]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - net/rds/ib_send.c
95f15247acd72918737b2e7f17e698154e3254a8
[linux-2.6.git] / net / rds / ib_send.c
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/device.h>
36 #include <linux/dmapool.h>
37
38 #include "rds.h"
39 #include "ib.h"
40
41 /*
42  * Convert IB-specific error message to RDS error message and call core
43  * completion handler.
44  */
45 static void rds_ib_send_complete(struct rds_message *rm,
46                                  int wc_status,
47                                  void (*complete)(struct rds_message *rm, int status))
48 {
49         int notify_status;
50
51         switch (wc_status) {
52         case IB_WC_WR_FLUSH_ERR:
53                 return;
54
55         case IB_WC_SUCCESS:
56                 notify_status = RDS_RDMA_SUCCESS;
57                 break;
58
59         case IB_WC_REM_ACCESS_ERR:
60                 notify_status = RDS_RDMA_REMOTE_ERROR;
61                 break;
62
63         default:
64                 notify_status = RDS_RDMA_OTHER_ERROR;
65                 break;
66         }
67         complete(rm, notify_status);
68 }
69
70 static void rds_ib_send_unmap_rm(struct rds_ib_connection *ic,
71                           struct rds_ib_send_work *send,
72                           int wc_status)
73 {
74         struct rds_message *rm = send->s_rm;
75
76         rdsdebug("ic %p send %p rm %p\n", ic, send, rm);
77
78         ib_dma_unmap_sg(ic->i_cm_id->device,
79                         rm->data.op_sg, rm->data.op_nents,
80                         DMA_TO_DEVICE);
81
82         if (rm->rdma.op_active) {
83                 struct rm_rdma_op *op = &rm->rdma;
84
85                 if (op->op_mapped) {
86                         ib_dma_unmap_sg(ic->i_cm_id->device,
87                                         op->op_sg, op->op_nents,
88                                         op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
89                         op->op_mapped = 0;
90                 }
91
92                 /* If the user asked for a completion notification on this
93                  * message, we can implement three different semantics:
94                  *  1.  Notify when we received the ACK on the RDS message
95                  *      that was queued with the RDMA. This provides reliable
96                  *      notification of RDMA status at the expense of a one-way
97                  *      packet delay.
98                  *  2.  Notify when the IB stack gives us the completion event for
99                  *      the RDMA operation.
100                  *  3.  Notify when the IB stack gives us the completion event for
101                  *      the accompanying RDS messages.
102                  * Here, we implement approach #3. To implement approach #2,
103                  * call rds_rdma_send_complete from the cq_handler. To implement #1,
104                  * don't call rds_rdma_send_complete at all, and fall back to the notify
105                  * handling in the ACK processing code.
106                  *
107                  * Note: There's no need to explicitly sync any RDMA buffers using
108                  * ib_dma_sync_sg_for_cpu - the completion for the RDMA
109                  * operation itself unmapped the RDMA buffers, which takes care
110                  * of synching.
