security: remove sb_check_sb hooks
[linux-2.6.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23         CONFIG_DEFAULT_SECURITY;
24
25 /* things that live in capability.c */
26 extern void security_fixup_ops(struct security_operations *ops);
27
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30         .name   = "default",
31 };
32
33 static inline int verify(struct security_operations *ops)
34 {
35         /* verify the security_operations structure exists */
36         if (!ops)
37                 return -EINVAL;
38         security_fixup_ops(ops);
39         return 0;
40 }
41
42 static void __init do_security_initcalls(void)
43 {
44         initcall_t *call;
45         call = __security_initcall_start;
46         while (call < __security_initcall_end) {
47                 (*call) ();
48                 call++;
49         }
50 }
51
52 /**
53  * security_init - initializes the security framework
54  *
55  * This should be called early in the kernel initialization sequence.
56  */
57 int __init security_init(void)
58 {
59         printk(KERN_INFO "Security Framework initialized\n");
60
61         security_fixup_ops(&default_security_ops);
62         security_ops = &default_security_ops;
63         do_security_initcalls();
64
65         return 0;
66 }
67
68 void reset_security_ops(void)
69 {
70         security_ops = &default_security_ops;
71 }
72
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77         return 1;
78 }
79 __setup("security=", choose_lsm);
80
81 /**
82  * security_module_enable - Load given security module on boot ?
83  * @ops: a pointer to the struct security_operations that is to be checked.
84  *
85  * Each LSM must pass this method before registering its own operations
86  * to avoid security registration races. This method may also be used
87  * to check if your LSM is currently loaded during kernel initialization.
88  *
89  * Return true if:
90  *      -The passed LSM is the one chosen by user at boot time,
91  *      -or the passed LSM is configured as the default and the user did not
92  *       choose an alternate LSM at boot time,
93  *      -or there is no default LSM set and the user didn't specify a
94  *       specific LSM and we're the first to ask for registration permission,
95  *      -or the passed LSM is currently loaded.
96  * Otherwise, return false.
97  */
98 int __init security_module_enable(struct security_operations *ops)
99 {
100         if (!*chosen_lsm)
101                 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
102         else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
103                 return 0;
104
105         return 1;
106 }
107
108 /**
109  * register_security - registers a security framework with the kernel
110  * @ops: a pointer to the struct security_options that is to be registered
111  *
112  * This function allows a security module to register itself with the
113  * kernel security subsystem.  Some rudimentary checking is done on the @ops
114  * value passed to this function. You'll need to check first if your LSM
115  * is allowed to register its @ops by calling security_module_enable(@ops).
116  *
117  * If there is already a security module registered with the kernel,
118  * an error will be returned.  Otherwise %0 is returned on success.
119  */
120 int __init register_security(struct security_operations *ops)
121 {
122         if (verify(ops)) {
123                 printk(KERN_DEBUG "%s could not verify "
124                        "security_operations structure.\n", __func__);
125                 return -EINVAL;
126         }
127
128         if (security_ops != &default_security_ops)
129                 return -EAGAIN;
130
131         security_ops = ops;
132
133         return 0;
134 }
135
136 /* Security operations */
137
138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139 {
140         return security_ops->ptrace_access_check(child, mode);
141 }
142
143 int security_ptrace_traceme(struct task_struct *parent)
144 {
145         return security_ops->ptrace_traceme(parent);
146 }
147
148 int security_capget(struct task_struct *target,
149                      kernel_cap_t *effective,
150                      kernel_cap_t *inheritable,
151                      kernel_cap_t *permitted)
152 {
153         return security_ops->capget(target, effective, inheritable, permitted);
154 }
155
156 int security_capset(struct cred *new, const struct cred *old,
157                     const kernel_cap_t *effective,
158                     const kernel_cap_t *inheritable,
159                     const kernel_cap_t *permitted)
160 {
161         return security_ops->capset(new, old,
162                                     effective, inheritable, permitted);
163 }
164
165 int security_capable(int cap)
166 {
167         return security_ops->capable(current, current_cred(), cap,
168                                      SECURITY_CAP_AUDIT);
169 }
170
171 int security_real_capable(struct task_struct *tsk, int cap)
172 {
173         const struct cred *cred;
174         int ret;
175
176         cred = get_task_cred(tsk);
