selinux: sparse fix: fix several warnings in the security server code
[linux-2.6.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22
23 #define MAX_LSM_EVM_XATTR       2
24
25 /* Boot-time LSM user choice */
26 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
27         CONFIG_DEFAULT_SECURITY;
28
29 /* things that live in capability.c */
30 extern void __init security_fixup_ops(struct security_operations *ops);
31
32 static struct security_operations *security_ops;
33 static struct security_operations default_security_ops = {
34         .name   = "default",
35 };
36
37 static inline int __init verify(struct security_operations *ops)
38 {
39         /* verify the security_operations structure exists */
40         if (!ops)
41                 return -EINVAL;
42         security_fixup_ops(ops);
43         return 0;
44 }
45
46 static void __init do_security_initcalls(void)
47 {
48         initcall_t *call;
49         call = __security_initcall_start;
50         while (call < __security_initcall_end) {
51                 (*call) ();
52                 call++;
53         }
54 }
55
56 /**
57  * security_init - initializes the security framework
58  *
59  * This should be called early in the kernel initialization sequence.
60  */
61 int __init security_init(void)
62 {
63         printk(KERN_INFO "Security Framework initialized\n");
64
65         security_fixup_ops(&default_security_ops);
66         security_ops = &default_security_ops;
67         do_security_initcalls();
68
69         return 0;
70 }
71
72 void reset_security_ops(void)
73 {
74         security_ops = &default_security_ops;
75 }
76
77 /* Save user chosen LSM */
78 static int __init choose_lsm(char *str)
79 {
80         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
81         return 1;
82 }
83 __setup("security=", choose_lsm);
84
85 /**
86  * security_module_enable - Load given security module on boot ?
87  * @ops: a pointer to the struct security_operations that is to be checked.
88  *
89  * Each LSM must pass this method before registering its own operations
90  * to avoid security registration races. This method may also be used
91  * to check if your LSM is currently loaded during kernel initialization.
92  *
93  * Return true if:
94  *      -The passed LSM is the one chosen by user at boot time,
95  *      -or the passed LSM is configured as the default and the user did not
96  *       choose an alternate LSM at boot time.
97  * Otherwise, return false.
98  */
99 int __init security_module_enable(struct security_operations *ops)
100 {
101         return !strcmp(ops->name, chosen_lsm);
102 }
103
104 /**
105  * register_security - registers a security framework with the kernel
106  * @ops: a pointer to the struct security_options that is to be registered
107  *
108  * This function allows a security module to register itself with the
109  * kernel security subsystem.  Some rudimentary checking is done on the @ops
110  * value passed to this function. You'll need to check first if your LSM
111  * is allowed to register its @ops by calling security_module_enable(@ops).
112  *
113  * If there is already a security module registered with the kernel,
114  * an error will be returned.  Otherwise %0 is returned on success.
115  */
116 int __init register_security(struct security_operations *ops)
117 {
118         if (verify(ops)) {
119                 printk(KERN_DEBUG "%s could not verify "
120                        "security_operations structure.\n", __func__);
121                 return -EINVAL;
122         }
123
124         if (security_ops != &default_security_ops)
125                 return -EAGAIN;
126
127         security_ops = ops;
128
129         return 0;
130 }
131
132 /* Security operations */
133
134 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
135 {
136         return security_ops->ptrace_access_check(child, mode);
137 }
138
139 int security_ptrace_traceme(struct task_struct *parent)
140 {
141         return security_ops->ptrace_traceme(parent);
142 }
143
144 int security_capget(struct task_struct *target,
145                      kernel_cap_t *effective,
146                      kernel_cap_t *inheritable,
147                      kernel_cap_t *permitted)
148 {
149         return security_ops->capget(target, effective, inheritable, permitted);
150 }
151
152 int security_capset(struct cred *new, const struct cred *old,
153                     const kernel_cap_t *effective,
154                     const kernel_cap_t *inheritable,
155                     const kernel_cap_t *permitted)
156 {
157         return security_ops->capset(new, old,
158                                     effective, inheritable, permitted);
159 }
160
161 int security_capable(struct user_namespace *ns, const struct cred *cred,
162                      int cap)
163 {
164         return security_ops->capable(current, cred, ns, cap,
165                                      SECURITY_CAP_AUDIT);
166 }
167
168 int security_real_capable(struct task_struct *tsk, struct user_namespace *ns,
169                           int cap)
170 {
171         const struct cred *cred;
172         int ret;
173
174         cred = get_task_cred(tsk);
175         ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_AUDIT);