111                  */
112                 rds_ib_send_complete(rm, wc_status, rds_rdma_send_complete);
113
114                 if (rm->rdma.op_write)
115                         rds_stats_add(s_send_rdma_bytes, rm->rdma.op_bytes);
116                 else
117                         rds_stats_add(s_recv_rdma_bytes, rm->rdma.op_bytes);
118         }
119
120         if (rm->atomic.op_active) {
121                 struct rm_atomic_op *op = &rm->atomic;
122
123                 /* unmap atomic recvbuf */
124                 if (op->op_mapped) {
125                         ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1,
126                                         DMA_FROM_DEVICE);
127                         op->op_mapped = 0;
128                 }
129
130                 rds_ib_send_complete(rm, wc_status, rds_atomic_send_complete);
131
132                 if (rm->atomic.op_type == RDS_ATOMIC_TYPE_CSWP)
133                         rds_stats_inc(s_atomic_cswp);
134                 else
135                         rds_stats_inc(s_atomic_fadd);
136         }
137
138         /* If anyone waited for this message to get flushed out, wake
139          * them up now */
140         rds_message_unmapped(rm);
141
142         rds_message_put(rm);
143         send->s_rm = NULL;
144 }
145
146 void rds_ib_send_init_ring(struct rds_ib_connection *ic)
147 {
148         struct rds_ib_send_work *send;
149         u32 i;
150
151         for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
152                 struct ib_sge *sge;
153
154                 send->s_rm = NULL;
155                 send->s_op = NULL;
156
157                 send->s_wr.wr_id = i;
158                 send->s_wr.sg_list = send->s_sge;
159                 send->s_wr.ex.imm_data = 0;
160
161                 sge = &send->s_sge[0];
162                 sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header));
163                 sge->length = sizeof(struct rds_header);
164                 sge->lkey = ic->i_mr->lkey;
165
166                 send->s_sge[1].lkey = ic->i_mr->lkey;
167         }
168 }
169
170 void rds_ib_send_clear_ring(struct rds_ib_connection *ic)
171 {
172         struct rds_ib_send_work *send;
173         u32 i;
174
175         for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
176                 if (!send->s_rm || send->s_wr.opcode == 0xdead)
177                         continue;
178                 rds_ib_send_unmap_rm(ic, send, IB_WC_WR_FLUSH_ERR);
179         }
180 }
181
182 /*
183  * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
184  * operations performed in the send path.  As the sender allocs and potentially
185  * unallocs the next free entry in the ring it doesn't alter which is
186  * the next to be freed, which is what this is concerned with.
187  */
188 void rds_ib_send_cq_comp_handler(struct ib_cq *cq, void *context)
189 {
190         struct rds_connection *conn = context;
191         struct rds_ib_connection *ic = conn->c_transport_data;
192         struct ib_wc wc;
193         struct rds_ib_send_work *send;
194         u32 completed;
195         u32 oldest;
196         u32 i = 0;
197         int ret;
198
199         rdsdebug("cq %p conn %p\n", cq, conn);
200         rds_ib_stats_inc(s_ib_tx_cq_call);
201         ret = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
202         if (ret)
203                 rdsdebug("ib_req_notify_cq send failed: %d\n", ret);
204
205         while (ib_poll_cq(cq, 1, &wc) > 0) {
206                 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
207                          (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
208                          be32_to_cpu(wc.ex.imm_data));
209                 rds_ib_stats_inc(s_ib_tx_cq_event);
210
211                 if (wc.wr_id == RDS_IB_ACK_WR_ID) {
212                         if (ic->i_ack_queued + HZ/2 < jiffies)
213                                 rds_ib_stats_inc(s_ib_tx_stalled);
214                         rds_ib_ack_send_complete(ic);
215                         continue;
216                 }
217
218                 oldest = rds_ib_ring_oldest(&ic->i_send_ring);
219
220                 completed = rds_ib_ring_completed(&ic->i_send_ring, wc.wr_id, oldest);
221
222                 for (i = 0; i < completed; i++) {
223                         send = &ic->i_sends[oldest];
224
225                         /* In the error case, wc.opcode sometimes contains garbage */
226                         switch (send->s_wr.opcode) {
227                         case IB_WR_SEND:
228                         case IB_WR_RDMA_WRITE:
229                         case IB_WR_RDMA_READ:
230                         case IB_WR_ATOMIC_FETCH_AND_ADD:
231                         case IB_WR_ATOMIC_CMP_AND_SWP:
232                                 if (send->s_rm)
