static inline u16 inode_mode_to_security_class(umode_t mode)
1081 {
1082         switch (mode & S_IFMT) {
1083         case S_IFSOCK:
1084                 return SECCLASS_SOCK_FILE;
1085         case S_IFLNK:
1086                 return SECCLASS_LNK_FILE;
1087         case S_IFREG:
1088                 return SECCLASS_FILE;
1089         case S_IFBLK:
1090                 return SECCLASS_BLK_FILE;
1091         case S_IFDIR:
1092                 return SECCLASS_DIR;
1093         case S_IFCHR:
1094                 return SECCLASS_CHR_FILE;
1095         case S_IFIFO:
1096                 return SECCLASS_FIFO_FILE;
1097
1098         }
1099
1100         return SECCLASS_FILE;
1101 }
1102
1103 static inline int default_protocol_stream(int protocol)
1104 {
1105         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1106 }
1107
1108 static inline int default_protocol_dgram(int protocol)
1109 {
1110         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1111 }
1112
1113 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1114 {
1115         switch (family) {
1116         case PF_UNIX:
1117                 switch (type) {
1118                 case SOCK_STREAM:
1119                 case SOCK_SEQPACKET:
1120                         return SECCLASS_UNIX_STREAM_SOCKET;
1121                 case SOCK_DGRAM:
1122                         return SECCLASS_UNIX_DGRAM_SOCKET;
1123                 }
1124                 break;
1125         case PF_INET:
1126         case PF_INET6:
1127                 switch (type) {
1128                 case SOCK_STREAM:
1129                         if (default_protocol_stream(protocol))
1130                                 return SECCLASS_TCP_SOCKET;
1131                         else
1132                                 return SECCLASS_RAWIP_SOCKET;
1133                 case SOCK_DGRAM:
1134                         if (default_protocol_dgram(protocol))
1135                                 return SECCLASS_UDP_SOCKET;
1136                         else
1137                                 return SECCLASS_RAWIP_SOCKET;
1138                 case SOCK_DCCP:
1139                         return SECCLASS_DCCP_SOCKET;
1140                 default:
1141                         return SECCLASS_RAWIP_SOCKET;
1142                 }
1143                 break;
1144         case PF_NETLINK:
1145                 switch (protocol) {
1146                 case NETLINK_ROUTE:
1147                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1148                 case NETLINK_FIREWALL:
1149                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1150                 case NETLINK_INET_DIAG:
1151                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1152                 case NETLINK_NFLOG:
1153                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1154                 case NETLINK_XFRM:
1155                         return SECCLASS_NETLINK_XFRM_SOCKET;
1156                 case NETLINK_SELINUX:
1157                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1158                 case NETLINK_AUDIT:
1159                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1160                 case NETLINK_IP6_FW:
1161                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1162                 case NETLINK_DNRTMSG:
1163                         return SECCLASS_NETLINK_DNRT_SOCKET;
1164                 case NETLINK_KOBJECT_UEVENT:
1165                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1166                 default:
1167                         return SECCLASS_NETLINK_SOCKET;
1168                 }
1169         case PF_PACKET:
1170                 return SECCLASS_PACKET_SOCKET;
1171         case PF_KEY:
1172                 return SECCLASS_KEY_SOCKET;
1173         case PF_APPLETALK:
1174                 return SECCLASS_APPLETALK_SOCKET;
1175         }
1176
1177         return SECCLASS_SOCKET;
1178 }
1179
1180 #ifdef CONFIG_PROC_FS
1181 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1182                                 u16 tclass,
1183                                 u32 *sid)
1184 {
1185         int buflen, rc;
1186         char *buffer, *path, *end;
1187
1188         buffer = (char *)__get_free_page(GFP_KERNEL);
1189         if (!buffer)
1190                 return -ENOMEM;
1191
1192         buflen = PAGE_SIZE;
1193         end = buffer+buflen;
1194         *--end = '\0';
1195         buflen--;
1196         path = end-1;
1197         *path = '/';
1198         while (de && de != de->parent) {
1199                 buflen -= de->namelen + 1;
1200                 if (buflen < 0)
1201                         break;
1202                 end -= de->namelen;
1203                 memcpy(end, de->name, de->namelen);
1204                 *--end = '/';
1205                 path = end;
1206                 de = de->parent;
1207         }
1208         rc = security_genfs_sid("proc", path, tclass, sid);
1209         free_page((unsigned long)buffer);
1210         return rc;
1211 }
1212 #else
1213 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1214                                 u16 tclass,
1215                                 u32 *sid)
1216 {
1217         return -EINVAL;
1218 }
1219 #endif
1220
1221 /* The inode's security attributes must be initialized before first use. */
1222 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1223 {
1224         struct superblock_security_struct *sbsec = NULL;
1225         struct inode_security_struct *isec = inode->i_security;
1226         u32 sid;
1227         struct dentry *dentry;
1228 #define INITCONTEXTLEN 255
1229         char *context = NULL;
1230         unsigned len = 0;
1231         int rc = 0;
1232
1233         if (isec->initialized)
1234                 goto out;
1235
1236         mutex_lock(&isec->lock);
1237         if (isec->initialized)
1238                 goto out_unlock;
1239
1240         sbsec = inode->i_sb->s_security;
1241         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1242                 /* Defer initialization until selinux_complete_init,
1243                    after the initial policy is loaded and the security
1244                    server is ready to handle calls. */
1245                 spin_lock(&sbsec->isec_lock);
1246                 if (list_empty(&isec->list))
1247                         list_add(&isec->list, &sbsec->isec_head);
1248                 spin_unlock(&sbsec->isec_lock);
1249                 goto out_unlock;
1250         }
1251
1252         switch (sbsec->behavior) {
1253         case SECURITY_FS_USE_XATTR:
1254                 if (!inode->i_op->getxattr) {
1255                         isec->sid = sbsec->def_sid;
1256                         break;
1257                 }
1258
1259                 /* Need a dentry, since the xattr API requires one.
1260                    Life would be simpler if we could just pass the inode. */
1261                 if (opt_dentry) {
1262                         /* Called from d_instantiate or d_splice_alias. */
1263                         dentry = dget(opt_dentry);
1264                 } else {
1265                         /* Called from selinux_complete_init, try to find a dentry. */
1266                         dentry = d_find_alias(inode);
1267                 }
1268                 if (!dentry) {
1269                         /*
1270                          * this is can be hit on boot when a file is accessed
1271                          * before the policy is loaded.  When we load policy we
1272                          * may find inodes that have no dentry on the
1273                          * sbsec->isec_head list.  No reason to complain as these
1274                          * will get fixed up the next time we go through
1275                          * inode_doinit with a dentry, before these inodes could
1276                          * be used again by userspace.
1277                          */
1278                         goto out_unlock;
1279                 }
1280
1281                 len = INITCONTEXTLEN;
1282                 context = kmalloc(len+1, GFP_NOFS);
1283                 if (!context) {
1284                         rc = -ENOMEM;
1285                         dput(dentry);
1286                         goto out_unlock;
1287                 }
1288                 context[len] = '\0';
1289                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1290                                            context, len);
1291                 if (rc == -ERANGE) {
1292                         kfree(context);
1293
1294                         /* Need a larger buffer.  Query for the right size. */
1295                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1296                                                    NULL, 0);
1297                         if (rc < 0) {
1298                                 dput(dentry);
1299                                 goto out_unlock;
1300                         }
1301                         len = rc;
1302                         context = kmalloc(len+1, GFP_NOFS);
1303                         if (!context) {
1304                                 rc = -ENOMEM;
1305                                 dput(dentry);
1306                                 goto out_unlock;
1307                         }
1308                         context[len] = '\0';
1309                         rc = inode->i_op->getxattr(dentry,
1310                                                    XATTR_NAME_SELINUX,
1311                                                    context, len);
1312                 }
1313                 dput(dentry);
1314                 if (rc < 0) {
1315                         if (rc != -ENODATA) {
1316                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1317                                        "%d for dev=%s ino=%ld\n", __func__,
1318                                        -rc, inode->i_sb->s_id, inode->i_ino);
1319                                 kfree(context);
1320                                 goto out_unlock;
1321                         }
1322                         /* Map ENODATA to the default file SID */
1323                         sid = sbsec->def_sid;
1324                         rc = 0;
1325                 } else {
1326                         rc = security_context_to_sid_default(context, rc, &sid,
1327                                                              sbsec->def_sid,
1328                                                              GFP_NOFS);
1329                         if (rc) {
1330                                 char *dev = inode->i_sb->s_id;
1331                                 unsigned long ino = inode->i_ino;
1332
1333                                 if (rc == -EINVAL) {
1334                                         if (printk_ratelimit())
1335                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1336                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1337                                                         "filesystem in question.\n", ino, dev, context);
1338                                 } else {
1339                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1340                                                "returned %d for dev=%s ino=%ld\n",
1341                                                __func__, context, -rc, dev, ino);
1342                                 }
1343                                 kfree(context);
1344                                 /* Leave with the unlabeled SID */
1345                                 rc = 0;
1346                                 break;
1347                         }
1348                 }
1349                 kfree(context);
1350                 isec->sid = sid;
1351                 break;
1352         case SECURITY_FS_USE_TASK:
1353                 isec->sid = isec->task_sid;
1354                 break;
1355         case SECURITY_FS_USE_TRANS:
1356                 /* Default to the fs SID. */
1357                 isec->sid = sbsec->sid;
1358
1359                 /* Try to obtain a transition SID. */
1360                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1361                 rc = security_transition_sid(isec->task_sid,
1362                                              sbsec->sid,
1363                                              isec->sclass,
1364                                              &sid);
1365                 if (rc)
1366                         goto out_unlock;
1367                 isec->sid = sid;
1368                 break;
1369         case SECURITY_FS_USE_MNTPOINT:
1370                 isec->sid = sbsec->mntpoint_sid;
1371                 break;
1372         default:
1373                 /* Default to the fs superblock SID. */
1374                 isec->sid = sbsec->sid;
1375
1376                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1377                         struct proc_inode *proci = PROC_I(inode);
1378                         if (proci->pde) {
1379                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1380                                 rc = selinux_proc_get_sid(proci->pde,
1381                                                           isec->sclass,
1382                                                           &sid);
1383                                 if (rc)
1384                                         goto out_unlock;
1385                                 isec->sid = sid;
1386                         }
1387                 }
1388                 break;
1389         }
1390
1391         isec->initialized = 1;
1392
1393 out_unlock:
1394         mutex_unlock(&isec->lock);
1395 out:
1396         if (isec->sclass == SECCLASS_FILE)
1397                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1398         return rc;
1399 }
1400
1401 /* Convert a Linux signal to an access vector. */
1402 static inline u32 signal_to_av(int sig)
1403 {
1404         u32 perm = 0;
1405
1406         switch (sig) {
1407         case SIGCHLD:
1408                 /* Commonly granted from child to parent. */
1409                 perm = PROCESS__SIGCHLD;
1410                 break;
1411         case SIGKILL:
1412                 /* Cannot be caught or ignored */
1413                 perm = PROCESS__SIGKILL;
1414                 break;
1415         case SIGSTOP:
1416                 /* Cannot be caught or ignored */
1417                 perm = PROCESS__SIGSTOP;
1418                 break;
1419         default:
1420                 /* All other signals. */
1421                 perm = PROCESS__SIGNAL;
1422                 break;
1423         }
1424
1425         return perm;
1426 }
1427
1428 /*
1429  * Check permission between a pair of credentials
1430  * fork check, ptrace check, etc.
1431  */
1432 static int cred_has_perm(const struct cred *actor,
1433                          const struct cred *target,
1434                          u32 perms)
1435 {
1436         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1437
1438         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1439 }
1440
1441 /*
1442  * Check permission between a pair of tasks, e.g. signal checks,
1443  * fork check, ptrace check, etc.
1444  * tsk1 is the actor and tsk2 is the target
1445  * - this uses the default subjective creds of tsk1
1446  */
1447 static int task_has_perm(const struct task_struct *tsk1,
1448                          const struct task_struct *tsk2,
1449                          u32 perms)
1450 {
1451         const struct task_security_struct *__tsec1, *__tsec2;
1452         u32 sid1, sid2;
1453
1454         rcu_read_lock();
1455         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1456         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1457         rcu_read_unlock();
1458         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1459 }
1460
1461 /*
1462  * Check permission between current and another task, e.g. signal checks,
1463  * fork check, ptrace check, etc.
1464  * current is the actor and tsk2 is the target
1465  * - this uses current's subjective creds
1466  */
1467 static int current_has_perm(const struct task_struct *tsk,
1468                             u32 perms)
1469 {
1470         u32 sid, tsid;
1471
1472         sid = current_sid();
1473         tsid = task_sid(tsk);
1474         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1475 }
1476
1477 #if CAP_LAST_CAP > 63
1478 #error Fix SELinux to handle capabilities > 63.
1479 #endif
1480
1481 /* Check whether a task is allowed to use a capability. */
1482 static int task_has_capability(struct task_struct *tsk,
1483                                const struct cred *cred,
1484                                int cap, int audit)
1485 {
1486         struct common_audit_data ad;
1487         struct av_decision avd;
1488         u16 sclass;
1489         u32 sid = cred_sid(cred);
1490         u32 av = CAP_TO_MASK(cap);
1491         int rc;
1492
1493         COMMON_AUDIT_DATA_INIT(&ad, CAP);
1494         ad.tsk = tsk;
1495         ad.u.cap = cap;
1496
1497         switch (CAP_TO_INDEX(cap)) {
1498         case 0:
1499                 sclass = SECCLASS_CAPABILITY;
1500                 break;
1501         case 1:
1502                 sclass = SECCLASS_CAPABILITY2;
1503                 break;
1504         default:
1505                 printk(KERN_ERR
1506                        "SELinux:  out of range capability %d\n", cap);
1507                 BUG();
1508         }
1509
1510         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1511         if (audit == SECURITY_CAP_AUDIT)
1512                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1513         return rc;
1514 }
1515
1516 /* Check whether a task is allowed to use a system operation. */
1517 static int task_has_system(struct task_struct *tsk,
1518                            u32 perms)
1519 {
1520         u32 sid = task_sid(tsk);
1521
1522         return avc_has_perm(sid, SECINITSID_KERNEL,
1523                             SECCLASS_SYSTEM, perms, NULL);
1524 }
1525
1526 /* Check whether a task has a particular permission to an inode.
1527    The 'adp' parameter is optional and allows other audit
1528    data to be passed (e.g. the dentry). */
1529 static int inode_has_perm(const struct cred *cred,
1530                           struct inode *inode,
1531                           u32 perms,
1532                           struct common_audit_data *adp)
1533 {
1534         struct inode_security_struct *isec;
1535         struct common_audit_data ad;
1536         u32 sid;
1537
1538         validate_creds(cred);
1539
1540         if (unlikely(IS_PRIVATE(inode)))
1541                 return 0;
1542
1543         sid = cred_sid(cred);
1544         isec = inode->i_security;
1545
1546         if (!adp) {
1547                 adp = &ad;
1548                 COMMON_AUDIT_DATA_INIT(&ad, FS);
1549                 ad.u.fs.inode = inode;
1550         }
1551
1552         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1553 }
1554
1555 /* Same as inode_has_perm, but pass explicit audit data containing
1556    the dentry to help the auditing code to more easily generate the
1557    pathname if needed. */
1558 static inline int dentry_has_perm(const struct cred *cred,
1559                                   struct vfsmount *mnt,
1560                                   struct dentry *dentry,
1561                                   u32 av)
1562 {
1563         struct inode *inode = dentry->d_inode;
1564         struct common_audit_data ad;
1565
1566         COMMON_AUDIT_DATA_INIT(&ad, FS);
1567         ad.u.fs.path.mnt = mnt;
1568         ad.u.fs.path.dentry = dentry;
1569         return inode_has_perm(cred, inode, av, &ad);
1570 }
1571
1572 /* Check whether a task can use an open file descriptor to
1573    access an inode in a given way.  Check access to the
1574    descriptor itself, and then use dentry_has_perm to
1575    check a particular permission to the file.
