]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - mm/vmscan.c
[PATCH] Updates for page migration
[linux-2.6.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>  /* for try_to_release_page(),
26                                         buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39
40 #include <linux/swapops.h>
41
42 /* possible outcome of pageout() */
43 typedef enum {
44         /* failed to write page out, page is locked */
45         PAGE_KEEP,
46         /* move page to the active list, page is locked */
47         PAGE_ACTIVATE,
48         /* page has been sent to the disk successfully, page is unlocked */
49         PAGE_SUCCESS,
50         /* page is clean and locked */
51         PAGE_CLEAN,
52 } pageout_t;
53
54 struct scan_control {
55         /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56         unsigned long nr_to_scan;
57
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Incremented by the number of pages reclaimed */
62         unsigned long nr_reclaimed;
63
64         unsigned long nr_mapped;        /* From page_state */
65
66         /* Ask shrink_caches, or shrink_zone to scan at this priority */
67         unsigned int priority;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can pages be swapped as part of reclaim? */
75         int may_swap;
76
77         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
78          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
79          * In this context, it doesn't matter that we scan the
80          * whole list at once. */
81         int swap_cluster_max;
82 };
83
84 /*
85  * The list of shrinker callbacks used by to apply pressure to
86  * ageable caches.
87  */
88 struct shrinker {
89         shrinker_t              shrinker;
90         struct list_head        list;
91         int                     seeks;  /* seeks to recreate an obj */
92         long                    nr;     /* objs pending delete */
93 };
94
95 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
96
97 #ifdef ARCH_HAS_PREFETCH
98 #define prefetch_prev_lru_page(_page, _base, _field)                    \
99         do {                                                            \
100                 if ((_page)->lru.prev != _base) {                       \
101                         struct page *prev;                              \
102                                                                         \
103                         prev = lru_to_page(&(_page->lru));              \
104                         prefetch(&prev->_field);                        \
105                 }                                                       \
106         } while (0)
107 #else
108 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
109 #endif
110
111 #ifdef ARCH_HAS_PREFETCHW
112 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
113         do {                                                            \
114                 if ((_page)->lru.prev != _base) {                       \
115                         struct page *prev;                              \
116                                                                         \
117                         prev = lru_to_page(&(_page->lru));              \
118                         prefetchw(&prev->_field);                       \
119                 }                                                       \
120         } while (0)
121 #else
122 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124
125 /*
126  * From 0 .. 100.  Higher means more swappy.
127  */
128 int vm_swappiness = 60;
129 static long total_memory;
130
131 static LIST_HEAD(shrinker_list);
132 static DECLARE_RWSEM(shrinker_rwsem);
133
134 /*
135  * Add a shrinker callback to be called from the vm
136  */
137 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
138 {
139         struct shrinker *shrinker;
140
141         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
142         if (shrinker) {
143                 shrinker->shrinker = theshrinker;
144                 shrinker->seeks = seeks;
145                 shrinker->nr = 0;
146                 down_write(&shrinker_rwsem);
147                 list_add_tail(&shrinker->list, &shrinker_list);
148                 up_write(&shrinker_rwsem);
149         }
150         return shrinker;
151 }
152 EXPORT_SYMBOL(set_shrinker);
153
154 /*
155  * Remove one
156  */
157 void remove_shrinker(struct shrinker *shrinker)
158 {
159         down_write(&shrinker_rwsem);
160         list_del(&shrinker->list);
161         up_write(&shrinker_rwsem);
162         kfree(shrinker);
163 }
164 EXPORT_SYMBOL(remove_shrinker);
165
166 #define SHRINK_BATCH 128
167 /*
168  * Call the shrink functions to age shrinkable caches
169  *
170  * Here we assume it costs one seek to replace a lru page and that it also
171  * takes a seek to recreate a cache object.  With this in mind we age equal
172  * percentages of the lru and ageable caches.  This should balance the seeks
173  * generated by these structures.
174  *
175  * If the vm encounted mapped pages on the LRU it increase the pressure on
176  * slab to avoid swapping.
177  *
178  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
179  *
180  * `lru_pages' represents the number of on-LRU pages in all the zones which
181  * are eligible for the caller's allocation attempt.  It is used for balancing
182  * slab reclaim versus page reclaim.
183  *
184  * Returns the number of slab objects which we shrunk.
185  */
186 int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages)
187 {
188         struct shrinker *shrinker;
189         int ret = 0;
190
191         if (scanned == 0)
192                 scanned = SWAP_CLUSTER_MAX;
193
194         if (!down_read_trylock(&shrinker_rwsem))
195                 return 1;       /* Assume we'll be able to shrink next time */
196
197         list_for_each_entry(shrinker, &shrinker_list, list) {
198                 unsigned long long delta;
199                 unsigned long total_scan;
200                 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
201
202                 delta = (4 * scanned) / shrinker->seeks;
203                 delta *= max_pass;
204                 do_div(delta, lru_pages + 1);
205                 shrinker->nr += delta;
206                 if (shrinker->nr < 0) {
207                         printk(KERN_ERR "%s: nr=%ld\n",
208                                         __FUNCTION__, shrinker->nr);
209                         shrinker->nr = max_pass;
210                 }
211
212                 /*
213                  * Avoid risking looping forever due to too large nr value:
214                  * never try to free more than twice the estimate number of
215                  * freeable entries.
216                  */
217                 if (shrinker->nr > max_pass * 2)
218                         shrinker->nr = max_pass * 2;
219
220                 total_scan = shrinker->nr;
221                 shrinker->nr = 0;
222
223                 while (total_scan >= SHRINK_BATCH) {
224                         long this_scan = SHRINK_BATCH;
225                         int shrink_ret;
226                         int nr_before;
227
228                         nr_before = (*shrinker->shrinker)(0, gfp_mask);
229                         shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
230                         if (shrink_ret == -1)
231                                 break;
232                         if (shrink_ret < nr_before)
233                                 ret += nr_before - shrink_ret;
234                         mod_page_state(slabs_scanned, this_scan);
235                         total_scan -= this_scan;
236
237                         cond_resched();
238                 }
239
240                 shrinker->nr += total_scan;
241         }
242         up_read(&shrinker_rwsem);
243         return ret;
244 }
245
246 /* Called without lock on whether page is mapped, so answer is unstable */
247 static inline int page_mapping_inuse(struct page *page)
248 {
249         struct address_space *mapping;
250
251         /* Page is in somebody's page tables. */
252         if (page_mapped(page))
253                 return 1;
254
255         /* Be more reluctant to reclaim swapcache than pagecache */
256         if (PageSwapCache(page))
257                 return 1;
258
259         mapping = page_mapping(page);
260         if (!mapping)
261                 return 0;
262
263         /* File is mmap'd by somebody? */
264         return mapping_mapped(mapping);
265 }
266
267 static inline int is_page_cache_freeable(struct page *page)
268 {
269         return page_count(page) - !!PagePrivate(page) == 2;
270 }
271
272 static int may_write_to_queue(struct backing_dev_info *bdi)
273 {
274         if (current->flags & PF_SWAPWRITE)
275                 return 1;
276         if (!bdi_write_congested(bdi))
277                 return 1;
278         if (bdi == current->backing_dev_info)
279                 return 1;
280         return 0;
281 }
282
283 /*
284  * We detected a synchronous write error writing a page out.  Probably
285  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
286  * fsync(), msync() or close().
287  *
288  * The tricky part is that after writepage we cannot touch the mapping: nothing
289  * prevents it from being freed up.  But we have a ref on the page and once
290  * that page is locked, the mapping is pinned.
291  *
292  * We're allowed to run sleeping lock_page() here because we know the caller has
293  * __GFP_FS.
