]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - mm/swapfile.c
Merge branch 'perf-fixes-for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <linux/swapops.h>
36 #include <linux/page_cgroup.h>
37
38 static DEFINE_SPINLOCK(swap_lock);
39 static unsigned int nr_swapfiles;
40 long nr_swap_pages;
41 long total_swap_pages;
42 static int swap_overflow;
43 static int least_priority;
44
45 static const char Bad_file[] = "Bad swap file entry ";
46 static const char Unused_file[] = "Unused swap file entry ";
47 static const char Bad_offset[] = "Bad swap offset entry ";
48 static const char Unused_offset[] = "Unused swap offset entry ";
49
50 static struct swap_list_t swap_list = {-1, -1};
51
52 static struct swap_info_struct swap_info[MAX_SWAPFILES];
53
54 static DEFINE_MUTEX(swapon_mutex);
55
56 /* For reference count accounting in swap_map */
57 /* enum for swap_map[] handling. internal use only */
58 enum {
59         SWAP_MAP = 0,   /* ops for reference from swap users */
60         SWAP_CACHE,     /* ops for reference from swap cache */
61 };
62
63 static inline int swap_count(unsigned short ent)
64 {
65         return ent & SWAP_COUNT_MASK;
66 }
67
68 static inline bool swap_has_cache(unsigned short ent)
69 {
70         return !!(ent & SWAP_HAS_CACHE);
71 }
72
73 static inline unsigned short encode_swapmap(int count, bool has_cache)
74 {
75         unsigned short ret = count;
76
77         if (has_cache)
78                 return SWAP_HAS_CACHE | ret;
79         return ret;
80 }
81
82 /* returnes 1 if swap entry is freed */
83 static int
84 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
85 {
86         int type = si - swap_info;
87         swp_entry_t entry = swp_entry(type, offset);
88         struct page *page;
89         int ret = 0;
90
91         page = find_get_page(&swapper_space, entry.val);
92         if (!page)
93                 return 0;
94         /*
95          * This function is called from scan_swap_map() and it's called
96          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
97          * We have to use trylock for avoiding deadlock. This is a special
98          * case and you should use try_to_free_swap() with explicit lock_page()
99          * in usual operations.
100          */
101         if (trylock_page(page)) {
102                 ret = try_to_free_swap(page);
103                 unlock_page(page);
104         }
105         page_cache_release(page);
106         return ret;
107 }
108
109 /*
110  * We need this because the bdev->unplug_fn can sleep and we cannot
111  * hold swap_lock while calling the unplug_fn. And swap_lock
112  * cannot be turned into a mutex.
113  */
114 static DECLARE_RWSEM(swap_unplug_sem);
115
116 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
117 {
118         swp_entry_t entry;
119
120         down_read(&swap_unplug_sem);
121         entry.val = page_private(page);
122         if (PageSwapCache(page)) {
123                 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
124                 struct backing_dev_info *bdi;
125
126                 /*
127                  * If the page is removed from swapcache from under us (with a
128                  * racy try_to_unuse/swapoff) we need an additional reference
129                  * count to avoid reading garbage from page_private(page) above.
130                  * If the WARN_ON triggers during a swapoff it maybe the race
131                  * condition and it's harmless. However if it triggers without
132                  * swapoff it signals a problem.
133                  */
134                 WARN_ON(page_count(page) <= 1);
135
136                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
137                 blk_run_backing_dev(bdi, page);
138         }
139         up_read(&swap_unplug_sem);
140 }
141
142 /*
143  * swapon tell device that all the old swap contents can be discarded,
144  * to allow the swap device to optimize its wear-levelling.
145  */
146 static int discard_swap(struct swap_info_struct *si)
147 {
148         struct swap_extent *se;
149         int err = 0;
150
151         list_for_each_entry(se, &si->extent_list, list) {
152                 sector_t start_block = se->start_block << (PAGE_SHIFT - 9);
153                 sector_t nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
154
155                 if (se->start_page == 0) {
156                         /* Do not discard the swap header page! */
157                         start_block += 1 << (PAGE_SHIFT - 9);
158                         nr_blocks -= 1 << (PAGE_SHIFT - 9);
159                         if (!nr_blocks)
160                                 continue;
161                 }
162
163                 err = blkdev_issue_discard(si->bdev, start_block,
164                                                 nr_blocks, GFP_KERNEL,
165                                                 DISCARD_FL_BARRIER);
166                 if (err)
167                         break;
168
169                 cond_resched();
170         }
171         return err;             /* That will often be -EOPNOTSUPP */
172 }
173
174 /*
175  * swap allocation tell device that a cluster of swap can now be discarded,
176  * to allow the swap device to optimize its wear-levelling.
177  */
178 static void discard_swap_cluster(struct swap_info_struct *si,
179                                  pgoff_t start_page, pgoff_t nr_pages)
180 {
181         struct swap_extent *se = si->curr_swap_extent;
182         int found_extent = 0;
183
184         while (nr_pages) {
185                 struct list_head *lh;
186
187                 if (se->start_page <= start_page &&
188                     start_page < se->start_page + se->nr_pages) {
189                         pgoff_t offset = start_page - se->start_page;
190                         sector_t start_block = se->start_block + offset;
191                         sector_t nr_blocks = se->nr_pages - offset;
192
193                         if (nr_blocks > nr_pages)
194                                 nr_blocks = nr_pages;
195                         start_page += nr_blocks;
196                         nr_pages -= nr_blocks;
197
198                         if (!found_extent++)
199                                 si->curr_swap_extent = se;
200
201                         start_block <<= PAGE_SHIFT - 9;
202                         nr_blocks <<= PAGE_SHIFT - 9;
203                         if (blkdev_issue_discard(si->bdev, start_block,
204                                                         nr_blocks, GFP_NOIO,
205                                                         DISCARD_FL_BARRIER))
206                                 break;
207                 }
208
209                 lh = se->list.next;
210                 if (lh == &si->extent_list)
211                         lh = lh->next;
212                 se = list_entry(lh, struct swap_extent, list);
213         }
214 }
215
216 static int wait_for_discard(void *word)
217 {
218         schedule();
219         return 0;
220 }
221
222 #define SWAPFILE_CLUSTER        256
223 #define LATENCY_LIMIT           256
224
225 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
226                                           int cache)
227 {
228         unsigned long offset;
229         unsigned long scan_base;
230         unsigned long last_in_cluster = 0;
231         int latency_ration = LATENCY_LIMIT;
232         int found_free_cluster = 0;
233
234         /*
235          * We try to cluster swap pages by allocating them sequentially
236          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
237          * way, however, we resort to first-free allocation, starting
238          * a new cluster.  This prevents us from scattering swap pages
239          * all over the entire swap partition, so that we reduce
240          * overall disk seek times between swap pages.  -- sct
241          * But we do now try to find an empty cluster.  -Andrea
242          * And we let swap pages go all over an SSD partition.  Hugh
243          */
244
245         si->flags += SWP_SCANNING;
246         scan_base = offset = si->cluster_next;
247
248         if (unlikely(!si->cluster_nr--)) {
249                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
250                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
251                         goto checks;
252                 }
253                 if (si->flags & SWP_DISCARDABLE) {
254                         /*
255                          * Start range check on racing allocations, in case
256                          * they overlap the cluster we eventually decide on
257                          * (we scan without swap_lock to allow preemption).
