2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/gfp.h>
37 #include <linux/list.h>
41 /* When transmitting messages in rds_send_xmit, we need to emerge from
42 * time to time and briefly release the CPU. Otherwise the softlock watchdog
44 * Also, it seems fairer to not let one busy connection stall all the
47 * send_batch_count is the number of times we'll loop in send_xmit. Setting
48 * it to 0 will restore the old behavior (where we looped until we had
51 static int send_batch_count = 64;
52 module_param(send_batch_count, int, 0444);
53 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
56 * Reset the send state. Caller must hold c_send_lock when calling here.
58 void rds_send_reset(struct rds_connection *conn)
60 struct rds_message *rm, *tmp;
63 spin_lock_irqsave(&conn->c_send_lock, flags);
64 if (conn->c_xmit_rm) {
66 conn->c_xmit_rm = NULL;
67 /* Tell the user the RDMA op is no longer mapped by the
68 * transport. This isn't entirely true (it's flushed out
69 * independently) but as the connection is down, there's
70 * no ongoing RDMA to/from that memory */
71 printk(KERN_CRIT "send reset unmapping %p\n", rm);
72 rds_message_unmapped(rm);
73 spin_unlock_irqrestore(&conn->c_send_lock, flags);
77 spin_unlock_irqrestore(&conn->c_send_lock, flags);
81 conn->c_xmit_hdr_off = 0;
82 conn->c_xmit_data_off = 0;
83 conn->c_xmit_atomic_sent = 0;
84 conn->c_xmit_rdma_sent = 0;
85 conn->c_xmit_data_sent = 0;
87 conn->c_map_queued = 0;
89 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
90 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
92 /* Mark messages as retransmissions, and move them to the send q */
93 spin_lock_irqsave(&conn->c_lock, flags);
94 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
95 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
96 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
98 list_splice_init(&conn->c_retrans, &conn->c_send_queue);
99 spin_unlock_irqrestore(&conn->c_lock, flags);
103 * We're making the concious trade-off here to only send one message
104 * down the connection at a time.
106 * - tx queueing is a simple fifo list
107 * - reassembly is optional and easily done by transports per conn
108 * - no per flow rx lookup at all, straight to the socket
109 * - less per-frag memory and wire overhead
111 * - queued acks can be delayed behind large messages
113 * - small message latency is higher behind queued large messages
114 * - large message latency isn't starved by intervening small sends
116 int rds_send_xmit(struct rds_connection *conn)
118 struct rds_message *rm;
121 struct scatterlist *sg;
124 LIST_HEAD(to_be_dropped);
127 if (!rds_conn_up(conn))
131 * sendmsg calls here after having queued its message on the send
132 * queue. We only have one task feeding the connection at a time. If
133 * another thread is already feeding the queue then we back off. This
134 * avoids blocking the caller and trading per-connection data between
135 * caches per message.
137 if (!spin_trylock_irqsave(&conn->c_send_lock, flags)) {
138 rds_stats_inc(s_send_lock_contention);
142 atomic_inc(&conn->c_senders);
144 if (conn->c_trans->xmit_prepare)
145 conn->c_trans->xmit_prepare(conn);
147 gen = atomic_inc_return(&conn->c_send_generation);
150 * spin trying to push headers and data down the connection until
151 * the connection doesn't make forward progress.
155 rm = conn->c_xmit_rm;
158 * If between sending messages, we can send a pending congestion
161 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
162 rm = rds_cong_update_alloc(conn);
167 rm->data.op_active = 1;
169 conn->c_xmit_rm = rm;
173 * If not already working on one, grab the next message.
175 * c_xmit_rm holds a ref while we're sending this message down
176 * the connction. We can use this ref while holding the
177 * send_sem.. rds_send_reset() is serialized with it.
182 spin_lock(&conn->c_lock);
184 if (!list_empty(&conn->c_send_queue)) {
185 rm = list_entry(conn->c_send_queue.next,
188 rds_message_addref(rm);
191 * Move the message from the send queue to the retransmit
194 list_move_tail(&rm->m_conn_item, &conn->c_retrans);
197 spin_unlock(&conn->c_lock);
202 /* Unfortunately, the way Infiniband deals with
203 * RDMA to a bad MR key is by moving the entire
204 * queue pair to error state. We cold possibly
205 * recover from that, but right now we drop the
207 * Therefore, we never retransmit messages with RDMA ops.