177         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
178         put_cred(cred);
179         return ret;
180 }
181
182 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
183 {
184         const struct cred *cred;
185         int ret;
186
187         cred = get_task_cred(tsk);
188         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
189         put_cred(cred);
190         return ret;
191 }
192
193 int security_acct(struct file *file)
194 {
195         return security_ops->acct(file);
196 }
197
198 int security_sysctl(struct ctl_table *table, int op)
199 {
200         return security_ops->sysctl(table, op);
201 }
202
203 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
204 {
205         return security_ops->quotactl(cmds, type, id, sb);
206 }
207
208 int security_quota_on(struct dentry *dentry)
209 {
210         return security_ops->quota_on(dentry);
211 }
212
213 int security_syslog(int type, bool from_file)
214 {
215         return security_ops->syslog(type, from_file);
216 }
217
218 int security_settime(struct timespec *ts, struct timezone *tz)
219 {
220         return security_ops->settime(ts, tz);
221 }
222
223 int security_vm_enough_memory(long pages)
224 {
225         WARN_ON(current->mm == NULL);
226         return security_ops->vm_enough_memory(current->mm, pages);
227 }
228
229 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
230 {
231         WARN_ON(mm == NULL);
232         return security_ops->vm_enough_memory(mm, pages);
233 }
234
235 int security_vm_enough_memory_kern(long pages)
236 {
237         /* If current->mm is a kernel thread then we will pass NULL,
238            for this specific case that is fine */
239         return security_ops->vm_enough_memory(current->mm, pages);
240 }
241
242 int security_bprm_set_creds(struct linux_binprm *bprm)
243 {
244         return security_ops->bprm_set_creds(bprm);
245 }
246
247 int security_bprm_check(struct linux_binprm *bprm)
248 {
249         int ret;
250
251         ret = security_ops->bprm_check_security(bprm);
252         if (ret)
253                 return ret;
254         return ima_bprm_check(bprm);
255 }
256
257 void security_bprm_committing_creds(struct linux_binprm *bprm)
258 {
259         security_ops->bprm_committing_creds(bprm);
260 }
261
262 void security_bprm_committed_creds(struct linux_binprm *bprm)
263 {
264         security_ops->bprm_committed_creds(bprm);
265 }
266
267 int security_bprm_secureexec(struct linux_binprm *bprm)
268 {
269         return security_ops->bprm_secureexec(bprm);
270 }
271
272 int security_sb_alloc(struct super_block *sb)
273 {
274         return security_ops->sb_alloc_security(sb);
275 }
276
277 void security_sb_free(struct super_block *sb)
278 {
279         security_ops->sb_free_security(sb);
280 }
281
282 int security_sb_copy_data(char *orig, char *copy)
283 {
284         return security_ops->sb_copy_data(orig, copy);
285 }
286 EXPORT_SYMBOL(security_sb_copy_data);
287
288 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
289 {
290         return security_ops->sb_kern_mount(sb, flags, data);
291 }
292
293 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
294 {
295         return security_ops->sb_show_options(m, sb);
296 }
297
298 int security_sb_statfs(struct dentry *dentry)
299 {
300         return security_ops->sb_statfs(dentry);
301 }
302
303 int security_sb_mount(char *dev_name, struct path *path,
304                        char *type, unsigned long flags, void *data)
305 {
306         return security_ops->sb_mount(dev_name, path, type, flags, data);
307 }
308
309 int security_sb_umount(struct vfsmount *mnt, int flags)
310 {
311         return security_ops->sb_umount(mnt, flags);
312 }
313
314 void security_sb_umount_close(struct vfsmount *mnt)
315 {
316         security_ops->sb_umount_close(mnt);
317 }
318
319 void security_sb_umount_busy(struct vfsmount *mnt)
320 {
321         security_ops->sb_umount_busy(mnt);
322 }
323
324 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
325 {
326         security_ops->sb_post_remount(mnt, flags, data);
327 }
328
329 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
330 {
331         security_ops->sb_post_addmount(mnt, mountpoint);
332 }
333
334 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
335 {
336         return security_ops->sb_pivotroot(old_path, new_path);
337 }
338
339 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
340 {
341         security_ops->sb_post_pivotroot(old_path, new_path);
342 }
343
344 int security_sb_set_mnt_opts(struct super_block *sb,
345                                 struct security_mnt_opts *opts)
346 {
347         return security_ops->sb_set_mnt_opts(sb, opts);
348 }
349 EXPORT_SYMBOL(security_sb_set_mnt_opts);
350
351 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
352                                 struct super_block *newsb)
353 {
354         security_ops->sb_clone_mnt_opts(oldsb, newsb);
355 }
356 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
357
358 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
359 {
360         return security_ops->sb_parse_opts_str(options, opts);