1576    Access to the descriptor is implicitly granted if it
1577    has the same SID as the process.  If av is zero, then
1578    access to the file is not checked, e.g. for cases
1579    where only the descriptor is affected like seek. */
1580 static int file_has_perm(const struct cred *cred,
1581                          struct file *file,
1582                          u32 av)
1583 {
1584         struct file_security_struct *fsec = file->f_security;
1585         struct inode *inode = file->f_path.dentry->d_inode;
1586         struct common_audit_data ad;
1587         u32 sid = cred_sid(cred);
1588         int rc;
1589
1590         COMMON_AUDIT_DATA_INIT(&ad, FS);
1591         ad.u.fs.path = file->f_path;
1592
1593         if (sid != fsec->sid) {
1594                 rc = avc_has_perm(sid, fsec->sid,
1595                                   SECCLASS_FD,
1596                                   FD__USE,
1597                                   &ad);
1598                 if (rc)
1599                         goto out;
1600         }
1601
1602         /* av is zero if only checking access to the descriptor. */
1603         rc = 0;
1604         if (av)
1605                 rc = inode_has_perm(cred, inode, av, &ad);
1606
1607 out:
1608         return rc;
1609 }
1610
1611 /* Check whether a task can create a file. */
1612 static int may_create(struct inode *dir,
1613                       struct dentry *dentry,
1614                       u16 tclass)
1615 {
1616         const struct cred *cred = current_cred();
1617         const struct task_security_struct *tsec = cred->security;
1618         struct inode_security_struct *dsec;
1619         struct superblock_security_struct *sbsec;
1620         u32 sid, newsid;
1621         struct common_audit_data ad;
1622         int rc;
1623
1624         dsec = dir->i_security;
1625         sbsec = dir->i_sb->s_security;
1626
1627         sid = tsec->sid;
1628         newsid = tsec->create_sid;
1629
1630         COMMON_AUDIT_DATA_INIT(&ad, FS);
1631         ad.u.fs.path.dentry = dentry;
1632
1633         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1634                           DIR__ADD_NAME | DIR__SEARCH,
1635                           &ad);
1636         if (rc)
1637                 return rc;
1638
1639         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1640                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1641                 if (rc)
1642                         return rc;
1643         }
1644
1645         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1646         if (rc)
1647                 return rc;
1648
1649         return avc_has_perm(newsid, sbsec->sid,
1650                             SECCLASS_FILESYSTEM,
1651                             FILESYSTEM__ASSOCIATE, &ad);
1652 }
1653
1654 /* Check whether a task can create a key. */
1655 static int may_create_key(u32 ksid,
1656                           struct task_struct *ctx)
1657 {
1658         u32 sid = task_sid(ctx);
1659
1660         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1661 }
1662
1663 #define MAY_LINK        0
1664 #define MAY_UNLINK      1
1665 #define MAY_RMDIR       2
1666
1667 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1668 static int may_link(struct inode *dir,
1669                     struct dentry *dentry,
1670                     int kind)
1671
1672 {
1673         struct inode_security_struct *dsec, *isec;
1674         struct common_audit_data ad;
1675         u32 sid = current_sid();
1676         u32 av;
1677         int rc;
1678
1679         dsec = dir->i_security;
1680         isec = dentry->d_inode->i_security;
1681
1682         COMMON_AUDIT_DATA_INIT(&ad, FS);
1683         ad.u.fs.path.dentry = dentry;
1684
1685         av = DIR__SEARCH;
1686         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1687         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1688         if (rc)
1689                 return rc;
1690
1691         switch (kind) {
1692         case MAY_LINK:
1693                 av = FILE__LINK;
1694                 break;
1695         case MAY_UNLINK:
1696                 av = FILE__UNLINK;
1697                 break;
1698         case MAY_RMDIR:
1699                 av = DIR__RMDIR;
1700                 break;
1701         default:
1702                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1703                         __func__, kind);
1704                 return 0;
1705         }
1706
1707         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1708         return rc;
1709 }
1710
1711 static inline int may_rename(struct inode *old_dir,
1712                              struct dentry *old_dentry,
1713                              struct inode *new_dir,
1714                              struct dentry *new_dentry)
1715 {
1716         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1717         struct common_audit_data ad;
1718         u32 sid = current_sid();
1719         u32 av;
1720         int old_is_dir, new_is_dir;
1721         int rc;
1722
1723         old_dsec = old_dir->i_security;
1724         old_isec = old_dentry->d_inode->i_security;
1725         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1726         new_dsec = new_dir->i_security;
1727
1728         COMMON_AUDIT_DATA_INIT(&ad, FS);
1729
1730         ad.u.fs.path.dentry = old_dentry;
1731         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1732                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1733         if (rc)
1734                 return rc;
1735         rc = avc_has_perm(sid, old_isec->sid,
1736                           old_isec->sclass, FILE__RENAME, &ad);
1737         if (rc)
1738                 return rc;
1739         if (old_is_dir && new_dir != old_dir) {
1740                 rc = avc_has_perm(sid, old_isec->sid,
1741                                   old_isec->sclass, DIR__REPARENT, &ad);
1742                 if (rc)
1743                         return rc;
1744         }
1745
1746         ad.u.fs.path.dentry = new_dentry;
1747         av = DIR__ADD_NAME | DIR__SEARCH;
1748         if (new_dentry->d_inode)
1749                 av |= DIR__REMOVE_NAME;
1750         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1751         if (rc)
1752                 return rc;
1753         if (new_dentry->d_inode) {
1754                 new_isec = new_dentry->d_inode->i_security;
1755                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1756                 rc = avc_has_perm(sid, new_isec->sid,
1757                                   new_isec->sclass,
1758                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1759                 if (rc)
1760                         return rc;
1761         }
1762
1763         return 0;
1764 }
1765
1766 /* Check whether a task can perform a filesystem operation. */
1767 static int superblock_has_perm(const struct cred *cred,
1768                                struct super_block *sb,
1769                                u32 perms,
1770                                struct common_audit_data *ad)
1771 {
1772         struct superblock_security_struct *sbsec;
1773         u32 sid = cred_sid(cred);
1774
1775         sbsec = sb->s_security;
1776         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1777 }
1778
1779 /* Convert a Linux mode and permission mask to an access vector. */
1780 static inline u32 file_mask_to_av(int mode, int mask)
1781 {
1782         u32 av = 0;
1783
1784         if ((mode & S_IFMT) != S_IFDIR) {
1785                 if (mask & MAY_EXEC)
1786                         av |= FILE__EXECUTE;
1787                 if (mask & MAY_READ)
1788                         av |= FILE__READ;
1789
1790                 if (mask & MAY_APPEND)
1791                         av |= FILE__APPEND;
1792                 else if (mask & MAY_WRITE)
1793                         av |= FILE__WRITE;
1794
1795         } else {
1796                 if (mask & MAY_EXEC)
1797                         av |= DIR__SEARCH;
1798                 if (mask & MAY_WRITE)
1799                         av |= DIR__WRITE;
1800                 if (mask & MAY_READ)
1801                         av |= DIR__READ;
1802         }
1803
1804         return av;
1805 }
1806
1807 /* Convert a Linux file to an access vector. */
1808 static inline u32 file_to_av(struct file *file)
1809 {
1810         u32 av = 0;
1811
1812         if (file->f_mode & FMODE_READ)
1813                 av |= FILE__READ;
1814         if (file->f_mode & FMODE_WRITE) {
1815                 if (file->f_flags & O_APPEND)
1816                         av |= FILE__APPEND;
1817                 else
1818                         av |= FILE__WRITE;
1819         }
1820         if (!av) {
1821                 /*
1822                  * Special file opened with flags 3 for ioctl-only use.
1823                  */
1824                 av = FILE__IOCTL;
1825         }
1826
1827         return av;
1828 }
1829
1830 /*
1831  * Convert a file to an access vector and include the correct open
1832  * open permission.
1833  */
1834 static inline u32 open_file_to_av(struct file *file)
1835 {
1836         u32 av = file_to_av(file);
1837
1838         if (selinux_policycap_openperm) {
1839                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1840                 /*
1841                  * lnk files and socks do not really have an 'open'
1842                  */
1843                 if (S_ISREG(mode))
1844                         av |= FILE__OPEN;
1845                 else if (S_ISCHR(mode))
1846                         av |= CHR_FILE__OPEN;
1847                 else if (S_ISBLK(mode))
1848                         av |= BLK_FILE__OPEN;
1849                 else if (S_ISFIFO(mode))
1850                         av |= FIFO_FILE__OPEN;
1851                 else if (S_ISDIR(mode))
1852                         av |= DIR__OPEN;
1853                 else if (S_ISSOCK(mode))
1854                         av |= SOCK_FILE__OPEN;
1855                 else
1856                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1857                                 "unknown mode:%o\n", __func__, mode);
1858         }
1859         return av;
1860 }
1861
1862 /* Hook functions begin here. */
1863
1864 static int selinux_ptrace_access_check(struct task_struct *child,
1865                                      unsigned int mode)
1866 {
1867         int rc;
1868
1869         rc = cap_ptrace_access_check(child, mode);
1870         if (rc)
1871                 return rc;
1872
1873         if (mode == PTRACE_MODE_READ) {
1874                 u32 sid = current_sid();
1875                 u32 csid = task_sid(child);
1876                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1877         }
1878
1879         return current_has_perm(child, PROCESS__PTRACE);
1880 }
1881
1882 static int selinux_ptrace_traceme(struct task_struct *parent)
1883 {
1884         int rc;
1885
1886         rc = cap_ptrace_traceme(parent);
1887         if (rc)
1888                 return rc;
1889
1890         return task_has_perm(parent, current, PROCESS__PTRACE);
1891 }
1892
1893 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1894                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1895 {
1896         int error;
1897
1898         error = current_has_perm(target, PROCESS__GETCAP);
1899         if (error)
1900                 return error;
1901
1902         return cap_capget(target, effective, inheritable, permitted);
1903 }
1904
1905 static int selinux_capset(struct cred *new, const struct cred *old,
1906                           const kernel_cap_t *effective,
1907                           const kernel_cap_t *inheritable,
1908                           const kernel_cap_t *permitted)
1909 {
1910         int error;
1911
1912         error = cap_capset(new, old,
1913                                       effective, inheritable, permitted);
1914         if (error)
1915                 return error;
1916
1917         return cred_has_perm(old, new, PROCESS__SETCAP);
1918 }
1919
1920 /*
1921  * (This comment used to live with the selinux_task_setuid hook,
1922  * which was removed).
1923  *
1924  * Since setuid only affects the current process, and since the SELinux
1925  * controls are not based on the Linux identity attributes, SELinux does not
1926  * need to control this operation.  However, SELinux does control the use of
1927  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1928  */
1929
1930 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1931                            int cap, int audit)
1932 {
1933         int rc;
1934
1935         rc = cap_capable(tsk, cred, cap, audit);
1936         if (rc)
1937                 return rc;
1938
1939         return task_has_capability(tsk, cred, cap, audit);
1940 }
1941
1942 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1943 {
1944         int buflen, rc;
1945         char *buffer, *path, *end;
1946
1947         rc = -ENOMEM;
1948         buffer = (char *)__get_free_page(GFP_KERNEL);
1949         if (!buffer)
1950                 goto out;
1951
1952         buflen = PAGE_SIZE;
1953         end = buffer+buflen;
1954         *--end = '\0';
1955         buflen--;
1956         path = end-1;
1957         *path = '/';
1958         while (table) {
1959                 const char *name = table->procname;
1960                 size_t namelen = strlen(name);
1961                 buflen -= namelen + 1;
1962                 if (buflen < 0)
1963                         goto out_free;
1964                 end -= namelen;
1965                 memcpy(end, name, namelen);
1966                 *--end = '/';
1967                 path = end;
1968                 table = table->parent;
1969         }
1970         buflen -= 4;
1971         if (buflen < 0)
1972                 goto out_free;
1973         end -= 4;
1974         memcpy(end, "/sys", 4);
1975         path = end;
1976         rc = security_genfs_sid("proc", path, tclass, sid);
1977 out_free:
1978         free_page((unsigned long)buffer);
1979 out:
1980         return rc;
1981 }
1982
1983 static int selinux_sysctl(ctl_table *table, int op)
1984 {
1985         int error = 0;
1986         u32 av;
1987         u32 tsid, sid;
1988         int rc;
1989
1990         sid = current_sid();
1991
1992         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1993                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1994         if (rc) {
1995                 /* Default to the well-defined sysctl SID. */
1996                 tsid = SECINITSID_SYSCTL;
1997         }
1998
1999         /* The op values are "defined" in sysctl.c, thereby creating
2000          * a bad coupling between this module and sysctl.c */
2001         if (op == 001) {
2002                 error = avc_has_perm(sid, tsid,
2003                                      SECCLASS_DIR, DIR__SEARCH, NULL);
2004         } else {
2005                 av = 0;
2006                 if (op & 004)
2007                         av |= FILE__READ;
2008                 if (op & 002)
2009                         av |= FILE__WRITE;
2010                 if (av)
2011                         error = avc_has_perm(sid, tsid,
2012                                              SECCLASS_FILE, av, NULL);
2013         }
2014
2015         return error;
2016 }
2017
2018 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2019 {
2020         const struct cred *cred = current_cred();
2021         int rc = 0;
2022
2023         if (!sb)
2024                 return 0;
2025
2026         switch (cmds) {
2027         case Q_SYNC:
2028         case Q_QUOTAON:
2029         case Q_QUOTAOFF:
2030         case Q_SETINFO:
2031         case Q_SETQUOTA:
2032                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2033                 break;
2034         case Q_GETFMT:
2035         case Q_GETINFO:
2036         case Q_GETQUOTA:
2037                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2038                 break;
2039         default:
2040                 rc = 0;  /* let the kernel handle invalid cmds */
2041                 break;
2042         }
2043         return rc;
2044 }
2045
2046 static int selinux_quota_on(struct dentry *dentry)
2047 {
2048         const struct cred *cred = current_cred();
2049
2050         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2051 }
2052
2053 static int selinux_syslog(int type, bool from_file)
2054 {
2055         int rc;
2056
2057         rc = cap_syslog(type, from_file);
2058         if (rc)
2059                 return rc;
2060
2061         switch (type) {
2062         case 3:         /* Read last kernel messages */
2063         case 10:        /* Return size of the log buffer */
2064                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2065                 break;
2066         case 6:         /* Disable logging to console */
2067         case 7:         /* Enable logging to console */
2068         case 8:         /* Set level of messages printed to console */
2069                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2070                 break;
2071         case 0:         /* Close log */
2072         case 1:         /* Open log */
2073         case 2:         /* Read from log */
2074         case 4:         /* Read/clear last kernel messages */
2075         case 5:         /* Clear ring buffer */
2076         default:
2077                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2078                 break;
2079         }
2080         return rc;
2081 }
2082
2083 /*
2084  * Check that a process has enough memory to allocate a new virtual
2085  * mapping. 0 means there is enough memory for the allocation to
2086  * succeed and -ENOMEM implies there is not.
2087  *
2088  * Do not audit the selinux permission check, as this is applied to all
2089  * processes that allocate mappings.
2090  */
2091 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2092 {
2093         int rc, cap_sys_admin = 0;
2094
2095         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2096                              SECURITY_CAP_NOAUDIT);
2097         if (rc == 0)
2098                 cap_sys_admin = 1;
2099
2100         return __vm_enough_memory(mm, pages, cap_sys_admin);
2101 }
2102
2103 /* binprm security operations */
2104
2105 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2106 {
2107         const struct task_security_struct *old_tsec;
2108         struct task_security_struct *new_tsec;
2109         struct inode_security_struct *isec;
2110         struct common_audit_data ad;
2111         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2112         int rc;
2113
2114         rc = cap_bprm_set_creds(bprm);
2115         if (rc)
2116                 return rc;
2117
2118         /* SELinux context only depends on initial program or script and not
2119          * the script interpreter */
2120         if (bprm->cred_prepared)
2121                 return 0;
2122
2123         old_tsec = current_security();
2124         new_tsec = bprm->cred->security;
2125         isec = inode->i_security;
2126
2127         /* Default to the current task SID. */
2128         new_tsec->sid = old_tsec->sid;
2129         new_tsec->osid = old_tsec->sid;
2130
2131         /* Reset fs, key, and sock SIDs on execve. */
2132         new_tsec->create_sid = 0;
2133         new_tsec->keycreate_sid = 0;
2134         new_tsec->sockcreate_sid = 0;
2135
2136         if (old_tsec->exec_sid) {
2137                 new_tsec->sid = old_tsec->exec_sid;
2138                 /* Reset exec SID on execve. */
2139                 new_tsec->exec_sid = 0;
2140         } else {
2141                 /* Check for a default transition on this program. */
2142                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2143                                              SECCLASS_PROCESS, &new_tsec->sid);
2144                 if (rc)
2145                         return rc;
2146         }
2147
2148         COMMON_AUDIT_DATA_INIT(&ad, FS);
2149         ad.u.fs.path = bprm->file->f_path;
2150
2151         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2152                 new_tsec->sid = old_tsec->sid;
2153
2154         if (new_tsec->sid == old_tsec->sid) {
2155                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2156                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2157                 if (rc)
2158                         return rc;
2159         } else {
2160                 /* Check permissions for the transition. */
2161                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2162                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2163                 if (rc)
2164                         return rc;
2165
2166                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2167                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2168                 if (rc)
2169                         return rc;
2170
2171                 /* Check for shared state */
2172                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2173                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2174                                           SECCLASS_PROCESS, PROCESS__SHARE,
2175                                           NULL);
2176                         if (rc)
2177                                 return -EPERM;
2178                 }
2179
2180                 /* Make sure that anyone attempting to ptrace over a task that
2181                  * changes its SID has the appropriate permit */
2182                 if (bprm->unsafe &
2183                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2184                         struct task_struct *tracer;
2185                         struct task_security_struct *sec;
2186                         u32 ptsid = 0;
2187
2188                         rcu_read_lock();
2189                         tracer = tracehook_tracer_task(current);
2190                         if (likely(tracer != NULL)) {
2191                                 sec = __task_cred(tracer)->security;
2192                                 ptsid = sec->sid;
2193                         }
2194                         rcu_read_unlock();
2195
2196                         if (ptsid != 0) {
2197                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2198                                                   SECCLASS_PROCESS,
2199                                                   PROCESS__PTRACE, NULL);
2200                                 if (rc)
2201                                         return -EPERM;
2202                         }
2203                 }
2204
2205                 /* Clear any possibly unsafe personality bits on exec: */
2206                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2207         }
2208
2209         return 0;
2210 }
2211
2212 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2213 {
2214         const struct cred *cred = current_cred();
2215         const struct task_security_struct *tsec = cred->security;
2216         u32 sid, osid;
2217         int atsecure = 0;
2218
2219         sid = tsec->sid;
2220         osid = tsec->osid;
2221
2222         if (osid != sid) {
2223                 /* Enable secure mode for SIDs transitions unless
2224                    the noatsecure permission is granted between
2225                    the two SIDs, i.e. ahp returns 0. */
2226                 atsecure = avc_has_perm(osid, sid,
2227                                         SECCLASS_PROCESS,
2228                                         PROCESS__NOATSECURE, NULL);
2229         }
2230
2231         return (atsecure || cap_bprm_secureexec(bprm));
2232 }
2233
2234 extern struct vfsmount *selinuxfs_mount;
2235 extern struct dentry *selinux_null;
2236
2237 /* Derived from fs/exec.c:flush_old_files. */
2238 static inline void flush_unauthorized_files(const struct cred *cred,
2239                                             struct files_struct *files)
2240 {
2241         struct common_audit_data ad;
2242         struct file *file, *devnull = NULL;
2243         struct tty_struct *tty;
2244         struct fdtable *fdt;
2245         long j = -1;
2246         int drop_tty = 0;
2247
2248         tty = get_current_tty();
2249         if (tty) {
2250                 file_list_lock();
2251                 if (!list_empty(&tty->tty_files)) {
2252                         struct inode *inode;
2253
2254                         /* Revalidate access to controlling tty.