233                                         rds_ib_send_unmap_rm(ic, send, wc.status);
234                                 break;
235                         default:
236                                 if (printk_ratelimit())
237                                         printk(KERN_NOTICE
238                                                 "RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
239                                                 __func__, send->s_wr.opcode);
240                                 break;
241                         }
242
243                         send->s_wr.opcode = 0xdead;
244                         send->s_wr.num_sge = 1;
245                         if (send->s_queued + HZ/2 < jiffies)
246                                 rds_ib_stats_inc(s_ib_tx_stalled);
247
248                         /* If a RDMA operation produced an error, signal this right
249                          * away. If we don't, the subsequent SEND that goes with this
250                          * RDMA will be canceled with ERR_WFLUSH, and the application
251                          * never learn that the RDMA failed. */
252                         if (unlikely(wc.status == IB_WC_REM_ACCESS_ERR && send->s_op)) {
253                                 struct rds_message *rm;
254
255                                 rm = rds_send_get_message(conn, send->s_op);
256                                 if (rm) {
257                                         rds_ib_send_unmap_rm(ic, send, wc.status);
258                                         rds_ib_send_complete(rm, wc.status, rds_rdma_send_complete);
259                                         rds_message_put(rm);
260                                 }
261                         }
262
263                         oldest = (oldest + 1) % ic->i_send_ring.w_nr;
264                 }
265
266                 rds_ib_ring_free(&ic->i_send_ring, completed);
267
268                 if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
269                     test_bit(0, &conn->c_map_queued))
270                         queue_delayed_work(rds_wq, &conn->c_send_w, 0);
271
272                 /* We expect errors as the qp is drained during shutdown */
273                 if (wc.status != IB_WC_SUCCESS && rds_conn_up(conn)) {
274                         rds_ib_conn_error(conn,
275                                 "send completion on %pI4 "
276                                 "had status %u, disconnecting and reconnecting\n",
277                                 &conn->c_faddr, wc.status);
278                 }
279         }
280 }
281
282 /*
283  * This is the main function for allocating credits when sending
284  * messages.
285  *
286  * Conceptually, we have two counters:
287  *  -   send credits: this tells us how many WRs we're allowed
288  *      to submit without overruning the reciever's queue. For
289  *      each SEND WR we post, we decrement this by one.
290  *
291  *  -   posted credits: this tells us how many WRs we recently
292  *      posted to the receive queue. This value is transferred
293  *      to the peer as a "credit update" in a RDS header field.
294  *      Every time we transmit credits to the peer, we subtract
295  *      the amount of transferred credits from this counter.
296  *
297  * It is essential that we avoid situations where both sides have
298  * exhausted their send credits, and are unable to send new credits
299  * to the peer. We achieve this by requiring that we send at least
300  * one credit update to the peer before exhausting our credits.
301  * When new credits arrive, we subtract one credit that is withheld
302  * until we've posted new buffers and are ready to transmit these
303  * credits (see rds_ib_send_add_credits below).
304  *
305  * The RDS send code is essentially single-threaded; rds_send_xmit
306  * grabs c_send_lock to ensure exclusive access to the send ring.
307  * However, the ACK sending code is independent and can race with
308  * message SENDs.
309  *
310  * In the send path, we need to update the counters for send credits
311  * and the counter of posted buffers atomically - when we use the
312  * last available credit, we cannot allow another thread to race us
313  * and grab the posted credits counter.  Hence, we have to use a
314  * spinlock to protect the credit counter, or use atomics.
315  *
316  * Spinlocks shared between the send and the receive path are bad,
317  * because they create unnecessary delays. An early implementation
318  * using a spinlock showed a 5% degradation in throughput at some
319  * loads.
320  *
321  * This implementation avoids spinlocks completely, putting both
322  * counters into a single atomic, and updating that atomic using
323  * atomic_add (in the receive path, when receiving fresh credits),
324  * and using atomic_cmpxchg when updating the two counters.