361 }
362 EXPORT_SYMBOL(security_sb_parse_opts_str);
363
364 int security_inode_alloc(struct inode *inode)
365 {
366         int ret;
367
368         inode->i_security = NULL;
369         ret =  security_ops->inode_alloc_security(inode);
370         if (ret)
371                 return ret;
372         ret = ima_inode_alloc(inode);
373         if (ret)
374                 security_inode_free(inode);
375         return ret;
376 }
377
378 void security_inode_free(struct inode *inode)
379 {
380         ima_inode_free(inode);
381         security_ops->inode_free_security(inode);
382 }
383
384 int security_inode_init_security(struct inode *inode, struct inode *dir,
385                                   char **name, void **value, size_t *len)
386 {
387         if (unlikely(IS_PRIVATE(inode)))
388                 return -EOPNOTSUPP;
389         return security_ops->inode_init_security(inode, dir, name, value, len);
390 }
391 EXPORT_SYMBOL(security_inode_init_security);
392
393 #ifdef CONFIG_SECURITY_PATH
394 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
395                         unsigned int dev)
396 {
397         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
398                 return 0;
399         return security_ops->path_mknod(dir, dentry, mode, dev);
400 }
401 EXPORT_SYMBOL(security_path_mknod);
402
403 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
404 {
405         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
406                 return 0;
407         return security_ops->path_mkdir(dir, dentry, mode);
408 }
409
410 int security_path_rmdir(struct path *dir, struct dentry *dentry)
411 {
412         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
413                 return 0;
414         return security_ops->path_rmdir(dir, dentry);
415 }
416
417 int security_path_unlink(struct path *dir, struct dentry *dentry)
418 {
419         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
420                 return 0;
421         return security_ops->path_unlink(dir, dentry);
422 }
423
424 int security_path_symlink(struct path *dir, struct dentry *dentry,
425                           const char *old_name)
426 {
427         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
428                 return 0;
429         return security_ops->path_symlink(dir, dentry, old_name);
430 }
431
432 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
433                        struct dentry *new_dentry)
434 {
435         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
436                 return 0;
437         return security_ops->path_link(old_dentry, new_dir, new_dentry);
438 }
439
440 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
441                          struct path *new_dir, struct dentry *new_dentry)
442 {
443         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
444                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
445                 return 0;
446         return security_ops->path_rename(old_dir, old_dentry, new_dir,
447                                          new_dentry);
448 }
449
450 int security_path_truncate(struct path *path, loff_t length,
451                            unsigned int time_attrs)
452 {
453         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
454                 return 0;
455         return security_ops->path_truncate(path, length, time_attrs);
456 }
457
458 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
459                         mode_t mode)
460 {
461         if (unlikely(IS_PRIVATE(dentry->d_inode)))
462                 return 0;
463         return security_ops->path_chmod(dentry, mnt, mode);
464 }
465
466 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
467 {
468         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
469                 return 0;
470         return security_ops->path_chown(path, uid, gid);
471 }
472
473 int security_path_chroot(struct path *path)
474 {
475         return security_ops->path_chroot(path);
476 }
477 #endif
478
479 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
480 {
481         if (unlikely(IS_PRIVATE(dir)))
482                 return 0;
483         return security_ops->inode_create(dir, dentry, mode);
484 }
485 EXPORT_SYMBOL_GPL(security_inode_create);
486
487 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
488                          struct dentry *new_dentry)
489 {
490         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
491                 return 0;
492         return security_ops->inode_link(old_dentry, dir, new_dentry);
493 }
494
495 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
496 {
497         if (unlikely(IS_PRIVATE(dentry->d_inode)))
498                 return 0;
499         return security_ops->inode_unlink(dir, dentry);
500 }
501
502 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
503                             const char *old_name)
504 {
505         if (unlikely(IS_PRIVATE(dir)))
506                 return 0;
507         return security_ops->inode_symlink(dir, dentry, old_name);