209 if (rm->rdma.op_active &&
210 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
211 spin_lock(&conn->c_lock);
212 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
213 list_move(&rm->m_conn_item, &to_be_dropped);
214 spin_unlock(&conn->c_lock);
218 /* Require an ACK every once in a while */
219 len = ntohl(rm->m_inc.i_hdr.h_len);
220 if (conn->c_unacked_packets == 0 ||
221 conn->c_unacked_bytes < len) {
222 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
224 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
225 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
226 rds_stats_inc(s_send_ack_required);
228 conn->c_unacked_bytes -= len;
229 conn->c_unacked_packets--;
232 conn->c_xmit_rm = rm;
235 /* The transport either sends the whole rdma or none of it */
236 if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
237 rm->m_final_op = &rm->rdma;
238 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
241 conn->c_xmit_rdma_sent = 1;
243 /* The transport owns the mapped memory for now.
244 * You can't unmap it while it's on the send queue */
245 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
248 if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
249 rm->m_final_op = &rm->atomic;
250 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
253 conn->c_xmit_atomic_sent = 1;
255 /* The transport owns the mapped memory for now.
256 * You can't unmap it while it's on the send queue */
257 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
261 * A number of cases require an RDS header to be sent
262 * even if there is no data.
263 * We permit 0-byte sends; rds-ping depends on this.
264 * However, if there are exclusively attached silent ops,
265 * we skip the hdr/data send, to enable silent operation.
267 if (rm->data.op_nents == 0) {
269 int all_ops_are_silent = 1;
271 ops_present = (rm->atomic.op_active || rm->rdma.op_active);
272 if (rm->atomic.op_active && !rm->atomic.op_silent)
273 all_ops_are_silent = 0;
274 if (rm->rdma.op_active && !rm->rdma.op_silent)
275 all_ops_are_silent = 0;
277 if (ops_present && all_ops_are_silent
278 && !rm->m_rdma_cookie)
279 rm->data.op_active = 0;
282 if (rm->data.op_active && !conn->c_xmit_data_sent) {
283 rm->m_final_op = &rm->data;
284 ret = conn->c_trans->xmit(conn, rm,
285 conn->c_xmit_hdr_off,
287 conn->c_xmit_data_off);
291 if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
292 tmp = min_t(int, ret,
293 sizeof(struct rds_header) -
294 conn->c_xmit_hdr_off);
295 conn->c_xmit_hdr_off += tmp;
299 sg = &rm->data.op_sg[conn->c_xmit_sg];
301 tmp = min_t(int, ret, sg->length -
302 conn->c_xmit_data_off);
303 conn->c_xmit_data_off += tmp;
305 if (conn->c_xmit_data_off == sg->length) {
306 conn->c_xmit_data_off = 0;
310 conn->c_xmit_sg == rm->data.op_nents);
314 if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
315 (conn->c_xmit_sg == rm->data.op_nents))
316 conn->c_xmit_data_sent = 1;
320 * A rm will only take multiple times through this loop
321 * if there is a data op. Thus, if the data is sent (or there was
322 * none), then we're done with the rm.
324 if (!rm->data.op_active || conn->c_xmit_data_sent) {
325 conn->c_xmit_rm = NULL;
327 conn->c_xmit_hdr_off = 0;
328 conn->c_xmit_data_off = 0;
329 conn->c_xmit_rdma_sent = 0;
330 conn->c_xmit_atomic_sent = 0;
331 conn->c_xmit_data_sent = 0;
337 if (conn->c_trans->xmit_complete)
338 conn->c_trans->xmit_complete(conn);
341 * We might be racing with another sender who queued a message but
342 * backed off on noticing that we held the c_send_lock. If we check
343 * for queued messages after dropping the sem then either we'll
344 * see the queued message or the queuer will get the sem. If we
345 * notice the queued message then we trigger an immediate retry.
347 * We need to be careful only to do this when we stopped processing
348 * the send queue because it was empty. It's the only way we
349 * stop processing the loop when the transport hasn't taken
350 * responsibility for forward progress.