258                          * It's hardly conceivable that cluster_nr could be
259                          * wrapped during our scan, but don't depend on it.
260                          */
261                         if (si->lowest_alloc)
262                                 goto checks;
263                         si->lowest_alloc = si->max;
264                         si->highest_alloc = 0;
265                 }
266                 spin_unlock(&swap_lock);
267
268                 /*
269                  * If seek is expensive, start searching for new cluster from
270                  * start of partition, to minimize the span of allocated swap.
271                  * But if seek is cheap, search from our current position, so
272                  * that swap is allocated from all over the partition: if the
273                  * Flash Translation Layer only remaps within limited zones,
274                  * we don't want to wear out the first zone too quickly.
275                  */
276                 if (!(si->flags & SWP_SOLIDSTATE))
277                         scan_base = offset = si->lowest_bit;
278                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
279
280                 /* Locate the first empty (unaligned) cluster */
281                 for (; last_in_cluster <= si->highest_bit; offset++) {
282                         if (si->swap_map[offset])
283                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
284                         else if (offset == last_in_cluster) {
285                                 spin_lock(&swap_lock);
286                                 offset -= SWAPFILE_CLUSTER - 1;
287                                 si->cluster_next = offset;
288                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
289                                 found_free_cluster = 1;
290                                 goto checks;
291                         }
292                         if (unlikely(--latency_ration < 0)) {
293                                 cond_resched();
294                                 latency_ration = LATENCY_LIMIT;
295                         }
296                 }
297
298                 offset = si->lowest_bit;
299                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
300
301                 /* Locate the first empty (unaligned) cluster */
302                 for (; last_in_cluster < scan_base; offset++) {
303                         if (si->swap_map[offset])
304                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
305                         else if (offset == last_in_cluster) {
306                                 spin_lock(&swap_lock);
307                                 offset -= SWAPFILE_CLUSTER - 1;
308                                 si->cluster_next = offset;
309                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
310                                 found_free_cluster = 1;
311                                 goto checks;
312                         }
313                         if (unlikely(--latency_ration < 0)) {
314                                 cond_resched();
315                                 latency_ration = LATENCY_LIMIT;
316                         }
317                 }
318
319                 offset = scan_base;
320                 spin_lock(&swap_lock);
321                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
322                 si->lowest_alloc = 0;
323         }
324
325 checks:
326         if (!(si->flags & SWP_WRITEOK))
327                 goto no_page;
328         if (!si->highest_bit)
329                 goto no_page;
330         if (offset > si->highest_bit)
331                 scan_base = offset = si->lowest_bit;
332
333         /* reuse swap entry of cache-only swap if not busy. */
334         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
335                 int swap_was_freed;
336                 spin_unlock(&swap_lock);
337                 swap_was_freed = __try_to_reclaim_swap(si, offset);
338                 spin_lock(&swap_lock);
339                 /* entry was freed successfully, try to use this again */
340                 if (swap_was_freed)
341                         goto checks;
342                 goto scan; /* check next one */
343         }
344
345         if (si->swap_map[offset])
346                 goto scan;
347
348         if (offset == si->lowest_bit)
349                 si->lowest_bit++;
350         if (offset == si->highest_bit)
351                 si->highest_bit--;
352         si->inuse_pages++;
353         if (si->inuse_pages == si->pages) {
354                 si->lowest_bit = si->max;
355                 si->highest_bit = 0;
356         }
357         if (cache == SWAP_CACHE) /* at usual swap-out via vmscan.c */
358                 si->swap_map[offset] = encode_swapmap(0, true);
359         else /* at suspend */
360                 si->swap_map[offset] = encode_swapmap(1, false);
361         si->cluster_next = offset + 1;
362         si->flags -= SWP_SCANNING;
363
364         if (si->lowest_alloc) {
365                 /*
366                  * Only set when SWP_DISCARDABLE, and there's a scan
367                  * for a free cluster in progress or just completed.
368                  */
369                 if (found_free_cluster) {
370                         /*
371                          * To optimize wear-levelling, discard the
372                          * old data of the cluster, taking care not to
373                          * discard any of its pages that have already
374                          * been allocated by racing tasks (offset has
375                          * already stepped over any at the beginning).
376                          */
377                         if (offset < si->highest_alloc &&
378                             si->lowest_alloc <= last_in_cluster)
379                                 last_in_cluster = si->lowest_alloc - 1;
380                         si->flags |= SWP_DISCARDING;
381                         spin_unlock(&swap_lock);
382
383                         if (offset < last_in_cluster)
384                                 discard_swap_cluster(si, offset,
385                                         last_in_cluster - offset + 1);
386
387                         spin_lock(&swap_lock);
388                         si->lowest_alloc = 0;
389                         si->flags &= ~SWP_DISCARDING;
390
391                         smp_mb();       /* wake_up_bit advises this */
392                         wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
393
394                 } else if (si->flags & SWP_DISCARDING) {
395                         /*
396                          * Delay using pages allocated by racing tasks
397                          * until the whole discard has been issued. We
398                          * could defer that delay until swap_writepage,
399                          * but it's easier to keep this self-contained.
400                          */
401                         spin_unlock(&swap_lock);
402                         wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
403                                 wait_for_discard, TASK_UNINTERRUPTIBLE);
404                         spin_lock(&swap_lock);
405                 } else {
406                         /*
407                          * Note pages allocated by racing tasks while
408                          * scan for a free cluster is in progress, so
409                          * that its final discard can exclude them.