294  */
295 static void handle_write_error(struct address_space *mapping,
296                                 struct page *page, int error)
297 {
298         lock_page(page);
299         if (page_mapping(page) == mapping) {
300                 if (error == -ENOSPC)
301                         set_bit(AS_ENOSPC, &mapping->flags);
302                 else
303                         set_bit(AS_EIO, &mapping->flags);
304         }
305         unlock_page(page);
306 }
307
308 /*
309  * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
310  */
311 static pageout_t pageout(struct page *page, struct address_space *mapping)
312 {
313         /*
314          * If the page is dirty, only perform writeback if that write
315          * will be non-blocking.  To prevent this allocation from being
316          * stalled by pagecache activity.  But note that there may be
317          * stalls if we need to run get_block().  We could test
318          * PagePrivate for that.
319          *
320          * If this process is currently in generic_file_write() against
321          * this page's queue, we can perform writeback even if that
322          * will block.
323          *
324          * If the page is swapcache, write it back even if that would
325          * block, for some throttling. This happens by accident, because
326          * swap_backing_dev_info is bust: it doesn't reflect the
327          * congestion state of the swapdevs.  Easy to fix, if needed.
328          * See swapfile.c:page_queue_congested().
329          */
330         if (!is_page_cache_freeable(page))
331                 return PAGE_KEEP;
332         if (!mapping) {
333                 /*
334                  * Some data journaling orphaned pages can have
335                  * page->mapping == NULL while being dirty with clean buffers.
336                  */
337                 if (PagePrivate(page)) {
338                         if (try_to_free_buffers(page)) {
339                                 ClearPageDirty(page);
340                                 printk("%s: orphaned page\n", __FUNCTION__);
341                                 return PAGE_CLEAN;
342                         }
343                 }
344                 return PAGE_KEEP;
345         }
346         if (mapping->a_ops->writepage == NULL)
347                 return PAGE_ACTIVATE;
348         if (!may_write_to_queue(mapping->backing_dev_info))
349                 return PAGE_KEEP;
350
351         if (clear_page_dirty_for_io(page)) {
352                 int res;
353                 struct writeback_control wbc = {
354                         .sync_mode = WB_SYNC_NONE,
355                         .nr_to_write = SWAP_CLUSTER_MAX,
356                         .nonblocking = 1,
357                         .for_reclaim = 1,
358                 };
359
360                 SetPageReclaim(page);
361                 res = mapping->a_ops->writepage(page, &wbc);
362                 if (res < 0)
363                         handle_write_error(mapping, page, res);
364                 if (res == AOP_WRITEPAGE_ACTIVATE) {
365                         ClearPageReclaim(page);
366                         return PAGE_ACTIVATE;
367                 }
368                 if (!PageWriteback(page)) {
369                         /* synchronous write or broken a_ops? */
370                         ClearPageReclaim(page);
371                 }
372
373                 return PAGE_SUCCESS;
374         }
375
376         return PAGE_CLEAN;
377 }
378
379 static int remove_mapping(struct address_space *mapping, struct page *page)
380 {
381         if (!mapping)
382                 return 0;               /* truncate got there first */
383
384         write_lock_irq(&mapping->tree_lock);
385
386         /*
387          * The non-racy check for busy page.  It is critical to check
388          * PageDirty _after_ making sure that the page is freeable and
389          * not in use by anybody.       (pagecache + us == 2)
390          */
391         if (unlikely(page_count(page) != 2))
392                 goto cannot_free;
393         smp_rmb();
394         if (unlikely(PageDirty(page)))
395                 goto cannot_free;
396
397         if (PageSwapCache(page)) {
398                 swp_entry_t swap = { .val = page_private(page) };
399                 __delete_from_swap_cache(page);
400                 write_unlock_irq(&mapping->tree_lock);
401                 swap_free(swap);
402                 __put_page(page);       /* The pagecache ref */
403                 return 1;
404         }
405
406         __remove_from_page_cache(page);
407         write_unlock_irq(&mapping->tree_lock);
408         __put_page(page);
409         return 1;
410
411 cannot_free:
412         write_unlock_irq(&mapping->tree_lock);
413         return 0;
414 }
415
416 /*
417  * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
418  */
419 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
420 {
421         LIST_HEAD(ret_pages);
422         struct pagevec freed_pvec;
423         int pgactivate = 0;
424         int reclaimed = 0;
425
426         cond_resched();
427
428         pagevec_init(&freed_pvec, 1);
429         while (!list_empty(page_list)) {
430                 struct address_space *mapping;
431                 struct page *page;
432                 int may_enter_fs;
433                 int referenced;
434
435                 cond_resched();
436
437                 page = lru_to_page(page_list);
438                 list_del(&page->lru);
439
440                 if (TestSetPageLocked(page))
441                         goto keep;
442
443                 BUG_ON(PageActive(page));
444
445                 sc->nr_scanned++;
446                 /* Double the slab pressure for mapped and swapcache pages */
447                 if (page_mapped(page) || PageSwapCache(page))
448                         sc->nr_scanned++;
449
450                 if (PageWriteback(page))
451                         goto keep_locked;
452
453                 referenced = page_referenced(page, 1);
454                 /* In active use or really unfreeable?  Activate it. */
455                 if (referenced && page_mapping_inuse(page))
456                         goto activate_locked;
457
458 #ifdef CONFIG_SWAP
459                 /*
460                  * Anonymous process memory has backing store?
461                  * Try to allocate it some swap space here.
462                  */
463                 if (PageAnon(page) && !PageSwapCache(page)) {
464                         if (!sc->may_swap)
465                                 goto keep_locked;
466                         if (!add_to_swap(page, GFP_ATOMIC))
467                                 goto activate_locked;
468                 }
469 #endif /* CONFIG_SWAP */
470
471                 mapping = page_mapping(page);
472                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
473                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
474
475                 /*
476                  * The page is mapped into the page tables of one or more
477                  * processes. Try to unmap it here.
478                  */
479                 if (page_mapped(page) && mapping) {
480                         /*
481                          * No unmapping if we do not swap
482                          */
483                         if (!sc->may_swap)
484                                 goto keep_locked;
485
486                         switch (try_to_unmap(page, 0)) {
487                         case SWAP_FAIL:
488                                 goto activate_locked;
489                         case SWAP_AGAIN:
490                                 goto keep_locked;
491                         case SWAP_SUCCESS:
492                                 ; /* try to free the page below */
493                         }
494                 }
495
496                 if (PageDirty(page)) {
497                         if (referenced)
498                                 goto keep_locked;
499                         if (!may_enter_fs)
500                                 goto keep_locked;
501                         if (!sc->may_writepage)
502                                 goto keep_locked;
503
504                         /* Page is dirty, try to write it out here */
505                         switch(pageout(page, mapping)) {
506                         case PAGE_KEEP:
507                                 goto keep_locked;
508                         case PAGE_ACTIVATE:
509                                 goto activate_locked;
510                         case PAGE_SUCCESS:
511                                 if (PageWriteback(page) || PageDirty(page))
512                                         goto keep;
513                                 /*
514                                  * A synchronous write - probably a ramdisk.  Go
515                                  * ahead and try to reclaim the page.
516                                  */
517                                 if (TestSetPageLocked(page))
518                                         goto keep;
519                                 if (PageDirty(page) || PageWriteback(page))
520                                         goto keep_locked;
521                                 mapping = page_mapping(page);
522                         case PAGE_CLEAN:
523                                 ; /* try to free the page below */
524                         }
525                 }
526
527                 /*
528                  * If the page has buffers, try to free the buffer mappings
529                  * associated with this page. If we succeed we try to free
530                  * the page as well.
531                  *
532                  * We do this even if the page is PageDirty().