325  */
326 int rds_ib_send_grab_credits(struct rds_ib_connection *ic,
327                              u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
328 {
329         unsigned int avail, posted, got = 0, advertise;
330         long oldval, newval;
331
332         *adv_credits = 0;
333         if (!ic->i_flowctl)
334                 return wanted;
335
336 try_again:
337         advertise = 0;
338         oldval = newval = atomic_read(&ic->i_credits);
339         posted = IB_GET_POST_CREDITS(oldval);
340         avail = IB_GET_SEND_CREDITS(oldval);
341
342         rdsdebug("rds_ib_send_grab_credits(%u): credits=%u posted=%u\n",
343                         wanted, avail, posted);
344
345         /* The last credit must be used to send a credit update. */
346         if (avail && !posted)
347                 avail--;
348
349         if (avail < wanted) {
350                 struct rds_connection *conn = ic->i_cm_id->context;
351
352                 /* Oops, there aren't that many credits left! */
353                 set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
354                 got = avail;
355         } else {
356                 /* Sometimes you get what you want, lalala. */
357                 got = wanted;
358         }
359         newval -= IB_SET_SEND_CREDITS(got);
360
361         /*
362          * If need_posted is non-zero, then the caller wants
363          * the posted regardless of whether any send credits are
364          * available.
365          */
366         if (posted && (got || need_posted)) {
367                 advertise = min_t(unsigned int, posted, max_posted);
368                 newval -= IB_SET_POST_CREDITS(advertise);
369         }
370
371         /* Finally bill everything */
372         if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
373                 goto try_again;
374
375         *adv_credits = advertise;
376         return got;
377 }
378
379 void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits)
380 {
381         struct rds_ib_connection *ic = conn->c_transport_data;
382
383         if (credits == 0)
384                 return;
385
386         rdsdebug("rds_ib_send_add_credits(%u): current=%u%s\n",
387                         credits,
388                         IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
389                         test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
390
391         atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
392         if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
393                 queue_delayed_work(rds_wq, &conn->c_send_w, 0);
394
395         WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
396
397         rds_ib_stats_inc(s_ib_rx_credit_updates);
398 }
399
400 void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted)
401 {
402         struct rds_ib_connection *ic = conn->c_transport_data;
403
404         if (posted == 0)
405                 return;
406
407         atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
408
409         /* Decide whether to send an update to the peer now.
410          * If we would send a credit update for every single buffer we
411          * post, we would end up with an ACK storm (ACK arrives,
412          * consumes buffer, we refill the ring, send ACK to remote
413          * advertising the newly posted buffer... ad inf)
414          *
415          * Performance pretty much depends on how often we send
416          * credit updates - too frequent updates mean lots of ACKs.
417          * Too infrequent updates, and the peer will run out of
418          * credits and has to throttle.
419          * For the time being, 16 seems to be a good compromise.
420          */
421         if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
422                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
423 }
424
425 static inline void rds_ib_set_wr_signal_state(struct rds_ib_connection *ic,
426                                               struct rds_ib_send_work *send,
427                                               bool notify)
428 {
429         /*
430          * We want to delay signaling completions just enough to get
431          * the batching benefits but not so much that we create dead time
432          * on the wire.
433          */
434         if (ic->i_unsignaled_wrs-- == 0 || notify) {
435                 ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
436                 send->s_wr.send_flags |= IB_SEND_SIGNALED;
437         }
438 }
439
440 /*
441  * This can be called multiple times for a given message.  The first time
442  * we see a message we map its scatterlist into the IB device so that
443  * we can provide that mapped address to the IB scatter gather entries
444  * in the IB work requests.  We translate the scatterlist into a series
445  * of work requests that fragment the message.  These work requests complete
446  * in order so we pass ownership of the message to the completion handler
447  * once we send the final fragment.
448  *
449  * The RDS core uses the c_send_lock to only enter this function once
450  * per connection.  This makes sure that the tx ring alloc/unalloc pairs
451  * don't get out of sync and confuse the ring.