352 spin_unlock_irqrestore(&conn->c_send_lock, flags);
354 /* Nuke any messages we decided not to retransmit. */
355 if (!list_empty(&to_be_dropped)) {
356 /* irqs on here, so we can put(), unlike above */
357 list_for_each_entry(rm, &to_be_dropped, m_conn_item)
359 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
362 atomic_dec(&conn->c_senders);
365 * Other senders will see we have c_send_lock and exit. We
366 * need to recheck the send queue and race again for c_send_lock
367 * to make sure messages don't just sit on the send queue, if
368 * somebody hasn't already beat us into the loop.
370 * If the transport cannot continue (i.e ret != 0), then it must
371 * call us when more room is available, such as from the tx
372 * completion handler.
376 if (!list_empty(&conn->c_send_queue)) {
377 rds_stats_inc(s_send_lock_queue_raced);
378 if (gen == atomic_read(&conn->c_send_generation)) {
387 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
389 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
391 assert_spin_locked(&rs->rs_lock);
393 BUG_ON(rs->rs_snd_bytes < len);
394 rs->rs_snd_bytes -= len;
396 if (rs->rs_snd_bytes == 0)
397 rds_stats_inc(s_send_queue_empty);
400 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
401 is_acked_func is_acked)
404 return is_acked(rm, ack);
405 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
409 * Returns true if there are no messages on the send and retransmit queues
410 * which have a sequence number greater than or equal to the given sequence
413 int rds_send_acked_before(struct rds_connection *conn, u64 seq)
415 struct rds_message *rm, *tmp;
418 spin_lock(&conn->c_lock);
420 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
421 if (be64_to_cpu(rm->m_inc.i_hdr.h_sequence) < seq)
426 list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
427 if (be64_to_cpu(rm->m_inc.i_hdr.h_sequence) < seq)
432 spin_unlock(&conn->c_lock);
438 * This is pretty similar to what happens below in the ACK
439 * handling code - except that we call here as soon as we get
440 * the IB send completion on the RDMA op and the accompanying
443 void rds_rdma_send_complete(struct rds_message *rm, int status)
445 struct rds_sock *rs = NULL;
446 struct rm_rdma_op *ro;
447 struct rds_notifier *notifier;
450 spin_lock_irqsave(&rm->m_rs_lock, flags);
453 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
454 ro->op_active && ro->op_notify && ro->op_notifier) {
455 notifier = ro->op_notifier;
457 sock_hold(rds_rs_to_sk(rs));
459 notifier->n_status = status;
460 spin_lock(&rs->rs_lock);
461 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue);
462 spin_unlock(&rs->rs_lock);
464 ro->op_notifier = NULL;
467 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
470 rds_wake_sk_sleep(rs);
471 sock_put(rds_rs_to_sk(rs));
474 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
477 * Just like above, except looks at atomic op
479 void rds_atomic_send_complete(struct rds_message *rm, int status)
481 struct rds_sock *rs = NULL;
482 struct rm_atomic_op *ao;
483 struct rds_notifier *notifier;
486 spin_lock_irqsave(&rm->m_rs_lock, flags);
489 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
490 && ao->op_active && ao->op_notify && ao->op_notifier) {
491 notifier = ao->op_notifier;
493 sock_hold(rds_rs_to_sk(rs));
495 notifier->n_status = status;
496 spin_lock(&rs->rs_lock);
497 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue);
498 spin_unlock(&rs->rs_lock);
500 ao->op_notifier = NULL;
503 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
506 rds_wake_sk_sleep(rs);
507 sock_put(rds_rs_to_sk(rs));
510 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
513 * This is the same as rds_rdma_send_complete except we
514 * don't do any locking - we have all the ingredients (message,
515 * socket, socket lock) and can just move the notifier.
518 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
520 struct rm_rdma_op *ro;
521 struct rm_atomic_op *ao;
524 if (ro->op_active && ro->op_notify && ro->op_notifier) {
525 ro->op_notifier->n_status = status;
526 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
527 ro->op_notifier = NULL;
531 if (ao->op_active && ao->op_notify && ao->op_notifier) {
532 ao->op_notifier->n_status = status;
533 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
534 ao->op_notifier = NULL;
537 /* No need to wake the app - caller does this */
541 * This is called from the IB send completion when we detect
542 * a RDMA operation that failed with remote access error.
543 * So speed is not an issue here.