2255                            Use inode_has_perm on the tty inode directly rather
2256                            than using file_has_perm, as this particular open
2257                            file may belong to another process and we are only
2258                            interested in the inode-based check here. */
2259                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2260                         inode = file->f_path.dentry->d_inode;
2261                         if (inode_has_perm(cred, inode,
2262                                            FILE__READ | FILE__WRITE, NULL)) {
2263                                 drop_tty = 1;
2264                         }
2265                 }
2266                 file_list_unlock();
2267                 tty_kref_put(tty);
2268         }
2269         /* Reset controlling tty. */
2270         if (drop_tty)
2271                 no_tty();
2272
2273         /* Revalidate access to inherited open files. */
2274
2275         COMMON_AUDIT_DATA_INIT(&ad, FS);
2276
2277         spin_lock(&files->file_lock);
2278         for (;;) {
2279                 unsigned long set, i;
2280                 int fd;
2281
2282                 j++;
2283                 i = j * __NFDBITS;
2284                 fdt = files_fdtable(files);
2285                 if (i >= fdt->max_fds)
2286                         break;
2287                 set = fdt->open_fds->fds_bits[j];
2288                 if (!set)
2289                         continue;
2290                 spin_unlock(&files->file_lock);
2291                 for ( ; set ; i++, set >>= 1) {
2292                         if (set & 1) {
2293                                 file = fget(i);
2294                                 if (!file)
2295                                         continue;
2296                                 if (file_has_perm(cred,
2297                                                   file,
2298                                                   file_to_av(file))) {
2299                                         sys_close(i);
2300                                         fd = get_unused_fd();
2301                                         if (fd != i) {
2302                                                 if (fd >= 0)
2303                                                         put_unused_fd(fd);
2304                                                 fput(file);
2305                                                 continue;
2306                                         }
2307                                         if (devnull) {
2308                                                 get_file(devnull);
2309                                         } else {
2310                                                 devnull = dentry_open(
2311                                                         dget(selinux_null),
2312                                                         mntget(selinuxfs_mount),
2313                                                         O_RDWR, cred);
2314                                                 if (IS_ERR(devnull)) {
2315                                                         devnull = NULL;
2316                                                         put_unused_fd(fd);
2317                                                         fput(file);
2318                                                         continue;
2319                                                 }
2320                                         }
2321                                         fd_install(fd, devnull);
2322                                 }
2323                                 fput(file);
2324                         }
2325                 }
2326                 spin_lock(&files->file_lock);
2327
2328         }
2329         spin_unlock(&files->file_lock);
2330 }
2331
2332 /*
2333  * Prepare a process for imminent new credential changes due to exec
2334  */
2335 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2336 {
2337         struct task_security_struct *new_tsec;
2338         struct rlimit *rlim, *initrlim;
2339         int rc, i;
2340
2341         new_tsec = bprm->cred->security;
2342         if (new_tsec->sid == new_tsec->osid)
2343                 return;
2344
2345         /* Close files for which the new task SID is not authorized. */
2346         flush_unauthorized_files(bprm->cred, current->files);
2347
2348         /* Always clear parent death signal on SID transitions. */
2349         current->pdeath_signal = 0;
2350
2351         /* Check whether the new SID can inherit resource limits from the old
2352          * SID.  If not, reset all soft limits to the lower of the current
2353          * task's hard limit and the init task's soft limit.
2354          *
2355          * Note that the setting of hard limits (even to lower them) can be
2356          * controlled by the setrlimit check.  The inclusion of the init task's
2357          * soft limit into the computation is to avoid resetting soft limits
2358          * higher than the default soft limit for cases where the default is
2359          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2360          */
2361         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2362                           PROCESS__RLIMITINH, NULL);
2363         if (rc) {
2364                 for (i = 0; i < RLIM_NLIMITS; i++) {
2365                         rlim = current->signal->rlim + i;
2366                         initrlim = init_task.signal->rlim + i;
2367                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2368                 }
2369                 update_rlimit_cpu(current->signal->rlim[RLIMIT_CPU].rlim_cur);
2370         }
2371 }
2372
2373 /*
2374  * Clean up the process immediately after the installation of new credentials
2375  * due to exec
2376  */
2377 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2378 {
2379         const struct task_security_struct *tsec = current_security();
2380         struct itimerval itimer;
2381         u32 osid, sid;
2382         int rc, i;
2383
2384         osid = tsec->osid;
2385         sid = tsec->sid;
2386
2387         if (sid == osid)
2388                 return;
2389
2390         /* Check whether the new SID can inherit signal state from the old SID.
2391          * If not, clear itimers to avoid subsequent signal generation and
2392          * flush and unblock signals.
2393          *
2394          * This must occur _after_ the task SID has been updated so that any
2395          * kill done after the flush will be checked against the new SID.
2396          */
2397         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2398         if (rc) {
2399                 memset(&itimer, 0, sizeof itimer);
2400                 for (i = 0; i < 3; i++)
2401                         do_setitimer(i, &itimer, NULL);
2402                 spin_lock_irq(&current->sighand->siglock);
2403                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2404                         __flush_signals(current);
2405                         flush_signal_handlers(current, 1);
2406                         sigemptyset(&current->blocked);
2407                 }
2408                 spin_unlock_irq(&current->sighand->siglock);
2409         }
2410
2411         /* Wake up the parent if it is waiting so that it can recheck
2412          * wait permission to the new task SID. */
2413         read_lock(&tasklist_lock);
2414         __wake_up_parent(current, current->real_parent);
2415         read_unlock(&tasklist_lock);
2416 }
2417
2418 /* superblock security operations */
2419
2420 static int selinux_sb_alloc_security(struct super_block *sb)
2421 {
2422         return superblock_alloc_security(sb);
2423 }
2424
2425 static void selinux_sb_free_security(struct super_block *sb)
2426 {
2427         superblock_free_security(sb);
2428 }
2429
2430 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2431 {
2432         if (plen > olen)
2433                 return 0;
2434
2435         return !memcmp(prefix, option, plen);
2436 }
2437
2438 static inline int selinux_option(char *option, int len)
2439 {
2440         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2441                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2442                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2443                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2444                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2445 }
2446
2447 static inline void take_option(char **to, char *from, int *first, int len)
2448 {
2449         if (!*first) {
2450                 **to = ',';
2451                 *to += 1;
2452         } else
2453                 *first = 0;
2454         memcpy(*to, from, len);
2455         *to += len;
2456 }
2457
2458 static inline void take_selinux_option(char **to, char *from, int *first,
2459                                        int len)
2460 {
2461         int current_size = 0;
2462
2463         if (!*first) {
2464                 **to = '|';
2465                 *to += 1;
2466         } else
2467                 *first = 0;
2468
2469         while (current_size < len) {
2470                 if (*from != '"') {
2471                         **to = *from;
2472                         *to += 1;
2473                 }
2474                 from += 1;
2475                 current_size += 1;
2476         }
2477 }
2478
2479 static int selinux_sb_copy_data(char *orig, char *copy)
2480 {
2481         int fnosec, fsec, rc = 0;
2482         char *in_save, *in_curr, *in_end;
2483         char *sec_curr, *nosec_save, *nosec;
2484         int open_quote = 0;
2485
2486         in_curr = orig;
2487         sec_curr = copy;
2488
2489         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2490         if (!nosec) {
2491                 rc = -ENOMEM;
2492                 goto out;
2493         }
2494
2495         nosec_save = nosec;
2496         fnosec = fsec = 1;
2497         in_save = in_end = orig;
2498
2499         do {
2500                 if (*in_end == '"')
2501                         open_quote = !open_quote;
2502                 if ((*in_end == ',' && open_quote == 0) ||
2503                                 *in_end == '\0') {
2504                         int len = in_end - in_curr;
2505
2506                         if (selinux_option(in_curr, len))
2507                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2508                         else
2509                                 take_option(&nosec, in_curr, &fnosec, len);
2510
2511                         in_curr = in_end + 1;
2512                 }
2513         } while (*in_end++);
2514
2515         strcpy(in_save, nosec_save);
2516         free_page((unsigned long)nosec_save);
2517 out:
2518         return rc;
2519 }
2520
2521 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2522 {
2523         const struct cred *cred = current_cred();
2524         struct common_audit_data ad;
2525         int rc;
2526
2527         rc = superblock_doinit(sb, data);
2528         if (rc)
2529                 return rc;
2530
2531         /* Allow all mounts performed by the kernel */
2532         if (flags & MS_KERNMOUNT)
2533                 return 0;
2534
2535         COMMON_AUDIT_DATA_INIT(&ad, FS);
2536         ad.u.fs.path.dentry = sb->s_root;
2537         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2538 }
2539
2540 static int selinux_sb_statfs(struct dentry *dentry)
2541 {
2542         const struct cred *cred = current_cred();
2543         struct common_audit_data ad;
2544
2545         COMMON_AUDIT_DATA_INIT(&ad, FS);
2546         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2547         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2548 }
2549
2550 static int selinux_mount(char *dev_name,
2551                          struct path *path,
2552                          char *type,
2553                          unsigned long flags,
2554                          void *data)
2555 {
2556         const struct cred *cred = current_cred();
2557
2558         if (flags & MS_REMOUNT)
2559                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2560                                            FILESYSTEM__REMOUNT, NULL);
2561         else
2562                 return dentry_has_perm(cred, path->mnt, path->dentry,
2563                                        FILE__MOUNTON);
2564 }
2565
2566 static int selinux_umount(struct vfsmount *mnt, int flags)
2567 {
2568         const struct cred *cred = current_cred();
2569
2570         return superblock_has_perm(cred, mnt->mnt_sb,
2571                                    FILESYSTEM__UNMOUNT, NULL);
2572 }
2573
2574 /* inode security operations */
2575
2576 static int selinux_inode_alloc_security(struct inode *inode)
2577 {
2578         return inode_alloc_security(inode);
2579 }
2580
2581 static void selinux_inode_free_security(struct inode *inode)
2582 {
2583         inode_free_security(inode);
2584 }
2585
2586 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2587                                        char **name, void **value,
2588                                        size_t *len)
2589 {
2590         const struct cred *cred = current_cred();
2591         const struct task_security_struct *tsec = cred->security;
2592         struct inode_security_struct *dsec;
2593         struct superblock_security_struct *sbsec;
2594         u32 sid, newsid, clen;
2595         int rc;
2596         char *namep = NULL, *context;
2597
2598         dsec = dir->i_security;
2599         sbsec = dir->i_sb->s_security;
2600
2601         sid = tsec->sid;
2602         newsid = tsec->create_sid;
2603
2604         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2605                 rc = security_transition_sid(sid, dsec->sid,
2606                                              inode_mode_to_security_class(inode->i_mode),
2607                                              &newsid);
2608                 if (rc) {
2609                         printk(KERN_WARNING "%s:  "
2610                                "security_transition_sid failed, rc=%d (dev=%s "
2611                                "ino=%ld)\n",
2612                                __func__,
2613                                -rc, inode->i_sb->s_id, inode->i_ino);
2614                         return rc;
2615                 }
2616         }
2617
2618         /* Possibly defer initialization to selinux_complete_init. */
2619         if (sbsec->flags & SE_SBINITIALIZED) {
2620                 struct inode_security_struct *isec = inode->i_security;
2621                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2622                 isec->sid = newsid;
2623                 isec->initialized = 1;
2624         }
2625
2626         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2627                 return -EOPNOTSUPP;
2628
2629         if (name) {
2630                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2631                 if (!namep)
2632                         return -ENOMEM;
2633                 *name = namep;
2634         }
2635
2636         if (value && len) {
2637                 rc = security_sid_to_context_force(newsid, &context, &clen);
2638                 if (rc) {
2639                         kfree(namep);
2640                         return rc;
2641                 }
2642                 *value = context;
2643                 *len = clen;
2644         }
2645
2646         return 0;
2647 }
2648
2649 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2650 {
2651         return may_create(dir, dentry, SECCLASS_FILE);
2652 }
2653
2654 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2655 {
2656         return may_link(dir, old_dentry, MAY_LINK);
2657 }
2658
2659 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2660 {
2661         return may_link(dir, dentry, MAY_UNLINK);
2662 }
2663
2664 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2665 {
2666         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2667 }
2668
2669 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2670 {
2671         return may_create(dir, dentry, SECCLASS_DIR);
2672 }
2673
2674 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2675 {
2676         return may_link(dir, dentry, MAY_RMDIR);
2677 }
2678
2679 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2680 {
2681         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2682 }
2683
2684 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2685                                 struct inode *new_inode, struct dentry *new_dentry)
2686 {
2687         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2688 }
2689
2690 static int selinux_inode_readlink(struct dentry *dentry)
2691 {
2692         const struct cred *cred = current_cred();
2693
2694         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2695 }
2696
2697 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2698 {
2699         const struct cred *cred = current_cred();
2700
2701         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2702 }
2703
2704 static int selinux_inode_permission(struct inode *inode, int mask)
2705 {
2706         const struct cred *cred = current_cred();
2707
2708         if (!mask) {
2709                 /* No permission to check.  Existence test. */
2710                 return 0;
2711         }
2712
2713         return inode_has_perm(cred, inode,
2714                               file_mask_to_av(inode->i_mode, mask), NULL);
2715 }
2716
2717 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2718 {
2719         const struct cred *cred = current_cred();
2720         unsigned int ia_valid = iattr->ia_valid;
2721
2722         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2723         if (ia_valid & ATTR_FORCE) {
2724                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2725                               ATTR_FORCE);
2726                 if (!ia_valid)
2727                         return 0;
2728         }
2729
2730         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2731                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2732                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2733
2734         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2735 }
2736
2737 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2738 {
2739         const struct cred *cred = current_cred();
2740
2741         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2742 }
2743
2744 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2745 {
2746         const struct cred *cred = current_cred();
2747
2748         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2749                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2750                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2751                         if (!capable(CAP_SETFCAP))
2752                                 return -EPERM;
2753                 } else if (!capable(CAP_SYS_ADMIN)) {
2754                         /* A different attribute in the security namespace.
2755                            Restrict to administrator. */
2756                         return -EPERM;
2757                 }
2758         }
2759
2760         /* Not an attribute we recognize, so just check the
2761            ordinary setattr permission. */
2762         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2763 }
2764
2765 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2766                                   const void *value, size_t size, int flags)
2767 {
2768         struct inode *inode = dentry->d_inode;
2769         struct inode_security_struct *isec = inode->i_security;
2770         struct superblock_security_struct *sbsec;
2771         struct common_audit_data ad;
2772         u32 newsid, sid = current_sid();
2773         int rc = 0;
2774
2775         if (strcmp(name, XATTR_NAME_SELINUX))
2776                 return selinux_inode_setotherxattr(dentry, name);
2777
2778         sbsec = inode->i_sb->s_security;
2779         if (!(sbsec->flags & SE_SBLABELSUPP))
2780                 return -EOPNOTSUPP;
2781
2782         if (!is_owner_or_cap(inode))
2783                 return -EPERM;
2784
2785         COMMON_AUDIT_DATA_INIT(&ad, FS);
2786         ad.u.fs.path.dentry = dentry;
2787
2788         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2789                           FILE__RELABELFROM, &ad);
2790         if (rc)
2791                 return rc;
2792
2793         rc = security_context_to_sid(value, size, &newsid);
2794         if (rc == -EINVAL) {
2795                 if (!capable(CAP_MAC_ADMIN))
2796                         return rc;
2797                 rc = security_context_to_sid_force(value, size, &newsid);
2798         }
2799         if (rc)
2800                 return rc;
2801
2802         rc = avc_has_perm(sid, newsid, isec->sclass,
2803                           FILE__RELABELTO, &ad);
2804         if (rc)
2805                 return rc;
2806
2807         rc = security_validate_transition(isec->sid, newsid, sid,
2808                                           isec->sclass);
2809         if (rc)
2810                 return rc;
2811
2812         return avc_has_perm(newsid,
2813                             sbsec->sid,
2814                             SECCLASS_FILESYSTEM,
2815                             FILESYSTEM__ASSOCIATE,
2816                             &ad);
2817 }
2818
2819 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2820                                         const void *value, size_t size,
2821                                         int flags)
2822 {
2823         struct inode *inode = dentry->d_inode;
2824         struct inode_security_struct *isec = inode->i_security;
2825         u32 newsid;
2826         int rc;
2827
2828         if (strcmp(name, XATTR_NAME_SELINUX)) {
2829                 /* Not an attribute we recognize, so nothing to do. */
2830                 return;
2831         }
2832
2833         rc = security_context_to_sid_force(value, size, &newsid);
2834         if (rc) {
2835                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2836                        "for (%s, %lu), rc=%d\n",
2837                        inode->i_sb->s_id, inode->i_ino, -rc);
2838                 return;
2839         }
2840
2841         isec->sid = newsid;
2842         return;
2843 }
2844
2845 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2846 {
2847         const struct cred *cred = current_cred();
2848
2849         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2850 }
2851
2852 static int selinux_inode_listxattr(struct dentry *dentry)
2853 {
2854         const struct cred *cred = current_cred();
2855
2856         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2857 }
2858
2859 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2860 {
2861         if (strcmp(name, XATTR_NAME_SELINUX))
2862                 return selinux_inode_setotherxattr(dentry, name);
2863
2864         /* No one is allowed to remove a SELinux security label.