508 }
509
510 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
511 {
512         if (unlikely(IS_PRIVATE(dir)))
513                 return 0;
514         return security_ops->inode_mkdir(dir, dentry, mode);
515 }
516 EXPORT_SYMBOL_GPL(security_inode_mkdir);
517
518 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
519 {
520         if (unlikely(IS_PRIVATE(dentry->d_inode)))
521                 return 0;
522         return security_ops->inode_rmdir(dir, dentry);
523 }
524
525 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
526 {
527         if (unlikely(IS_PRIVATE(dir)))
528                 return 0;
529         return security_ops->inode_mknod(dir, dentry, mode, dev);
530 }
531
532 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
533                            struct inode *new_dir, struct dentry *new_dentry)
534 {
535         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
536             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
537                 return 0;
538         return security_ops->inode_rename(old_dir, old_dentry,
539                                            new_dir, new_dentry);
540 }
541
542 int security_inode_readlink(struct dentry *dentry)
543 {
544         if (unlikely(IS_PRIVATE(dentry->d_inode)))
545                 return 0;
546         return security_ops->inode_readlink(dentry);
547 }
548
549 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
550 {
551         if (unlikely(IS_PRIVATE(dentry->d_inode)))
552                 return 0;
553         return security_ops->inode_follow_link(dentry, nd);
554 }
555
556 int security_inode_permission(struct inode *inode, int mask)
557 {
558         if (unlikely(IS_PRIVATE(inode)))
559                 return 0;
560         return security_ops->inode_permission(inode, mask);
561 }
562
563 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
564 {
565         if (unlikely(IS_PRIVATE(dentry->d_inode)))
566                 return 0;
567         return security_ops->inode_setattr(dentry, attr);
568 }
569 EXPORT_SYMBOL_GPL(security_inode_setattr);
570
571 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
572 {
573         if (unlikely(IS_PRIVATE(dentry->d_inode)))
574                 return 0;
575         return security_ops->inode_getattr(mnt, dentry);
576 }
577
578 void security_inode_delete(struct inode *inode)
579 {
580         if (unlikely(IS_PRIVATE(inode)))
581                 return;
582         security_ops->inode_delete(inode);
583 }
584
585 int security_inode_setxattr(struct dentry *dentry, const char *name,
586                             const void *value, size_t size, int flags)
587 {
588         if (unlikely(IS_PRIVATE(dentry->d_inode)))
589                 return 0;
590         return security_ops->inode_setxattr(dentry, name, value, size, flags);
591 }
592
593 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
594                                   const void *value, size_t size, int flags)
595 {
596         if (unlikely(IS_PRIVATE(dentry->d_inode)))
597                 return;
598         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
599 }
600
601 int security_inode_getxattr(struct dentry *dentry, const char *name)
602 {
603         if (unlikely(IS_PRIVATE(dentry->d_inode)))
604                 return 0;
605         return security_ops->inode_getxattr(dentry, name);
606 }
607
608 int security_inode_listxattr(struct dentry *dentry)
609 {
610         if (unlikely(IS_PRIVATE(dentry->d_inode)))
611                 return 0;
612         return security_ops->inode_listxattr(dentry);
613 }
614
615 int security_inode_removexattr(struct dentry *dentry, const char *name)
616 {
617         if (unlikely(IS_PRIVATE(dentry->d_inode)))
618                 return 0;
619         return security_ops->inode_removexattr(dentry, name);
620 }
621
622 int security_inode_need_killpriv(struct dentry *dentry)
623 {
624         return security_ops->inode_need_killpriv(dentry);
625 }
626
627 int security_inode_killpriv(struct dentry *dentry)
628 {
629         return security_ops->inode_killpriv(dentry);
630 }
631
632 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
633 {
634         if (unlikely(IS_PRIVATE(inode)))
635                 return -EOPNOTSUPP;
636         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
637 }
638
639 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
640 {
641         if (unlikely(IS_PRIVATE(inode)))
642                 return -EOPNOTSUPP;
643         return security_ops->inode_setsecurity(inode, name, value, size, flags);
644 }
645
646 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
647 {
648         if (unlikely(IS_PRIVATE(inode)))
649                 return 0;
650         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
651 }
652
653 void security_inode_getsecid(const struct inode *inode, u32 *secid)
654 {
655         security_ops->inode_getsecid(inode, secid);
656 }
657
658 int security_file_permission(struct file *file, int mask)
659 {
660         return security_ops->file_permission(file, mask);
661 }
662
663 int security_file_alloc(struct file *file)