176         put_cred(cred);
177         return ret;
178 }
179
180 int security_real_capable_noaudit(struct task_struct *tsk,
181                                   struct user_namespace *ns, int cap)
182 {
183         const struct cred *cred;
184         int ret;
185
186         cred = get_task_cred(tsk);
187         ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_NOAUDIT);
188         put_cred(cred);
189         return ret;
190 }
191
192 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
193 {
194         return security_ops->quotactl(cmds, type, id, sb);
195 }
196
197 int security_quota_on(struct dentry *dentry)
198 {
199         return security_ops->quota_on(dentry);
200 }
201
202 int security_syslog(int type)
203 {
204         return security_ops->syslog(type);
205 }
206
207 int security_settime(const struct timespec *ts, const struct timezone *tz)
208 {
209         return security_ops->settime(ts, tz);
210 }
211
212 int security_vm_enough_memory(long pages)
213 {
214         WARN_ON(current->mm == NULL);
215         return security_ops->vm_enough_memory(current->mm, pages);
216 }
217
218 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
219 {
220         WARN_ON(mm == NULL);
221         return security_ops->vm_enough_memory(mm, pages);
222 }
223
224 int security_vm_enough_memory_kern(long pages)
225 {
226         /* If current->mm is a kernel thread then we will pass NULL,
227            for this specific case that is fine */
228         return security_ops->vm_enough_memory(current->mm, pages);
229 }
230
231 int security_bprm_set_creds(struct linux_binprm *bprm)
232 {
233         return security_ops->bprm_set_creds(bprm);
234 }
235
236 int security_bprm_check(struct linux_binprm *bprm)
237 {
238         int ret;
239
240         ret = security_ops->bprm_check_security(bprm);
241         if (ret)
242                 return ret;
243         return ima_bprm_check(bprm);
244 }
245
246 void security_bprm_committing_creds(struct linux_binprm *bprm)
247 {
248         security_ops->bprm_committing_creds(bprm);
249 }
250
251 void security_bprm_committed_creds(struct linux_binprm *bprm)
252 {
253         security_ops->bprm_committed_creds(bprm);
254 }
255
256 int security_bprm_secureexec(struct linux_binprm *bprm)
257 {
258         return security_ops->bprm_secureexec(bprm);
259 }
260
261 int security_sb_alloc(struct super_block *sb)
262 {
263         return security_ops->sb_alloc_security(sb);
264 }
265
266 void security_sb_free(struct super_block *sb)
267 {
268         security_ops->sb_free_security(sb);
269 }
270
271 int security_sb_copy_data(char *orig, char *copy)
272 {
273         return security_ops->sb_copy_data(orig, copy);
274 }
275 EXPORT_SYMBOL(security_sb_copy_data);
276
277 int security_sb_remount(struct super_block *sb, void *data)
278 {
279         return security_ops->sb_remount(sb, data);
280 }
281
282 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
283 {
284         return security_ops->sb_kern_mount(sb, flags, data);
285 }
286
287 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
288 {
289         return security_ops->sb_show_options(m, sb);
290 }
291
292 int security_sb_statfs(struct dentry *dentry)
293 {
294         return security_ops->sb_statfs(dentry);
295 }
296
297 int security_sb_mount(char *dev_name, struct path *path,
298                        char *type, unsigned long flags, void *data)
299 {
300         return security_ops->sb_mount(dev_name, path, type, flags, data);
301 }
302
303 int security_sb_umount(struct vfsmount *mnt, int flags)
304 {
305         return security_ops->sb_umount(mnt, flags);
306 }
307
308 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
309 {
310         return security_ops->sb_pivotroot(old_path, new_path);
311 }
312
313 int security_sb_set_mnt_opts(struct super_block *sb,
314                                 struct security_mnt_opts *opts)
315 {
316         return security_ops->sb_set_mnt_opts(sb, opts);
317 }
318 EXPORT_SYMBOL(security_sb_set_mnt_opts);
319
320 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
321                                 struct super_block *newsb)
322 {
323         security_ops->sb_clone_mnt_opts(oldsb, newsb);
324 }
325 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
326
327 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
328 {
329         return security_ops->sb_parse_opts_str(options, opts);
330 }
331 EXPORT_SYMBOL(security_sb_parse_opts_str);
332
333 int security_inode_alloc(struct inode *inode)
334 {
335         inode->i_security = NULL;
336         return security_ops->inode_alloc_security(inode);
337 }
338
339 void security_inode_free(struct inode *inode)
340 {
341         integrity_inode_free(inode);
342         security_ops->inode_free_security(inode);
343 }
344
345 int security_inode_init_security(struct inode *inode, struct inode *dir,
346                                  const struct qstr *qstr,
347                                  const initxattrs initxattrs, void *fs_data)
348 {
349         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
350         struct xattr *lsm_xattr, *evm_xattr, *xattr;
351         int ret;
352
353         if (unlikely(IS_PRIVATE(inode)))