533                  * try_to_release_page() does not perform I/O, but it is
534                  * possible for a page to have PageDirty set, but it is actually
535                  * clean (all its buffers are clean).  This happens if the
536                  * buffers were written out directly, with submit_bh(). ext3
537                  * will do this, as well as the blockdev mapping. 
538                  * try_to_release_page() will discover that cleanness and will
539                  * drop the buffers and mark the page clean - it can be freed.
540                  *
541                  * Rarely, pages can have buffers and no ->mapping.  These are
542                  * the pages which were not successfully invalidated in
543                  * truncate_complete_page().  We try to drop those buffers here
544                  * and if that worked, and the page is no longer mapped into
545                  * process address space (page_count == 1) it can be freed.
546                  * Otherwise, leave the page on the LRU so it is swappable.
547                  */
548                 if (PagePrivate(page)) {
549                         if (!try_to_release_page(page, sc->gfp_mask))
550                                 goto activate_locked;
551                         if (!mapping && page_count(page) == 1)
552                                 goto free_it;
553                 }
554
555                 if (!remove_mapping(mapping, page))
556                         goto keep_locked;
557
558 free_it:
559                 unlock_page(page);
560                 reclaimed++;
561                 if (!pagevec_add(&freed_pvec, page))
562                         __pagevec_release_nonlru(&freed_pvec);
563                 continue;
564
565 activate_locked:
566                 SetPageActive(page);
567                 pgactivate++;
568 keep_locked:
569                 unlock_page(page);
570 keep:
571                 list_add(&page->lru, &ret_pages);
572                 BUG_ON(PageLRU(page));
573         }
574         list_splice(&ret_pages, page_list);
575         if (pagevec_count(&freed_pvec))
576                 __pagevec_release_nonlru(&freed_pvec);
577         mod_page_state(pgactivate, pgactivate);
578         sc->nr_reclaimed += reclaimed;
579         return reclaimed;
580 }
581
582 #ifdef CONFIG_MIGRATION
583 static inline void move_to_lru(struct page *page)
584 {
585         list_del(&page->lru);
586         if (PageActive(page)) {
587                 /*
588                  * lru_cache_add_active checks that
589                  * the PG_active bit is off.
590                  */
591                 ClearPageActive(page);
592                 lru_cache_add_active(page);
593         } else {
594                 lru_cache_add(page);
595         }
596         put_page(page);
597 }
598
599 /*
600  * Add isolated pages on the list back to the LRU.
601  *
602  * returns the number of pages put back.
603  */
604 int putback_lru_pages(struct list_head *l)
605 {
606         struct page *page;
607         struct page *page2;
608         int count = 0;
609
610         list_for_each_entry_safe(page, page2, l, lru) {
611                 move_to_lru(page);
612                 count++;
613         }
614         return count;
615 }
616
617 /*
618  * Non migratable page
619  */
620 int fail_migrate_page(struct page *newpage, struct page *page)
621 {
622         return -EIO;
623 }
624 EXPORT_SYMBOL(fail_migrate_page);
625
626 /*
627  * swapout a single page
628  * page is locked upon entry, unlocked on exit
629  */
630 static int swap_page(struct page *page)
631 {
632         struct address_space *mapping = page_mapping(page);
633
634         if (page_mapped(page) && mapping)
635                 if (try_to_unmap(page, 1) != SWAP_SUCCESS)
636                         goto unlock_retry;
637
638         if (PageDirty(page)) {
639                 /* Page is dirty, try to write it out here */
640                 switch(pageout(page, mapping)) {
641                 case PAGE_KEEP:
642                 case PAGE_ACTIVATE:
643                         goto unlock_retry;
644
645                 case PAGE_SUCCESS:
646                         goto retry;
647
648                 case PAGE_CLEAN:
649                         ; /* try to free the page below */
650                 }
651         }
652
653         if (PagePrivate(page)) {
654                 if (!try_to_release_page(page, GFP_KERNEL) ||
655                     (!mapping && page_count(page) == 1))
656                         goto unlock_retry;
657         }
658
659         if (remove_mapping(mapping, page)) {
660                 /* Success */
661                 unlock_page(page);
662                 return 0;
663         }
664
665 unlock_retry:
666         unlock_page(page);
667
668 retry:
669         return -EAGAIN;
670 }
671 EXPORT_SYMBOL(swap_page);
672
673 /*
674  * Page migration was first developed in the context of the memory hotplug
675  * project. The main authors of the migration code are:
676  *
677  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
678  * Hirokazu Takahashi <taka@valinux.co.jp>
679  * Dave Hansen <haveblue@us.ibm.com>
680  * Christoph Lameter <clameter@sgi.com>
681  */
682
683 /*
684  * Remove references for a page and establish the new page with the correct
685  * basic settings to be able to stop accesses to the page.
686  */
687 int migrate_page_remove_references(struct page *newpage,
688                                 struct page *page, int nr_refs)
689 {
690         struct address_space *mapping = page_mapping(page);
691         struct page **radix_pointer;
692
693         /*
694          * Avoid doing any of the following work if the page count
695          * indicates that the page is in use or truncate has removed
696          * the page.
697          */
698         if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
699                 return 1;
700
701         /*
702          * Establish swap ptes for anonymous pages or destroy pte
703          * maps for files.
704          *
705          * In order to reestablish file backed mappings the fault handlers
706          * will take the radix tree_lock which may then be used to stop
707          * processses from accessing this page until the new page is ready.
708          *
709          * A process accessing via a swap pte (an anonymous page) will take a
710          * page_lock on the old page which will block the process until the
711          * migration attempt is complete. At that time the PageSwapCache bit
712          * will be examined. If the page was migrated then the PageSwapCache
713          * bit will be clear and the operation to retrieve the page will be
714          * retried which will find the new page in the radix tree. Then a new
715          * direct mapping may be generated based on the radix tree contents.
716          *
717          * If the page was not migrated then the PageSwapCache bit
718          * is still set and the operation may continue.
719          */
720         try_to_unmap(page, 1);
721
722         /*
723          * Give up if we were unable to remove all mappings.
724          */
725         if (page_mapcount(page))
726                 return 1;
727
728         write_lock_irq(&mapping->tree_lock);
729
730         radix_pointer = (struct page **)radix_tree_lookup_slot(
731                                                 &mapping->page_tree,
732                                                 page_index(page));
733
734         if (!page_mapping(page) || page_count(page) != nr_refs ||
735                         *radix_pointer != page) {
736                 write_unlock_irq(&mapping->tree_lock);
737                 return 1;
738         }
739
740         /*
741          * Now we know that no one else is looking at the page.
742          *
743          * Certain minimal information about a page must be available
744          * in order for other subsystems to properly handle the page if they
745          * find it through the radix tree update before we are finished
746          * copying the page.
747          */
748         get_page(newpage);
749         newpage->index = page->index;
750         newpage->mapping = page->mapping;
751         if (PageSwapCache(page)) {
752                 SetPageSwapCache(newpage);
753                 set_page_private(newpage, page_private(page));
754         }
755
756         *radix_pointer = newpage;
757         __put_page(page);
758         write_unlock_irq(&mapping->tree_lock);
759
760         return 0;
761 }
762 EXPORT_SYMBOL(migrate_page_remove_references);
763
764 /*
765  * Copy the page to its new location
766  */
767 void migrate_page_copy(struct page *newpage, struct page *page)
768 {
769         copy_highpage(newpage, page);
770
771         if (PageError(page))
772                 SetPageError(newpage);
773         if (PageReferenced(page))
774                 SetPageReferenced(newpage);
775         if (PageUptodate(page))
776                 SetPageUptodate(newpage);
777         if (PageActive(page))
778                 SetPageActive(newpage);
779         if (PageChecked(page))
780                 SetPageChecked(newpage);
781         if (PageMappedToDisk(page))
782                 SetPageMappedToDisk(newpage);
783
784         if (PageDirty(page)) {
785                 clear_page_dirty_for_io(page);
786                 set_page_dirty(newpage);
787         }
788
789         ClearPageSwapCache(page);
790         ClearPageActive(page);
791         ClearPagePrivate(page);
792         set_page_private(page, 0);
793         page->mapping = NULL;
794
795         /*
796          * If any waiters have accumulated on the new page then
797          * wake them up.