2865            You can change the label, but all data must be labeled. */
2866         return -EACCES;
2867 }
2868
2869 /*
2870  * Copy the inode security context value to the user.
2871  *
2872  * Permission check is handled by selinux_inode_getxattr hook.
2873  */
2874 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2875 {
2876         u32 size;
2877         int error;
2878         char *context = NULL;
2879         struct inode_security_struct *isec = inode->i_security;
2880
2881         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2882                 return -EOPNOTSUPP;
2883
2884         /*
2885          * If the caller has CAP_MAC_ADMIN, then get the raw context
2886          * value even if it is not defined by current policy; otherwise,
2887          * use the in-core value under current policy.
2888          * Use the non-auditing forms of the permission checks since
2889          * getxattr may be called by unprivileged processes commonly
2890          * and lack of permission just means that we fall back to the
2891          * in-core context value, not a denial.
2892          */
2893         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2894                                 SECURITY_CAP_NOAUDIT);
2895         if (!error)
2896                 error = security_sid_to_context_force(isec->sid, &context,
2897                                                       &size);
2898         else
2899                 error = security_sid_to_context(isec->sid, &context, &size);
2900         if (error)
2901                 return error;
2902         error = size;
2903         if (alloc) {
2904                 *buffer = context;
2905                 goto out_nofree;
2906         }
2907         kfree(context);
2908 out_nofree:
2909         return error;
2910 }
2911
2912 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2913                                      const void *value, size_t size, int flags)
2914 {
2915         struct inode_security_struct *isec = inode->i_security;
2916         u32 newsid;
2917         int rc;
2918
2919         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2920                 return -EOPNOTSUPP;
2921
2922         if (!value || !size)
2923                 return -EACCES;
2924
2925         rc = security_context_to_sid((void *)value, size, &newsid);
2926         if (rc)
2927                 return rc;
2928
2929         isec->sid = newsid;
2930         isec->initialized = 1;
2931         return 0;
2932 }
2933
2934 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2935 {
2936         const int len = sizeof(XATTR_NAME_SELINUX);
2937         if (buffer && len <= buffer_size)
2938                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2939         return len;
2940 }
2941
2942 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2943 {
2944         struct inode_security_struct *isec = inode->i_security;
2945         *secid = isec->sid;
2946 }
2947
2948 /* file security operations */
2949
2950 static int selinux_revalidate_file_permission(struct file *file, int mask)
2951 {
2952         const struct cred *cred = current_cred();
2953         struct inode *inode = file->f_path.dentry->d_inode;
2954
2955         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2956         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2957                 mask |= MAY_APPEND;
2958
2959         return file_has_perm(cred, file,
2960                              file_mask_to_av(inode->i_mode, mask));
2961 }
2962
2963 static int selinux_file_permission(struct file *file, int mask)
2964 {
2965         struct inode *inode = file->f_path.dentry->d_inode;
2966         struct file_security_struct *fsec = file->f_security;
2967         struct inode_security_struct *isec = inode->i_security;
2968         u32 sid = current_sid();
2969
2970         if (!mask)
2971                 /* No permission to check.  Existence test. */
2972                 return 0;
2973
2974         if (sid == fsec->sid && fsec->isid == isec->sid &&
2975             fsec->pseqno == avc_policy_seqno())
2976                 /* No change since dentry_open check. */
2977                 return 0;
2978
2979         return selinux_revalidate_file_permission(file, mask);
2980 }
2981
2982 static int selinux_file_alloc_security(struct file *file)
2983 {
2984         return file_alloc_security(file);
2985 }
2986
2987 static void selinux_file_free_security(struct file *file)
2988 {
2989         file_free_security(file);
2990 }
2991
2992 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2993                               unsigned long arg)
2994 {
2995         const struct cred *cred = current_cred();
2996         u32 av = 0;
2997
2998         if (_IOC_DIR(cmd) & _IOC_WRITE)
2999                 av |= FILE__WRITE;
3000         if (_IOC_DIR(cmd) & _IOC_READ)
3001                 av |= FILE__READ;
3002         if (!av)
3003                 av = FILE__IOCTL;
3004
3005         return file_has_perm(cred, file, av);
3006 }
3007
3008 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3009 {
3010         const struct cred *cred = current_cred();
3011         int rc = 0;
3012
3013 #ifndef CONFIG_PPC32
3014         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3015                 /*
3016                  * We are making executable an anonymous mapping or a
3017                  * private file mapping that will also be writable.
3018                  * This has an additional check.
3019                  */
3020                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3021                 if (rc)
3022                         goto error;
3023         }
3024 #endif
3025
3026         if (file) {
3027                 /* read access is always possible with a mapping */
3028                 u32 av = FILE__READ;
3029
3030                 /* write access only matters if the mapping is shared */
3031                 if (shared && (prot & PROT_WRITE))
3032                         av |= FILE__WRITE;
3033
3034                 if (prot & PROT_EXEC)
3035                         av |= FILE__EXECUTE;
3036
3037                 return file_has_perm(cred, file, av);
3038         }
3039
3040 error:
3041         return rc;
3042 }
3043
3044 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3045                              unsigned long prot, unsigned long flags,
3046                              unsigned long addr, unsigned long addr_only)
3047 {
3048         int rc = 0;
3049         u32 sid = current_sid();
3050
3051         /*
3052          * notice that we are intentionally putting the SELinux check before
3053          * the secondary cap_file_mmap check.  This is such a likely attempt
3054          * at bad behaviour/exploit that we always want to get the AVC, even
3055          * if DAC would have also denied the operation.
3056          */
3057         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3058                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3059                                   MEMPROTECT__MMAP_ZERO, NULL);
3060                 if (rc)
3061                         return rc;
3062         }
3063
3064         /* do DAC check on address space usage */
3065         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3066         if (rc || addr_only)
3067                 return rc;
3068
3069         if (selinux_checkreqprot)
3070                 prot = reqprot;
3071
3072         return file_map_prot_check(file, prot,
3073                                    (flags & MAP_TYPE) == MAP_SHARED);
3074 }
3075
3076 static int selinux_file_mprotect(struct vm_area_struct *vma,
3077                                  unsigned long reqprot,
3078                                  unsigned long prot)
3079 {
3080         const struct cred *cred = current_cred();
3081
3082         if (selinux_checkreqprot)
3083                 prot = reqprot;
3084
3085 #ifndef CONFIG_PPC32
3086         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3087                 int rc = 0;
3088                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3089                     vma->vm_end <= vma->vm_mm->brk) {
3090                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3091                 } else if (!vma->vm_file &&
3092                            vma->vm_start <= vma->vm_mm->start_stack &&
3093                            vma->vm_end >= vma->vm_mm->start_stack) {
3094                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3095                 } else if (vma->vm_file && vma->anon_vma) {
3096                         /*
3097                          * We are making executable a file mapping that has
3098                          * had some COW done. Since pages might have been
3099                          * written, check ability to execute the possibly
3100                          * modified content.  This typically should only
3101                          * occur for text relocations.
3102                          */
3103                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3104                 }
3105                 if (rc)
3106                         return rc;
3107         }
3108 #endif
3109
3110         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3111 }
3112
3113 static int selinux_file_lock(struct file *file, unsigned int cmd)
3114 {
3115         const struct cred *cred = current_cred();
3116
3117         return file_has_perm(cred, file, FILE__LOCK);
3118 }
3119
3120 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3121                               unsigned long arg)
3122 {
3123         const struct cred *cred = current_cred();
3124         int err = 0;
3125
3126         switch (cmd) {
3127         case F_SETFL:
3128                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3129                         err = -EINVAL;
3130                         break;
3131                 }
3132
3133                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3134                         err = file_has_perm(cred, file, FILE__WRITE);
3135                         break;
3136                 }
3137                 /* fall through */
3138         case F_SETOWN:
3139         case F_SETSIG:
3140         case F_GETFL:
3141         case F_GETOWN:
3142         case F_GETSIG:
3143                 /* Just check FD__USE permission */
3144                 err = file_has_perm(cred, file, 0);
3145                 break;
3146         case F_GETLK:
3147         case F_SETLK:
3148         case F_SETLKW:
3149 #if BITS_PER_LONG == 32
3150         case F_GETLK64:
3151         case F_SETLK64:
3152         case F_SETLKW64:
3153 #endif
3154                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3155                         err = -EINVAL;
3156                         break;
3157                 }
3158                 err = file_has_perm(cred, file, FILE__LOCK);
3159                 break;
3160         }
3161
3162         return err;
3163 }
3164
3165 static int selinux_file_set_fowner(struct file *file)
3166 {
3167         struct file_security_struct *fsec;
3168
3169         fsec = file->f_security;
3170         fsec->fown_sid = current_sid();
3171
3172         return 0;
3173 }
3174
3175 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3176                                        struct fown_struct *fown, int signum)
3177 {
3178         struct file *file;
3179         u32 sid = task_sid(tsk);
3180         u32 perm;
3181         struct file_security_struct *fsec;
3182
3183         /* struct fown_struct is never outside the context of a struct file */
3184         file = container_of(fown, struct file, f_owner);
3185
3186         fsec = file->f_security;
3187
3188         if (!signum)
3189                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3190         else
3191                 perm = signal_to_av(signum);
3192
3193         return avc_has_perm(fsec->fown_sid, sid,
3194                             SECCLASS_PROCESS, perm, NULL);
3195 }
3196
3197 static int selinux_file_receive(struct file *file)
3198 {
3199         const struct cred *cred = current_cred();
3200
3201         return file_has_perm(cred, file, file_to_av(file));
3202 }
3203
3204 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3205 {
3206         struct file_security_struct *fsec;
3207         struct inode *inode;
3208         struct inode_security_struct *isec;
3209
3210         inode = file->f_path.dentry->d_inode;
3211         fsec = file->f_security;
3212         isec = inode->i_security;
3213         /*
3214          * Save inode label and policy sequence number
3215          * at open-time so that selinux_file_permission
3216          * can determine whether revalidation is necessary.
3217          * Task label is already saved in the file security
3218          * struct as its SID.
3219          */
3220         fsec->isid = isec->sid;
3221         fsec->pseqno = avc_policy_seqno();
3222         /*
3223          * Since the inode label or policy seqno may have changed
3224          * between the selinux_inode_permission check and the saving
3225          * of state above, recheck that access is still permitted.
3226          * Otherwise, access might never be revalidated against the
3227          * new inode label or new policy.
3228          * This check is not redundant - do not remove.
3229          */
3230         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3231 }
3232
3233 /* task security operations */
3234
3235 static int selinux_task_create(unsigned long clone_flags)
3236 {
3237         return current_has_perm(current, PROCESS__FORK);
3238 }
3239
3240 /*
3241  * allocate the SELinux part of blank credentials
3242  */
3243 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3244 {
3245         struct task_security_struct *tsec;
3246
3247         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3248         if (!tsec)
3249                 return -ENOMEM;
3250
3251         cred->security = tsec;
3252         return 0;
3253 }
3254
3255 /*
3256  * detach and free the LSM part of a set of credentials
3257  */
3258 static void selinux_cred_free(struct cred *cred)
3259 {
3260         struct task_security_struct *tsec = cred->security;
3261
3262         BUG_ON((unsigned long) cred->security < PAGE_SIZE);
3263         cred->security = (void *) 0x7UL;
3264         kfree(tsec);
3265 }
3266
3267 /*
3268  * prepare a new set of credentials for modification
3269  */
3270 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3271                                 gfp_t gfp)
3272 {
3273         const struct task_security_struct *old_tsec;
3274         struct task_security_struct *tsec;
3275
3276         old_tsec = old->security;
3277
3278         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3279         if (!tsec)
3280                 return -ENOMEM;
3281
3282         new->security = tsec;
3283         return 0;
3284 }
3285
3286 /*
3287  * transfer the SELinux data to a blank set of creds
3288  */
3289 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3290 {
3291         const struct task_security_struct *old_tsec = old->security;
3292         struct task_security_struct *tsec = new->security;
3293
3294         *tsec = *old_tsec;
3295 }
3296
3297 /*
3298  * set the security data for a kernel service
3299  * - all the creation contexts are set to unlabelled
3300  */
3301 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3302 {
3303         struct task_security_struct *tsec = new->security;
3304         u32 sid = current_sid();
3305         int ret;
3306
3307         ret = avc_has_perm(sid, secid,
3308                            SECCLASS_KERNEL_SERVICE,
3309                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3310                            NULL);
3311         if (ret == 0) {
3312                 tsec->sid = secid;
3313                 tsec->create_sid = 0;
3314                 tsec->keycreate_sid = 0;
3315                 tsec->sockcreate_sid = 0;
3316         }
3317         return ret;
3318 }
3319
3320 /*
3321  * set the file creation context in a security record to the same as the
3322  * objective context of the specified inode
3323  */
3324 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3325 {
3326         struct inode_security_struct *isec = inode->i_security;
3327         struct task_security_struct *tsec = new->security;
3328         u32 sid = current_sid();
3329         int ret;
3330
3331         ret = avc_has_perm(sid, isec->sid,
3332                            SECCLASS_KERNEL_SERVICE,
3333                            KERNEL_SERVICE__CREATE_FILES_AS,
3334                            NULL);
3335
3336         if (ret == 0)
3337                 tsec->create_sid = isec->sid;
3338         return 0;
3339 }
3340
3341 static int selinux_kernel_module_request(char *kmod_name)
3342 {
3343         u32 sid;
3344         struct common_audit_data ad;
3345
3346         sid = task_sid(current);
3347
3348         COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3349         ad.u.kmod_name = kmod_name;
3350
3351         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3352                             SYSTEM__MODULE_REQUEST, &ad);
3353 }
3354
3355 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3356 {
3357         return current_has_perm(p, PROCESS__SETPGID);
3358 }
3359
3360 static int selinux_task_getpgid(struct task_struct *p)
3361 {
3362         return current_has_perm(p, PROCESS__GETPGID);
3363 }
3364
3365 static int selinux_task_getsid(struct task_struct *p)
3366 {
3367         return current_has_perm(p, PROCESS__GETSESSION);
3368 }
3369
3370 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3371 {
3372         *secid = task_sid(p);
3373 }
3374
3375 static int selinux_task_setnice(struct task_struct *p, int nice)
3376 {
3377         int rc;
3378
3379         rc = cap_task_setnice(p, nice);
3380         if (rc)
3381                 return rc;
3382
3383         return current_has_perm(p, PROCESS__SETSCHED);
3384 }
3385
3386 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3387 {
3388         int rc;
3389
3390         rc = cap_task_setioprio(p, ioprio);
3391         if (rc)
3392                 return rc;
3393
3394         return current_has_perm(p, PROCESS__SETSCHED);
3395 }
3396
3397 static int selinux_task_getioprio(struct task_struct *p)
3398 {
3399         return current_has_perm(p, PROCESS__GETSCHED);
3400 }
3401
3402 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3403 {
3404         struct rlimit *old_rlim = current->signal->rlim + resource;
3405
3406         /* Control the ability to change the hard limit (whether
3407            lowering or raising it), so that the hard limit can
3408            later be used as a safe reset point for the soft limit
3409            upon context transitions.  See selinux_bprm_committing_creds. */
3410         if (old_rlim->rlim_max != new_rlim->rlim_max)
3411                 return current_has_perm(current, PROCESS__SETRLIMIT);
3412
3413         return 0;
3414 }
3415
3416 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3417 {
3418         int rc;
3419
3420         rc = cap_task_setscheduler(p, policy, lp);
3421         if (rc)
3422                 return rc;
3423
3424         return current_has_perm(p, PROCESS__SETSCHED);
3425 }
3426
3427 static int selinux_task_getscheduler(struct task_struct *p)
3428 {
3429         return current_has_perm(p, PROCESS__GETSCHED);
3430 }
3431
3432 static int selinux_task_movememory(struct task_struct *p)
3433 {
3434         return current_has_perm(p, PROCESS__SETSCHED);
3435 }
3436
3437 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3438                                 int sig, u32 secid)
3439 {
3440         u32 perm;
3441         int rc;
3442
3443         if (!sig)
3444                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3445         else
3446                 perm = signal_to_av(sig);
3447         if (secid)
3448                 rc = avc_has_perm(secid, task_sid(p),
3449                                   SECCLASS_PROCESS, perm, NULL);
3450         else
3451                 rc = current_has_perm(p, perm);
3452         return rc;
3453 }
3454
3455 static int selinux_task_wait(struct task_struct *p)
3456 {
3457         return task_has_perm(p, current, PROCESS__SIGCHLD);
3458 }
3459
3460 static void selinux_task_to_inode(struct task_struct *p,
3461                                   struct inode *inode)
3462 {
3463         struct inode_security_struct *isec = inode->i_security;
3464         u32 sid = task_sid(p);
3465
3466         isec->sid = sid;
3467         isec->initialized = 1;
3468 }
3469
3470 /* Returns error only if unable to parse addresses */
3471 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3472                         struct common_audit_data *ad, u8 *proto)