410                          */
411                         if (offset < si->lowest_alloc)
412                                 si->lowest_alloc = offset;
413                         if (offset > si->highest_alloc)
414                                 si->highest_alloc = offset;
415                 }
416         }
417         return offset;
418
419 scan:
420         spin_unlock(&swap_lock);
421         while (++offset <= si->highest_bit) {
422                 if (!si->swap_map[offset]) {
423                         spin_lock(&swap_lock);
424                         goto checks;
425                 }
426                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
427                         spin_lock(&swap_lock);
428                         goto checks;
429                 }
430                 if (unlikely(--latency_ration < 0)) {
431                         cond_resched();
432                         latency_ration = LATENCY_LIMIT;
433                 }
434         }
435         offset = si->lowest_bit;
436         while (++offset < scan_base) {
437                 if (!si->swap_map[offset]) {
438                         spin_lock(&swap_lock);
439                         goto checks;
440                 }
441                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
442                         spin_lock(&swap_lock);
443                         goto checks;
444                 }
445                 if (unlikely(--latency_ration < 0)) {
446                         cond_resched();
447                         latency_ration = LATENCY_LIMIT;
448                 }
449         }
450         spin_lock(&swap_lock);
451
452 no_page:
453         si->flags -= SWP_SCANNING;
454         return 0;
455 }
456
457 swp_entry_t get_swap_page(void)
458 {
459         struct swap_info_struct *si;
460         pgoff_t offset;
461         int type, next;
462         int wrapped = 0;
463
464         spin_lock(&swap_lock);
465         if (nr_swap_pages <= 0)
466                 goto noswap;
467         nr_swap_pages--;
468
469         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
470                 si = swap_info + type;
471                 next = si->next;
472                 if (next < 0 ||
473                     (!wrapped && si->prio != swap_info[next].prio)) {
474                         next = swap_list.head;
475                         wrapped++;
476                 }
477
478                 if (!si->highest_bit)
479                         continue;
480                 if (!(si->flags & SWP_WRITEOK))
481                         continue;
482
483                 swap_list.next = next;
484                 /* This is called for allocating swap entry for cache */
485                 offset = scan_swap_map(si, SWAP_CACHE);
486                 if (offset) {
487                         spin_unlock(&swap_lock);
488                         return swp_entry(type, offset);
489                 }
490                 next = swap_list.next;
491         }
492
493         nr_swap_pages++;
494 noswap:
495         spin_unlock(&swap_lock);
496         return (swp_entry_t) {0};
497 }
498
499 /* The only caller of this function is now susupend routine */
500 swp_entry_t get_swap_page_of_type(int type)
501 {
502         struct swap_info_struct *si;
503         pgoff_t offset;
504
505         spin_lock(&swap_lock);
506         si = swap_info + type;
507         if (si->flags & SWP_WRITEOK) {
508                 nr_swap_pages--;
509                 /* This is called for allocating swap entry, not cache */
510                 offset = scan_swap_map(si, SWAP_MAP);
511                 if (offset) {
512                         spin_unlock(&swap_lock);
513                         return swp_entry(type, offset);
514                 }
515                 nr_swap_pages++;
516         }
517         spin_unlock(&swap_lock);
518         return (swp_entry_t) {0};
519 }
520
521 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
522 {
523         struct swap_info_struct * p;
524         unsigned long offset, type;
525
526         if (!entry.val)
527                 goto out;
528         type = swp_type(entry);
529         if (type >= nr_swapfiles)
530                 goto bad_nofile;
531         p = & swap_info[type];
532         if (!(p->flags & SWP_USED))
533                 goto bad_device;
534         offset = swp_offset(entry);
535         if (offset >= p->max)
536                 goto bad_offset;
537         if (!p->swap_map[offset])
538                 goto bad_free;
539         spin_lock(&swap_lock);
540         return p;
541
542 bad_free:
543         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
544         goto out;
545 bad_offset:
546         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
547         goto out;
548 bad_device:
549         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
550         goto out;
551 bad_nofile:
552         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
553 out:
554         return NULL;
555 }
556
557 static int swap_entry_free(struct swap_info_struct *p,
558                            swp_entry_t ent, int cache)
559 {
560         unsigned long offset = swp_offset(ent);
561         int count = swap_count(p->swap_map[offset]);
562         bool has_cache;
563
564         has_cache = swap_has_cache(p->swap_map[offset]);
565
566         if (cache == SWAP_MAP) { /* dropping usage count of swap */
567                 if (count < SWAP_MAP_MAX) {
568                         count--;
569                         p->swap_map[offset] = encode_swapmap(count, has_cache);
570                 }
571         } else { /* dropping swap cache flag */
572                 VM_BUG_ON(!has_cache);
573                 p->swap_map[offset] = encode_swapmap(count, false);
574
575         }
576         /* return code. */
577         count = p->swap_map[offset];
578         /* free if no reference */
579         if (!count) {
580                 if (offset < p->lowest_bit)
581                         p->lowest_bit = offset;
582                 if (offset > p->highest_bit)
583                         p->highest_bit = offset;
584                 if (p->prio > swap_info[swap_list.next].prio)
585                         swap_list.next = p - swap_info;
586                 nr_swap_pages++;
587                 p->inuse_pages--;
588         }
589         if (!swap_count(count))
590                 mem_cgroup_uncharge_swap(ent);
591         return count;
592 }
593
594 /*
595  * Caller has made sure that the swapdevice corresponding to entry
596  * is still around or has not been recycled.
597  */
598 void swap_free(swp_entry_t entry)
599 {
600         struct swap_info_struct * p;
601
602         p = swap_info_get(entry);
603         if (p) {
604                 swap_entry_free(p, entry, SWAP_MAP);
605                 spin_unlock(&swap_lock);
606         }
607 }
608
609 /*
610  * Called after dropping swapcache to decrease refcnt to swap entries.
611  */
612 void swapcache_free(swp_entry_t entry, struct page *page)
613 {
614         struct swap_info_struct *p;
615         int ret;
616
617         p = swap_info_get(entry);
618         if (p) {
619                 ret = swap_entry_free(p, entry, SWAP_CACHE);
620                 if (page) {
621                         bool swapout;
622                         if (ret)
623                                 swapout = true; /* the end of swap out */
624                         else
625                                 swapout = false; /* no more swap users! */
626                         mem_cgroup_uncharge_swapcache(page, entry, swapout);
627                 }
628                 spin_unlock(&swap_lock);
629         }
630         return;
631 }
632
633 /*
634  * How many references to page are currently swapped out?
635  */
636 static inline int page_swapcount(struct page *page)
637 {
638         int count = 0;
639         struct swap_info_struct *p;
640         swp_entry_t entry;
641
642         entry.val = page_private(page);
643         p = swap_info_get(entry);
644         if (p) {
645                 count = swap_count(p->swap_map[swp_offset(entry)]);
646                 spin_unlock(&swap_lock);
647         }
648         return count;
649 }
650
651 /*
652  * We can write to an anon page without COW if there are no other references
653  * to it.  And as a side-effect, free up its swap: because the old content
654  * on disk will never be read, and seeking back there to write new content
655  * later would only waste time away from clustering.
656  */
657 int reuse_swap_page(struct page *page)
658 {
659         int count;
660
661         VM_BUG_ON(!PageLocked(page));
662         count = page_mapcount(page);
663         if (count <= 1 && PageSwapCache(page)) {
664                 count += page_swapcount(page);
665                 if (count == 1 && !PageWriteback(page)) {
666                         delete_from_swap_cache(page);
667                         SetPageDirty(page);
668                 }
669         }
670         return count == 1;
671 }
672
673 /*
674  * If swap is getting full, or if there are no more mappings of this page,
675  * then try_to_free_swap is called to free its swap space.
676  */
677 int try_to_free_swap(struct page *page)
678 {
679         VM_BUG_ON(!PageLocked(page));
680
681         if (!PageSwapCache(page))
682                 return 0;
683         if (PageWriteback(page))
684                 return 0;
685         if (page_swapcount(page))
686                 return 0;
687
688         delete_from_swap_cache(page);
689         SetPageDirty(page);
690         return 1;
691 }
692
693 /*
694  * Free the swap entry like above, but also try to
695  * free the page cache entry if it is the last user.