798          */
799         if (PageWriteback(newpage))
800                 end_page_writeback(newpage);
801 }
802 EXPORT_SYMBOL(migrate_page_copy);
803
804 /*
805  * Common logic to directly migrate a single page suitable for
806  * pages that do not use PagePrivate.
807  *
808  * Pages are locked upon entry and exit.
809  */
810 int migrate_page(struct page *newpage, struct page *page)
811 {
812         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
813
814         if (migrate_page_remove_references(newpage, page, 2))
815                 return -EAGAIN;
816
817         migrate_page_copy(newpage, page);
818
819         /*
820          * Remove auxiliary swap entries and replace
821          * them with real ptes.
822          *
823          * Note that a real pte entry will allow processes that are not
824          * waiting on the page lock to use the new page via the page tables
825          * before the new page is unlocked.
826          */
827         remove_from_swap(newpage);
828         return 0;
829 }
830 EXPORT_SYMBOL(migrate_page);
831
832 /*
833  * migrate_pages
834  *
835  * Two lists are passed to this function. The first list
836  * contains the pages isolated from the LRU to be migrated.
837  * The second list contains new pages that the pages isolated
838  * can be moved to. If the second list is NULL then all
839  * pages are swapped out.
840  *
841  * The function returns after 10 attempts or if no pages
842  * are movable anymore because to has become empty
843  * or no retryable pages exist anymore.
844  *
845  * Return: Number of pages not migrated when "to" ran empty.
846  */
847 int migrate_pages(struct list_head *from, struct list_head *to,
848                   struct list_head *moved, struct list_head *failed)
849 {
850         int retry;
851         int nr_failed = 0;
852         int pass = 0;
853         struct page *page;
854         struct page *page2;
855         int swapwrite = current->flags & PF_SWAPWRITE;
856         int rc;
857
858         if (!swapwrite)
859                 current->flags |= PF_SWAPWRITE;
860
861 redo:
862         retry = 0;
863
864         list_for_each_entry_safe(page, page2, from, lru) {
865                 struct page *newpage = NULL;
866                 struct address_space *mapping;
867
868                 cond_resched();
869
870                 rc = 0;
871                 if (page_count(page) == 1)
872                         /* page was freed from under us. So we are done. */
873                         goto next;
874
875                 if (to && list_empty(to))
876                         break;
877
878                 /*
879                  * Skip locked pages during the first two passes to give the
880                  * functions holding the lock time to release the page. Later we
881                  * use lock_page() to have a higher chance of acquiring the
882                  * lock.
883                  */
884                 rc = -EAGAIN;
885                 if (pass > 2)
886                         lock_page(page);
887                 else
888                         if (TestSetPageLocked(page))
889                                 goto next;
890
891                 /*
892                  * Only wait on writeback if we have already done a pass where
893                  * we we may have triggered writeouts for lots of pages.
894                  */
895                 if (pass > 0) {
896                         wait_on_page_writeback(page);
897                 } else {
898                         if (PageWriteback(page))
899                                 goto unlock_page;
900                 }
901
902                 /*
903                  * Anonymous pages must have swap cache references otherwise
904                  * the information contained in the page maps cannot be
905                  * preserved.
906                  */
907                 if (PageAnon(page) && !PageSwapCache(page)) {
908                         if (!add_to_swap(page, GFP_KERNEL)) {
909                                 rc = -ENOMEM;
910                                 goto unlock_page;
911                         }
912                 }
913
914                 if (!to) {
915                         rc = swap_page(page);
916                         goto next;
917                 }
918
919                 newpage = lru_to_page(to);
920                 lock_page(newpage);
921
922                 /*
923                  * Pages are properly locked and writeback is complete.
924                  * Try to migrate the page.
925                  */
926                 mapping = page_mapping(page);
927                 if (!mapping)
928                         goto unlock_both;
929
930                 if (mapping->a_ops->migratepage) {
931                         /*
932                          * Most pages have a mapping and most filesystems
933                          * should provide a migration function. Anonymous
934                          * pages are part of swap space which also has its
935                          * own migration function. This is the most common
936                          * path for page migration.
937                          */
938                         rc = mapping->a_ops->migratepage(newpage, page);
939                         goto unlock_both;
940                 }
941
942                 /*
943                  * Default handling if a filesystem does not provide
944                  * a migration function. We can only migrate clean
945                  * pages so try to write out any dirty pages first.
946                  */
947                 if (PageDirty(page)) {
948                         switch (pageout(page, mapping)) {
949                         case PAGE_KEEP:
950                         case PAGE_ACTIVATE:
951                                 goto unlock_both;
952
953                         case PAGE_SUCCESS:
954                                 unlock_page(newpage);
955                                 goto next;
956
957                         case PAGE_CLEAN:
958                                 ; /* try to migrate the page below */
959                         }
960                 }
961
962                 /*
963                  * Buffers are managed in a filesystem specific way.
964                  * We must have no buffers or drop them.
965                  */
966                 if (!page_has_buffers(page) ||
967                     try_to_release_page(page, GFP_KERNEL)) {
968                         rc = migrate_page(newpage, page);
969                         goto unlock_both;
970                 }
971
972                 /*
973                  * On early passes with mapped pages simply
974                  * retry. There may be a lock held for some
975                  * buffers that may go away. Later
976                  * swap them out.
977                  */
978                 if (pass > 4) {
979                         /*
980                          * Persistently unable to drop buffers..... As a
981                          * measure of last resort we fall back to
982                          * swap_page().
983                          */
984                         unlock_page(newpage);
985                         newpage = NULL;
986                         rc = swap_page(page);
987                         goto next;
988                 }
989
990 unlock_both:
991                 unlock_page(newpage);
992
993 unlock_page:
994                 unlock_page(page);
995
996 next:
997                 if (rc == -EAGAIN) {
998                         retry++;
999                 } else if (rc) {
1000                         /* Permanent failure */
1001                         list_move(&page->lru, failed);
1002                         nr_failed++;
1003                 } else {
1004                         if (newpage) {
1005                                 /* Successful migration. Return page to LRU */
1006                                 move_to_lru(newpage);
1007                         }
1008                         list_move(&page->lru, moved);
1009                 }
1010         }
1011         if (retry && pass++ < 10)
1012                 goto redo;
1013
1014         if (!swapwrite)
1015                 current->flags &= ~PF_SWAPWRITE;
1016
1017         return nr_failed + retry;
1018 }
1019
1020 /*
1021  * Isolate one page from the LRU lists and put it on the
1022  * indicated list with elevated refcount.
1023  *
1024  * Result:
1025  *  0 = page not on LRU list
1026  *  1 = page removed from LRU list and added to the specified list.
1027  */
1028 int isolate_lru_page(struct page *page)
1029 {
1030         int ret = 0;
1031
1032         if (PageLRU(page)) {
1033                 struct zone *zone = page_zone(page);
1034                 spin_lock_irq(&zone->lru_lock);
1035                 if (TestClearPageLRU(page)) {
1036                         ret = 1;
1037                         get_page(page);
1038                         if (PageActive(page))
1039                                 del_page_from_active_list(zone, page);
1040                         else
1041                                 del_page_from_inactive_list(zone, page);
1042                 }
1043                 spin_unlock_irq(&zone->lru_lock);
1044         }
1045
1046         return ret;
1047 }
1048 #endif
1049
1050 /*
1051  * zone->lru_lock is heavily contended.  Some of the functions that
1052  * shrink the lists perform better by taking out a batch of pages
1053  * and working on them outside the LRU lock.