452  */
453 int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm,
454                 unsigned int hdr_off, unsigned int sg, unsigned int off)
455 {
456         struct rds_ib_connection *ic = conn->c_transport_data;
457         struct ib_device *dev = ic->i_cm_id->device;
458         struct rds_ib_send_work *send = NULL;
459         struct rds_ib_send_work *first;
460         struct rds_ib_send_work *prev;
461         struct ib_send_wr *failed_wr;
462         struct scatterlist *scat;
463         u32 pos;
464         u32 i;
465         u32 work_alloc;
466         u32 credit_alloc = 0;
467         u32 posted;
468         u32 adv_credits = 0;
469         int send_flags = 0;
470         int bytes_sent = 0;
471         int ret;
472         int flow_controlled = 0;
473
474         BUG_ON(off % RDS_FRAG_SIZE);
475         BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
476
477         /* Do not send cong updates to IB loopback */
478         if (conn->c_loopback
479             && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) {
480                 rds_cong_map_updated(conn->c_fcong, ~(u64) 0);
481                 return sizeof(struct rds_header) + RDS_CONG_MAP_BYTES;
482         }
483
484         /* FIXME we may overallocate here */
485         if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
486                 i = 1;
487         else
488                 i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
489
490         work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
491         if (work_alloc == 0) {
492                 set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
493                 rds_ib_stats_inc(s_ib_tx_ring_full);
494                 ret = -ENOMEM;
495                 goto out;
496         }
497
498         if (ic->i_flowctl) {
499                 credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
500                 adv_credits += posted;
501                 if (credit_alloc < work_alloc) {
502                         rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
503                         work_alloc = credit_alloc;
504                         flow_controlled = 1;
505                 }
506                 if (work_alloc == 0) {
507                         set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
508                         rds_ib_stats_inc(s_ib_tx_throttle);
509                         ret = -ENOMEM;
510                         goto out;
511                 }
512         }
513
514         /* map the message the first time we see it */
515         if (!ic->i_rm) {
516                 if (rm->data.op_nents) {
517                         rm->data.op_count = ib_dma_map_sg(dev,
518                                                           rm->data.op_sg,
519                                                           rm->data.op_nents,
520                                                           DMA_TO_DEVICE);
521                         rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
522                         if (rm->data.op_count == 0) {
523                                 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
524                                 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
525                                 ret = -ENOMEM; /* XXX ? */
526                                 goto out;
527                         }
528                 } else {
529                         rm->data.op_count = 0;
530                 }
531
532                 rds_message_addref(rm);
533                 ic->i_rm = rm;
534
535                 /* Finalize the header */
536                 if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
537                         rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
538                 if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
539                         rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
540
541                 /* If it has a RDMA op, tell the peer we did it. This is
542                  * used by the peer to release use-once RDMA MRs. */
543                 if (rm->rdma.op_active) {
544                         struct rds_ext_header_rdma ext_hdr;
545
546                         ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
547                         rds_message_add_extension(&rm->m_inc.i_hdr,
548                                         RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
549                 }
550                 if (rm->m_rdma_cookie) {
551                         rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
552                                         rds_rdma_cookie_key(rm->m_rdma_cookie),
553                                         rds_rdma_cookie_offset(rm->m_rdma_cookie));
554                 }
555
556                 /* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
557                  * we should not do this unless we have a chance of at least
558                  * sticking the header into the send ring. Which is why we
559                  * should call rds_ib_ring_alloc first. */
560                 rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic));
561                 rds_message_make_checksum(&rm->m_inc.i_hdr);
562
563                 /*
564                  * Update adv_credits since we reset the ACK_REQUIRED bit.
565                  */
566                 if (ic->i_flowctl) {
567                         rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
568                         adv_credits += posted;
569                         BUG_ON(adv_credits > 255);
570                 }
571         }
572
573         /* Sometimes you want to put a fence between an RDMA
574          * READ and the following SEND.
575          * We could either do this all the time
576          * or when requested by the user. Right now, we let
577          * the application choose.