664 {
665         return security_ops->file_alloc_security(file);
666 }
667
668 void security_file_free(struct file *file)
669 {
670         security_ops->file_free_security(file);
671 }
672
673 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
674 {
675         return security_ops->file_ioctl(file, cmd, arg);
676 }
677
678 int security_file_mmap(struct file *file, unsigned long reqprot,
679                         unsigned long prot, unsigned long flags,
680                         unsigned long addr, unsigned long addr_only)
681 {
682         int ret;
683
684         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
685         if (ret)
686                 return ret;
687         return ima_file_mmap(file, prot);
688 }
689
690 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
691                             unsigned long prot)
692 {
693         return security_ops->file_mprotect(vma, reqprot, prot);
694 }
695
696 int security_file_lock(struct file *file, unsigned int cmd)
697 {
698         return security_ops->file_lock(file, cmd);
699 }
700
701 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
702 {
703         return security_ops->file_fcntl(file, cmd, arg);
704 }
705
706 int security_file_set_fowner(struct file *file)
707 {
708         return security_ops->file_set_fowner(file);
709 }
710
711 int security_file_send_sigiotask(struct task_struct *tsk,
712                                   struct fown_struct *fown, int sig)
713 {
714         return security_ops->file_send_sigiotask(tsk, fown, sig);
715 }
716
717 int security_file_receive(struct file *file)
718 {
719         return security_ops->file_receive(file);
720 }
721
722 int security_dentry_open(struct file *file, const struct cred *cred)
723 {
724         return security_ops->dentry_open(file, cred);
725 }
726
727 int security_task_create(unsigned long clone_flags)
728 {
729         return security_ops->task_create(clone_flags);
730 }
731
732 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
733 {
734         return security_ops->cred_alloc_blank(cred, gfp);
735 }
736
737 void security_cred_free(struct cred *cred)
738 {
739         security_ops->cred_free(cred);
740 }
741
742 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
743 {
744         return security_ops->cred_prepare(new, old, gfp);
745 }
746
747 void security_commit_creds(struct cred *new, const struct cred *old)
748 {
749         security_ops->cred_commit(new, old);
750 }
751
752 void security_transfer_creds(struct cred *new, const struct cred *old)
753 {
754         security_ops->cred_transfer(new, old);
755 }
756
757 int security_kernel_act_as(struct cred *new, u32 secid)
758 {
759         return security_ops->kernel_act_as(new, secid);
760 }
761
762 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
763 {
764         return security_ops->kernel_create_files_as(new, inode);
765 }
766
767 int security_kernel_module_request(char *kmod_name)
768 {
769         return security_ops->kernel_module_request(kmod_name);
770 }
771
772 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
773 {
774         return security_ops->task_setuid(id0, id1, id2, flags);
775 }
776
777 int security_task_fix_setuid(struct cred *new, const struct cred *old,
778                              int flags)
779 {
780         return security_ops->task_fix_setuid(new, old, flags);
781 }
782
783 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
784 {
785         return security_ops->task_setgid(id0, id1, id2, flags);
786 }
787
788 int security_task_setpgid(struct task_struct *p, pid_t pgid)
789 {
790         return security_ops->task_setpgid(p, pgid);
791 }
792
793 int security_task_getpgid(struct task_struct *p)
794 {
795         return security_ops->task_getpgid(p);
796 }
797
798 int security_task_getsid(struct task_struct *p)
799 {
800         return security_ops->task_getsid(p);
801 }
802
803 void security_task_getsecid(struct task_struct *p, u32 *secid)
804 {
805         security_ops->task_getsecid(p, secid);
806 }
807 EXPORT_SYMBOL(security_task_getsecid);
808
809 int security_task_setgroups(struct group_info *group_info)
810 {
811         return security_ops->task_setgroups(group_info);
812 }
813
814 int security_task_setnice(struct task_struct *p, int nice)
815 {
816         return security_ops->task_setnice(p, nice);
817 }
818
819 int security_task_setioprio(struct task_struct *p, int ioprio)
820 {
821         return security_ops->task_setioprio(p, ioprio);
822 }
823
824 int security_task_getioprio(struct task_struct *p)
825 {
826         return security_ops->task_getioprio(p);
827 }
828
829 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
830 {
831         return security_ops->task_setrlimit(resource, new_rlim);
832 }
833
834 int security_task_setscheduler(struct task_struct *p,
835                                 int policy, struct sched_param *lp)
836 {
837         return security_ops->task_setscheduler(p, policy, lp);
838 }
839
840 int security_task_getscheduler(struct task_struct *p)
841 {
842         return security_ops->task_getscheduler(p);
843 }
844