1054  *
1055  * For pagecache intensive workloads, this function is the hottest
1056  * spot in the kernel (apart from copy_*_user functions).
1057  *
1058  * Appropriate locks must be held before calling this function.
1059  *
1060  * @nr_to_scan: The number of pages to look through on the list.
1061  * @src:        The LRU list to pull pages off.
1062  * @dst:        The temp list to put pages on to.
1063  * @scanned:    The number of pages that were scanned.
1064  *
1065  * returns how many pages were moved onto *@dst.
1066  */
1067 static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
1068                              struct list_head *dst, int *scanned)
1069 {
1070         int nr_taken = 0;
1071         struct page *page;
1072         int scan = 0;
1073
1074         while (scan++ < nr_to_scan && !list_empty(src)) {
1075                 page = lru_to_page(src);
1076                 prefetchw_prev_lru_page(page, src, flags);
1077
1078                 if (!TestClearPageLRU(page))
1079                         BUG();
1080                 list_del(&page->lru);
1081                 if (get_page_testone(page)) {
1082                         /*
1083                          * It is being freed elsewhere
1084                          */
1085                         __put_page(page);
1086                         SetPageLRU(page);
1087                         list_add(&page->lru, src);
1088                         continue;
1089                 } else {
1090                         list_add(&page->lru, dst);
1091                         nr_taken++;
1092                 }
1093         }
1094
1095         *scanned = scan;
1096         return nr_taken;
1097 }
1098
1099 /*
1100  * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
1101  */
1102 static void shrink_cache(struct zone *zone, struct scan_control *sc)
1103 {
1104         LIST_HEAD(page_list);
1105         struct pagevec pvec;
1106         int max_scan = sc->nr_to_scan;
1107
1108         pagevec_init(&pvec, 1);
1109
1110         lru_add_drain();
1111         spin_lock_irq(&zone->lru_lock);
1112         while (max_scan > 0) {
1113                 struct page *page;
1114                 int nr_taken;
1115                 int nr_scan;
1116                 int nr_freed;
1117
1118                 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
1119                                              &zone->inactive_list,
1120                                              &page_list, &nr_scan);
1121                 zone->nr_inactive -= nr_taken;
1122                 zone->pages_scanned += nr_scan;
1123                 spin_unlock_irq(&zone->lru_lock);
1124
1125                 if (nr_taken == 0)
1126                         goto done;
1127
1128                 max_scan -= nr_scan;
1129                 nr_freed = shrink_list(&page_list, sc);
1130
1131                 local_irq_disable();
1132                 if (current_is_kswapd()) {
1133                         __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
1134                         __mod_page_state(kswapd_steal, nr_freed);
1135                 } else
1136                         __mod_page_state_zone(zone, pgscan_direct, nr_scan);
1137                 __mod_page_state_zone(zone, pgsteal, nr_freed);
1138
1139                 spin_lock(&zone->lru_lock);
1140                 /*
1141                  * Put back any unfreeable pages.
1142                  */
1143                 while (!list_empty(&page_list)) {
1144                         page = lru_to_page(&page_list);
1145                         if (TestSetPageLRU(page))
1146                                 BUG();
1147                         list_del(&page->lru);
1148                         if (PageActive(page))
1149                                 add_page_to_active_list(zone, page);
1150                         else
1151                                 add_page_to_inactive_list(zone, page);
1152                         if (!pagevec_add(&pvec, page)) {
1153                                 spin_unlock_irq(&zone->lru_lock);
1154                                 __pagevec_release(&pvec);
1155                                 spin_lock_irq(&zone->lru_lock);
1156                         }
1157                 }
1158         }
1159         spin_unlock_irq(&zone->lru_lock);
1160 done:
1161         pagevec_release(&pvec);
1162 }
1163
1164 /*
1165  * This moves pages from the active list to the inactive list.
1166  *
1167  * We move them the other way if the page is referenced by one or more
1168  * processes, from rmap.
1169  *
1170  * If the pages are mostly unmapped, the processing is fast and it is
1171  * appropriate to hold zone->lru_lock across the whole operation.  But if
1172  * the pages are mapped, the processing is slow (page_referenced()) so we
1173  * should drop zone->lru_lock around each page.  It's impossible to balance
1174  * this, so instead we remove the pages from the LRU while processing them.
1175  * It is safe to rely on PG_active against the non-LRU pages in here because
1176  * nobody will play with that bit on a non-LRU page.
1177  *
1178  * The downside is that we have to touch page->_count against each page.
1179  * But we had to alter page->flags anyway.
1180  */
1181 static void
1182 refill_inactive_zone(struct zone *zone, struct scan_control *sc)
1183 {
1184         int pgmoved;
1185         int pgdeactivate = 0;
1186         int pgscanned;
1187         int nr_pages = sc->nr_to_scan;
1188         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1189         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
1190         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
1191         struct page *page;
1192         struct pagevec pvec;
1193         int reclaim_mapped = 0;
1194         long mapped_ratio;
1195         long distress;
1196         long swap_tendency;
1197
1198         lru_add_drain();
1199         spin_lock_irq(&zone->lru_lock);
1200         pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
1201                                     &l_hold, &pgscanned);
1202         zone->pages_scanned += pgscanned;
1203         zone->nr_active -= pgmoved;
1204         spin_unlock_irq(&zone->lru_lock);
1205
1206         /*
1207          * `distress' is a measure of how much trouble we're having reclaiming
1208          * pages.  0 -> no problems.  100 -> great trouble.
1209          */
1210         distress = 100 >> zone->prev_priority;
1211
1212         /*
1213          * The point of this algorithm is to decide when to start reclaiming
1214          * mapped memory instead of just pagecache.  Work out how much memory
1215          * is mapped.
1216          */
1217         mapped_ratio = (sc->nr_mapped * 100) / total_memory;
1218
1219         /*
1220          * Now decide how much we really want to unmap some pages.  The mapped
1221          * ratio is downgraded - just because there's a lot of mapped memory
1222          * doesn't necessarily mean that page reclaim isn't succeeding.
1223          *
1224          * The distress ratio is important - we don't want to start going oom.
1225          *
1226          * A 100% value of vm_swappiness overrides this algorithm altogether.
1227          */
1228         swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
1229
1230         /*
1231          * Now use this metric to decide whether to start moving mapped memory
1232          * onto the inactive list.