3473 {
3474         int offset, ihlen, ret = -EINVAL;
3475         struct iphdr _iph, *ih;
3476
3477         offset = skb_network_offset(skb);
3478         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3479         if (ih == NULL)
3480                 goto out;
3481
3482         ihlen = ih->ihl * 4;
3483         if (ihlen < sizeof(_iph))
3484                 goto out;
3485
3486         ad->u.net.v4info.saddr = ih->saddr;
3487         ad->u.net.v4info.daddr = ih->daddr;
3488         ret = 0;
3489
3490         if (proto)
3491                 *proto = ih->protocol;
3492
3493         switch (ih->protocol) {
3494         case IPPROTO_TCP: {
3495                 struct tcphdr _tcph, *th;
3496
3497                 if (ntohs(ih->frag_off) & IP_OFFSET)
3498                         break;
3499
3500                 offset += ihlen;
3501                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3502                 if (th == NULL)
3503                         break;
3504
3505                 ad->u.net.sport = th->source;
3506                 ad->u.net.dport = th->dest;
3507                 break;
3508         }
3509
3510         case IPPROTO_UDP: {
3511                 struct udphdr _udph, *uh;
3512
3513                 if (ntohs(ih->frag_off) & IP_OFFSET)
3514                         break;
3515
3516                 offset += ihlen;
3517                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3518                 if (uh == NULL)
3519                         break;
3520
3521                 ad->u.net.sport = uh->source;
3522                 ad->u.net.dport = uh->dest;
3523                 break;
3524         }
3525
3526         case IPPROTO_DCCP: {
3527                 struct dccp_hdr _dccph, *dh;
3528
3529                 if (ntohs(ih->frag_off) & IP_OFFSET)
3530                         break;
3531
3532                 offset += ihlen;
3533                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3534                 if (dh == NULL)
3535                         break;
3536
3537                 ad->u.net.sport = dh->dccph_sport;
3538                 ad->u.net.dport = dh->dccph_dport;
3539                 break;
3540         }
3541
3542         default:
3543                 break;
3544         }
3545 out:
3546         return ret;
3547 }
3548
3549 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3550
3551 /* Returns error only if unable to parse addresses */
3552 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3553                         struct common_audit_data *ad, u8 *proto)
3554 {
3555         u8 nexthdr;
3556         int ret = -EINVAL, offset;
3557         struct ipv6hdr _ipv6h, *ip6;
3558
3559         offset = skb_network_offset(skb);
3560         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3561         if (ip6 == NULL)
3562                 goto out;
3563
3564         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3565         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3566         ret = 0;
3567
3568         nexthdr = ip6->nexthdr;
3569         offset += sizeof(_ipv6h);
3570         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3571         if (offset < 0)
3572                 goto out;
3573
3574         if (proto)
3575                 *proto = nexthdr;
3576
3577         switch (nexthdr) {
3578         case IPPROTO_TCP: {
3579                 struct tcphdr _tcph, *th;
3580
3581                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3582                 if (th == NULL)
3583                         break;
3584
3585                 ad->u.net.sport = th->source;
3586                 ad->u.net.dport = th->dest;
3587                 break;
3588         }
3589
3590         case IPPROTO_UDP: {
3591                 struct udphdr _udph, *uh;
3592
3593                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3594                 if (uh == NULL)
3595                         break;
3596
3597                 ad->u.net.sport = uh->source;
3598                 ad->u.net.dport = uh->dest;
3599                 break;
3600         }
3601
3602         case IPPROTO_DCCP: {
3603                 struct dccp_hdr _dccph, *dh;
3604
3605                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3606                 if (dh == NULL)
3607                         break;
3608
3609                 ad->u.net.sport = dh->dccph_sport;
3610                 ad->u.net.dport = dh->dccph_dport;
3611                 break;
3612         }
3613
3614         /* includes fragments */
3615         default:
3616                 break;
3617         }
3618 out:
3619         return ret;
3620 }
3621
3622 #endif /* IPV6 */
3623
3624 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3625                              char **_addrp, int src, u8 *proto)
3626 {
3627         char *addrp;
3628         int ret;
3629
3630         switch (ad->u.net.family) {
3631         case PF_INET:
3632                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3633                 if (ret)
3634                         goto parse_error;
3635                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3636                                        &ad->u.net.v4info.daddr);
3637                 goto okay;
3638
3639 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3640         case PF_INET6:
3641                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3642                 if (ret)
3643                         goto parse_error;
3644                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3645                                        &ad->u.net.v6info.daddr);
3646                 goto okay;
3647 #endif  /* IPV6 */
3648         default:
3649                 addrp = NULL;
3650                 goto okay;
3651         }
3652
3653 parse_error:
3654         printk(KERN_WARNING
3655                "SELinux: failure in selinux_parse_skb(),"
3656                " unable to parse packet\n");
3657         return ret;
3658
3659 okay:
3660         if (_addrp)
3661                 *_addrp = addrp;
3662         return 0;
3663 }
3664
3665 /**
3666  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3667  * @skb: the packet
3668  * @family: protocol family
3669  * @sid: the packet's peer label SID
3670  *
3671  * Description:
3672  * Check the various different forms of network peer labeling and determine
3673  * the peer label/SID for the packet; most of the magic actually occurs in
3674  * the security server function security_net_peersid_cmp().  The function
3675  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3676  * or -EACCES if @sid is invalid due to inconsistencies with the different
3677  * peer labels.
3678  *
3679  */
3680 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3681 {
3682         int err;
3683         u32 xfrm_sid;
3684         u32 nlbl_sid;
3685         u32 nlbl_type;
3686
3687         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3688         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3689
3690         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3691         if (unlikely(err)) {
3692                 printk(KERN_WARNING
3693                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3694                        " unable to determine packet's peer label\n");
3695                 return -EACCES;
3696         }
3697
3698         return 0;
3699 }
3700
3701 /* socket security operations */
3702 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3703                            u32 perms)
3704 {
3705         struct inode_security_struct *isec;
3706         struct common_audit_data ad;
3707         u32 sid;
3708         int err = 0;
3709
3710         isec = SOCK_INODE(sock)->i_security;
3711
3712         if (isec->sid == SECINITSID_KERNEL)
3713                 goto out;
3714         sid = task_sid(task);
3715
3716         COMMON_AUDIT_DATA_INIT(&ad, NET);
3717         ad.u.net.sk = sock->sk;
3718         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3719
3720 out:
3721         return err;
3722 }
3723
3724 static int selinux_socket_create(int family, int type,
3725                                  int protocol, int kern)
3726 {
3727         const struct cred *cred = current_cred();
3728         const struct task_security_struct *tsec = cred->security;
3729         u32 sid, newsid;
3730         u16 secclass;
3731         int err = 0;
3732
3733         if (kern)
3734                 goto out;
3735
3736         sid = tsec->sid;
3737         newsid = tsec->sockcreate_sid ?: sid;
3738
3739         secclass = socket_type_to_security_class(family, type, protocol);
3740         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3741
3742 out:
3743         return err;
3744 }
3745
3746 static int selinux_socket_post_create(struct socket *sock, int family,
3747                                       int type, int protocol, int kern)
3748 {
3749         const struct cred *cred = current_cred();
3750         const struct task_security_struct *tsec = cred->security;
3751         struct inode_security_struct *isec;
3752         struct sk_security_struct *sksec;
3753         u32 sid, newsid;
3754         int err = 0;
3755
3756         sid = tsec->sid;
3757         newsid = tsec->sockcreate_sid;
3758
3759         isec = SOCK_INODE(sock)->i_security;
3760
3761         if (kern)
3762                 isec->sid = SECINITSID_KERNEL;
3763         else if (newsid)
3764                 isec->sid = newsid;
3765         else
3766                 isec->sid = sid;
3767
3768         isec->sclass = socket_type_to_security_class(family, type, protocol);
3769         isec->initialized = 1;
3770
3771         if (sock->sk) {
3772                 sksec = sock->sk->sk_security;
3773                 sksec->sid = isec->sid;
3774                 sksec->sclass = isec->sclass;
3775                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3776         }
3777
3778         return err;
3779 }
3780
3781 /* Range of port numbers used to automatically bind.
3782    Need to determine whether we should perform a name_bind
3783    permission check between the socket and the port number. */
3784
3785 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3786 {
3787         u16 family;
3788         int err;
3789
3790         err = socket_has_perm(current, sock, SOCKET__BIND);
3791         if (err)
3792                 goto out;
3793
3794         /*
3795          * If PF_INET or PF_INET6, check name_bind permission for the port.
3796          * Multiple address binding for SCTP is not supported yet: we just
3797          * check the first address now.
3798          */
3799         family = sock->sk->sk_family;
3800         if (family == PF_INET || family == PF_INET6) {
3801                 char *addrp;
3802                 struct inode_security_struct *isec;
3803                 struct common_audit_data ad;
3804                 struct sockaddr_in *addr4 = NULL;
3805                 struct sockaddr_in6 *addr6 = NULL;
3806                 unsigned short snum;
3807                 struct sock *sk = sock->sk;
3808                 u32 sid, node_perm;
3809
3810                 isec = SOCK_INODE(sock)->i_security;
3811
3812                 if (family == PF_INET) {
3813                         addr4 = (struct sockaddr_in *)address;
3814                         snum = ntohs(addr4->sin_port);
3815                         addrp = (char *)&addr4->sin_addr.s_addr;
3816                 } else {
3817                         addr6 = (struct sockaddr_in6 *)address;
3818                         snum = ntohs(addr6->sin6_port);
3819                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3820                 }
3821
3822                 if (snum) {
3823                         int low, high;
3824
3825                         inet_get_local_port_range(&low, &high);
3826
3827                         if (snum < max(PROT_SOCK, low) || snum > high) {
3828                                 err = sel_netport_sid(sk->sk_protocol,
3829                                                       snum, &sid);
3830                                 if (err)
3831                                         goto out;
3832                                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3833                                 ad.u.net.sport = htons(snum);
3834                                 ad.u.net.family = family;
3835                                 err = avc_has_perm(isec->sid, sid,
3836                                                    isec->sclass,
3837                                                    SOCKET__NAME_BIND, &ad);
3838                                 if (err)
3839                                         goto out;
3840                         }
3841                 }
3842
3843                 switch (isec->sclass) {
3844                 case SECCLASS_TCP_SOCKET:
3845                         node_perm = TCP_SOCKET__NODE_BIND;
3846                         break;
3847
3848                 case SECCLASS_UDP_SOCKET:
3849                         node_perm = UDP_SOCKET__NODE_BIND;
3850                         break;
3851
3852                 case SECCLASS_DCCP_SOCKET:
3853                         node_perm = DCCP_SOCKET__NODE_BIND;
3854                         break;
3855
3856                 default:
3857                         node_perm = RAWIP_SOCKET__NODE_BIND;
3858                         break;
3859                 }
3860
3861                 err = sel_netnode_sid(addrp, family, &sid);
3862                 if (err)
3863                         goto out;
3864
3865                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3866                 ad.u.net.sport = htons(snum);
3867                 ad.u.net.family = family;
3868
3869                 if (family == PF_INET)
3870                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3871                 else
3872                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3873
3874                 err = avc_has_perm(isec->sid, sid,
3875                                    isec->sclass, node_perm, &ad);
3876                 if (err)
3877                         goto out;
3878         }
3879 out:
3880         return err;
3881 }
3882
3883 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3884 {
3885         struct sock *sk = sock->sk;
3886         struct inode_security_struct *isec;
3887         int err;
3888
3889         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3890         if (err)
3891                 return err;
3892
3893         /*
3894          * If a TCP or DCCP socket, check name_connect permission for the port.
3895          */
3896         isec = SOCK_INODE(sock)->i_security;
3897         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3898             isec->sclass == SECCLASS_DCCP_SOCKET) {
3899                 struct common_audit_data ad;
3900                 struct sockaddr_in *addr4 = NULL;
3901                 struct sockaddr_in6 *addr6 = NULL;
3902                 unsigned short snum;
3903                 u32 sid, perm;
3904
3905                 if (sk->sk_family == PF_INET) {
3906                         addr4 = (struct sockaddr_in *)address;
3907                         if (addrlen < sizeof(struct sockaddr_in))
3908                                 return -EINVAL;
3909                         snum = ntohs(addr4->sin_port);
3910                 } else {
3911                         addr6 = (struct sockaddr_in6 *)address;
3912                         if (addrlen < SIN6_LEN_RFC2133)
3913                                 return -EINVAL;
3914                         snum = ntohs(addr6->sin6_port);
3915                 }
3916
3917                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3918                 if (err)
3919                         goto out;
3920
3921                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3922                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3923
3924                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3925                 ad.u.net.dport = htons(snum);
3926                 ad.u.net.family = sk->sk_family;
3927                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3928                 if (err)
3929                         goto out;
3930         }
3931
3932         err = selinux_netlbl_socket_connect(sk, address);
3933
3934 out:
3935         return err;
3936 }
3937
3938 static int selinux_socket_listen(struct socket *sock, int backlog)
3939 {
3940         return socket_has_perm(current, sock, SOCKET__LISTEN);
3941 }
3942
3943 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3944 {
3945         int err;
3946         struct inode_security_struct *isec;
3947         struct inode_security_struct *newisec;
3948
3949         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3950         if (err)
3951                 return err;
3952
3953         newisec = SOCK_INODE(newsock)->i_security;
3954
3955         isec = SOCK_INODE(sock)->i_security;
3956         newisec->sclass = isec->sclass;
3957         newisec->sid = isec->sid;
3958         newisec->initialized = 1;
3959
3960         return 0;
3961 }
3962
3963 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3964                                   int size)
3965 {
3966         return socket_has_perm(current, sock, SOCKET__WRITE);
3967 }
3968
3969 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3970                                   int size, int flags)
3971 {
3972         return socket_has_perm(current, sock, SOCKET__READ);
3973 }
3974
3975 static int selinux_socket_getsockname(struct socket *sock)
3976 {
3977         return socket_has_perm(current, sock, SOCKET__GETATTR);
3978 }
3979
3980 static int selinux_socket_getpeername(struct socket *sock)
3981 {
3982         return socket_has_perm(current, sock, SOCKET__GETATTR);
3983 }
3984
3985 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3986 {
3987         int err;
3988
3989         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3990         if (err)
3991                 return err;
3992
3993         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3994 }
3995
3996 static int selinux_socket_getsockopt(struct socket *sock, int level,
3997                                      int optname)
3998 {
3999         return socket_has_perm(current, sock, SOCKET__GETOPT);
4000 }
4001
4002 static int selinux_socket_shutdown(struct socket *sock, int how)
4003 {
4004         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
4005 }
4006
4007 static int selinux_socket_unix_stream_connect(struct socket *sock,
4008                                               struct socket *other,
4009                                               struct sock *newsk)
4010 {
4011         struct sk_security_struct *ssec;
4012         struct inode_security_struct *isec;
4013         struct inode_security_struct *other_isec;
4014         struct common_audit_data ad;
4015         int err;
4016
4017         isec = SOCK_INODE(sock)->i_security;
4018         other_isec = SOCK_INODE(other)->i_security;
4019
4020         COMMON_AUDIT_DATA_INIT(&ad, NET);
4021         ad.u.net.sk = other->sk;
4022
4023         err = avc_has_perm(isec->sid, other_isec->sid,
4024                            isec->sclass,
4025                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4026         if (err)
4027                 return err;
4028
4029         /* connecting socket */
4030         ssec = sock->sk->sk_security;
4031         ssec->peer_sid = other_isec->sid;
4032
4033         /* server child socket */
4034         ssec = newsk->sk_security;
4035         ssec->peer_sid = isec->sid;
4036         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
4037
4038         return err;
4039 }
4040
4041 static int selinux_socket_unix_may_send(struct socket *sock,
4042                                         struct socket *other)
4043 {
4044         struct inode_security_struct *isec;
4045         struct inode_security_struct *other_isec;
4046         struct common_audit_data ad;
4047         int err;
4048
4049         isec = SOCK_INODE(sock)->i_security;
4050         other_isec = SOCK_INODE(other)->i_security;
4051
4052         COMMON_AUDIT_DATA_INIT(&ad, NET);
4053         ad.u.net.sk = other->sk;
4054
4055         err = avc_has_perm(isec->sid, other_isec->sid,
4056                            isec->sclass, SOCKET__SENDTO, &ad);
4057         if (err)
4058                 return err;
4059
4060         return 0;
4061 }
4062
4063 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4064                                     u32 peer_sid,
4065                                     struct common_audit_data *ad)
4066 {
4067         int err;
4068         u32 if_sid;
4069         u32 node_sid;
4070