354                 return -EOPNOTSUPP;
355
356         memset(new_xattrs, 0, sizeof new_xattrs);
357         if (!initxattrs)
358                 return security_ops->inode_init_security(inode, dir, qstr,
359                                                          NULL, NULL, NULL);
360         lsm_xattr = new_xattrs;
361         ret = security_ops->inode_init_security(inode, dir, qstr,
362                                                 &lsm_xattr->name,
363                                                 &lsm_xattr->value,
364                                                 &lsm_xattr->value_len);
365         if (ret)
366                 goto out;
367
368         evm_xattr = lsm_xattr + 1;
369         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
370         if (ret)
371                 goto out;
372         ret = initxattrs(inode, new_xattrs, fs_data);
373 out:
374         for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
375                 kfree(xattr->name);
376                 kfree(xattr->value);
377         }
378         return (ret == -EOPNOTSUPP) ? 0 : ret;
379 }
380 EXPORT_SYMBOL(security_inode_init_security);
381
382 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
383                                      const struct qstr *qstr, char **name,
384                                      void **value, size_t *len)
385 {
386         if (unlikely(IS_PRIVATE(inode)))
387                 return -EOPNOTSUPP;
388         return security_ops->inode_init_security(inode, dir, qstr, name, value,
389                                                  len);
390 }
391 EXPORT_SYMBOL(security_old_inode_init_security);
392
393 #ifdef CONFIG_SECURITY_PATH
394 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
395                         unsigned int dev)
396 {
397         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
398                 return 0;
399         return security_ops->path_mknod(dir, dentry, mode, dev);
400 }
401 EXPORT_SYMBOL(security_path_mknod);
402
403 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
404 {
405         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
406                 return 0;
407         return security_ops->path_mkdir(dir, dentry, mode);
408 }
409 EXPORT_SYMBOL(security_path_mkdir);
410
411 int security_path_rmdir(struct path *dir, struct dentry *dentry)
412 {
413         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
414                 return 0;
415         return security_ops->path_rmdir(dir, dentry);
416 }
417
418 int security_path_unlink(struct path *dir, struct dentry *dentry)
419 {
420         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
421                 return 0;
422         return security_ops->path_unlink(dir, dentry);
423 }
424 EXPORT_SYMBOL(security_path_unlink);
425
426 int security_path_symlink(struct path *dir, struct dentry *dentry,
427                           const char *old_name)
428 {
429         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
430                 return 0;
431         return security_ops->path_symlink(dir, dentry, old_name);
432 }
433
434 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
435                        struct dentry *new_dentry)
436 {
437         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
438                 return 0;
439         return security_ops->path_link(old_dentry, new_dir, new_dentry);
440 }
441
442 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
443                          struct path *new_dir, struct dentry *new_dentry)
444 {
445         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
446                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
447                 return 0;
448         return security_ops->path_rename(old_dir, old_dentry, new_dir,
449                                          new_dentry);
450 }
451 EXPORT_SYMBOL(security_path_rename);
452
453 int security_path_truncate(struct path *path)
454 {
455         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
456                 return 0;
457         return security_ops->path_truncate(path);
458 }
459
460 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
461                         mode_t mode)
462 {
463         if (unlikely(IS_PRIVATE(dentry->d_inode)))
464                 return 0;
465         return security_ops->path_chmod(dentry, mnt, mode);
466 }
467
468 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
469 {
470         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
471                 return 0;
472         return security_ops->path_chown(path, uid, gid);
473 }
474
475 int security_path_chroot(struct path *path)
476 {
477         return security_ops->path_chroot(path);
478 }
479 #endif
480
481 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
482 {
483         if (unlikely(IS_PRIVATE(dir)))
484                 return 0;
485         return security_ops->inode_create(dir, dentry, mode);
486 }
487 EXPORT_SYMBOL_GPL(security_inode_create);
488
489 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
490                          struct dentry *new_dentry)
491 {
492         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
493                 return 0;