1233          */
1234         if (swap_tendency >= 100)
1235                 reclaim_mapped = 1;
1236
1237         while (!list_empty(&l_hold)) {
1238                 cond_resched();
1239                 page = lru_to_page(&l_hold);
1240                 list_del(&page->lru);
1241                 if (page_mapped(page)) {
1242                         if (!reclaim_mapped ||
1243                             (total_swap_pages == 0 && PageAnon(page)) ||
1244                             page_referenced(page, 0)) {
1245                                 list_add(&page->lru, &l_active);
1246                                 continue;
1247                         }
1248                 }
1249                 list_add(&page->lru, &l_inactive);
1250         }
1251
1252         pagevec_init(&pvec, 1);
1253         pgmoved = 0;
1254         spin_lock_irq(&zone->lru_lock);
1255         while (!list_empty(&l_inactive)) {
1256                 page = lru_to_page(&l_inactive);
1257                 prefetchw_prev_lru_page(page, &l_inactive, flags);
1258                 if (TestSetPageLRU(page))
1259                         BUG();
1260                 if (!TestClearPageActive(page))
1261                         BUG();
1262                 list_move(&page->lru, &zone->inactive_list);
1263                 pgmoved++;
1264                 if (!pagevec_add(&pvec, page)) {
1265                         zone->nr_inactive += pgmoved;
1266                         spin_unlock_irq(&zone->lru_lock);
1267                         pgdeactivate += pgmoved;
1268                         pgmoved = 0;
1269                         if (buffer_heads_over_limit)
1270                                 pagevec_strip(&pvec);
1271                         __pagevec_release(&pvec);
1272                         spin_lock_irq(&zone->lru_lock);
1273                 }
1274         }
1275         zone->nr_inactive += pgmoved;
1276         pgdeactivate += pgmoved;
1277         if (buffer_heads_over_limit) {
1278                 spin_unlock_irq(&zone->lru_lock);
1279                 pagevec_strip(&pvec);
1280                 spin_lock_irq(&zone->lru_lock);
1281         }
1282
1283         pgmoved = 0;
1284         while (!list_empty(&l_active)) {
1285                 page = lru_to_page(&l_active);
1286                 prefetchw_prev_lru_page(page, &l_active, flags);
1287                 if (TestSetPageLRU(page))
1288                         BUG();
1289                 BUG_ON(!PageActive(page));
1290                 list_move(&page->lru, &zone->active_list);
1291                 pgmoved++;
1292                 if (!pagevec_add(&pvec, page)) {
1293                         zone->nr_active += pgmoved;
1294                         pgmoved = 0;
1295                         spin_unlock_irq(&zone->lru_lock);
1296                         __pagevec_release(&pvec);
1297                         spin_lock_irq(&zone->lru_lock);
1298                 }
1299         }
1300         zone->nr_active += pgmoved;
1301         spin_unlock(&zone->lru_lock);
1302
1303         __mod_page_state_zone(zone, pgrefill, pgscanned);
1304         __mod_page_state(pgdeactivate, pgdeactivate);
1305         local_irq_enable();
1306
1307         pagevec_release(&pvec);
1308 }
1309
1310 /*
1311  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1312  */
1313 static void
1314 shrink_zone(struct zone *zone, struct scan_control *sc)
1315 {
1316         unsigned long nr_active;
1317         unsigned long nr_inactive;
1318
1319         atomic_inc(&zone->reclaim_in_progress);
1320
1321         /*
1322          * Add one to `nr_to_scan' just to make sure that the kernel will
1323          * slowly sift through the active list.
1324          */
1325         zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
1326         nr_active = zone->nr_scan_active;
1327         if (nr_active >= sc->swap_cluster_max)
1328                 zone->nr_scan_active = 0;
1329         else
1330                 nr_active = 0;
1331
1332         zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
1333         nr_inactive = zone->nr_scan_inactive;
1334         if (nr_inactive >= sc->swap_cluster_max)
1335                 zone->nr_scan_inactive = 0;
1336         else
1337                 nr_inactive = 0;
1338
1339         while (nr_active || nr_inactive) {
1340                 if (nr_active) {
1341                         sc->nr_to_scan = min(nr_active,
1342                                         (unsigned long)sc->swap_cluster_max);
1343                         nr_active -= sc->nr_to_scan;
1344                         refill_inactive_zone(zone, sc);
1345                 }
1346
1347                 if (nr_inactive) {
1348                         sc->nr_to_scan = min(nr_inactive,
1349                                         (unsigned long)sc->swap_cluster_max);
1350                         nr_inactive -= sc->nr_to_scan;
1351                         shrink_cache(zone, sc);
1352                 }
1353         }
1354
1355         throttle_vm_writeout();
1356
1357         atomic_dec(&zone->reclaim_in_progress);
1358 }
1359
1360 /*
1361  * This is the direct reclaim path, for page-allocating processes.  We only
1362  * try to reclaim pages from zones which will satisfy the caller's allocation
1363  * request.
1364  *
1365  * We reclaim from a zone even if that zone is over pages_high.  Because:
1366  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1367  *    allocation or
1368  * b) The zones may be over pages_high but they must go *over* pages_high to
1369  *    satisfy the `incremental min' zone defense algorithm.
1370  *
1371  * Returns the number of reclaimed pages.
1372  *
1373  * If a zone is deemed to be full of pinned pages then just give it a light
1374  * scan then give up on it.
1375  */
1376 static void
1377 shrink_caches(struct zone **zones, struct scan_control *sc)
1378 {
1379         int i;
1380
1381         for (i = 0; zones[i] != NULL; i++) {
1382                 struct zone *zone = zones[i];
1383
1384                 if (!populated_zone(zone))
1385                         continue;
1386
1387                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1388                         continue;
1389
1390                 zone->temp_priority = sc->priority;
1391                 if (zone->prev_priority > sc->priority)
1392                         zone->prev_priority = sc->priority;
1393
1394                 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
1395                         continue;       /* Let kswapd poll it */
1396
1397                 shrink_zone(zone, sc);
1398         }
1399 }
1400  
1401 /*
1402  * This is the main entry point to direct page reclaim.
1403  *
1404  * If a full scan of the inactive list fails to free enough memory then we
1405  * are "out of memory" and something needs to be killed.
1406  *
1407  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1408  * high - the zone may be full of dirty or under-writeback pages, which this
1409  * caller can't do much about.  We kick pdflush and take explicit naps in the
1410  * hope that some of these pages can be written.  But if the allocating task
1411  * holds filesystem locks which prevent writeout this might not work, and the
1412  * allocation attempt will fail.
1413  */
1414 int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1415 {
1416         int priority;
1417         int ret = 0;
1418         int total_scanned = 0, total_reclaimed = 0;
1419         struct reclaim_state *reclaim_state = current->reclaim_state;
1420         struct scan_control sc;
1421         unsigned long lru_pages = 0;
1422         int i;
1423
1424         sc.gfp_mask = gfp_mask;
1425         sc.may_writepage = !laptop_mode;
1426         sc.may_swap = 1;
1427
1428         inc_page_state(allocstall);
1429
1430         for (i = 0; zones[i] != NULL; i++) {
1431                 struct zone *zone = zones[i];
1432
1433                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1434                         continue;
1435
1436                 zone->temp_priority = DEF_PRIORITY;
1437                 lru_pages += zone->nr_active + zone->nr_inactive;
1438         }
1439
1440         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1441                 sc.nr_mapped = read_page_state(nr_mapped);
1442                 sc.nr_scanned = 0;
1443                 sc.nr_reclaimed = 0;
1444                 sc.priority = priority;
1445                 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1446                 if (!priority)
1447                         disable_swap_token();
1448                 shrink_caches(zones, &sc);
1449                 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1450                 if (reclaim_state) {
1451                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1452                         reclaim_state->reclaimed_slab = 0;
1453                 }
1454                 total_scanned += sc.nr_scanned;
1455                 total_reclaimed += sc.nr_reclaimed;
1456                 if (total_reclaimed >= sc.swap_cluster_max) {
1457                         ret = 1;
1458                         goto out;
1459                 }
1460
1461                 /*
1462                  * Try to write back as many pages as we just scanned.  This
1463                  * tends to cause slow streaming writers to write data to the
1464                  * disk smoothly, at the dirtying rate, which is nice.   But
1465                  * that's undesirable in laptop mode, where we *want* lumpy
1466                  * writeout.  So in laptop mode, write out the whole world.
1467                  */
1468                 if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
1469                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1470                         sc.may_writepage = 1;
1471                 }
1472
1473                 /* Take a nap, wait for some writeback to complete */
1474                 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1475                         blk_congestion_wait(WRITE, HZ/10);
1476         }
1477 out:
1478         for (i = 0; zones[i] != 0; i++) {
1479                 struct zone *zone = zones[i];
1480
1481                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1482                         continue;
1483
1484                 zone->prev_priority = zone->temp_priority;
1485         }
1486         return ret;
1487 }
1488
1489 /*
1490  * For kswapd, balance_pgdat() will work across all this node's zones until
1491  * they are all at pages_high.