845 int security_task_movememory(struct task_struct *p)
846 {
847         return security_ops->task_movememory(p);
848 }
849
850 int security_task_kill(struct task_struct *p, struct siginfo *info,
851                         int sig, u32 secid)
852 {
853         return security_ops->task_kill(p, info, sig, secid);
854 }
855
856 int security_task_wait(struct task_struct *p)
857 {
858         return security_ops->task_wait(p);
859 }
860
861 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
862                          unsigned long arg4, unsigned long arg5)
863 {
864         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
865 }
866
867 void security_task_to_inode(struct task_struct *p, struct inode *inode)
868 {
869         security_ops->task_to_inode(p, inode);
870 }
871
872 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
873 {
874         return security_ops->ipc_permission(ipcp, flag);
875 }
876
877 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
878 {
879         security_ops->ipc_getsecid(ipcp, secid);
880 }
881
882 int security_msg_msg_alloc(struct msg_msg *msg)
883 {
884         return security_ops->msg_msg_alloc_security(msg);
885 }
886
887 void security_msg_msg_free(struct msg_msg *msg)
888 {
889         security_ops->msg_msg_free_security(msg);
890 }
891
892 int security_msg_queue_alloc(struct msg_queue *msq)
893 {
894         return security_ops->msg_queue_alloc_security(msq);
895 }
896
897 void security_msg_queue_free(struct msg_queue *msq)
898 {
899         security_ops->msg_queue_free_security(msq);
900 }
901
902 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
903 {
904         return security_ops->msg_queue_associate(msq, msqflg);
905 }
906
907 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
908 {
909         return security_ops->msg_queue_msgctl(msq, cmd);
910 }
911
912 int security_msg_queue_msgsnd(struct msg_queue *msq,
913                                struct msg_msg *msg, int msqflg)
914 {
915         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
916 }
917
918 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
919                                struct task_struct *target, long type, int mode)
920 {
921         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
922 }
923
924 int security_shm_alloc(struct shmid_kernel *shp)
925 {
926         return security_ops->shm_alloc_security(shp);
927 }
928
929 void security_shm_free(struct shmid_kernel *shp)
930 {
931         security_ops->shm_free_security(shp);
932 }
933
934 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
935 {
936         return security_ops->shm_associate(shp, shmflg);
937 }
938
939 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
940 {
941         return security_ops->shm_shmctl(shp, cmd);
942 }
943
944 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
945 {
946         return security_ops->shm_shmat(shp, shmaddr, shmflg);
947 }
948
949 int security_sem_alloc(struct sem_array *sma)
950 {
951         return security_ops->sem_alloc_security(sma);
952 }
953
954 void security_sem_free(struct sem_array *sma)
955 {
956         security_ops->sem_free_security(sma);
957 }
958
959 int security_sem_associate(struct sem_array *sma, int semflg)
960 {
961         return security_ops->sem_associate(sma, semflg);
962 }
963
964 int security_sem_semctl(struct sem_array *sma, int cmd)
965 {
966         return security_ops->sem_semctl(sma, cmd);
967 }
968
969 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
970                         unsigned nsops, int alter)
971 {
972         return security_ops->sem_semop(sma, sops, nsops, alter);
973 }
974
975 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
976 {
977         if (unlikely(inode && IS_PRIVATE(inode)))
978                 return;
979         security_ops->d_instantiate(dentry, inode);
980 }
981 EXPORT_SYMBOL(security_d_instantiate);
982
983 int security_getprocattr(struct task_struct *p, char *name, char **value)
984 {
985         return security_ops->getprocattr(p, name, value);
986 }
987
988 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
989 {
990         return security_ops->setprocattr(p, name, value, size);
991 }
992
993 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
994 {
995         return security_ops->netlink_send(sk, skb);
996 }
997
998 int security_netlink_recv(struct sk_buff *skb, int cap)
999 {
1000         return security_ops->netlink_recv(skb, cap);
1001 }
1002 EXPORT_SYMBOL(security_netlink_recv);
1003
1004 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1005 {
1006         return security_ops->secid_to_secctx(secid, secdata, seclen);
1007 }
1008 EXPORT_SYMBOL(security_secid_to_secctx);
1009
1010 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1011 {
1012         return security_ops->secctx_to_secid(secdata, seclen, secid);
1013 }
1014 EXPORT_SYMBOL(security_secctx_to_secid);
1015
1016 void security_release_secctx(char *secdata, u32 seclen)
1017 {
1018         security_ops->release_secctx(secdata, seclen);
1019 }
1020 EXPORT_SYMBOL(security_release_secctx);
1021
1022 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1023 {