4071         err = sel_netif_sid(ifindex, &if_sid);
4072         if (err)
4073                 return err;
4074         err = avc_has_perm(peer_sid, if_sid,
4075                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4076         if (err)
4077                 return err;
4078
4079         err = sel_netnode_sid(addrp, family, &node_sid);
4080         if (err)
4081                 return err;
4082         return avc_has_perm(peer_sid, node_sid,
4083                             SECCLASS_NODE, NODE__RECVFROM, ad);
4084 }
4085
4086 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4087                                        u16 family)
4088 {
4089         int err = 0;
4090         struct sk_security_struct *sksec = sk->sk_security;
4091         u32 peer_sid;
4092         u32 sk_sid = sksec->sid;
4093         struct common_audit_data ad;
4094         char *addrp;
4095
4096         COMMON_AUDIT_DATA_INIT(&ad, NET);
4097         ad.u.net.netif = skb->skb_iif;
4098         ad.u.net.family = family;
4099         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4100         if (err)
4101                 return err;
4102
4103         if (selinux_secmark_enabled()) {
4104                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4105                                    PACKET__RECV, &ad);
4106                 if (err)
4107                         return err;
4108         }
4109
4110         if (selinux_policycap_netpeer) {
4111                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4112                 if (err)
4113                         return err;
4114                 err = avc_has_perm(sk_sid, peer_sid,
4115                                    SECCLASS_PEER, PEER__RECV, &ad);
4116                 if (err)
4117                         selinux_netlbl_err(skb, err, 0);
4118         } else {
4119                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4120                 if (err)
4121                         return err;
4122                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4123         }
4124
4125         return err;
4126 }
4127
4128 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4129 {
4130         int err;
4131         struct sk_security_struct *sksec = sk->sk_security;
4132         u16 family = sk->sk_family;
4133         u32 sk_sid = sksec->sid;
4134         struct common_audit_data ad;
4135         char *addrp;
4136         u8 secmark_active;
4137         u8 peerlbl_active;
4138
4139         if (family != PF_INET && family != PF_INET6)
4140                 return 0;
4141
4142         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4143         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4144                 family = PF_INET;
4145
4146         /* If any sort of compatibility mode is enabled then handoff processing
4147          * to the selinux_sock_rcv_skb_compat() function to deal with the
4148          * special handling.  We do this in an attempt to keep this function
4149          * as fast and as clean as possible. */
4150         if (!selinux_policycap_netpeer)
4151                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4152
4153         secmark_active = selinux_secmark_enabled();
4154         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4155         if (!secmark_active && !peerlbl_active)
4156                 return 0;
4157
4158         COMMON_AUDIT_DATA_INIT(&ad, NET);
4159         ad.u.net.netif = skb->skb_iif;
4160         ad.u.net.family = family;
4161         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4162         if (err)
4163                 return err;
4164
4165         if (peerlbl_active) {
4166                 u32 peer_sid;
4167
4168                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4169                 if (err)
4170                         return err;
4171                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4172                                                peer_sid, &ad);
4173                 if (err) {
4174                         selinux_netlbl_err(skb, err, 0);
4175                         return err;
4176                 }
4177                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4178                                    PEER__RECV, &ad);
4179                 if (err)
4180                         selinux_netlbl_err(skb, err, 0);
4181         }
4182
4183         if (secmark_active) {
4184                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4185                                    PACKET__RECV, &ad);
4186                 if (err)
4187                         return err;
4188         }
4189
4190         return err;
4191 }
4192
4193 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4194                                             int __user *optlen, unsigned len)
4195 {
4196         int err = 0;
4197         char *scontext;
4198         u32 scontext_len;
4199         struct sk_security_struct *ssec;
4200         struct inode_security_struct *isec;
4201         u32 peer_sid = SECSID_NULL;
4202
4203         isec = SOCK_INODE(sock)->i_security;
4204
4205         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4206             isec->sclass == SECCLASS_TCP_SOCKET) {
4207                 ssec = sock->sk->sk_security;
4208                 peer_sid = ssec->peer_sid;
4209         }
4210         if (peer_sid == SECSID_NULL) {
4211                 err = -ENOPROTOOPT;
4212                 goto out;
4213         }
4214
4215         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4216
4217         if (err)
4218                 goto out;
4219
4220         if (scontext_len > len) {
4221                 err = -ERANGE;
4222                 goto out_len;
4223         }
4224
4225         if (copy_to_user(optval, scontext, scontext_len))
4226                 err = -EFAULT;
4227
4228 out_len:
4229         if (put_user(scontext_len, optlen))
4230                 err = -EFAULT;
4231
4232         kfree(scontext);
4233 out:
4234         return err;
4235 }
4236
4237 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4238 {
4239         u32 peer_secid = SECSID_NULL;
4240         u16 family;
4241
4242         if (skb && skb->protocol == htons(ETH_P_IP))
4243                 family = PF_INET;
4244         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4245                 family = PF_INET6;
4246         else if (sock)
4247                 family = sock->sk->sk_family;
4248         else
4249                 goto out;
4250
4251         if (sock && family == PF_UNIX)
4252                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4253         else if (skb)
4254                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4255
4256 out:
4257         *secid = peer_secid;
4258         if (peer_secid == SECSID_NULL)
4259                 return -EINVAL;
4260         return 0;
4261 }
4262
4263 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4264 {
4265         return sk_alloc_security(sk, family, priority);
4266 }
4267
4268 static void selinux_sk_free_security(struct sock *sk)
4269 {
4270         sk_free_security(sk);
4271 }
4272
4273 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4274 {
4275         struct sk_security_struct *ssec = sk->sk_security;
4276         struct sk_security_struct *newssec = newsk->sk_security;
4277
4278         newssec->sid = ssec->sid;
4279         newssec->peer_sid = ssec->peer_sid;
4280         newssec->sclass = ssec->sclass;
4281
4282         selinux_netlbl_sk_security_reset(newssec);
4283 }
4284
4285 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4286 {
4287         if (!sk)
4288                 *secid = SECINITSID_ANY_SOCKET;
4289         else {
4290                 struct sk_security_struct *sksec = sk->sk_security;
4291
4292                 *secid = sksec->sid;
4293         }
4294 }
4295
4296 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4297 {
4298         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4299         struct sk_security_struct *sksec = sk->sk_security;
4300
4301         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4302             sk->sk_family == PF_UNIX)
4303                 isec->sid = sksec->sid;
4304         sksec->sclass = isec->sclass;
4305 }
4306
4307 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4308                                      struct request_sock *req)
4309 {
4310         struct sk_security_struct *sksec = sk->sk_security;
4311         int err;
4312         u16 family = sk->sk_family;
4313         u32 newsid;
4314         u32 peersid;
4315
4316         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4317         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4318                 family = PF_INET;
4319
4320         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4321         if (err)
4322                 return err;
4323         if (peersid == SECSID_NULL) {
4324                 req->secid = sksec->sid;
4325                 req->peer_secid = SECSID_NULL;
4326         } else {
4327                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4328                 if (err)
4329                         return err;
4330                 req->secid = newsid;
4331                 req->peer_secid = peersid;
4332         }
4333
4334         return selinux_netlbl_inet_conn_request(req, family);
4335 }
4336
4337 static void selinux_inet_csk_clone(struct sock *newsk,
4338                                    const struct request_sock *req)
4339 {
4340         struct sk_security_struct *newsksec = newsk->sk_security;
4341
4342         newsksec->sid = req->secid;
4343         newsksec->peer_sid = req->peer_secid;
4344         /* NOTE: Ideally, we should also get the isec->sid for the
4345            new socket in sync, but we don't have the isec available yet.
4346            So we will wait until sock_graft to do it, by which
4347            time it will have been created and available. */
4348
4349         /* We don't need to take any sort of lock here as we are the only
4350          * thread with access to newsksec */
4351         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4352 }
4353
4354 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4355 {
4356         u16 family = sk->sk_family;
4357         struct sk_security_struct *sksec = sk->sk_security;
4358
4359         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4360         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4361                 family = PF_INET;
4362
4363         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4364 }
4365
4366 static void selinux_req_classify_flow(const struct request_sock *req,
4367                                       struct flowi *fl)
4368 {
4369         fl->secid = req->secid;
4370 }
4371
4372 static int selinux_tun_dev_create(void)
4373 {
4374         u32 sid = current_sid();
4375
4376         /* we aren't taking into account the "sockcreate" SID since the socket
4377          * that is being created here is not a socket in the traditional sense,
4378          * instead it is a private sock, accessible only to the kernel, and
4379          * representing a wide range of network traffic spanning multiple
4380          * connections unlike traditional sockets - check the TUN driver to
4381          * get a better understanding of why this socket is special */
4382
4383         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4384                             NULL);
4385 }
4386
4387 static void selinux_tun_dev_post_create(struct sock *sk)
4388 {
4389         struct sk_security_struct *sksec = sk->sk_security;
4390
4391         /* we don't currently perform any NetLabel based labeling here and it
4392          * isn't clear that we would want to do so anyway; while we could apply
4393          * labeling without the support of the TUN user the resulting labeled
4394          * traffic from the other end of the connection would almost certainly
4395          * cause confusion to the TUN user that had no idea network labeling
4396          * protocols were being used */
4397
4398         /* see the comments in selinux_tun_dev_create() about why we don't use
4399          * the sockcreate SID here */
4400
4401         sksec->sid = current_sid();
4402         sksec->sclass = SECCLASS_TUN_SOCKET;
4403 }
4404
4405 static int selinux_tun_dev_attach(struct sock *sk)
4406 {
4407         struct sk_security_struct *sksec = sk->sk_security;
4408         u32 sid = current_sid();
4409         int err;
4410
4411         err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4412                            TUN_SOCKET__RELABELFROM, NULL);
4413         if (err)
4414                 return err;
4415         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4416                            TUN_SOCKET__RELABELTO, NULL);
4417         if (err)
4418                 return err;
4419
4420         sksec->sid = sid;
4421
4422         return 0;
4423 }
4424
4425 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4426 {
4427         int err = 0;
4428         u32 perm;
4429         struct nlmsghdr *nlh;
4430         struct socket *sock = sk->sk_socket;
4431         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4432
4433         if (skb->len < NLMSG_SPACE(0)) {
4434                 err = -EINVAL;
4435                 goto out;
4436         }
4437         nlh = nlmsg_hdr(skb);
4438
4439         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4440         if (err) {
4441                 if (err == -EINVAL) {
4442                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4443                                   "SELinux:  unrecognized netlink message"
4444                                   " type=%hu for sclass=%hu\n",
4445                                   nlh->nlmsg_type, isec->sclass);
4446                         if (!selinux_enforcing || security_get_allow_unknown())
4447                                 err = 0;
4448                 }
4449
4450                 /* Ignore */
4451                 if (err == -ENOENT)
4452                         err = 0;
4453                 goto out;
4454         }
4455
4456         err = socket_has_perm(current, sock, perm);
4457 out:
4458         return err;
4459 }
4460
4461 #ifdef CONFIG_NETFILTER
4462
4463 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4464                                        u16 family)
4465 {
4466         int err;
4467         char *addrp;
4468         u32 peer_sid;
4469         struct common_audit_data ad;
4470         u8 secmark_active;
4471         u8 netlbl_active;
4472         u8 peerlbl_active;
4473
4474         if (!selinux_policycap_netpeer)
4475                 return NF_ACCEPT;
4476
4477         secmark_active = selinux_secmark_enabled();
4478         netlbl_active = netlbl_enabled();
4479         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4480         if (!secmark_active && !peerlbl_active)
4481                 return NF_ACCEPT;
4482
4483         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4484                 return NF_DROP;
4485
4486         COMMON_AUDIT_DATA_INIT(&ad, NET);
4487         ad.u.net.netif = ifindex;
4488         ad.u.net.family = family;
4489         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4490                 return NF_DROP;
4491
4492         if (peerlbl_active) {
4493                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4494                                                peer_sid, &ad);
4495                 if (err) {
4496                         selinux_netlbl_err(skb, err, 1);
4497                         return NF_DROP;
4498                 }
4499         }
4500
4501         if (secmark_active)
4502                 if (avc_has_perm(peer_sid, skb->secmark,
4503                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4504                         return NF_DROP;
4505
4506         if (netlbl_active)
4507                 /* we do this in the FORWARD path and not the POST_ROUTING
4508                  * path because we want to make sure we apply the necessary
4509                  * labeling before IPsec is applied so we can leverage AH
4510                  * protection */
4511                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4512                         return NF_DROP;
4513
4514         return NF_ACCEPT;
4515 }
4516
4517 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4518                                          struct sk_buff *skb,
4519                                          const struct net_device *in,
4520                                          const struct net_device *out,
4521                                          int (*okfn)(struct sk_buff *))
4522 {
4523         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4524 }
4525
4526 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4527 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4528                                          struct sk_buff *skb,
4529                                          const struct net_device *in,
4530                                          const struct net_device *out,
4531                                          int (*okfn)(struct sk_buff *))
4532 {
4533         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4534 }
4535 #endif  /* IPV6 */
4536
4537 static unsigned int selinux_ip_output(struct sk_buff *skb,
4538                                       u16 family)
4539 {
4540         u32 sid;
4541
4542         if (!netlbl_enabled())
4543                 return NF_ACCEPT;
4544
4545         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4546          * because we want to make sure we apply the necessary labeling
4547          * before IPsec is applied so we can leverage AH protection */
4548         if (skb->sk) {
4549                 struct sk_security_struct *sksec = skb->sk->sk_security;
4550                 sid = sksec->sid;
4551         } else
4552                 sid = SECINITSID_KERNEL;
4553         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4554                 return NF_DROP;
4555
4556         return NF_ACCEPT;
4557 }
4558
4559 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4560                                         struct sk_buff *skb,
4561                                         const struct net_device *in,
4562                                         const struct net_device *out,
4563                                         int (*okfn)(struct sk_buff *))
4564 {
4565         return selinux_ip_output(skb, PF_INET);
4566 }
4567
4568 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4569                                                 int ifindex,
4570                                                 u16 family)
4571 {
4572         struct sock *sk = skb->sk;
4573         struct sk_security_struct *sksec;
4574         struct common_audit_data ad;
4575         char *addrp;
4576         u8 proto;
4577
4578         if (sk == NULL)
4579                 return NF_ACCEPT;
4580         sksec = sk->sk_security;
4581
4582         COMMON_AUDIT_DATA_INIT(&ad, NET);
4583         ad.u.net.netif = ifindex;
4584         ad.u.net.family = family;
4585         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4586                 return NF_DROP;
4587
4588         if (selinux_secmark_enabled())
4589                 if (avc_has_perm(sksec->sid, skb->secmark,
4590                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4591                         return NF_DROP;
4592
4593         if (selinux_policycap_netpeer)
4594                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4595                         return NF_DROP;
4596
4597         return NF_ACCEPT;
4598 }
4599
4600 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4601                                          u16 family)
4602 {
4603         u32 secmark_perm;
4604         u32 peer_sid;
4605         struct sock *sk;
4606         struct common_audit_data ad;
4607         char *addrp;
4608         u8 secmark_active;
4609         u8 peerlbl_active;
4610
4611         /* If any sort of compatibility mode is enabled then handoff processing
4612          * to the selinux_ip_postroute_compat() function to deal with the
4613          * special handling.  We do this in an attempt to keep this function
4614          * as fast and as clean as possible. */
4615         if (!selinux_policycap_netpeer)
4616                 return selinux_ip_postroute_compat(skb, ifindex, family);
4617 #ifdef CONFIG_XFRM
4618         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4619          * packet transformation so allow the packet to pass without any checks
4620          * since we'll have another chance to perform access control checks
4621          * when the packet is on it's final way out.