696  */
697 int free_swap_and_cache(swp_entry_t entry)
698 {
699         struct swap_info_struct *p;
700         struct page *page = NULL;
701
702         if (non_swap_entry(entry))
703                 return 1;
704
705         p = swap_info_get(entry);
706         if (p) {
707                 if (swap_entry_free(p, entry, SWAP_MAP) == SWAP_HAS_CACHE) {
708                         page = find_get_page(&swapper_space, entry.val);
709                         if (page && !trylock_page(page)) {
710                                 page_cache_release(page);
711                                 page = NULL;
712                         }
713                 }
714                 spin_unlock(&swap_lock);
715         }
716         if (page) {
717                 /*
718                  * Not mapped elsewhere, or swap space full? Free it!
719                  * Also recheck PageSwapCache now page is locked (above).
720                  */
721                 if (PageSwapCache(page) && !PageWriteback(page) &&
722                                 (!page_mapped(page) || vm_swap_full())) {
723                         delete_from_swap_cache(page);
724                         SetPageDirty(page);
725                 }
726                 unlock_page(page);
727                 page_cache_release(page);
728         }
729         return p != NULL;
730 }
731
732 #ifdef CONFIG_HIBERNATION
733 /*
734  * Find the swap type that corresponds to given device (if any).
735  *
736  * @offset - number of the PAGE_SIZE-sized block of the device, starting
737  * from 0, in which the swap header is expected to be located.
738  *
739  * This is needed for the suspend to disk (aka swsusp).
740  */
741 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
742 {
743         struct block_device *bdev = NULL;
744         int i;
745
746         if (device)
747                 bdev = bdget(device);
748
749         spin_lock(&swap_lock);
750         for (i = 0; i < nr_swapfiles; i++) {
751                 struct swap_info_struct *sis = swap_info + i;
752
753                 if (!(sis->flags & SWP_WRITEOK))
754                         continue;
755
756                 if (!bdev) {
757                         if (bdev_p)
758                                 *bdev_p = bdgrab(sis->bdev);
759
760                         spin_unlock(&swap_lock);
761                         return i;
762                 }
763                 if (bdev == sis->bdev) {
764                         struct swap_extent *se;
765
766                         se = list_entry(sis->extent_list.next,
767                                         struct swap_extent, list);
768                         if (se->start_block == offset) {
769                                 if (bdev_p)
770                                         *bdev_p = bdgrab(sis->bdev);
771
772                                 spin_unlock(&swap_lock);
773                                 bdput(bdev);
774                                 return i;
775                         }
776                 }
777         }
778         spin_unlock(&swap_lock);
779         if (bdev)
780                 bdput(bdev);
781
782         return -ENODEV;
783 }
784
785 /*
786  * Return either the total number of swap pages of given type, or the number
787  * of free pages of that type (depending on @free)
788  *
789  * This is needed for software suspend
790  */
791 unsigned int count_swap_pages(int type, int free)
792 {
793         unsigned int n = 0;
794
795         if (type < nr_swapfiles) {
796                 spin_lock(&swap_lock);
797                 if (swap_info[type].flags & SWP_WRITEOK) {
798                         n = swap_info[type].pages;
799                         if (free)
800                                 n -= swap_info[type].inuse_pages;
801                 }
802                 spin_unlock(&swap_lock);
803         }
804         return n;
805 }
806 #endif
807
808 /*
809  * No need to decide whether this PTE shares the swap entry with others,
810  * just let do_wp_page work it out if a write is requested later - to
811  * force COW, vm_page_prot omits write permission from any private vma.
812  */
813 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
814                 unsigned long addr, swp_entry_t entry, struct page *page)
815 {
816         struct mem_cgroup *ptr = NULL;
817         spinlock_t *ptl;
818         pte_t *pte;
819         int ret = 1;
820
821         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
822                 ret = -ENOMEM;
823                 goto out_nolock;
824         }
825
826         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
827         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
828                 if (ret > 0)
829                         mem_cgroup_cancel_charge_swapin(ptr);
830                 ret = 0;
831                 goto out;
832         }
833
834         inc_mm_counter(vma->vm_mm, anon_rss);
835         get_page(page);
836         set_pte_at(vma->vm_mm, addr, pte,
837                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
838         page_add_anon_rmap(page, vma, addr);
839         mem_cgroup_commit_charge_swapin(page, ptr);
840         swap_free(entry);
841         /*
842          * Move the page to the active list so it is not
843          * immediately swapped out again after swapon.
844          */
845         activate_page(page);
846 out:
847         pte_unmap_unlock(pte, ptl);
848 out_nolock:
849         return ret;
850 }
851
852 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
853                                 unsigned long addr, unsigned long end,
854                                 swp_entry_t entry, struct page *page)
855 {
856         pte_t swp_pte = swp_entry_to_pte(entry);
857         pte_t *pte;
858         int ret = 0;
859
860         /*
861          * We don't actually need pte lock while scanning for swp_pte: since
862          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
863          * page table while we're scanning; though it could get zapped, and on
864          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
865          * of unmatched parts which look like swp_pte, so unuse_pte must
866          * recheck under pte lock.  Scanning without pte lock lets it be
867          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
868          */
869         pte = pte_offset_map(pmd, addr);
870         do {
871                 /*
872                  * swapoff spends a _lot_ of time in this loop!
873                  * Test inline before going to call unuse_pte.
874                  */
875                 if (unlikely(pte_same(*pte, swp_pte))) {
876                         pte_unmap(pte);
877                         ret = unuse_pte(vma, pmd, addr, entry, page);
878                         if (ret)
879                                 goto out;
880                         pte = pte_offset_map(pmd, addr);
881                 }
882         } while (pte++, addr += PAGE_SIZE, addr != end);
883         pte_unmap(pte - 1);
884 out:
885         return ret;
886 }
887
888 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
889                                 unsigned long addr, unsigned long end,
890                                 swp_entry_t entry, struct page *page)
891 {
892         pmd_t *pmd;
893         unsigned long next;
894         int ret;
895
896         pmd = pmd_offset(pud, addr);
897         do {
898                 next = pmd_addr_end(addr, end);
899                 if (pmd_none_or_clear_bad(pmd))
900                         continue;
901                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
902                 if (ret)
903                         return ret;
904         } while (pmd++, addr = next, addr != end);
905         return 0;
906 }
907
908 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
909                                 unsigned long addr, unsigned long end,
910                                 swp_entry_t entry, struct page *page)
911 {
912         pud_t *pud;
913         unsigned long next;
914         int ret;
915
916         pud = pud_offset(pgd, addr);
917         do {
918                 next = pud_addr_end(addr, end);
919                 if (pud_none_or_clear_bad(pud))
920                         continue;
921                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
922                 if (ret)
923                         return ret;
924         } while (pud++, addr = next, addr != end);
925         return 0;
926 }
927
928 static int unuse_vma(struct vm_area_struct *vma,
929                                 swp_entry_t entry, struct page *page)
930 {
931         pgd_t *pgd;
932         unsigned long addr, end, next;
933         int ret;
934
935         if (page->mapping) {
936                 addr = page_address_in_vma(page, vma);
937                 if (addr == -EFAULT)
938                         return 0;
939                 else
940                         end = addr + PAGE_SIZE;
941         } else {
942                 addr = vma->vm_start;
943                 end = vma->vm_end;
944         }
945
946         pgd = pgd_offset(vma->vm_mm, addr);
947         do {
948                 next = pgd_addr_end(addr, end);
949                 if (pgd_none_or_clear_bad(pgd))
950                         continue;
951                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
952                 if (ret)
953                         return ret;
954         } while (pgd++, addr = next, addr != end);
955         return 0;
956 }
957
958 static int unuse_mm(struct mm_struct *mm,
959                                 swp_entry_t entry, struct page *page)
960 {
961         struct vm_area_struct *vma;
962         int ret = 0;
963
964         if (!down_read_trylock(&mm->mmap_sem)) {
965                 /*
966                  * Activate page so shrink_inactive_list is unlikely to unmap
967                  * its ptes while lock is dropped, so swapoff can make progress.