545 struct rds_message *rds_send_get_message(struct rds_connection *conn,
546 struct rm_rdma_op *op)
548 struct rds_message *rm, *tmp, *found = NULL;
551 spin_lock_irqsave(&conn->c_lock, flags);
553 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
554 if (&rm->rdma == op) {
555 atomic_inc(&rm->m_refcount);
561 list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
562 if (&rm->rdma == op) {
563 atomic_inc(&rm->m_refcount);
570 spin_unlock_irqrestore(&conn->c_lock, flags);
574 EXPORT_SYMBOL_GPL(rds_send_get_message);
577 * This removes messages from the socket's list if they're on it. The list
578 * argument must be private to the caller, we must be able to modify it
579 * without locks. The messages must have a reference held for their
580 * position on the list. This function will drop that reference after
581 * removing the messages from the 'messages' list regardless of if it found
582 * the messages on the socket list or not.
584 void rds_send_remove_from_sock(struct list_head *messages, int status)
587 struct rds_sock *rs = NULL;
588 struct rds_message *rm;
590 while (!list_empty(messages)) {
593 rm = list_entry(messages->next, struct rds_message,
595 list_del_init(&rm->m_conn_item);
598 * If we see this flag cleared then we're *sure* that someone
599 * else beat us to removing it from the sock. If we race
600 * with their flag update we'll get the lock and then really
601 * see that the flag has been cleared.
603 * The message spinlock makes sure nobody clears rm->m_rs
604 * while we're messing with it. It does not prevent the
605 * message from being removed from the socket, though.
607 spin_lock_irqsave(&rm->m_rs_lock, flags);
608 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
609 goto unlock_and_drop;
611 if (rs != rm->m_rs) {
613 rds_wake_sk_sleep(rs);
614 sock_put(rds_rs_to_sk(rs));
617 sock_hold(rds_rs_to_sk(rs));
619 spin_lock(&rs->rs_lock);
621 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
622 struct rm_rdma_op *ro = &rm->rdma;
623 struct rds_notifier *notifier;
625 list_del_init(&rm->m_sock_item);
626 rds_send_sndbuf_remove(rs, rm);
628 if (ro->op_active && ro->op_notifier &&
629 (ro->op_notify || (ro->op_recverr && status))) {
630 notifier = ro->op_notifier;
631 list_add_tail(¬ifier->n_list,
632 &rs->rs_notify_queue);
633 if (!notifier->n_status)
634 notifier->n_status = status;
635 rm->rdma.op_notifier = NULL;
640 spin_unlock(&rs->rs_lock);
643 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
650 rds_wake_sk_sleep(rs);
651 sock_put(rds_rs_to_sk(rs));
656 * Transports call here when they've determined that the receiver queued
657 * messages up to, and including, the given sequence number. Messages are
658 * moved to the retrans queue when rds_send_xmit picks them off the send
659 * queue. This means that in the TCP case, the message may not have been
660 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
661 * checks the RDS_MSG_HAS_ACK_SEQ bit.
663 * XXX It's not clear to me how this is safely serialized with socket
664 * destruction. Maybe it should bail if it sees SOCK_DEAD.
666 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
667 is_acked_func is_acked)
669 struct rds_message *rm, *tmp;
673 spin_lock_irqsave(&conn->c_lock, flags);
675 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
676 if (!rds_send_is_acked(rm, ack, is_acked))
679 list_move(&rm->m_conn_item, &list);
680 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
683 /* order flag updates with spin locks */
684 if (!list_empty(&list))
685 smp_mb__after_clear_bit();
687 spin_unlock_irqrestore(&conn->c_lock, flags);
689 /* now remove the messages from the sock list as needed */
690 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
692 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
694 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
696 struct rds_message *rm, *tmp;
697 struct rds_connection *conn;
701 /* get all the messages we're dropping under the rs lock */
702 spin_lock_irqsave(&rs->rs_lock, flags);
704 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
705 if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
706 dest->sin_port != rm->m_inc.i_hdr.h_dport))
709 list_move(&rm->m_sock_item, &list);
710 rds_send_sndbuf_remove(rs, rm);
711 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
714 /* order flag updates with the rs lock */
715 smp_mb__after_clear_bit();
717 spin_unlock_irqrestore(&rs->rs_lock, flags);
719 if (list_empty(&list))
722 /* Remove the messages from the conn */
723 list_for_each_entry(rm, &list, m_sock_item) {
725 conn = rm->m_inc.i_conn;
727 spin_lock_irqsave(&conn->c_lock, flags);
729 * Maybe someone else beat us to removing rm from the conn.