494         return security_ops->inode_link(old_dentry, dir, new_dentry);
495 }
496
497 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
498 {
499         if (unlikely(IS_PRIVATE(dentry->d_inode)))
500                 return 0;
501         return security_ops->inode_unlink(dir, dentry);
502 }
503
504 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
505                             const char *old_name)
506 {
507         if (unlikely(IS_PRIVATE(dir)))
508                 return 0;
509         return security_ops->inode_symlink(dir, dentry, old_name);
510 }
511
512 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
513 {
514         if (unlikely(IS_PRIVATE(dir)))
515                 return 0;
516         return security_ops->inode_mkdir(dir, dentry, mode);
517 }
518 EXPORT_SYMBOL_GPL(security_inode_mkdir);
519
520 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
521 {
522         if (unlikely(IS_PRIVATE(dentry->d_inode)))
523                 return 0;
524         return security_ops->inode_rmdir(dir, dentry);
525 }
526
527 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
528 {
529         if (unlikely(IS_PRIVATE(dir)))
530                 return 0;
531         return security_ops->inode_mknod(dir, dentry, mode, dev);
532 }
533
534 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
535                            struct inode *new_dir, struct dentry *new_dentry)
536 {
537         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
538             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
539                 return 0;
540         return security_ops->inode_rename(old_dir, old_dentry,
541                                            new_dir, new_dentry);
542 }
543
544 int security_inode_readlink(struct dentry *dentry)
545 {
546         if (unlikely(IS_PRIVATE(dentry->d_inode)))
547                 return 0;
548         return security_ops->inode_readlink(dentry);
549 }
550
551 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
552 {
553         if (unlikely(IS_PRIVATE(dentry->d_inode)))
554                 return 0;
555         return security_ops->inode_follow_link(dentry, nd);
556 }
557
558 int security_inode_permission(struct inode *inode, int mask)
559 {
560         if (unlikely(IS_PRIVATE(inode)))
561                 return 0;
562         return security_ops->inode_permission(inode, mask);
563 }
564
565 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
566 {
567         int ret;
568
569         if (unlikely(IS_PRIVATE(dentry->d_inode)))
570                 return 0;
571         ret = security_ops->inode_setattr(dentry, attr);
572         if (ret)
573                 return ret;
574         return evm_inode_setattr(dentry, attr);
575 }
576 EXPORT_SYMBOL_GPL(security_inode_setattr);
577
578 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
579 {
580         if (unlikely(IS_PRIVATE(dentry->d_inode)))
581                 return 0;
582         return security_ops->inode_getattr(mnt, dentry);
583 }
584
585 int security_inode_setxattr(struct dentry *dentry, const char *name,
586                             const void *value, size_t size, int flags)
587 {
588         int ret;
589
590         if (unlikely(IS_PRIVATE(dentry->d_inode)))
591                 return 0;
592         ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
593         if (ret)
594                 return ret;
595         return evm_inode_setxattr(dentry, name, value, size);
596 }
597
598 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
599                                   const void *value, size_t size, int flags)
600 {
601         if (unlikely(IS_PRIVATE(dentry->d_inode)))
602                 return;
603         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
604         evm_inode_post_setxattr(dentry, name, value, size);
605 }
606
607 int security_inode_getxattr(struct dentry *dentry, const char *name)
608 {
609         if (unlikely(IS_PRIVATE(dentry->d_inode)))
610                 return 0;
611         return security_ops->inode_getxattr(dentry, name);
612 }
613
614 int security_inode_listxattr(struct dentry *dentry)
615 {
616         if (unlikely(IS_PRIVATE(dentry->d_inode)))
617                 return 0;
618         return security_ops->inode_listxattr(dentry);
619 }
620
621 int security_inode_removexattr(struct dentry *dentry, const char *name)
622 {
623         int ret;
624
625         if (unlikely(IS_PRIVATE(dentry->d_inode)))
626                 return 0;
627         ret = security_ops->inode_removexattr(dentry, name);
628         if (ret)
629                 return ret;
630         return evm_inode_removexattr(dentry, name);
631 }
632
633 int security_inode_need_killpriv(struct dentry *dentry)
634 {
635         return security_ops->inode_need_killpriv(dentry);
636 }
637
638 int security_inode_killpriv(struct dentry *dentry)
639 {
640         return security_ops->inode_killpriv(dentry);
641 }
642
643 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
644 {
645         if (unlikely(IS_PRIVATE(inode)))
646                 return -EOPNOTSUPP;
647         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
648 }
649
650 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
651 {
652         if (unlikely(IS_PRIVATE(inode)))