968                  */
969                 activate_page(page);
970                 unlock_page(page);
971                 down_read(&mm->mmap_sem);
972                 lock_page(page);
973         }
974         for (vma = mm->mmap; vma; vma = vma->vm_next) {
975                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
976                         break;
977         }
978         up_read(&mm->mmap_sem);
979         return (ret < 0)? ret: 0;
980 }
981
982 /*
983  * Scan swap_map from current position to next entry still in use.
984  * Recycle to start on reaching the end, returning 0 when empty.
985  */
986 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
987                                         unsigned int prev)
988 {
989         unsigned int max = si->max;
990         unsigned int i = prev;
991         int count;
992
993         /*
994          * No need for swap_lock here: we're just looking
995          * for whether an entry is in use, not modifying it; false
996          * hits are okay, and sys_swapoff() has already prevented new
997          * allocations from this area (while holding swap_lock).
998          */
999         for (;;) {
1000                 if (++i >= max) {
1001                         if (!prev) {
1002                                 i = 0;
1003                                 break;
1004                         }
1005                         /*
1006                          * No entries in use at top of swap_map,
1007                          * loop back to start and recheck there.
1008                          */
1009                         max = prev + 1;
1010                         prev = 0;
1011                         i = 1;
1012                 }
1013                 count = si->swap_map[i];
1014                 if (count && swap_count(count) != SWAP_MAP_BAD)
1015                         break;
1016         }
1017         return i;
1018 }
1019
1020 /*
1021  * We completely avoid races by reading each swap page in advance,
1022  * and then search for the process using it.  All the necessary
1023  * page table adjustments can then be made atomically.
1024  */
1025 static int try_to_unuse(unsigned int type)
1026 {
1027         struct swap_info_struct * si = &swap_info[type];
1028         struct mm_struct *start_mm;
1029         unsigned short *swap_map;
1030         unsigned short swcount;
1031         struct page *page;
1032         swp_entry_t entry;
1033         unsigned int i = 0;
1034         int retval = 0;
1035         int reset_overflow = 0;
1036         int shmem;
1037
1038         /*
1039          * When searching mms for an entry, a good strategy is to
1040          * start at the first mm we freed the previous entry from
1041          * (though actually we don't notice whether we or coincidence
1042          * freed the entry).  Initialize this start_mm with a hold.
1043          *
1044          * A simpler strategy would be to start at the last mm we
1045          * freed the previous entry from; but that would take less
1046          * advantage of mmlist ordering, which clusters forked mms
1047          * together, child after parent.  If we race with dup_mmap(), we
1048          * prefer to resolve parent before child, lest we miss entries
1049          * duplicated after we scanned child: using last mm would invert
1050          * that.  Though it's only a serious concern when an overflowed
1051          * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
1052          */
1053         start_mm = &init_mm;
1054         atomic_inc(&init_mm.mm_users);
1055
1056         /*
1057          * Keep on scanning until all entries have gone.  Usually,
1058          * one pass through swap_map is enough, but not necessarily:
1059          * there are races when an instance of an entry might be missed.
1060          */
1061         while ((i = find_next_to_unuse(si, i)) != 0) {
1062                 if (signal_pending(current)) {
1063                         retval = -EINTR;
1064                         break;
1065                 }
1066
1067                 /*
1068                  * Get a page for the entry, using the existing swap
1069                  * cache page if there is one.  Otherwise, get a clean
1070                  * page and read the swap into it.
1071                  */
1072                 swap_map = &si->swap_map[i];
1073                 entry = swp_entry(type, i);
1074                 page = read_swap_cache_async(entry,
1075                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1076                 if (!page) {
1077                         /*
1078                          * Either swap_duplicate() failed because entry
1079                          * has been freed independently, and will not be
1080                          * reused since sys_swapoff() already disabled
1081                          * allocation from here, or alloc_page() failed.
1082                          */
1083                         if (!*swap_map)
1084                                 continue;
1085                         retval = -ENOMEM;
1086                         break;
1087                 }
1088
1089                 /*
1090                  * Don't hold on to start_mm if it looks like exiting.
1091                  */
1092                 if (atomic_read(&start_mm->mm_users) == 1) {
1093                         mmput(start_mm);
1094                         start_mm = &init_mm;
1095                         atomic_inc(&init_mm.mm_users);
1096                 }
1097
1098                 /*
1099                  * Wait for and lock page.  When do_swap_page races with
1100                  * try_to_unuse, do_swap_page can handle the fault much
1101                  * faster than try_to_unuse can locate the entry.  This
1102                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1103                  * defer to do_swap_page in such a case - in some tests,
1104                  * do_swap_page and try_to_unuse repeatedly compete.
1105                  */
1106                 wait_on_page_locked(page);
1107                 wait_on_page_writeback(page);
1108                 lock_page(page);
1109                 wait_on_page_writeback(page);
1110
1111                 /*
1112                  * Remove all references to entry.
1113                  * Whenever we reach init_mm, there's no address space
1114                  * to search, but use it as a reminder to search shmem.
1115                  */
1116                 shmem = 0;
1117                 swcount = *swap_map;
1118                 if (swap_count(swcount)) {
1119                         if (start_mm == &init_mm)
1120                                 shmem = shmem_unuse(entry, page);
1121                         else
1122                                 retval = unuse_mm(start_mm, entry, page);
1123                 }
1124                 if (swap_count(*swap_map)) {
1125                         int set_start_mm = (*swap_map >= swcount);
1126                         struct list_head *p = &start_mm->mmlist;
1127                         struct mm_struct *new_start_mm = start_mm;
1128                         struct mm_struct *prev_mm = start_mm;
1129                         struct mm_struct *mm;
1130
1131                         atomic_inc(&new_start_mm->mm_users);
1132                         atomic_inc(&prev_mm->mm_users);
1133                         spin_lock(&mmlist_lock);
1134                         while (swap_count(*swap_map) && !retval && !shmem &&
1135                                         (p = p->next) != &start_mm->mmlist) {
1136                                 mm = list_entry(p, struct mm_struct, mmlist);
1137                                 if (!atomic_inc_not_zero(&mm->mm_users))
1138                                         continue;
1139                                 spin_unlock(&mmlist_lock);
1140                                 mmput(prev_mm);
1141                                 prev_mm = mm;
1142
1143                                 cond_resched();
1144
1145                                 swcount = *swap_map;
1146                                 if (!swap_count(swcount)) /* any usage ? */
1147                                         ;
1148                                 else if (mm == &init_mm) {
1149                                         set_start_mm = 1;
1150                                         shmem = shmem_unuse(entry, page);
1151                                 } else
1152                                         retval = unuse_mm(mm, entry, page);
1153
1154                                 if (set_start_mm &&
1155                                     swap_count(*swap_map) < swcount) {
1156                                         mmput(new_start_mm);
1157                                         atomic_inc(&mm->mm_users);
1158                                         new_start_mm = mm;
1159                                         set_start_mm = 0;
1160                                 }
1161                                 spin_lock(&mmlist_lock);
1162                         }
1163                         spin_unlock(&mmlist_lock);
1164                         mmput(prev_mm);
1165                         mmput(start_mm);
1166                         start_mm = new_start_mm;
1167                 }
1168                 if (shmem) {
1169                         /* page has already been unlocked and released */
1170                         if (shmem > 0)
1171                                 continue;
1172                         retval = shmem;
1173                         break;
1174                 }
1175                 if (retval) {
1176                         unlock_page(page);
1177                         page_cache_release(page);
1178                         break;
1179                 }
1180
1181                 /*
1182                  * How could swap count reach 0x7ffe ?