578          */
579         if (rm->rdma.op_active && rm->rdma.op_fence)
580                 send_flags = IB_SEND_FENCE;
581
582         /* Each frag gets a header. Msgs may be 0 bytes */
583         send = &ic->i_sends[pos];
584         first = send;
585         prev = NULL;
586         scat = &rm->data.op_sg[sg];
587         i = 0;
588         do {
589                 unsigned int len = 0;
590
591                 /* Set up the header */
592                 send->s_wr.send_flags = send_flags;
593                 send->s_wr.opcode = IB_WR_SEND;
594                 send->s_wr.num_sge = 1;
595                 send->s_wr.next = NULL;
596                 send->s_queued = jiffies;
597                 send->s_op = NULL;
598
599                 send->s_sge[0].addr = ic->i_send_hdrs_dma
600                         + (pos * sizeof(struct rds_header));
601                 send->s_sge[0].length = sizeof(struct rds_header);
602
603                 memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header));
604
605                 /* Set up the data, if present */
606                 if (i < work_alloc
607                     && scat != &rm->data.op_sg[rm->data.op_count]) {
608                         len = min(RDS_FRAG_SIZE, ib_sg_dma_len(dev, scat) - off);
609                         send->s_wr.num_sge = 2;
610
611                         send->s_sge[1].addr = ib_sg_dma_address(dev, scat) + off;
612                         send->s_sge[1].length = len;
613
614                         bytes_sent += len;
615                         off += len;
616                         if (off == ib_sg_dma_len(dev, scat)) {
617                                 scat++;
618                                 off = 0;
619                         }
620                 }
621
622                 rds_ib_set_wr_signal_state(ic, send, 0);
623
624                 /*
625                  * Always signal the last one if we're stopping due to flow control.
626                  */
627                 if (ic->i_flowctl && flow_controlled && i == (work_alloc-1))
628                         send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
629
630                 rdsdebug("send %p wr %p num_sge %u next %p\n", send,
631                          &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
632
633                 if (ic->i_flowctl && adv_credits) {
634                         struct rds_header *hdr = &ic->i_send_hdrs[pos];
635
636                         /* add credit and redo the header checksum */
637                         hdr->h_credit = adv_credits;
638                         rds_message_make_checksum(hdr);
639                         adv_credits = 0;
640                         rds_ib_stats_inc(s_ib_tx_credit_updates);
641                 }
642
643                 if (prev)
644                         prev->s_wr.next = &send->s_wr;
645                 prev = send;
646
647                 pos = (pos + 1) % ic->i_send_ring.w_nr;
648                 send = &ic->i_sends[pos];
649                 i++;
650
651         } while (i < work_alloc
652                  && scat != &rm->data.op_sg[rm->data.op_count]);
653
654         /* Account the RDS header in the number of bytes we sent, but just once.
655          * The caller has no concept of fragmentation. */
656         if (hdr_off == 0)
657                 bytes_sent += sizeof(struct rds_header);
658
659         /* if we finished the message then send completion owns it */
660         if (scat == &rm->data.op_sg[rm->data.op_count]) {
661                 prev->s_rm = ic->i_rm;
662                 prev->s_wr.send_flags |= IB_SEND_SOLICITED;
663                 ic->i_rm = NULL;
664         }
665
666         /* Put back wrs & credits we didn't use */
667         if (i < work_alloc) {
668                 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
669                 work_alloc = i;
670         }
671         if (ic->i_flowctl && i < credit_alloc)
672                 rds_ib_send_add_credits(conn, credit_alloc - i);
673
674         /* XXX need to worry about failed_wr and partial sends. */
675         failed_wr = &first->s_wr;
676         ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
677         rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
678                  first, &first->s_wr, ret, failed_wr);
679         BUG_ON(failed_wr != &first->s_wr);
680         if (ret) {
681                 printk(KERN_WARNING "RDS/IB: ib_post_send to %pI4 "
682                        "returned %d\n", &conn->c_faddr, ret);
683                 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
684                 if (prev->s_rm) {
685                         ic->i_rm = prev->s_rm;
686                         prev->s_rm = NULL;
687                 }
688
689                 rds_ib_conn_error(ic->conn, "ib_post_send failed\n");
690                 goto out;
691         }
692
693         ret = bytes_sent;
694 out:
695         BUG_ON(adv_credits);
696         return ret;
697 }
698
699 /*
700  * Issue atomic operation.