653                 return -EOPNOTSUPP;
654         return security_ops->inode_setsecurity(inode, name, value, size, flags);
655 }
656
657 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
658 {
659         if (unlikely(IS_PRIVATE(inode)))
660                 return 0;
661         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
662 }
663
664 void security_inode_getsecid(const struct inode *inode, u32 *secid)
665 {
666         security_ops->inode_getsecid(inode, secid);
667 }
668
669 int security_file_permission(struct file *file, int mask)
670 {
671         int ret;
672
673         ret = security_ops->file_permission(file, mask);
674         if (ret)
675                 return ret;
676
677         return fsnotify_perm(file, mask);
678 }
679
680 int security_file_alloc(struct file *file)
681 {
682         return security_ops->file_alloc_security(file);
683 }
684
685 void security_file_free(struct file *file)
686 {
687         security_ops->file_free_security(file);
688 }
689
690 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
691 {
692         return security_ops->file_ioctl(file, cmd, arg);
693 }
694
695 int security_file_mmap(struct file *file, unsigned long reqprot,
696                         unsigned long prot, unsigned long flags,
697                         unsigned long addr, unsigned long addr_only)
698 {
699         int ret;
700
701         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
702         if (ret)
703                 return ret;
704         return ima_file_mmap(file, prot);
705 }
706
707 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
708                             unsigned long prot)
709 {
710         return security_ops->file_mprotect(vma, reqprot, prot);
711 }
712
713 int security_file_lock(struct file *file, unsigned int cmd)
714 {
715         return security_ops->file_lock(file, cmd);
716 }
717
718 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
719 {
720         return security_ops->file_fcntl(file, cmd, arg);
721 }
722
723 int security_file_set_fowner(struct file *file)
724 {
725         return security_ops->file_set_fowner(file);
726 }
727
728 int security_file_send_sigiotask(struct task_struct *tsk,
729                                   struct fown_struct *fown, int sig)
730 {
731         return security_ops->file_send_sigiotask(tsk, fown, sig);
732 }
733
734 int security_file_receive(struct file *file)
735 {
736         return security_ops->file_receive(file);
737 }
738
739 int security_dentry_open(struct file *file, const struct cred *cred)
740 {
741         int ret;
742
743         ret = security_ops->dentry_open(file, cred);
744         if (ret)
745                 return ret;
746
747         return fsnotify_perm(file, MAY_OPEN);
748 }
749
750 int security_task_create(unsigned long clone_flags)
751 {
752         return security_ops->task_create(clone_flags);
753 }
754
755 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
756 {
757         return security_ops->cred_alloc_blank(cred, gfp);
758 }
759
760 void security_cred_free(struct cred *cred)
761 {
762         security_ops->cred_free(cred);
763 }
764
765 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
766 {
767         return security_ops->cred_prepare(new, old, gfp);
768 }
769
770 void security_transfer_creds(struct cred *new, const struct cred *old)
771 {
772         security_ops->cred_transfer(new, old);
773 }
774
775 int security_kernel_act_as(struct cred *new, u32 secid)
776 {
777         return security_ops->kernel_act_as(new, secid);
778 }
779
780 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
781 {
782         return security_ops->kernel_create_files_as(new, inode);
783 }
784
785 int security_kernel_module_request(char *kmod_name)
786 {
787         return security_ops->kernel_module_request(kmod_name);
788 }
789
790 int security_task_fix_setuid(struct cred *new, const struct cred *old,
791                              int flags)
792 {
793         return security_ops->task_fix_setuid(new, old, flags);
794 }
795
796 int security_task_setpgid(struct task_struct *p, pid_t pgid)
797 {
798         return security_ops->task_setpgid(p, pgid);
799 }
800
801 int security_task_getpgid(struct task_struct *p)
802 {
803         return security_ops->task_getpgid(p);
804 }
805
806 int security_task_getsid(struct task_struct *p)
807 {
808         return security_ops->task_getsid(p);
809 }
810
811 void security_task_getsecid(struct task_struct *p, u32 *secid)
812 {
813         security_ops->task_getsecid(p, secid);
814 }
815 EXPORT_SYMBOL(security_task_getsecid);
816
817 int security_task_setnice(struct task_struct *p, int nice)
818 {
819         return security_ops->task_setnice(p, nice);
820 }
821
822 int security_task_setioprio(struct task_struct *p, int ioprio)
823 {
824         return security_ops->task_setioprio(p, ioprio);
825 }
826
827 int security_task_getioprio(struct task_struct *p)
828 {
829         return security_ops->task_getioprio(p);
830 }
831
832 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
833                 struct rlimit *new_rlim)
834 {
835         return security_ops->task_setrlimit(p, resource, new_rlim);
836 }
837
838 int security_task_setscheduler(struct task_struct *p)
839 {