1183                  * There's no way to repeat a swap page within an mm
1184                  * (except in shmem, where it's the shared object which takes
1185                  * the reference count)?
1186                  * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
1187                  * short is too small....)
1188                  * If that's wrong, then we should worry more about
1189                  * exit_mmap() and do_munmap() cases described above:
1190                  * we might be resetting SWAP_MAP_MAX too early here.
1191                  * We know "Undead"s can happen, they're okay, so don't
1192                  * report them; but do report if we reset SWAP_MAP_MAX.
1193                  */
1194                 /* We might release the lock_page() in unuse_mm(). */
1195                 if (!PageSwapCache(page) || page_private(page) != entry.val)
1196                         goto retry;
1197
1198                 if (swap_count(*swap_map) == SWAP_MAP_MAX) {
1199                         spin_lock(&swap_lock);
1200                         *swap_map = encode_swapmap(0, true);
1201                         spin_unlock(&swap_lock);
1202                         reset_overflow = 1;
1203                 }
1204
1205                 /*
1206                  * If a reference remains (rare), we would like to leave
1207                  * the page in the swap cache; but try_to_unmap could
1208                  * then re-duplicate the entry once we drop page lock,
1209                  * so we might loop indefinitely; also, that page could
1210                  * not be swapped out to other storage meanwhile.  So:
1211                  * delete from cache even if there's another reference,
1212                  * after ensuring that the data has been saved to disk -
1213                  * since if the reference remains (rarer), it will be
1214                  * read from disk into another page.  Splitting into two
1215                  * pages would be incorrect if swap supported "shared
1216                  * private" pages, but they are handled by tmpfs files.
1217                  */
1218                 if (swap_count(*swap_map) &&
1219                      PageDirty(page) && PageSwapCache(page)) {
1220                         struct writeback_control wbc = {
1221                                 .sync_mode = WB_SYNC_NONE,
1222                         };
1223
1224                         swap_writepage(page, &wbc);
1225                         lock_page(page);
1226                         wait_on_page_writeback(page);
1227                 }
1228
1229                 /*
1230                  * It is conceivable that a racing task removed this page from
1231                  * swap cache just before we acquired the page lock at the top,
1232                  * or while we dropped it in unuse_mm().  The page might even
1233                  * be back in swap cache on another swap area: that we must not
1234                  * delete, since it may not have been written out to swap yet.
1235                  */
1236                 if (PageSwapCache(page) &&
1237                     likely(page_private(page) == entry.val))
1238                         delete_from_swap_cache(page);
1239
1240                 /*
1241                  * So we could skip searching mms once swap count went
1242                  * to 1, we did not mark any present ptes as dirty: must
1243                  * mark page dirty so shrink_page_list will preserve it.
1244                  */
1245                 SetPageDirty(page);
1246 retry:
1247                 unlock_page(page);
1248                 page_cache_release(page);
1249
1250                 /*
1251                  * Make sure that we aren't completely killing
1252                  * interactive performance.
1253                  */
1254                 cond_resched();
1255         }
1256
1257         mmput(start_mm);
1258         if (reset_overflow) {
1259                 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1260                 swap_overflow = 0;
1261         }
1262         return retval;
1263 }
1264
1265 /*
1266  * After a successful try_to_unuse, if no swap is now in use, we know
1267  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1268  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1269  * added to the mmlist just after page_duplicate - before would be racy.
1270  */
1271 static void drain_mmlist(void)
1272 {
1273         struct list_head *p, *next;
1274         unsigned int i;
1275
1276         for (i = 0; i < nr_swapfiles; i++)
1277                 if (swap_info[i].inuse_pages)
1278                         return;
1279         spin_lock(&mmlist_lock);
1280         list_for_each_safe(p, next, &init_mm.mmlist)
1281                 list_del_init(p);
1282         spin_unlock(&mmlist_lock);
1283 }
1284
1285 /*
1286  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1287  * corresponds to page offset `offset'.
1288  */
1289 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
1290 {
1291         struct swap_extent *se = sis->curr_swap_extent;
1292         struct swap_extent *start_se = se;
1293
1294         for ( ; ; ) {
1295                 struct list_head *lh;
1296
1297                 if (se->start_page <= offset &&
1298                                 offset < (se->start_page + se->nr_pages)) {
1299                         return se->start_block + (offset - se->start_page);
1300                 }
1301                 lh = se->list.next;
1302                 if (lh == &sis->extent_list)
1303                         lh = lh->next;
1304                 se = list_entry(lh, struct swap_extent, list);
1305                 sis->curr_swap_extent = se;
1306                 BUG_ON(se == start_se);         /* It *must* be present */
1307         }
1308 }
1309
1310 #ifdef CONFIG_HIBERNATION
1311 /*
1312  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1313  * corresponding to given index in swap_info (swap type).
1314  */
1315 sector_t swapdev_block(int swap_type, pgoff_t offset)
1316 {
1317         struct swap_info_struct *sis;
1318
1319         if (swap_type >= nr_swapfiles)
1320                 return 0;
1321
1322         sis = swap_info + swap_type;
1323         return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1324 }
1325 #endif /* CONFIG_HIBERNATION */
1326
1327 /*
1328  * Free all of a swapdev's extent information
1329  */
1330 static void destroy_swap_extents(struct swap_info_struct *sis)
1331 {
1332         while (!list_empty(&sis->extent_list)) {
1333                 struct swap_extent *se;
1334
1335                 se = list_entry(sis->extent_list.next,
1336                                 struct swap_extent, list);
1337                 list_del(&se->list);
1338                 kfree(se);
1339         }
1340 }
1341
1342 /*
1343  * Add a block range (and the corresponding page range) into this swapdev's
1344  * extent list.  The extent list is kept sorted in page order.
1345  *
1346  * This function rather assumes that it is called in ascending page order.