4622          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4623          *       is NULL, in this case go ahead and apply access control. */
4624         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4625                 return NF_ACCEPT;
4626 #endif
4627         secmark_active = selinux_secmark_enabled();
4628         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4629         if (!secmark_active && !peerlbl_active)
4630                 return NF_ACCEPT;
4631
4632         /* if the packet is being forwarded then get the peer label from the
4633          * packet itself; otherwise check to see if it is from a local
4634          * application or the kernel, if from an application get the peer label
4635          * from the sending socket, otherwise use the kernel's sid */
4636         sk = skb->sk;
4637         if (sk == NULL) {
4638                 switch (family) {
4639                 case PF_INET:
4640                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4641                                 secmark_perm = PACKET__FORWARD_OUT;
4642                         else
4643                                 secmark_perm = PACKET__SEND;
4644                         break;
4645                 case PF_INET6:
4646                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4647                                 secmark_perm = PACKET__FORWARD_OUT;
4648                         else
4649                                 secmark_perm = PACKET__SEND;
4650                         break;
4651                 default:
4652                         return NF_DROP;
4653                 }
4654                 if (secmark_perm == PACKET__FORWARD_OUT) {
4655                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4656                                 return NF_DROP;
4657                 } else
4658                         peer_sid = SECINITSID_KERNEL;
4659         } else {
4660                 struct sk_security_struct *sksec = sk->sk_security;
4661                 peer_sid = sksec->sid;
4662                 secmark_perm = PACKET__SEND;
4663         }
4664
4665         COMMON_AUDIT_DATA_INIT(&ad, NET);
4666         ad.u.net.netif = ifindex;
4667         ad.u.net.family = family;
4668         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4669                 return NF_DROP;
4670
4671         if (secmark_active)
4672                 if (avc_has_perm(peer_sid, skb->secmark,
4673                                  SECCLASS_PACKET, secmark_perm, &ad))
4674                         return NF_DROP;
4675
4676         if (peerlbl_active) {
4677                 u32 if_sid;
4678                 u32 node_sid;
4679
4680                 if (sel_netif_sid(ifindex, &if_sid))
4681                         return NF_DROP;
4682                 if (avc_has_perm(peer_sid, if_sid,
4683                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4684                         return NF_DROP;
4685
4686                 if (sel_netnode_sid(addrp, family, &node_sid))
4687                         return NF_DROP;
4688                 if (avc_has_perm(peer_sid, node_sid,
4689                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4690                         return NF_DROP;
4691         }
4692
4693         return NF_ACCEPT;
4694 }
4695
4696 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4697                                            struct sk_buff *skb,
4698                                            const struct net_device *in,
4699                                            const struct net_device *out,
4700                                            int (*okfn)(struct sk_buff *))
4701 {
4702         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4703 }
4704
4705 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4706 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4707                                            struct sk_buff *skb,
4708                                            const struct net_device *in,
4709                                            const struct net_device *out,
4710                                            int (*okfn)(struct sk_buff *))
4711 {
4712         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4713 }
4714 #endif  /* IPV6 */
4715
4716 #endif  /* CONFIG_NETFILTER */
4717
4718 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4719 {
4720         int err;
4721
4722         err = cap_netlink_send(sk, skb);
4723         if (err)
4724                 return err;
4725
4726         return selinux_nlmsg_perm(sk, skb);
4727 }
4728
4729 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4730 {
4731         int err;
4732         struct common_audit_data ad;
4733
4734         err = cap_netlink_recv(skb, capability);
4735         if (err)
4736                 return err;
4737
4738         COMMON_AUDIT_DATA_INIT(&ad, CAP);
4739         ad.u.cap = capability;
4740
4741         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4742                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4743 }
4744
4745 static int ipc_alloc_security(struct task_struct *task,
4746                               struct kern_ipc_perm *perm,
4747                               u16 sclass)
4748 {
4749         struct ipc_security_struct *isec;
4750         u32 sid;
4751
4752         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4753         if (!isec)
4754                 return -ENOMEM;
4755
4756         sid = task_sid(task);
4757         isec->sclass = sclass;
4758         isec->sid = sid;
4759         perm->security = isec;
4760
4761         return 0;
4762 }
4763
4764 static void ipc_free_security(struct kern_ipc_perm *perm)
4765 {
4766         struct ipc_security_struct *isec = perm->security;
4767         perm->security = NULL;
4768         kfree(isec);
4769 }
4770
4771 static int msg_msg_alloc_security(struct msg_msg *msg)
4772 {
4773         struct msg_security_struct *msec;
4774
4775         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4776         if (!msec)
4777                 return -ENOMEM;
4778
4779         msec->sid = SECINITSID_UNLABELED;
4780         msg->security = msec;
4781
4782         return 0;
4783 }
4784
4785 static void msg_msg_free_security(struct msg_msg *msg)
4786 {
4787         struct msg_security_struct *msec = msg->security;
4788
4789         msg->security = NULL;
4790         kfree(msec);
4791 }
4792
4793 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4794                         u32 perms)
4795 {
4796         struct ipc_security_struct *isec;
4797         struct common_audit_data ad;
4798         u32 sid = current_sid();
4799
4800         isec = ipc_perms->security;
4801
4802         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4803         ad.u.ipc_id = ipc_perms->key;
4804
4805         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4806 }
4807
4808 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4809 {
4810         return msg_msg_alloc_security(msg);
4811 }
4812
4813 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4814 {
4815         msg_msg_free_security(msg);
4816 }
4817
4818 /* message queue security operations */
4819 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4820 {
4821         struct ipc_security_struct *isec;
4822         struct common_audit_data ad;
4823         u32 sid = current_sid();
4824         int rc;
4825
4826         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4827         if (rc)
4828                 return rc;
4829
4830         isec = msq->q_perm.security;
4831
4832         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4833         ad.u.ipc_id = msq->q_perm.key;
4834
4835         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4836                           MSGQ__CREATE, &ad);
4837         if (rc) {
4838                 ipc_free_security(&msq->q_perm);
4839                 return rc;
4840         }
4841         return 0;
4842 }
4843
4844 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4845 {
4846         ipc_free_security(&msq->q_perm);
4847 }
4848
4849 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4850 {
4851         struct ipc_security_struct *isec;
4852         struct common_audit_data ad;
4853         u32 sid = current_sid();
4854
4855         isec = msq->q_perm.security;
4856
4857         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4858         ad.u.ipc_id = msq->q_perm.key;
4859
4860         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4861                             MSGQ__ASSOCIATE, &ad);
4862 }
4863
4864 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4865 {
4866         int err;
4867         int perms;
4868
4869         switch (cmd) {
4870         case IPC_INFO:
4871         case MSG_INFO:
4872                 /* No specific object, just general system-wide information. */
4873                 return task_has_system(current, SYSTEM__IPC_INFO);
4874         case IPC_STAT:
4875         case MSG_STAT:
4876                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4877                 break;
4878         case IPC_SET:
4879                 perms = MSGQ__SETATTR;
4880                 break;
4881         case IPC_RMID:
4882                 perms = MSGQ__DESTROY;
4883                 break;
4884         default:
4885                 return 0;
4886         }
4887
4888         err = ipc_has_perm(&msq->q_perm, perms);
4889         return err;
4890 }
4891
4892 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4893 {
4894         struct ipc_security_struct *isec;
4895         struct msg_security_struct *msec;
4896         struct common_audit_data ad;
4897         u32 sid = current_sid();
4898         int rc;
4899
4900         isec = msq->q_perm.security;
4901         msec = msg->security;
4902
4903         /*
4904          * First time through, need to assign label to the message
4905          */
4906         if (msec->sid == SECINITSID_UNLABELED) {
4907                 /*
4908                  * Compute new sid based on current process and
4909                  * message queue this message will be stored in
4910                  */
4911                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4912                                              &msec->sid);
4913                 if (rc)
4914                         return rc;
4915         }
4916
4917         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4918         ad.u.ipc_id = msq->q_perm.key;
4919
4920         /* Can this process write to the queue? */
4921         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4922                           MSGQ__WRITE, &ad);
4923         if (!rc)
4924                 /* Can this process send the message */
4925                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4926                                   MSG__SEND, &ad);
4927         if (!rc)
4928                 /* Can the message be put in the queue? */
4929                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4930                                   MSGQ__ENQUEUE, &ad);
4931
4932         return rc;
4933 }
4934
4935 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4936                                     struct task_struct *target,
4937                                     long type, int mode)
4938 {
4939         struct ipc_security_struct *isec;
4940         struct msg_security_struct *msec;
4941         struct common_audit_data ad;
4942         u32 sid = task_sid(target);
4943         int rc;
4944
4945         isec = msq->q_perm.security;
4946         msec = msg->security;
4947
4948         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4949         ad.u.ipc_id = msq->q_perm.key;
4950
4951         rc = avc_has_perm(sid, isec->sid,
4952                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4953         if (!rc)
4954                 rc = avc_has_perm(sid, msec->sid,
4955                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4956         return rc;
4957 }
4958
4959 /* Shared Memory security operations */
4960 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4961 {
4962         struct ipc_security_struct *isec;
4963         struct common_audit_data ad;
4964         u32 sid = current_sid();
4965         int rc;
4966
4967         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4968         if (rc)
4969                 return rc;
4970
4971         isec = shp->shm_perm.security;
4972
4973         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4974         ad.u.ipc_id = shp->shm_perm.key;
4975
4976         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4977                           SHM__CREATE, &ad);
4978         if (rc) {
4979                 ipc_free_security(&shp->shm_perm);
4980                 return rc;
4981         }
4982         return 0;
4983 }
4984
4985 static void selinux_shm_free_security(struct shmid_kernel *shp)
4986 {
4987         ipc_free_security(&shp->shm_perm);
4988 }
4989
4990 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4991 {
4992         struct ipc_security_struct *isec;
4993         struct common_audit_data ad;
4994         u32 sid = current_sid();
4995
4996         isec = shp->shm_perm.security;
4997
4998         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4999         ad.u.ipc_id = shp->shm_perm.key;
5000
5001         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5002                             SHM__ASSOCIATE, &ad);
5003 }
5004
5005 /* Note, at this point, shp is locked down */
5006 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5007 {
5008         int perms;
5009         int err;
5010
5011         switch (cmd) {
5012         case IPC_INFO:
5013         case SHM_INFO:
5014                 /* No specific object, just general system-wide information. */
5015                 return task_has_system(current, SYSTEM__IPC_INFO);
5016         case IPC_STAT:
5017         case SHM_STAT:
5018                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5019                 break;
5020         case IPC_SET:
5021                 perms = SHM__SETATTR;
5022                 break;
5023         case SHM_LOCK:
5024         case SHM_UNLOCK:
5025                 perms = SHM__LOCK;
5026                 break;
5027         case IPC_RMID:
5028                 perms = SHM__DESTROY;
5029                 break;
5030         default:
5031                 return 0;
5032         }
5033
5034         err = ipc_has_perm(&shp->shm_perm, perms);
5035         return err;
5036 }
5037
5038 static int selinux_shm_shmat(struct shmid_kernel *shp,
5039                              char __user *shmaddr, int shmflg)
5040 {
5041         u32 perms;
5042
5043         if (shmflg & SHM_RDONLY)
5044                 perms = SHM__READ;
5045         else
5046                 perms = SHM__READ | SHM__WRITE;
5047
5048         return ipc_has_perm(&shp->shm_perm, perms);
5049 }
5050
5051 /* Semaphore security operations */
5052 static int selinux_sem_alloc_security(struct sem_array *sma)
5053 {
5054         struct ipc_security_struct *isec;
5055         struct common_audit_data ad;
5056         u32 sid = current_sid();
5057         int rc;
5058
5059         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5060         if (rc)
5061                 return rc;
5062
5063         isec = sma->sem_perm.security;
5064
5065         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5066         ad.u.ipc_id = sma->sem_perm.key;
5067
5068         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5069                           SEM__CREATE, &ad);
5070         if (rc) {
5071                 ipc_free_security(&sma->sem_perm);
5072                 return rc;
5073         }
5074         return 0;
5075 }
5076
5077 static void selinux_sem_free_security(struct sem_array *sma)
5078 {
5079         ipc_free_security(&sma->sem_perm);
5080 }
5081
5082 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5083 {
5084         struct ipc_security_struct *isec;
5085         struct common_audit_data ad;
5086         u32 sid = current_sid();
5087
5088         isec = sma->sem_perm.security;
5089
5090         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5091         ad.u.ipc_id = sma->sem_perm.key;
5092
5093         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5094                             SEM__ASSOCIATE, &ad);
5095 }
5096
5097 /* Note, at this point, sma is locked down */
5098 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5099 {
5100         int err;
5101         u32 perms;
5102
5103         switch (cmd) {
5104         case IPC_INFO:
5105         case SEM_INFO:
5106                 /* No specific object, just general system-wide information. */
5107                 return task_has_system(current, SYSTEM__IPC_INFO);
5108         case GETPID:
5109         case GETNCNT:
5110         case GETZCNT:
5111                 perms = SEM__GETATTR;
5112                 break;
5113         case GETVAL:
5114         case GETALL:
5115                 perms = SEM__READ;
5116                 break;
5117         case SETVAL:
5118         case SETALL:
5119                 perms = SEM__WRITE;
5120                 break;
5121         case IPC_RMID:
5122                 perms = SEM__DESTROY;
5123                 break;
5124         case IPC_SET:
5125                 perms = SEM__SETATTR;
5126                 break;
5127         case IPC_STAT:
5128         case SEM_STAT:
5129                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5130                 break;
5131         default:
5132                 return 0;
5133         }
5134
5135         err = ipc_has_perm(&sma->sem_perm, perms);
5136         return err;
5137 }
5138
5139 static int selinux_sem_semop(struct sem_array *sma,
5140                              struct sembuf *sops, unsigned nsops, int alter)
5141 {
5142         u32 perms;
5143
5144         if (alter)
5145                 perms = SEM__READ | SEM__WRITE;
5146         else
5147                 perms = SEM__READ;
5148
5149         return ipc_has_perm(&sma->sem_perm, perms);
5150 }
5151
5152 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5153 {
5154         u32 av = 0;
5155
5156         av = 0;
5157         if (flag & S_IRUGO)
5158                 av |= IPC__UNIX_READ;
5159         if (flag & S_IWUGO)
5160                 av |= IPC__UNIX_WRITE;
5161
5162         if (av == 0)
5163                 return 0;
5164
5165         return ipc_has_perm(ipcp, av);
5166 }
5167
5168 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5169 {
5170         struct ipc_security_struct *isec = ipcp->security;
5171         *secid = isec->sid;
5172 }
5173
5174 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5175 {
5176         if (inode)
5177                 inode_doinit_with_dentry(inode, dentry);
5178 }
5179
5180 static int selinux_getprocattr(struct task_struct *p,
5181                                char *name, char **value)
5182 {
5183         const struct task_security_struct *__tsec;
5184         u32 sid;
5185         int error;
5186         unsigned len;
5187
5188         if (current != p) {
5189                 error = current_has_perm(p, PROCESS__GETATTR);
5190                 if (error)
5191                         return error;
5192         }
5193
5194         rcu_read_lock();
5195         __tsec = __task_cred(p)->security;
5196
5197         if (!strcmp(name, "current"))
5198                 sid = __tsec->sid;
5199         else if (!strcmp(name, "prev"))
5200                 sid = __tsec->osid;
5201         else if (!strcmp(name, "exec"))
5202                 sid = __tsec->exec_sid;
5203         else if (!strcmp(name, "fscreate"))
5204                 sid = __tsec->create_sid;
5205         else if (!strcmp(name, "keycreate"))
5206                 sid = __tsec->keycreate_sid;
5207         else if (!strcmp(name, "sockcreate"))
5208                 sid = __tsec->sockcreate_sid;
5209         else
5210                 goto invalid;
5211         rcu_read_unlock();
5212
5213         if (!sid)
5214                 return 0;
5215
5216         error = security_sid_to_context(sid, value, &len);
5217         if (error)
5218                 return error;
5219         return len;
5220
5221 invalid:
5222         rcu_read_unlock();
5223         return -EINVAL;
5224 }
5225
5226 static int selinux_setprocattr(struct task_struct *p,
5227                                char *name, void *value, size_t size)
5228 {
5229         struct task_security_struct *tsec;
5230         struct task_struct *tracer;
5231         struct cred *new;
5232         u32 sid = 0, ptsid;
5233         int error;
5234         char *str = value;
5235
5236         if (current != p) {
5237                 /* SELinux only allows a process to change its own
5238                    security attributes. */
5239                 return -EACCES;
5240         }
5241
5242         /*
5243          * Basic control over ability to set these attributes at all.
5244          * current == p, but we'll pass them separately in case the
5245          * above restriction is ever removed.
5246          */
5247         if (!strcmp(name, "exec"))
5248                 error = current_has_perm(p, PROCESS__SETEXEC);
5249         else if (!strcmp(name, "fscreate"))
5250                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5251         else if (!strcmp(name, "keycreate"))
5252                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5253         else if (!strcmp(name, "sockcreate"))
5254                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5255         else if (!strcmp(name, "current"))
5256                 error = current_has_perm(p, PROCESS__SETCURRENT);
5257         else
5258                 error = -EINVAL;
5259         if (error)
5260                 return error;
5261
5262         /* Obtain a SID for the context, if one was specified. */
5263         if (size && str[1] && str[1] != '\n') {
5264                 if (str[size-1] == '\n') {
5265                         str[size-1] = 0;
5266                         size--;
5267                 }
5268                 error = security_context_to_sid(value, size, &sid);
5269                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5270                         if (!capable(CAP_MAC_ADMIN))
5271                                 return error;
5272                         error = security_context_to_sid_force(value, size,
5273                                                               &sid);
5274                 }
5275                 if (error)
5276                         return error;
5277         }
5278
5279         new = prepare_creds();
5280         if (!new)
5281                 return -ENOMEM;
5282
5283         /* Permission checking based on the specified context is
5284            performed during the actual operation (execve,
5285            open/mkdir/...), when we know the full context of the
5286            operation.  See selinux_bprm_set_creds for the execve
5287            checks and may_create for the file creation checks. The
5288            operation will then fail if the context is not permitted. */
5289         tsec = new->security;
5290         if (!strcmp(name, "exec")) {
5291                 tsec->exec_sid = sid;
5292         } else if (!strcmp(name, "fscreate")) {
5293                 tsec->create_sid = sid;
5294         } else if (!strcmp(name, "keycreate")) {
5295                 error = may_create_key(sid, p);
5296                 if (error)
5297                         goto abort_change;
5298                 tsec->keycreate_sid = sid;
5299         } else if (!strcmp(name, "sockcreate")) {
5300                 tsec->sockcreate_sid = sid;
5301         } else if (!strcmp(name, "current")) {
5302                 error = -EINVAL;
5303                 if (sid == 0)
5304                         goto abort_change;
5305
5306                 /* Only allow single threaded processes to change context */
5307                 error = -EPERM;
5308                 if (!current_is_single_threaded()) {
5309                         error = security_bounded_transition(tsec->sid, sid);
5310                         if (error)
5311                                 goto abort_change;
5312                 }
5313
5314                 /* Check permissions for the transition. */
5315                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5316                                      PROCESS__DYNTRANSITION, NULL);
5317                 if (error)
5318                         goto abort_change;
5319
5320                 /* Check for ptracing, and update the task SID if ok.