1492  *
1493  * If `nr_pages' is non-zero then it is the number of pages which are to be
1494  * reclaimed, regardless of the zone occupancies.  This is a software suspend
1495  * special.
1496  *
1497  * Returns the number of pages which were actually freed.
1498  *
1499  * There is special handling here for zones which are full of pinned pages.
1500  * This can happen if the pages are all mlocked, or if they are all used by
1501  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1502  * What we do is to detect the case where all pages in the zone have been
1503  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1504  * dead and from now on, only perform a short scan.  Basically we're polling
1505  * the zone for when the problem goes away.
1506  *
1507  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1508  * zones which have free_pages > pages_high, but once a zone is found to have
1509  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1510  * of the number of free pages in the lower zones.  This interoperates with
1511  * the page allocator fallback scheme to ensure that aging of pages is balanced
1512  * across the zones.
1513  */
1514 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1515 {
1516         int to_free = nr_pages;
1517         int all_zones_ok;
1518         int priority;
1519         int i;
1520         int total_scanned, total_reclaimed;
1521         struct reclaim_state *reclaim_state = current->reclaim_state;
1522         struct scan_control sc;
1523
1524 loop_again:
1525         total_scanned = 0;
1526         total_reclaimed = 0;
1527         sc.gfp_mask = GFP_KERNEL;
1528         sc.may_writepage = !laptop_mode;
1529         sc.may_swap = 1;
1530         sc.nr_mapped = read_page_state(nr_mapped);
1531
1532         inc_page_state(pageoutrun);
1533
1534         for (i = 0; i < pgdat->nr_zones; i++) {
1535                 struct zone *zone = pgdat->node_zones + i;
1536
1537                 zone->temp_priority = DEF_PRIORITY;
1538         }
1539
1540         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1541                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1542                 unsigned long lru_pages = 0;
1543
1544                 /* The swap token gets in the way of swapout... */
1545                 if (!priority)
1546                         disable_swap_token();
1547
1548                 all_zones_ok = 1;
1549
1550                 if (nr_pages == 0) {
1551                         /*
1552                          * Scan in the highmem->dma direction for the highest
1553                          * zone which needs scanning
1554                          */
1555                         for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1556                                 struct zone *zone = pgdat->node_zones + i;
1557
1558                                 if (!populated_zone(zone))
1559                                         continue;
1560
1561                                 if (zone->all_unreclaimable &&
1562                                                 priority != DEF_PRIORITY)
1563                                         continue;
1564
1565                                 if (!zone_watermark_ok(zone, order,
1566                                                 zone->pages_high, 0, 0)) {
1567                                         end_zone = i;
1568                                         goto scan;
1569                                 }
1570                         }
1571                         goto out;
1572                 } else {
1573                         end_zone = pgdat->nr_zones - 1;
1574                 }
1575 scan:
1576                 for (i = 0; i <= end_zone; i++) {
1577                         struct zone *zone = pgdat->node_zones + i;
1578
1579                         lru_pages += zone->nr_active + zone->nr_inactive;
1580                 }
1581
1582                 /*
1583                  * Now scan the zone in the dma->highmem direction, stopping
1584                  * at the last zone which needs scanning.
1585                  *
1586                  * We do this because the page allocator works in the opposite
1587                  * direction.  This prevents the page allocator from allocating
1588                  * pages behind kswapd's direction of progress, which would
1589                  * cause too much scanning of the lower zones.
1590                  */
1591                 for (i = 0; i <= end_zone; i++) {
1592                         struct zone *zone = pgdat->node_zones + i;
1593                         int nr_slab;
1594
1595                         if (!populated_zone(zone))
1596                                 continue;
1597
1598                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1599                                 continue;
1600
1601                         if (nr_pages == 0) {    /* Not software suspend */
1602                                 if (!zone_watermark_ok(zone, order,
1603                                                 zone->pages_high, end_zone, 0))
1604                                         all_zones_ok = 0;
1605                         }
1606                         zone->temp_priority = priority;
1607                         if (zone->prev_priority > priority)
1608                                 zone->prev_priority = priority;
1609                         sc.nr_scanned = 0;
1610                         sc.nr_reclaimed = 0;
1611                         sc.priority = priority;
1612                         sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1613                         atomic_inc(&zone->reclaim_in_progress);
1614                         shrink_zone(zone, &sc);
1615                         atomic_dec(&zone->reclaim_in_progress);
1616                         reclaim_state->reclaimed_slab = 0;
1617                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1618                                                 lru_pages);
1619                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1620                         total_reclaimed += sc.nr_reclaimed;
1621                         total_scanned += sc.nr_scanned;
1622                         if (zone->all_unreclaimable)
1623                                 continue;
1624                         if (nr_slab == 0 && zone->pages_scanned >=
1625                                     (zone->nr_active + zone->nr_inactive) * 4)
1626                                 zone->all_unreclaimable = 1;
1627                         /*
1628                          * If we've done a decent amount of scanning and
1629                          * the reclaim ratio is low, start doing writepage
1630                          * even in laptop mode
1631                          */
1632                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1633                             total_scanned > total_reclaimed+total_reclaimed/2)
1634                                 sc.may_writepage = 1;
1635                 }
1636                 if (nr_pages && to_free > total_reclaimed)
1637                         continue;       /* swsusp: need to do more work */
1638                 if (all_zones_ok)
1639                         break;          /* kswapd: all done */
1640                 /*
1641                  * OK, kswapd is getting into trouble.  Take a nap, then take
1642                  * another pass across the zones.
1643                  */
1644                 if (total_scanned && priority < DEF_PRIORITY - 2)
1645                         blk_congestion_wait(WRITE, HZ/10);
1646
1647                 /*
1648                  * We do this so kswapd doesn't build up large priorities for
1649                  * example when it is freeing in parallel with allocators. It
1650                  * matches the direct reclaim path behaviour in terms of impact
1651                  * on zone->*_priority.
1652                  */
1653                 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1654                         break;
1655         }
1656 out:
1657         for (i = 0; i < pgdat->nr_zones; i++) {
1658                 struct zone *zone = pgdat->node_zones + i;
1659
1660                 zone->prev_priority = zone->temp_priority;
1661         }
1662         if (!all_zones_ok) {
1663                 cond_resched();
1664                 goto loop_again;
1665         }
1666
1667         return total_reclaimed;
1668 }
1669
1670 /*
1671  * The background pageout daemon, started as a kernel thread
1672  * from the init process. 
1673  *
1674  * This basically trickles out pages so that we have _some_
1675  * free memory available even if there is no other activity
1676  * that frees anything up. This is needed for things like routing
1677  * etc, where we otherwise might have all activity going on in
1678  * asynchronous contexts that cannot page things out.
1679  *
1680  * If there are applications that are active memory-allocators
1681  * (most normal use), this basically shouldn't matter.
1682  */
1683 static int kswapd(void *p)
1684 {
1685         unsigned long order;
1686         pg_data_t *pgdat = (pg_data_t*)p;
1687         struct task_struct *tsk = current;
1688         DEFINE_WAIT(wait);
1689         struct reclaim_state reclaim_state = {
1690                 .reclaimed_slab = 0,
1691         };
1692         cpumask_t cpumask;
1693
1694         daemonize("kswapd%d", pgdat->node_id);
1695         cpumask = node_to_cpumask(pgdat->node_id);
1696         if (!cpus_empty(cpumask))
1697                 set_cpus_allowed(tsk, cpumask);
1698         current->reclaim_state = &reclaim_state;
1699
1700         /*
1701          * Tell the memory management that we're a "memory allocator",
1702          * and that if we need more memory we should get access to it
1703          * regardless (see "__alloc_pages()"). "kswapd" should
1704          * never get caught in the normal page freeing logic.