1024         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1025 }
1026 EXPORT_SYMBOL(security_inode_notifysecctx);
1027
1028 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1029 {
1030         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1031 }
1032 EXPORT_SYMBOL(security_inode_setsecctx);
1033
1034 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1035 {
1036         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1037 }
1038 EXPORT_SYMBOL(security_inode_getsecctx);
1039
1040 #ifdef CONFIG_SECURITY_NETWORK
1041
1042 int security_unix_stream_connect(struct socket *sock, struct socket *other,
1043                                  struct sock *newsk)
1044 {
1045         return security_ops->unix_stream_connect(sock, other, newsk);
1046 }
1047 EXPORT_SYMBOL(security_unix_stream_connect);
1048
1049 int security_unix_may_send(struct socket *sock,  struct socket *other)
1050 {
1051         return security_ops->unix_may_send(sock, other);
1052 }
1053 EXPORT_SYMBOL(security_unix_may_send);
1054
1055 int security_socket_create(int family, int type, int protocol, int kern)
1056 {
1057         return security_ops->socket_create(family, type, protocol, kern);
1058 }
1059
1060 int security_socket_post_create(struct socket *sock, int family,
1061                                 int type, int protocol, int kern)
1062 {
1063         return security_ops->socket_post_create(sock, family, type,
1064                                                 protocol, kern);
1065 }
1066
1067 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1068 {
1069         return security_ops->socket_bind(sock, address, addrlen);
1070 }
1071
1072 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1073 {
1074         return security_ops->socket_connect(sock, address, addrlen);
1075 }
1076
1077 int security_socket_listen(struct socket *sock, int backlog)
1078 {
1079         return security_ops->socket_listen(sock, backlog);
1080 }
1081
1082 int security_socket_accept(struct socket *sock, struct socket *newsock)
1083 {
1084         return security_ops->socket_accept(sock, newsock);
1085 }
1086
1087 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1088 {
1089         return security_ops->socket_sendmsg(sock, msg, size);
1090 }
1091
1092 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1093                             int size, int flags)
1094 {
1095         return security_ops->socket_recvmsg(sock, msg, size, flags);
1096 }
1097
1098 int security_socket_getsockname(struct socket *sock)
1099 {
1100         return security_ops->socket_getsockname(sock);
1101 }
1102
1103 int security_socket_getpeername(struct socket *sock)
1104 {
1105         return security_ops->socket_getpeername(sock);
1106 }
1107
1108 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1109 {
1110         return security_ops->socket_getsockopt(sock, level, optname);
1111 }
1112
1113 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1114 {
1115         return security_ops->socket_setsockopt(sock, level, optname);
1116 }
1117
1118 int security_socket_shutdown(struct socket *sock, int how)
1119 {
1120         return security_ops->socket_shutdown(sock, how);
1121 }
1122
1123 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1124 {
1125         return security_ops->socket_sock_rcv_skb(sk, skb);
1126 }
1127 EXPORT_SYMBOL(security_sock_rcv_skb);
1128
1129 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1130                                       int __user *optlen, unsigned len)
1131 {
1132         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1133 }
1134
1135 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1136 {
1137         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1138 }
1139 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1140
1141 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1142 {
1143         return security_ops->sk_alloc_security(sk, family, priority);
1144 }
1145
1146 void security_sk_free(struct sock *sk)
1147 {
1148         security_ops->sk_free_security(sk);
1149 }
1150
1151 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1152 {
1153         security_ops->sk_clone_security(sk, newsk);
1154 }
1155
1156 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1157 {
1158         security_ops->sk_getsecid(sk, &fl->secid);
1159 }
1160 EXPORT_SYMBOL(security_sk_classify_flow);
1161
1162 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1163 {
1164         security_ops->req_classify_flow(req, fl);
1165 }
1166 EXPORT_SYMBOL(security_req_classify_flow);
1167
1168 void security_sock_graft(struct sock *sk, struct socket *parent)
1169 {
1170         security_ops->sock_graft(sk, parent);
1171 }
1172 EXPORT_SYMBOL(security_sock_graft);
1173
1174 int security_inet_conn_request(struct sock *sk,
1175                         struct sk_buff *skb, struct request_sock *req)
1176 {
1177         return security_ops->inet_conn_request(sk, skb, req);
1178 }
1179 EXPORT_SYMBOL(security_inet_conn_request);
1180
1181 void security_inet_csk_clone(struct sock *newsk,