1347  */
1348 static int
1349 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1350                 unsigned long nr_pages, sector_t start_block)
1351 {
1352         struct swap_extent *se;
1353         struct swap_extent *new_se;
1354         struct list_head *lh;
1355
1356         lh = sis->extent_list.prev;     /* The highest page extent */
1357         if (lh != &sis->extent_list) {
1358                 se = list_entry(lh, struct swap_extent, list);
1359                 BUG_ON(se->start_page + se->nr_pages != start_page);
1360                 if (se->start_block + se->nr_pages == start_block) {
1361                         /* Merge it */
1362                         se->nr_pages += nr_pages;
1363                         return 0;
1364                 }
1365         }
1366
1367         /*
1368          * No merge.  Insert a new extent, preserving ordering.
1369          */
1370         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1371         if (new_se == NULL)
1372                 return -ENOMEM;
1373         new_se->start_page = start_page;
1374         new_se->nr_pages = nr_pages;
1375         new_se->start_block = start_block;
1376
1377         list_add_tail(&new_se->list, &sis->extent_list);
1378         return 1;
1379 }
1380
1381 /*
1382  * A `swap extent' is a simple thing which maps a contiguous range of pages
1383  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1384  * is built at swapon time and is then used at swap_writepage/swap_readpage
1385  * time for locating where on disk a page belongs.
1386  *
1387  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1388  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1389  * swap files identically.
1390  *
1391  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1392  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1393  * swapfiles are handled *identically* after swapon time.
1394  *
1395  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1396  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1397  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1398  * requirements, they are simply tossed out - we will never use those blocks
1399  * for swapping.
1400  *
1401  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1402  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1403  * which will scribble on the fs.
1404  *
1405  * The amount of disk space which a single swap extent represents varies.
1406  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1407  * extents in the list.  To avoid much list walking, we cache the previous
1408  * search location in `curr_swap_extent', and start new searches from there.
1409  * This is extremely effective.  The average number of iterations in
1410  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1411  */
1412 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1413 {
1414         struct inode *inode;
1415         unsigned blocks_per_page;
1416         unsigned long page_no;
1417         unsigned blkbits;
1418         sector_t probe_block;
1419         sector_t last_block;
1420         sector_t lowest_block = -1;
1421         sector_t highest_block = 0;
1422         int nr_extents = 0;
1423         int ret;
1424
1425         inode = sis->swap_file->f_mapping->host;
1426         if (S_ISBLK(inode->i_mode)) {
1427                 ret = add_swap_extent(sis, 0, sis->max, 0);
1428                 *span = sis->pages;
1429                 goto done;
1430         }
1431
1432         blkbits = inode->i_blkbits;
1433         blocks_per_page = PAGE_SIZE >> blkbits;
1434
1435         /*
1436          * Map all the blocks into the extent list.  This code doesn't try
1437          * to be very smart.
1438          */
1439         probe_block = 0;
1440         page_no = 0;
1441         last_block = i_size_read(inode) >> blkbits;
1442         while ((probe_block + blocks_per_page) <= last_block &&
1443                         page_no < sis->max) {
1444                 unsigned block_in_page;
1445                 sector_t first_block;
1446
1447                 first_block = bmap(inode, probe_block);
1448                 if (first_block == 0)
1449                         goto bad_bmap;
1450
1451                 /*
1452                  * It must be PAGE_SIZE aligned on-disk
1453                  */
1454                 if (first_block & (blocks_per_page - 1)) {
1455                         probe_block++;
1456                         goto reprobe;
1457                 }
1458
1459                 for (block_in_page = 1; block_in_page < blocks_per_page;
1460                                         block_in_page++) {
1461                         sector_t block;
1462
1463                         block = bmap(inode, probe_block + block_in_page);
1464                         if (block == 0)
1465                                 goto bad_bmap;
1466                         if (block != first_block + block_in_page) {
1467                                 /* Discontiguity */
1468                                 probe_block++;
1469                                 goto reprobe;
1470                         }
1471                 }
1472
1473                 first_block >>= (PAGE_SHIFT - blkbits);
1474                 if (page_no) {  /* exclude the header page */
1475                         if (first_block < lowest_block)
1476                                 lowest_block = first_block;
1477                         if (first_block > highest_block)
1478                                 highest_block = first_block;
1479                 }
1480
1481                 /*
1482                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1483                  */
1484                 ret = add_swap_extent(sis, page_no, 1, first_block);
1485                 if (ret < 0)
1486                         goto out;
1487                 nr_extents += ret;
1488                 page_no++;
1489                 probe_block += blocks_per_page;
1490 reprobe:
1491                 continue;
1492         }
1493         ret = nr_extents;
1494         *span = 1 + highest_block - lowest_block;
1495         if (page_no == 0)
1496                 page_no = 1;    /* force Empty message */
1497         sis->max = page_no;
1498         sis->pages = page_no - 1;
1499         sis->highest_bit = page_no - 1;
1500 done:
1501         sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1502                                         struct swap_extent, list);
1503         goto out;
1504 bad_bmap:
1505         printk(KERN_ERR "swapon: swapfile has holes\n");
1506         ret = -EINVAL;
1507 out:
1508         return ret;
1509 }
1510
1511 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1512 {
1513         struct swap_info_struct * p = NULL;
1514         unsigned short *swap_map;
1515         struct file *swap_file, *victim;
1516         struct address_space *mapping;
1517         struct inode *inode;
1518         char * pathname;
1519         int i, type, prev;
1520         int err;
1521
1522         if (!capable(CAP_SYS_ADMIN))
1523                 return -EPERM;
1524
1525         pathname = getname(specialfile);
1526         err = PTR_ERR(pathname);
1527         if (IS_ERR(pathname))
1528                 goto out;
1529
1530         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1531         putname(pathname);
1532         err = PTR_ERR(victim);
1533         if (IS_ERR(victim))
1534                 goto out;
1535
1536         mapping = victim->f_mapping;
1537         prev = -1;
1538         spin_lock(&swap_lock);
1539         for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1540                 p = swap_info + type;
1541                 if (p->flags & SWP_WRITEOK) {
1542                         if (p->swap_file->f_mapping == mapping)
1543                                 break;
1544                 }
1545                 prev = type;
1546         }
1547         if (type < 0) {
1548                 err = -EINVAL;
1549                 spin_unlock(&swap_lock);
1550                 goto out_dput;
1551         }
1552         if (!security_vm_enough_memory(p->pages))
1553                 vm_unacct_memory(p->pages);
1554         else {
1555                 err = -ENOMEM;
1556                 spin_unlock(&swap_lock);
1557                 goto out_dput;