840         return security_ops->task_setscheduler(p);
841 }
842
843 int security_task_getscheduler(struct task_struct *p)
844 {
845         return security_ops->task_getscheduler(p);
846 }
847
848 int security_task_movememory(struct task_struct *p)
849 {
850         return security_ops->task_movememory(p);
851 }
852
853 int security_task_kill(struct task_struct *p, struct siginfo *info,
854                         int sig, u32 secid)
855 {
856         return security_ops->task_kill(p, info, sig, secid);
857 }
858
859 int security_task_wait(struct task_struct *p)
860 {
861         return security_ops->task_wait(p);
862 }
863
864 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
865                          unsigned long arg4, unsigned long arg5)
866 {
867         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
868 }
869
870 void security_task_to_inode(struct task_struct *p, struct inode *inode)
871 {
872         security_ops->task_to_inode(p, inode);
873 }
874
875 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
876 {
877         return security_ops->ipc_permission(ipcp, flag);
878 }
879
880 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
881 {
882         security_ops->ipc_getsecid(ipcp, secid);
883 }
884
885 int security_msg_msg_alloc(struct msg_msg *msg)
886 {
887         return security_ops->msg_msg_alloc_security(msg);
888 }
889
890 void security_msg_msg_free(struct msg_msg *msg)
891 {
892         security_ops->msg_msg_free_security(msg);
893 }
894
895 int security_msg_queue_alloc(struct msg_queue *msq)
896 {
897         return security_ops->msg_queue_alloc_security(msq);
898 }
899
900 void security_msg_queue_free(struct msg_queue *msq)
901 {
902         security_ops->msg_queue_free_security(msq);
903 }
904
905 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
906 {
907         return security_ops->msg_queue_associate(msq, msqflg);
908 }
909
910 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
911 {
912         return security_ops->msg_queue_msgctl(msq, cmd);
913 }
914
915 int security_msg_queue_msgsnd(struct msg_queue *msq,
916                                struct msg_msg *msg, int msqflg)
917 {
918         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
919 }
920
921 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
922                                struct task_struct *target, long type, int mode)
923 {
924         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
925 }
926
927 int security_shm_alloc(struct shmid_kernel *shp)
928 {
929         return security_ops->shm_alloc_security(shp);
930 }
931
932 void security_shm_free(struct shmid_kernel *shp)
933 {
934         security_ops->shm_free_security(shp);
935 }
936
937 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
938 {
939         return security_ops->shm_associate(shp, shmflg);
940 }
941
942 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
943 {
944         return security_ops->shm_shmctl(shp, cmd);
945 }
946
947 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
948 {
949         return security_ops->shm_shmat(shp, shmaddr, shmflg);
950 }
951
952 int security_sem_alloc(struct sem_array *sma)
953 {
954         return security_ops->sem_alloc_security(sma);
955 }
956
957 void security_sem_free(struct sem_array *sma)
958 {
959         security_ops->sem_free_security(sma);
960 }
961
962 int security_sem_associate(struct sem_array *sma, int semflg)
963 {
964         return security_ops->sem_associate(sma, semflg);
965 }
966
967 int security_sem_semctl(struct sem_array *sma, int cmd)
968 {
969         return security_ops->sem_semctl(sma, cmd);
970 }
971
972 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
973                         unsigned nsops, int alter)
974 {
975         return security_ops->sem_semop(sma, sops, nsops, alter);
976 }
977
978 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
979 {
980         if (unlikely(inode && IS_PRIVATE(inode)))
981                 return;
982         security_ops->d_instantiate(dentry, inode);
983 }
984 EXPORT_SYMBOL(security_d_instantiate);
985
986 int security_getprocattr(struct task_struct *p, char *name, char **value)
987 {
988         return security_ops->getprocattr(p, name, value);
989 }
990
991 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
992 {
993         return security_ops->setprocattr(p, name, value, size);
994 }
995
996 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
997 {
998         return security_ops->netlink_send(sk, skb);
999 }
1000
1001 int security_netlink_recv(struct sk_buff *skb, int cap)
1002 {
1003         return security_ops->netlink_recv(skb, cap);
1004 }
1005 EXPORT_SYMBOL(security_netlink_recv);
1006
1007 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1008 {
1009         return security_ops->secid_to_secctx(secid, secdata, seclen);
1010 }
1011 EXPORT_SYMBOL(security_secid_to_secctx);
1012
1013 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1014 {
1015         return security_ops->secctx_to_secid(secdata, seclen, secid);
1016 }
1017 EXPORT_SYMBOL(security_secctx_to_secid);
1018
1019 void security_release_secctx(char *secdata, u32 seclen)
1020 {
1021         security_ops->release_secctx(secdata, seclen);
1022 }