701  * A simplified version of the rdma case, we always map 1 SG, and
702  * only 8 bytes, for the return value from the atomic operation.
703  */
704 int rds_ib_xmit_atomic(struct rds_connection *conn, struct rds_message *rm)
705 {
706         struct rds_ib_connection *ic = conn->c_transport_data;
707         struct rm_atomic_op *op = &rm->atomic;
708         struct rds_ib_send_work *send = NULL;
709         struct ib_send_wr *failed_wr;
710         struct rds_ib_device *rds_ibdev;
711         u32 pos;
712         u32 work_alloc;
713         int ret;
714
715         rds_ibdev = ib_get_client_data(ic->i_cm_id->device, &rds_ib_client);
716
717         work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos);
718         if (work_alloc != 1) {
719                 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
720                 rds_ib_stats_inc(s_ib_tx_ring_full);
721                 ret = -ENOMEM;
722                 goto out;
723         }
724
725         /* address of send request in ring */
726         send = &ic->i_sends[pos];
727         send->s_queued = jiffies;
728
729         if (op->op_type == RDS_ATOMIC_TYPE_CSWP) {
730                 send->s_wr.opcode = IB_WR_ATOMIC_CMP_AND_SWP;
731                 send->s_wr.wr.atomic.compare_add = op->op_compare;
732                 send->s_wr.wr.atomic.swap = op->op_swap_add;
733         } else { /* FADD */
734                 send->s_wr.opcode = IB_WR_ATOMIC_FETCH_AND_ADD;
735                 send->s_wr.wr.atomic.compare_add = op->op_swap_add;
736                 send->s_wr.wr.atomic.swap = 0;
737         }
738         rds_ib_set_wr_signal_state(ic, send, op->op_notify);
739         send->s_wr.num_sge = 1;
740         send->s_wr.next = NULL;
741         send->s_wr.wr.atomic.remote_addr = op->op_remote_addr;
742         send->s_wr.wr.atomic.rkey = op->op_rkey;
743
744         /*
745          * If there is no data or rdma ops in the message, then
746          * we must fill in s_rm ourselves, so we properly clean up
747          * on completion.
748          */
749         if (!rm->rdma.op_active && !rm->data.op_active)
750                 send->s_rm = rm;
751
752         /* map 8 byte retval buffer to the device */
753         ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE);
754         rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret);
755         if (ret != 1) {
756                 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
757                 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
758                 ret = -ENOMEM; /* XXX ? */
759                 goto out;
760         }
761
762         /* Convert our struct scatterlist to struct ib_sge */
763         send->s_sge[0].addr = ib_sg_dma_address(ic->i_cm_id->device, op->op_sg);
764         send->s_sge[0].length = ib_sg_dma_len(ic->i_cm_id->device, op->op_sg);
765         send->s_sge[0].lkey = ic->i_mr->lkey;
766
767         rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr,
768                  send->s_sge[0].addr, send->s_sge[0].length);
769
770         failed_wr = &send->s_wr;
771         ret = ib_post_send(ic->i_cm_id->qp, &send->s_wr, &failed_wr);
772         rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic,
773                  send, &send->s_wr, ret, failed_wr);
774         BUG_ON(failed_wr != &send->s_wr);
775         if (ret) {
776                 printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI4 "
777                        "returned %d\n", &conn->c_faddr, ret);
778                 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
779                 goto out;
780         }
781
782         if (unlikely(failed_wr != &send->s_wr)) {
783                 printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
784                 BUG_ON(failed_wr != &send->s_wr);
785         }
786
787 out:
788         return ret;
789 }
790
791 int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
792 {
793         struct rds_ib_connection *ic = conn->c_transport_data;
794         struct rds_ib_send_work *send = NULL;
795         struct rds_ib_send_work *first;
796         struct rds_ib_send_work *prev;
797         struct ib_send_wr *failed_wr;
798         struct rds_ib_device *rds_ibdev;
799         struct scatterlist *scat;
800         unsigned long len;
801         u64 remote_addr = op->op_remote_addr;
802         u32 pos;
803         u32 work_alloc;
804         u32 i;
805         u32 j;
806         int sent;
807         int ret;
808         int num_sge;
809
810         rds_ibdev = ib_get_client_data(ic->i_cm_id->device, &rds_ib_client);
811
812         /* map the message the first time we see it */
813         if (!op->op_mapped) {
814                 op->op_count = ib_dma_map_sg(ic->i_cm_id->device,
815                                              op->op_sg, op->op_nents, (op->op_write) ?