5321                    Otherwise, leave SID unchanged and fail. */
5322                 ptsid = 0;
5323                 task_lock(p);
5324                 tracer = tracehook_tracer_task(p);
5325                 if (tracer)
5326                         ptsid = task_sid(tracer);
5327                 task_unlock(p);
5328
5329                 if (tracer) {
5330                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5331                                              PROCESS__PTRACE, NULL);
5332                         if (error)
5333                                 goto abort_change;
5334                 }
5335
5336                 tsec->sid = sid;
5337         } else {
5338                 error = -EINVAL;
5339                 goto abort_change;
5340         }
5341
5342         commit_creds(new);
5343         return size;
5344
5345 abort_change:
5346         abort_creds(new);
5347         return error;
5348 }
5349
5350 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5351 {
5352         return security_sid_to_context(secid, secdata, seclen);
5353 }
5354
5355 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5356 {
5357         return security_context_to_sid(secdata, seclen, secid);
5358 }
5359
5360 static void selinux_release_secctx(char *secdata, u32 seclen)
5361 {
5362         kfree(secdata);
5363 }
5364
5365 /*
5366  *      called with inode->i_mutex locked
5367  */
5368 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5369 {
5370         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5371 }
5372
5373 /*
5374  *      called with inode->i_mutex locked
5375  */
5376 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5377 {
5378         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5379 }
5380
5381 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5382 {
5383         int len = 0;
5384         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5385                                                 ctx, true);
5386         if (len < 0)
5387                 return len;
5388         *ctxlen = len;
5389         return 0;
5390 }
5391 #ifdef CONFIG_KEYS
5392
5393 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5394                              unsigned long flags)
5395 {
5396         const struct task_security_struct *tsec;
5397         struct key_security_struct *ksec;
5398
5399         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5400         if (!ksec)
5401                 return -ENOMEM;
5402
5403         tsec = cred->security;
5404         if (tsec->keycreate_sid)
5405                 ksec->sid = tsec->keycreate_sid;
5406         else
5407                 ksec->sid = tsec->sid;
5408
5409         k->security = ksec;
5410         return 0;
5411 }
5412
5413 static void selinux_key_free(struct key *k)
5414 {
5415         struct key_security_struct *ksec = k->security;
5416
5417         k->security = NULL;
5418         kfree(ksec);
5419 }
5420
5421 static int selinux_key_permission(key_ref_t key_ref,
5422                                   const struct cred *cred,
5423                                   key_perm_t perm)
5424 {
5425         struct key *key;
5426         struct key_security_struct *ksec;
5427         u32 sid;
5428
5429         /* if no specific permissions are requested, we skip the
5430            permission check. No serious, additional covert channels
5431            appear to be created. */
5432         if (perm == 0)
5433                 return 0;
5434
5435         sid = cred_sid(cred);
5436
5437         key = key_ref_to_ptr(key_ref);
5438         ksec = key->security;
5439
5440         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5441 }
5442
5443 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5444 {
5445         struct key_security_struct *ksec = key->security;
5446         char *context = NULL;
5447         unsigned len;
5448         int rc;
5449
5450         rc = security_sid_to_context(ksec->sid, &context, &len);
5451         if (!rc)
5452                 rc = len;
5453         *_buffer = context;
5454         return rc;
5455 }
5456
5457 #endif
5458
5459 static struct security_operations selinux_ops = {
5460         .name =                         "selinux",
5461
5462         .ptrace_access_check =          selinux_ptrace_access_check,
5463         .ptrace_traceme =               selinux_ptrace_traceme,
5464         .capget =                       selinux_capget,
5465         .capset =                       selinux_capset,
5466         .sysctl =                       selinux_sysctl,
5467         .capable =                      selinux_capable,
5468         .quotactl =                     selinux_quotactl,
5469         .quota_on =                     selinux_quota_on,
5470         .syslog =                       selinux_syslog,
5471         .vm_enough_memory =             selinux_vm_enough_memory,
5472
5473         .netlink_send =                 selinux_netlink_send,
5474         .netlink_recv =                 selinux_netlink_recv,
5475
5476         .bprm_set_creds =               selinux_bprm_set_creds,
5477         .bprm_committing_creds =        selinux_bprm_committing_creds,
5478         .bprm_committed_creds =         selinux_bprm_committed_creds,
5479         .bprm_secureexec =              selinux_bprm_secureexec,
5480
5481         .sb_alloc_security =            selinux_sb_alloc_security,
5482         .sb_free_security =             selinux_sb_free_security,
5483         .sb_copy_data =                 selinux_sb_copy_data,
5484         .sb_kern_mount =                selinux_sb_kern_mount,
5485         .sb_show_options =              selinux_sb_show_options,
5486         .sb_statfs =                    selinux_sb_statfs,
5487         .sb_mount =                     selinux_mount,
5488         .sb_umount =                    selinux_umount,
5489         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5490         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5491         .sb_parse_opts_str =            selinux_parse_opts_str,
5492
5493
5494         .inode_alloc_security =         selinux_inode_alloc_security,
5495         .inode_free_security =          selinux_inode_free_security,
5496         .inode_init_security =          selinux_inode_init_security,
5497         .inode_create =                 selinux_inode_create,
5498         .inode_link =                   selinux_inode_link,
5499         .inode_unlink =                 selinux_inode_unlink,
5500         .inode_symlink =                selinux_inode_symlink,
5501         .inode_mkdir =                  selinux_inode_mkdir,
5502         .inode_rmdir =                  selinux_inode_rmdir,
5503         .inode_mknod =                  selinux_inode_mknod,
5504         .inode_rename =                 selinux_inode_rename,
5505         .inode_readlink =               selinux_inode_readlink,
5506         .inode_follow_link =            selinux_inode_follow_link,
5507         .inode_permission =             selinux_inode_permission,
5508         .inode_setattr =                selinux_inode_setattr,
5509         .inode_getattr =                selinux_inode_getattr,
5510         .inode_setxattr =               selinux_inode_setxattr,
5511         .inode_post_setxattr =          selinux_inode_post_setxattr,
5512         .inode_getxattr =               selinux_inode_getxattr,
5513         .inode_listxattr =              selinux_inode_listxattr,
5514         .inode_removexattr =            selinux_inode_removexattr,
5515         .inode_getsecurity =            selinux_inode_getsecurity,
5516         .inode_setsecurity =            selinux_inode_setsecurity,
5517         .inode_listsecurity =           selinux_inode_listsecurity,
5518         .inode_getsecid =               selinux_inode_getsecid,
5519
5520         .file_permission =              selinux_file_permission,
5521         .file_alloc_security =          selinux_file_alloc_security,
5522         .file_free_security =           selinux_file_free_security,
5523         .file_ioctl =                   selinux_file_ioctl,
5524         .file_mmap =                    selinux_file_mmap,
5525         .file_mprotect =                selinux_file_mprotect,
5526         .file_lock =                    selinux_file_lock,
5527         .file_fcntl =                   selinux_file_fcntl,
5528         .file_set_fowner =              selinux_file_set_fowner,
5529         .file_send_sigiotask =          selinux_file_send_sigiotask,
5530         .file_receive =                 selinux_file_receive,
5531
5532         .dentry_open =                  selinux_dentry_open,
5533
5534         .task_create =                  selinux_task_create,
5535         .cred_alloc_blank =             selinux_cred_alloc_blank,
5536         .cred_free =                    selinux_cred_free,
5537         .cred_prepare =                 selinux_cred_prepare,
5538         .cred_transfer =                selinux_cred_transfer,
5539         .kernel_act_as =                selinux_kernel_act_as,
5540         .kernel_create_files_as =       selinux_kernel_create_files_as,
5541         .kernel_module_request =        selinux_kernel_module_request,
5542         .task_setpgid =                 selinux_task_setpgid,
5543         .task_getpgid =                 selinux_task_getpgid,
5544         .task_getsid =                  selinux_task_getsid,
5545         .task_getsecid =                selinux_task_getsecid,
5546         .task_setnice =                 selinux_task_setnice,
5547         .task_setioprio =               selinux_task_setioprio,
5548         .task_getioprio =               selinux_task_getioprio,
5549         .task_setrlimit =               selinux_task_setrlimit,
5550         .task_setscheduler =            selinux_task_setscheduler,
5551         .task_getscheduler =            selinux_task_getscheduler,
5552         .task_movememory =              selinux_task_movememory,
5553         .task_kill =                    selinux_task_kill,
5554         .task_wait =                    selinux_task_wait,
5555         .task_to_inode =                selinux_task_to_inode,
5556
5557         .ipc_permission =               selinux_ipc_permission,
5558         .ipc_getsecid =                 selinux_ipc_getsecid,
5559
5560         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5561         .msg_msg_free_security =        selinux_msg_msg_free_security,
5562
5563         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5564         .msg_queue_free_security =      selinux_msg_queue_free_security,
5565         .msg_queue_associate =          selinux_msg_queue_associate,
5566         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5567         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5568         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5569
5570         .shm_alloc_security =           selinux_shm_alloc_security,
5571         .shm_free_security =            selinux_shm_free_security,
5572         .shm_associate =                selinux_shm_associate,
5573         .shm_shmctl =                   selinux_shm_shmctl,
5574         .shm_shmat =                    selinux_shm_shmat,
5575
5576         .sem_alloc_security =           selinux_sem_alloc_security,
5577         .sem_free_security =            selinux_sem_free_security,
5578         .sem_associate =                selinux_sem_associate,
5579         .sem_semctl =                   selinux_sem_semctl,
5580         .sem_semop =                    selinux_sem_semop,
5581
5582         .d_instantiate =                selinux_d_instantiate,
5583
5584         .getprocattr =                  selinux_getprocattr,
5585         .setprocattr =                  selinux_setprocattr,
5586
5587         .secid_to_secctx =              selinux_secid_to_secctx,
5588         .secctx_to_secid =              selinux_secctx_to_secid,
5589         .release_secctx =               selinux_release_secctx,
5590         .inode_notifysecctx =           selinux_inode_notifysecctx,
5591         .inode_setsecctx =              selinux_inode_setsecctx,
5592         .inode_getsecctx =              selinux_inode_getsecctx,
5593
5594         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5595         .unix_may_send =                selinux_socket_unix_may_send,
5596
5597         .socket_create =                selinux_socket_create,
5598         .socket_post_create =           selinux_socket_post_create,
5599         .socket_bind =                  selinux_socket_bind,
5600         .socket_connect =               selinux_socket_connect,
5601         .socket_listen =                selinux_socket_listen,
5602         .socket_accept =                selinux_socket_accept,
5603         .socket_sendmsg =               selinux_socket_sendmsg,
5604         .socket_recvmsg =               selinux_socket_recvmsg,
5605         .socket_getsockname =           selinux_socket_getsockname,
5606         .socket_getpeername =           selinux_socket_getpeername,
5607         .socket_getsockopt =            selinux_socket_getsockopt,
5608         .socket_setsockopt =            selinux_socket_setsockopt,
5609         .socket_shutdown =              selinux_socket_shutdown,
5610         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5611         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5612         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5613         .sk_alloc_security =            selinux_sk_alloc_security,
5614         .sk_free_security =             selinux_sk_free_security,
5615         .sk_clone_security =            selinux_sk_clone_security,
5616         .sk_getsecid =                  selinux_sk_getsecid,
5617         .sock_graft =                   selinux_sock_graft,
5618         .inet_conn_request =            selinux_inet_conn_request,
5619         .inet_csk_clone =               selinux_inet_csk_clone,
5620         .inet_conn_established =        selinux_inet_conn_established,
5621         .req_classify_flow =            selinux_req_classify_flow,
5622         .tun_dev_create =               selinux_tun_dev_create,
5623         .tun_dev_post_create =          selinux_tun_dev_post_create,
5624         .tun_dev_attach =               selinux_tun_dev_attach,
5625
5626 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5627         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5628         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5629         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5630         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5631         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5632         .xfrm_state_free_security =     selinux_xfrm_state_free,
5633         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5634         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5635         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5636         .xfrm_decode_session =          selinux_xfrm_decode_session,
5637 #endif
5638
5639 #ifdef CONFIG_KEYS
5640         .key_alloc =                    selinux_key_alloc,
5641         .key_free =                     selinux_key_free,
5642         .key_permission =               selinux_key_permission,
5643         .key_getsecurity =              selinux_key_getsecurity,
5644 #endif
5645
5646 #ifdef CONFIG_AUDIT
5647         .audit_rule_init =              selinux_audit_rule_init,
5648         .audit_rule_known =             selinux_audit_rule_known,
5649         .audit_rule_match =             selinux_audit_rule_match,
5650         .audit_rule_free =              selinux_audit_rule_free,
5651 #endif
5652 };
5653
5654 static __init int selinux_init(void)
5655 {
5656         if (!security_module_enable(&selinux_ops)) {
5657                 selinux_enabled = 0;
5658                 return 0;
5659         }
5660
5661         if (!selinux_enabled) {
5662                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5663                 return 0;
5664         }
5665
5666         printk(KERN_INFO "SELinux:  Initializing.\n");
5667
5668         /* Set the security state for the initial task. */
5669         cred_init_security();
5670
5671         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5672                                             sizeof(struct inode_security_struct),
5673                                             0, SLAB_PANIC, NULL);
5674         avc_init();
5675
5676         secondary_ops = security_ops;
5677         if (!secondary_ops)
5678                 panic("SELinux: No initial security operations\n");
5679         if (register_security(&selinux_ops))
5680                 panic("SELinux: Unable to register with kernel.\n");
5681
5682         if (selinux_enforcing)
5683                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5684         else
5685                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5686
5687         return 0;
5688 }
5689
5690 void selinux_complete_init(void)
5691 {
5692         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5693
5694         /* Set up any superblocks initialized prior to the policy load. */
5695         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5696         spin_lock(&sb_lock);
5697         spin_lock(&sb_security_lock);
5698 next_sb:
5699         if (!list_empty(&superblock_security_head)) {
5700                 struct superblock_security_struct *sbsec =
5701                                 list_entry(superblock_security_head.next,
5702                                            struct superblock_security_struct,
5703                                            list);
5704                 struct super_block *sb = sbsec->sb;
5705                 sb->s_count++;
5706                 spin_unlock(&sb_security_lock);
5707                 spin_unlock(&sb_lock);
5708                 down_read(&sb->s_umount);
5709                 if (sb->s_root)
5710                         superblock_doinit(sb, NULL);
5711                 drop_super(sb);
5712                 spin_lock(&sb_lock);
5713                 spin_lock(&sb_security_lock);
5714                 list_del_init(&sbsec->list);
5715                 goto next_sb;
5716         }
5717         spin_unlock(&sb_security_lock);
5718         spin_unlock(&sb_lock);
5719 }
5720
5721 /* SELinux requires early initialization in order to label
5722    all processes and objects when they are created. */
5723 security_initcall(selinux_init);
5724
5725 #if defined(CONFIG_NETFILTER)
5726
5727 static struct nf_hook_ops selinux_ipv4_ops[] = {
5728         {
5729                 .hook =         selinux_ipv4_postroute,
5730                 .owner =        THIS_MODULE,
5731                 .pf =           PF_INET,
5732                 .hooknum =      NF_INET_POST_ROUTING,
5733                 .priority =     NF_IP_PRI_SELINUX_LAST,
5734         },
5735         {
5736                 .hook =         selinux_ipv4_forward,
5737                 .owner =        THIS_MODULE,
5738                 .pf =           PF_INET,
5739                 .hooknum =      NF_INET_FORWARD,
5740                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5741         },
5742         {
5743                 .hook =         selinux_ipv4_output,
5744                 .owner =        THIS_MODULE,
5745                 .pf =           PF_INET,
5746                 .hooknum =      NF_INET_LOCAL_OUT,
5747                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5748         }
5749 };
5750
5751 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5752
5753 static struct nf_hook_ops selinux_ipv6_ops[] = {
5754         {
5755                 .hook =         selinux_ipv6_postroute,
5756                 .owner =        THIS_MODULE,
5757                 .pf =           PF_INET6,
5758                 .hooknum =      NF_INET_POST_ROUTING,
5759                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5760         },
5761         {
5762                 .hook =         selinux_ipv6_forward,
5763                 .owner =        THIS_MODULE,
5764                 .pf =           PF_INET6,
5765                 .hooknum =      NF_INET_FORWARD,
5766                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5767         }
5768 };
5769
5770 #endif  /* IPV6 */
5771
5772 static int __init selinux_nf_ip_init(void)
5773 {
5774         int err = 0;
5775
5776         if (!selinux_enabled)
5777                 goto out;
5778
5779         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5780
5781         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5782         if (err)
5783                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5784
5785 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5786         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5787         if (err)
5788                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5789 #endif  /* IPV6 */
5790
5791 out:
5792         return err;
5793 }
5794
5795 __initcall(selinux_nf_ip_init);
5796
5797 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5798 static void selinux_nf_ip_exit(void)
5799 {
5800         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5801
5802         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5803 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5804         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5805 #endif  /* IPV6 */
5806 }
5807 #endif
5808
5809 #else /* CONFIG_NETFILTER */
5810
5811 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5812 #define selinux_nf_ip_exit()
5813 #endif
5814
5815 #endif /* CONFIG_NETFILTER */
5816
5817 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5818 static int selinux_disabled;
5819
5820 int selinux_disable(void)
5821 {
5822         extern void exit_sel_fs(void);
5823
5824         if (ss_initialized) {
5825                 /* Not permitted after initial policy load. */
5826                 return -EINVAL;
5827         }
5828
5829         if (selinux_disabled) {
5830                 /* Only do this once. */
5831                 return -EINVAL;
5832         }
5833
5834         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5835
5836         selinux_disabled = 1;
5837         selinux_enabled = 0;
5838
5839         /* Reset security_ops to the secondary module, dummy or capability. */
5840         security_ops = secondary_ops;
5841
5842         /* Try to destroy the avc node cache */
5843         avc_disable();
5844
5845         /* Unregister netfilter hooks. */
5846         selinux_nf_ip_exit();
5847
5848         /* Unregister selinuxfs. */
5849         exit_sel_fs();
5850
5851         return 0;
5852 }
5853 #endif