1023 EXPORT_SYMBOL(security_release_secctx);
1024
1025 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1026 {
1027         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1028 }
1029 EXPORT_SYMBOL(security_inode_notifysecctx);
1030
1031 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1032 {
1033         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1034 }
1035 EXPORT_SYMBOL(security_inode_setsecctx);
1036
1037 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1038 {
1039         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1040 }
1041 EXPORT_SYMBOL(security_inode_getsecctx);
1042
1043 #ifdef CONFIG_SECURITY_NETWORK
1044
1045 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1046 {
1047         return security_ops->unix_stream_connect(sock, other, newsk);
1048 }
1049 EXPORT_SYMBOL(security_unix_stream_connect);
1050
1051 int security_unix_may_send(struct socket *sock,  struct socket *other)
1052 {
1053         return security_ops->unix_may_send(sock, other);
1054 }
1055 EXPORT_SYMBOL(security_unix_may_send);
1056
1057 int security_socket_create(int family, int type, int protocol, int kern)
1058 {
1059         return security_ops->socket_create(family, type, protocol, kern);
1060 }
1061
1062 int security_socket_post_create(struct socket *sock, int family,
1063                                 int type, int protocol, int kern)
1064 {
1065         return security_ops->socket_post_create(sock, family, type,
1066                                                 protocol, kern);
1067 }
1068
1069 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1070 {
1071         return security_ops->socket_bind(sock, address, addrlen);
1072 }
1073
1074 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1075 {
1076         return security_ops->socket_connect(sock, address, addrlen);
1077 }
1078
1079 int security_socket_listen(struct socket *sock, int backlog)
1080 {
1081         return security_ops->socket_listen(sock, backlog);
1082 }
1083
1084 int security_socket_accept(struct socket *sock, struct socket *newsock)
1085 {
1086         return security_ops->socket_accept(sock, newsock);
1087 }
1088
1089 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1090 {
1091         return security_ops->socket_sendmsg(sock, msg, size);
1092 }
1093
1094 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1095                             int size, int flags)
1096 {
1097         return security_ops->socket_recvmsg(sock, msg, size, flags);
1098 }
1099
1100 int security_socket_getsockname(struct socket *sock)
1101 {
1102         return security_ops->socket_getsockname(sock);
1103 }
1104
1105 int security_socket_getpeername(struct socket *sock)
1106 {
1107         return security_ops->socket_getpeername(sock);
1108 }
1109
1110 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1111 {
1112         return security_ops->socket_getsockopt(sock, level, optname);
1113 }
1114
1115 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1116 {
1117         return security_ops->socket_setsockopt(sock, level, optname);
1118 }
1119
1120 int security_socket_shutdown(struct socket *sock, int how)
1121 {
1122         return security_ops->socket_shutdown(sock, how);
1123 }
1124
1125 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1126 {
1127         return security_ops->socket_sock_rcv_skb(sk, skb);
1128 }
1129 EXPORT_SYMBOL(security_sock_rcv_skb);
1130
1131 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1132                                       int __user *optlen, unsigned len)
1133 {
1134         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1135 }
1136
1137 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1138 {
1139         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1140 }
1141 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1142
1143 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1144 {
1145         return security_ops->sk_alloc_security(sk, family, priority);
1146 }
1147
1148 void security_sk_free(struct sock *sk)
1149 {
1150         security_ops->sk_free_security(sk);
1151 }
1152
1153 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1154 {
1155         security_ops->sk_clone_security(sk, newsk);
1156 }
1157
1158 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1159 {
1160         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1161 }
1162 EXPORT_SYMBOL(security_sk_classify_flow);
1163
1164 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1165 {
1166         security_ops->req_classify_flow(req, fl);
1167 }
1168 EXPORT_SYMBOL(security_req_classify_flow);
1169
1170 void security_sock_graft(struct sock *sk, struct socket *parent)
1171 {
1172         security_ops->sock_graft(sk, parent);
1173 }
1174 EXPORT_SYMBOL(security_sock_graft);
1175
1176 int security_inet_conn_request(struct sock *sk,
1177                         struct sk_buff *skb, struct request_sock *req)
1178 {
1179         return security_ops->inet_conn_request(sk, skb, req);
1180 }
1181 EXPORT_SYMBOL(security_inet_conn_request);
1182
1183 void security_inet_csk_clone(struct sock *newsk,
1184                         const struct request_sock *req)
1185 {
1186         security_ops->inet_csk_clone(newsk, req);
1187 }
1188