1182                         const struct request_sock *req)
1183 {
1184         security_ops->inet_csk_clone(newsk, req);
1185 }
1186
1187 void security_inet_conn_established(struct sock *sk,
1188                         struct sk_buff *skb)
1189 {
1190         security_ops->inet_conn_established(sk, skb);
1191 }
1192
1193 int security_tun_dev_create(void)
1194 {
1195         return security_ops->tun_dev_create();
1196 }
1197 EXPORT_SYMBOL(security_tun_dev_create);
1198
1199 void security_tun_dev_post_create(struct sock *sk)
1200 {
1201         return security_ops->tun_dev_post_create(sk);
1202 }
1203 EXPORT_SYMBOL(security_tun_dev_post_create);
1204
1205 int security_tun_dev_attach(struct sock *sk)
1206 {
1207         return security_ops->tun_dev_attach(sk);
1208 }
1209 EXPORT_SYMBOL(security_tun_dev_attach);
1210
1211 #endif  /* CONFIG_SECURITY_NETWORK */
1212
1213 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1214
1215 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1216 {
1217         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1218 }
1219 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1220
1221 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1222                               struct xfrm_sec_ctx **new_ctxp)
1223 {
1224         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1225 }
1226
1227 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1228 {
1229         security_ops->xfrm_policy_free_security(ctx);
1230 }
1231 EXPORT_SYMBOL(security_xfrm_policy_free);
1232
1233 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1234 {
1235         return security_ops->xfrm_policy_delete_security(ctx);
1236 }
1237
1238 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1239 {
1240         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1241 }
1242 EXPORT_SYMBOL(security_xfrm_state_alloc);
1243
1244 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1245                                       struct xfrm_sec_ctx *polsec, u32 secid)
1246 {
1247         if (!polsec)
1248                 return 0;
1249         /*
1250          * We want the context to be taken from secid which is usually
1251          * from the sock.
1252          */
1253         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1254 }
1255
1256 int security_xfrm_state_delete(struct xfrm_state *x)
1257 {
1258         return security_ops->xfrm_state_delete_security(x);
1259 }
1260 EXPORT_SYMBOL(security_xfrm_state_delete);
1261
1262 void security_xfrm_state_free(struct xfrm_state *x)
1263 {
1264         security_ops->xfrm_state_free_security(x);
1265 }
1266
1267 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1268 {
1269         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1270 }
1271
1272 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1273                                        struct xfrm_policy *xp, struct flowi *fl)
1274 {
1275         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1276 }
1277
1278 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1279 {
1280         return security_ops->xfrm_decode_session(skb, secid, 1);
1281 }
1282
1283 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1284 {
1285         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1286
1287         BUG_ON(rc);
1288 }
1289 EXPORT_SYMBOL(security_skb_classify_flow);
1290
1291 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1292
1293 #ifdef CONFIG_KEYS
1294
1295 int security_key_alloc(struct key *key, const struct cred *cred,
1296                        unsigned long flags)
1297 {
1298         return security_ops->key_alloc(key, cred, flags);
1299 }
1300
1301 void security_key_free(struct key *key)
1302 {
1303         security_ops->key_free(key);
1304 }
1305
1306 int security_key_permission(key_ref_t key_ref,
1307                             const struct cred *cred, key_perm_t perm)
1308 {
1309         return security_ops->key_permission(key_ref, cred, perm);
1310 }
1311
1312 int security_key_getsecurity(struct key *key, char **_buffer)
1313 {
1314         return security_ops->key_getsecurity(key, _buffer);
1315 }
1316
1317 int security_key_session_to_parent(const struct cred *cred,
1318                                    const struct cred *parent_cred,
1319                                    struct key *key)
1320 {
1321         return security_ops->key_session_to_parent(cred, parent_cred, key);
1322 }
1323
1324 #endif  /* CONFIG_KEYS */
1325
1326 #ifdef CONFIG_AUDIT
1327
1328 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1329 {
1330         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1331 }
1332
1333 int security_audit_rule_known(struct audit_krule *krule)
1334 {
1335         return security_ops->audit_rule_known(krule);
1336 }
1337
1338 void security_audit_rule_free(void *lsmrule)
1339 {
1340         security_ops->audit_rule_free(lsmrule);
1341 }
1342
1343 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1344                               struct audit_context *actx)
1345 {
1346         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1347 }
1348
1349 #endif /* CONFIG_AUDIT */