1705          *
1706          * (Kswapd normally doesn't need memory anyway, but sometimes
1707          * you need a small amount of memory in order to be able to
1708          * page out something else, and this flag essentially protects
1709          * us from recursively trying to free more memory as we're
1710          * trying to free the first piece of memory in the first place).
1711          */
1712         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1713
1714         order = 0;
1715         for ( ; ; ) {
1716                 unsigned long new_order;
1717
1718                 try_to_freeze();
1719
1720                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1721                 new_order = pgdat->kswapd_max_order;
1722                 pgdat->kswapd_max_order = 0;
1723                 if (order < new_order) {
1724                         /*
1725                          * Don't sleep if someone wants a larger 'order'
1726                          * allocation
1727                          */
1728                         order = new_order;
1729                 } else {
1730                         schedule();
1731                         order = pgdat->kswapd_max_order;
1732                 }
1733                 finish_wait(&pgdat->kswapd_wait, &wait);
1734
1735                 balance_pgdat(pgdat, 0, order);
1736         }
1737         return 0;
1738 }
1739
1740 /*
1741  * A zone is low on free memory, so wake its kswapd task to service it.
1742  */
1743 void wakeup_kswapd(struct zone *zone, int order)
1744 {
1745         pg_data_t *pgdat;
1746
1747         if (!populated_zone(zone))
1748                 return;
1749
1750         pgdat = zone->zone_pgdat;
1751         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1752                 return;
1753         if (pgdat->kswapd_max_order < order)
1754                 pgdat->kswapd_max_order = order;
1755         if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1756                 return;
1757         if (!waitqueue_active(&pgdat->kswapd_wait))
1758                 return;
1759         wake_up_interruptible(&pgdat->kswapd_wait);
1760 }
1761
1762 #ifdef CONFIG_PM
1763 /*
1764  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1765  * pages.
1766  */
1767 int shrink_all_memory(int nr_pages)
1768 {
1769         pg_data_t *pgdat;
1770         int nr_to_free = nr_pages;
1771         int ret = 0;
1772         struct reclaim_state reclaim_state = {
1773                 .reclaimed_slab = 0,
1774         };
1775
1776         current->reclaim_state = &reclaim_state;
1777         for_each_pgdat(pgdat) {
1778                 int freed;
1779                 freed = balance_pgdat(pgdat, nr_to_free, 0);
1780                 ret += freed;
1781                 nr_to_free -= freed;
1782                 if (nr_to_free <= 0)
1783                         break;
1784         }
1785         current->reclaim_state = NULL;
1786         return ret;
1787 }
1788 #endif
1789
1790 #ifdef CONFIG_HOTPLUG_CPU
1791 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1792    not required for correctness.  So if the last cpu in a node goes
1793    away, we get changed to run anywhere: as the first one comes back,
1794    restore their cpu bindings. */
1795 static int __devinit cpu_callback(struct notifier_block *nfb,
1796                                   unsigned long action,
1797                                   void *hcpu)
1798 {
1799         pg_data_t *pgdat;
1800         cpumask_t mask;
1801
1802         if (action == CPU_ONLINE) {
1803                 for_each_pgdat(pgdat) {
1804                         mask = node_to_cpumask(pgdat->node_id);
1805                         if (any_online_cpu(mask) != NR_CPUS)
1806                                 /* One of our CPUs online: restore mask */
1807                                 set_cpus_allowed(pgdat->kswapd, mask);
1808                 }
1809         }
1810         return NOTIFY_OK;
1811 }
1812 #endif /* CONFIG_HOTPLUG_CPU */
1813
1814 static int __init kswapd_init(void)
1815 {
1816         pg_data_t *pgdat;
1817         swap_setup();
1818         for_each_pgdat(pgdat)
1819                 pgdat->kswapd
1820                 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1821         total_memory = nr_free_pagecache_pages();
1822         hotcpu_notifier(cpu_callback, 0);
1823         return 0;
1824 }
1825
1826 module_init(kswapd_init)
1827
1828 #ifdef CONFIG_NUMA
1829 /*
1830  * Zone reclaim mode
1831  *
1832  * If non-zero call zone_reclaim when the number of free pages falls below
1833  * the watermarks.
1834  *
1835  * In the future we may add flags to the mode. However, the page allocator
1836  * should only have to check that zone_reclaim_mode != 0 before calling
1837  * zone_reclaim().
1838  */
1839 int zone_reclaim_mode __read_mostly;
1840
1841 #define RECLAIM_OFF 0
1842 #define RECLAIM_ZONE (1<<0)     /* Run shrink_cache on the zone */
1843 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
1844 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
1845 #define RECLAIM_SLAB (1<<3)     /* Do a global slab shrink if the zone is out of memory */
1846
1847 /*
1848  * Mininum time between zone reclaim scans
1849  */
1850 int zone_reclaim_interval __read_mostly = 30*HZ;
1851
1852 /*
1853  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1854  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1855  * a zone.
1856  */
1857 #define ZONE_RECLAIM_PRIORITY 4
1858
1859 /*
1860  * Try to free up some pages from this zone through reclaim.
1861  */
1862 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1863 {
1864         int nr_pages;
1865         struct task_struct *p = current;
1866         struct reclaim_state reclaim_state;
1867         struct scan_control sc;
1868         cpumask_t mask;
1869         int node_id;
1870
1871         if (time_before(jiffies,
1872                 zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
1873                         return 0;
1874
1875         if (!(gfp_mask & __GFP_WAIT) ||
1876                 zone->all_unreclaimable ||
1877                 atomic_read(&zone->reclaim_in_progress) > 0)
1878                         return 0;
1879
1880         node_id = zone->zone_pgdat->node_id;
1881         mask = node_to_cpumask(node_id);
1882         if (!cpus_empty(mask) && node_id != numa_node_id())
1883                 return 0;
1884
1885         sc.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE);
1886         sc.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP);
1887         sc.nr_scanned = 0;
1888         sc.nr_reclaimed = 0;
1889         sc.priority = ZONE_RECLAIM_PRIORITY + 1;
1890         sc.nr_mapped = read_page_state(nr_mapped);
1891         sc.gfp_mask = gfp_mask;
1892
1893         disable_swap_token();
1894
1895         nr_pages = 1 << order;
1896         if (nr_pages > SWAP_CLUSTER_MAX)
1897                 sc.swap_cluster_max = nr_pages;
1898         else
1899                 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1900
1901         cond_resched();
1902         p->flags |= PF_MEMALLOC;
1903         reclaim_state.reclaimed_slab = 0;
1904         p->reclaim_state = &reclaim_state;
1905
1906         /*
1907          * Free memory by calling shrink zone with increasing priorities
1908          * until we have enough memory freed.
1909          */
1910         do {
1911                 sc.priority--;
1912                 shrink_zone(zone, &sc);
1913
1914         } while (sc.nr_reclaimed < nr_pages && sc.priority > 0);
1915
1916         if (sc.nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1917                 /*
1918                  * shrink_slab does not currently allow us to determine
1919                  * how many pages were freed in the zone. So we just
1920                  * shake the slab and then go offnode for a single allocation.
1921                  *
1922                  * shrink_slab will free memory on all zones and may take
1923                  * a long time.
1924                  */
1925                 shrink_slab(sc.nr_scanned, gfp_mask, order);
1926                 sc.nr_reclaimed = 1;    /* Avoid getting the off node timeout */
1927         }
1928
1929         p->reclaim_state = NULL;
1930         current->flags &= ~PF_MEMALLOC;
1931
1932         if (sc.nr_reclaimed == 0)
1933                 zone->last_unsuccessful_zone_reclaim = jiffies;
1934
1935         return sc.nr_reclaimed >= nr_pages;
1936 }
1937 #endif
1938