1189 void security_inet_conn_established(struct sock *sk,
1190                         struct sk_buff *skb)
1191 {
1192         security_ops->inet_conn_established(sk, skb);
1193 }
1194
1195 int security_secmark_relabel_packet(u32 secid)
1196 {
1197         return security_ops->secmark_relabel_packet(secid);
1198 }
1199 EXPORT_SYMBOL(security_secmark_relabel_packet);
1200
1201 void security_secmark_refcount_inc(void)
1202 {
1203         security_ops->secmark_refcount_inc();
1204 }
1205 EXPORT_SYMBOL(security_secmark_refcount_inc);
1206
1207 void security_secmark_refcount_dec(void)
1208 {
1209         security_ops->secmark_refcount_dec();
1210 }
1211 EXPORT_SYMBOL(security_secmark_refcount_dec);
1212
1213 int security_tun_dev_create(void)
1214 {
1215         return security_ops->tun_dev_create();
1216 }
1217 EXPORT_SYMBOL(security_tun_dev_create);
1218
1219 void security_tun_dev_post_create(struct sock *sk)
1220 {
1221         return security_ops->tun_dev_post_create(sk);
1222 }
1223 EXPORT_SYMBOL(security_tun_dev_post_create);
1224
1225 int security_tun_dev_attach(struct sock *sk)
1226 {
1227         return security_ops->tun_dev_attach(sk);
1228 }
1229 EXPORT_SYMBOL(security_tun_dev_attach);
1230
1231 #endif  /* CONFIG_SECURITY_NETWORK */
1232
1233 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1234
1235 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1236 {
1237         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1238 }
1239 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1240
1241 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1242                               struct xfrm_sec_ctx **new_ctxp)
1243 {
1244         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1245 }
1246
1247 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1248 {
1249         security_ops->xfrm_policy_free_security(ctx);
1250 }
1251 EXPORT_SYMBOL(security_xfrm_policy_free);
1252
1253 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1254 {
1255         return security_ops->xfrm_policy_delete_security(ctx);
1256 }
1257
1258 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1259 {
1260         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1261 }
1262 EXPORT_SYMBOL(security_xfrm_state_alloc);
1263
1264 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1265                                       struct xfrm_sec_ctx *polsec, u32 secid)
1266 {
1267         if (!polsec)
1268                 return 0;
1269         /*
1270          * We want the context to be taken from secid which is usually
1271          * from the sock.
1272          */
1273         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1274 }
1275
1276 int security_xfrm_state_delete(struct xfrm_state *x)
1277 {
1278         return security_ops->xfrm_state_delete_security(x);
1279 }
1280 EXPORT_SYMBOL(security_xfrm_state_delete);
1281
1282 void security_xfrm_state_free(struct xfrm_state *x)
1283 {
1284         security_ops->xfrm_state_free_security(x);
1285 }
1286
1287 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1288 {
1289         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1290 }
1291
1292 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1293                                        struct xfrm_policy *xp,
1294                                        const struct flowi *fl)
1295 {
1296         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1297 }
1298
1299 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1300 {
1301         return security_ops->xfrm_decode_session(skb, secid, 1);
1302 }
1303
1304 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1305 {
1306         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1307
1308         BUG_ON(rc);
1309 }
1310 EXPORT_SYMBOL(security_skb_classify_flow);
1311
1312 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1313
1314 #ifdef CONFIG_KEYS
1315
1316 int security_key_alloc(struct key *key, const struct cred *cred,
1317                        unsigned long flags)
1318 {
1319         return security_ops->key_alloc(key, cred, flags);
1320 }
1321
1322 void security_key_free(struct key *key)
1323 {
1324         security_ops->key_free(key);
1325 }
1326
1327 int security_key_permission(key_ref_t key_ref,
1328                             const struct cred *cred, key_perm_t perm)
1329 {
1330         return security_ops->key_permission(key_ref, cred, perm);
1331 }
1332
1333 int security_key_getsecurity(struct key *key, char **_buffer)
1334 {
1335         return security_ops->key_getsecurity(key, _buffer);
1336 }
1337
1338 #endif  /* CONFIG_KEYS */
1339
1340 #ifdef CONFIG_AUDIT
1341
1342 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1343 {
1344         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1345 }
1346
1347 int security_audit_rule_known(struct audit_krule *krule)
1348 {
1349         return security_ops->audit_rule_known(krule);
1350 }
1351
1352 void security_audit_rule_free(void *lsmrule)
1353 {
1354         security_ops->audit_rule_free(lsmrule);
1355 }
1356
1357 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1358                               struct audit_context *actx)
1359 {
1360         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1361 }
1362
1363 #endif /* CONFIG_AUDIT */