816                                              DMA_TO_DEVICE : DMA_FROM_DEVICE);
817                 rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count);
818                 if (op->op_count == 0) {
819                         rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
820                         ret = -ENOMEM; /* XXX ? */
821                         goto out;
822                 }
823
824                 op->op_mapped = 1;
825         }
826
827         /*
828          * Instead of knowing how to return a partial rdma read/write we insist that there
829          * be enough work requests to send the entire message.
830          */
831         i = ceil(op->op_count, rds_ibdev->max_sge);
832
833         work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
834         if (work_alloc != i) {
835                 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
836                 rds_ib_stats_inc(s_ib_tx_ring_full);
837                 ret = -ENOMEM;
838                 goto out;
839         }
840
841         send = &ic->i_sends[pos];
842         first = send;
843         prev = NULL;
844         scat = &op->op_sg[0];
845         sent = 0;
846         num_sge = op->op_count;
847
848         for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
849                 send->s_wr.send_flags = 0;
850                 send->s_queued = jiffies;
851
852                 rds_ib_set_wr_signal_state(ic, send, op->op_notify);
853
854                 send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
855                 send->s_wr.wr.rdma.remote_addr = remote_addr;
856                 send->s_wr.wr.rdma.rkey = op->op_rkey;
857                 send->s_op = op;
858
859                 if (num_sge > rds_ibdev->max_sge) {
860                         send->s_wr.num_sge = rds_ibdev->max_sge;
861                         num_sge -= rds_ibdev->max_sge;
862                 } else {
863                         send->s_wr.num_sge = num_sge;
864                 }
865
866                 send->s_wr.next = NULL;
867
868                 if (prev)
869                         prev->s_wr.next = &send->s_wr;
870
871                 for (j = 0; j < send->s_wr.num_sge && scat != &op->op_sg[op->op_count]; j++) {
872                         len = ib_sg_dma_len(ic->i_cm_id->device, scat);
873                         send->s_sge[j].addr =
874                                  ib_sg_dma_address(ic->i_cm_id->device, scat);
875                         send->s_sge[j].length = len;
876                         send->s_sge[j].lkey = ic->i_mr->lkey;
877
878                         sent += len;
879                         rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
880
881                         remote_addr += len;
882                         scat++;
883                 }
884
885                 rdsdebug("send %p wr %p num_sge %u next %p\n", send,
886                         &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
887
888                 prev = send;
889                 if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
890                         send = ic->i_sends;
891         }
892
893         if (i < work_alloc) {
894                 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
895                 work_alloc = i;
896         }
897
898         failed_wr = &first->s_wr;
899         ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
900         rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
901                  first, &first->s_wr, ret, failed_wr);
902         BUG_ON(failed_wr != &first->s_wr);
903         if (ret) {
904                 printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI4 "
905                        "returned %d\n", &conn->c_faddr, ret);
906                 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
907                 goto out;
908         }
909
910         if (unlikely(failed_wr != &first->s_wr)) {
911                 printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
912                 BUG_ON(failed_wr != &first->s_wr);
913         }
914
915
916 out:
917         return ret;
918 }
919
920 void rds_ib_xmit_complete(struct rds_connection *conn)
921 {
922         struct rds_ib_connection *ic = conn->c_transport_data;
923
924         /* We may have a pending ACK or window update we were unable
925          * to send previously (due to flow control). Try again. */
926         rds_ib_attempt_ack(ic);
927 }