730 * If we race with their flag update we'll get the lock and
731 * then really see that the flag has been cleared.
733 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
734 spin_unlock_irqrestore(&conn->c_lock, flags);
737 list_del_init(&rm->m_conn_item);
738 spin_unlock_irqrestore(&conn->c_lock, flags);
741 * Couldn't grab m_rs_lock in top loop (lock ordering),
744 spin_lock_irqsave(&rm->m_rs_lock, flags);
746 spin_lock(&rs->rs_lock);
747 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
748 spin_unlock(&rs->rs_lock);
751 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
756 rds_wake_sk_sleep(rs);
758 while (!list_empty(&list)) {
759 rm = list_entry(list.next, struct rds_message, m_sock_item);
760 list_del_init(&rm->m_sock_item);
762 rds_message_wait(rm);
768 * we only want this to fire once so we use the callers 'queued'. It's
769 * possible that another thread can race with us and remove the
770 * message from the flow with RDS_CANCEL_SENT_TO.
772 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
773 struct rds_message *rm, __be16 sport,
774 __be16 dport, int *queued)
782 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
784 /* this is the only place which holds both the socket's rs_lock
785 * and the connection's c_lock */
786 spin_lock_irqsave(&rs->rs_lock, flags);
789 * If there is a little space in sndbuf, we don't queue anything,
790 * and userspace gets -EAGAIN. But poll() indicates there's send
791 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
792 * freed up by incoming acks. So we check the *old* value of
793 * rs_snd_bytes here to allow the last msg to exceed the buffer,
794 * and poll() now knows no more data can be sent.
796 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
797 rs->rs_snd_bytes += len;
799 /* let recv side know we are close to send space exhaustion.
800 * This is probably not the optimal way to do it, as this
801 * means we set the flag on *all* messages as soon as our
802 * throughput hits a certain threshold.
804 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
805 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
807 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
808 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
809 rds_message_addref(rm);
812 /* The code ordering is a little weird, but we're
813 trying to minimize the time we hold c_lock */
814 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
815 rm->m_inc.i_conn = conn;
816 rds_message_addref(rm);
818 spin_lock(&conn->c_lock);
819 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
820 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
821 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
822 spin_unlock(&conn->c_lock);
824 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
825 rm, len, rs, rs->rs_snd_bytes,
826 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
831 spin_unlock_irqrestore(&rs->rs_lock, flags);
837 * rds_message is getting to be quite complicated, and we'd like to allocate
838 * it all in one go. This figures out how big it needs to be up front.
840 static int rds_rm_size(struct msghdr *msg, int data_len)
842 struct cmsghdr *cmsg;
847 for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
848 if (!CMSG_OK(msg, cmsg))
851 if (cmsg->cmsg_level != SOL_RDS)
854 switch (cmsg->cmsg_type) {
855 case RDS_CMSG_RDMA_ARGS:
857 retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
864 case RDS_CMSG_RDMA_DEST:
865 case RDS_CMSG_RDMA_MAP:
867 /* these are valid but do no add any size */
870 case RDS_CMSG_ATOMIC_CSWP:
871 case RDS_CMSG_ATOMIC_FADD:
873 size += sizeof(struct scatterlist);
882 size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
884 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
885 if (cmsg_groups == 3)
891 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
892 struct msghdr *msg, int *allocated_mr)
894 struct cmsghdr *cmsg;
897 for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
898 if (!CMSG_OK(msg, cmsg))
901 if (cmsg->cmsg_level != SOL_RDS)
904 /* As a side effect, RDMA_DEST and RDMA_MAP will set
905 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
907 switch (cmsg->cmsg_type) {
908 case RDS_CMSG_RDMA_ARGS:
909 ret = rds_cmsg_rdma_args(rs, rm, cmsg);
912 case RDS_CMSG_RDMA_DEST:
913 ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
916 case RDS_CMSG_RDMA_MAP:
917 ret = rds_cmsg_rdma_map(rs, rm, cmsg);
921 case RDS_CMSG_ATOMIC_CSWP:
922 case RDS_CMSG_ATOMIC_FADD:
923 ret = rds_cmsg_atomic(rs, rm, cmsg);
937 int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
940 struct sock *sk = sock->sk;
941 struct rds_sock *rs = rds_sk_to_rs(sk);
942 struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
945 struct rds_message *rm = NULL;
946 struct rds_connection *conn;
948 int queued = 0, allocated_mr = 0;
949 int nonblock = msg->msg_flags & MSG_DONTWAIT;
950 long timeo = sock_sndtimeo(sk, nonblock);
952 /* Mirror Linux UDP mirror of BSD error message compatibility */
953 /* XXX: Perhaps MSG_MORE someday */
954 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
955 printk(KERN_INFO "msg_flags 0x%08X\n", msg->msg_flags);
960 if (msg->msg_namelen) {
961 /* XXX fail non-unicast destination IPs? */
962 if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
966 daddr = usin->sin_addr.s_addr;
967 dport = usin->sin_port;
969 /* We only care about consistency with ->connect() */
971 daddr = rs->rs_conn_addr;
972 dport = rs->rs_conn_port;
976 /* racing with another thread binding seems ok here */
977 if (daddr == 0 || rs->rs_bound_addr == 0) {
978 ret = -ENOTCONN; /* XXX not a great errno */
982 /* size of rm including all sgs */
983 ret = rds_rm_size(msg, payload_len);
987 rm = rds_message_alloc(ret, GFP_KERNEL);
993 /* Attach data to the rm */
995 rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
996 ret = rds_message_copy_from_user(rm, msg->msg_iov, payload_len);
1000 rm->data.op_active = 1;
1002 rm->m_daddr = daddr;
1004 /* rds_conn_create has a spinlock that runs with IRQ off.
1005 * Caching the conn in the socket helps a lot. */
1006 if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1009 conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr,
1011 sock->sk->sk_allocation);
1013 ret = PTR_ERR(conn);
1019 /* Parse any control messages the user may have included. */
1020 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1024 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1025 if (printk_ratelimit())
1026 printk(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1027 &rm->rdma, conn->c_trans->xmit_rdma);
1032 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1033 if (printk_ratelimit())
1034 printk(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1035 &rm->atomic, conn->c_trans->xmit_atomic);
1040 /* If the connection is down, trigger a connect. We may
1041 * have scheduled a delayed reconnect however - in this case
1042 * we should not interfere.
1044 if (rds_conn_state(conn) == RDS_CONN_DOWN &&
1045 !test_and_set_bit(RDS_RECONNECT_PENDING, &conn->c_flags))
1046 queue_delayed_work(rds_wq, &conn->c_conn_w, 0);
1048 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1050 rs->rs_seen_congestion = 1;
1054 while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1056 rds_stats_inc(s_send_queue_full);
1057 /* XXX make sure this is reasonable */
1058 if (payload_len > rds_sk_sndbuf(rs)) {
1067 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1068 rds_send_queue_rm(rs, conn, rm,
1073 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1074 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1084 * By now we've committed to the send. We reuse rds_send_worker()
1085 * to retry sends in the rds thread if the transport asks us to.
1087 rds_stats_inc(s_send_queued);
1089 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1090 rds_send_xmit(conn);
1092 rds_message_put(rm);
1096 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1097 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1098 * or in any other way, we need to destroy the MR again */
1100 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1103 rds_message_put(rm);
1108 * Reply to a ping packet.
1111 rds_send_pong(struct rds_connection *conn, __be16 dport)
1113 struct rds_message *rm;
1114 unsigned long flags;
1117 rm = rds_message_alloc(0, GFP_ATOMIC);
1123 rm->m_daddr = conn->c_faddr;
1124 rm->data.op_active = 1;
1126 /* If the connection is down, trigger a connect. We may
1127 * have scheduled a delayed reconnect however - in this case
1128 * we should not interfere.
1130 if (rds_conn_state(conn) == RDS_CONN_DOWN &&
1131 !test_and_set_bit(RDS_RECONNECT_PENDING, &conn->c_flags))
1132 queue_delayed_work(rds_wq, &conn->c_conn_w, 0);
1134 ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1138 spin_lock_irqsave(&conn->c_lock, flags);
1139 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1140 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1141 rds_message_addref(rm);
1142 rm->m_inc.i_conn = conn;
1144 rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1145 conn->c_next_tx_seq);
1146 conn->c_next_tx_seq++;
1147 spin_unlock_irqrestore(&conn->c_lock, flags);
1149 rds_stats_inc(s_send_queued);
1150 rds_stats_inc(s_send_pong);
1152 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1153 rds_send_xmit(conn);
1155 rds_message_put(rm);
1160 rds_message_put(rm);