1558         }
1559         if (prev < 0) {
1560                 swap_list.head = p->next;
1561         } else {
1562                 swap_info[prev].next = p->next;
1563         }
1564         if (type == swap_list.next) {
1565                 /* just pick something that's safe... */
1566                 swap_list.next = swap_list.head;
1567         }
1568         if (p->prio < 0) {
1569                 for (i = p->next; i >= 0; i = swap_info[i].next)
1570                         swap_info[i].prio = p->prio--;
1571                 least_priority++;
1572         }
1573         nr_swap_pages -= p->pages;
1574         total_swap_pages -= p->pages;
1575         p->flags &= ~SWP_WRITEOK;
1576         spin_unlock(&swap_lock);
1577
1578         current->flags |= PF_OOM_ORIGIN;
1579         err = try_to_unuse(type);
1580         current->flags &= ~PF_OOM_ORIGIN;
1581
1582         if (err) {
1583                 /* re-insert swap space back into swap_list */
1584                 spin_lock(&swap_lock);
1585                 if (p->prio < 0)
1586                         p->prio = --least_priority;
1587                 prev = -1;
1588                 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1589                         if (p->prio >= swap_info[i].prio)
1590                                 break;
1591                         prev = i;
1592                 }
1593                 p->next = i;
1594                 if (prev < 0)
1595                         swap_list.head = swap_list.next = p - swap_info;
1596                 else
1597                         swap_info[prev].next = p - swap_info;
1598                 nr_swap_pages += p->pages;
1599                 total_swap_pages += p->pages;
1600                 p->flags |= SWP_WRITEOK;
1601                 spin_unlock(&swap_lock);
1602                 goto out_dput;
1603         }
1604
1605         /* wait for any unplug function to finish */
1606         down_write(&swap_unplug_sem);
1607         up_write(&swap_unplug_sem);
1608
1609         destroy_swap_extents(p);
1610         mutex_lock(&swapon_mutex);
1611         spin_lock(&swap_lock);
1612         drain_mmlist();
1613
1614         /* wait for anyone still in scan_swap_map */
1615         p->highest_bit = 0;             /* cuts scans short */
1616         while (p->flags >= SWP_SCANNING) {
1617                 spin_unlock(&swap_lock);
1618                 schedule_timeout_uninterruptible(1);
1619                 spin_lock(&swap_lock);
1620         }
1621
1622         swap_file = p->swap_file;
1623         p->swap_file = NULL;
1624         p->max = 0;
1625         swap_map = p->swap_map;
1626         p->swap_map = NULL;
1627         p->flags = 0;
1628         spin_unlock(&swap_lock);
1629         mutex_unlock(&swapon_mutex);
1630         vfree(swap_map);
1631         /* Destroy swap account informatin */
1632         swap_cgroup_swapoff(type);
1633
1634         inode = mapping->host;
1635         if (S_ISBLK(inode->i_mode)) {
1636                 struct block_device *bdev = I_BDEV(inode);
1637                 set_blocksize(bdev, p->old_block_size);
1638                 bd_release(bdev);
1639         } else {
1640                 mutex_lock(&inode->i_mutex);
1641                 inode->i_flags &= ~S_SWAPFILE;
1642                 mutex_unlock(&inode->i_mutex);
1643         }
1644         filp_close(swap_file, NULL);
1645         err = 0;
1646
1647 out_dput:
1648         filp_close(victim, NULL);
1649 out:
1650         return err;
1651 }
1652
1653 #ifdef CONFIG_PROC_FS
1654 /* iterator */
1655 static void *swap_start(struct seq_file *swap, loff_t *pos)
1656 {
1657         struct swap_info_struct *ptr = swap_info;
1658         int i;
1659         loff_t l = *pos;
1660
1661         mutex_lock(&swapon_mutex);
1662
1663         if (!l)
1664                 return SEQ_START_TOKEN;
1665
1666         for (i = 0; i < nr_swapfiles; i++, ptr++) {
1667                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1668                         continue;
1669                 if (!--l)
1670                         return ptr;
1671         }
1672
1673         return NULL;
1674 }
1675
1676 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1677 {
1678         struct swap_info_struct *ptr;
1679         struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1680
1681         if (v == SEQ_START_TOKEN)
1682                 ptr = swap_info;
1683         else {
1684                 ptr = v;
1685                 ptr++;
1686         }
1687
1688         for (; ptr < endptr; ptr++) {
1689                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1690                         continue;
1691                 ++*pos;
1692                 return ptr;
1693         }
1694
1695         return NULL;
1696 }
1697
1698 static void swap_stop(struct seq_file *swap, void *v)
1699 {
1700         mutex_unlock(&swapon_mutex);
1701 }
1702
1703 static int swap_show(struct seq_file *swap, void *v)
1704 {
1705         struct swap_info_struct *ptr = v;
1706         struct file *file;
1707         int len;
1708
1709         if (ptr == SEQ_START_TOKEN) {
1710                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1711                 return 0;
1712         }
1713
1714         file = ptr->swap_file;
1715         len = seq_path(swap, &file->f_path, " \t\n\\");
1716         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1717                         len < 40 ? 40 - len : 1, " ",
1718                         S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1719                                 "partition" : "file\t",
1720                         ptr->pages << (PAGE_SHIFT - 10),
1721                         ptr->inuse_pages << (PAGE_SHIFT - 10),
1722                         ptr->prio);
1723         return 0;
1724 }
1725
1726 static const struct seq_operations swaps_op = {
1727         .start =        swap_start,
1728         .next =         swap_next,
1729         .stop =         swap_stop,
1730         .show =         swap_show
1731 };
1732
1733 static int swaps_open(struct inode *inode, struct file *file)
1734 {
1735         return seq_open(file, &swaps_op);
1736 }
1737
1738 static const struct file_operations proc_swaps_operations = {
1739         .open           = swaps_open,
1740         .read           = seq_read,
1741         .llseek         = seq_lseek,
1742         .release        = seq_release,
1743 };
1744
1745 static int __init procswaps_init(void)
1746 {
1747         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1748         return 0;
1749 }
1750 __initcall(procswaps_init);
1751 #endif /* CONFIG_PROC_FS */
1752
1753 #ifdef MAX_SWAPFILES_CHECK
1754 static int __init max_swapfiles_check(void)
1755 {
1756         MAX_SWAPFILES_CHECK();
1757         return 0;
1758 }
1759 late_initcall(max_swapfiles_check);
1760 #endif
1761
1762 /*
1763  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1764  *
1765  * The swapon system call
1766  */
1767 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1768 {
1769         struct swap_info_struct * p;
1770         char *name = NULL;
1771         struct block_device *bdev = NULL;
1772         struct file *swap_file = NULL;
1773         struct address_space *mapping;
1774         unsigned int type;
1775         int i, prev;
1776         int error;
1777         union swap_header *swap_header = NULL;
1778         unsigned int nr_good_pages = 0;
1779         int nr_extents = 0;
1780         sector_t span;
1781         unsigned long maxpages = 1;
1782         unsigned long swapfilepages;
1783         unsigned short *swap_map = NULL;
1784         struct page *page = NULL;
1785         struct inode *inode = NULL;
1786         int did_down = 0;
1787
1788         if (!capable(CAP_SYS_ADMIN))
1789                 return -EPERM;
1790         spin_lock(&swap_lock);
1791         p = swap_info;
1792         for (type = 0 ; type < nr_swapfiles ; type++,p++)
1793                 if (!(p->flags & SWP_USED))
1794                         break;
1795         error = -EPERM;
1796         if (type >= MAX_SWAPFILES) {
1797                 spin_unlock(&swap_lock);
1798                 goto out;
1799         }
1800         if (type >= nr_swapfiles)
1801                 nr_swapfiles = type+1;
1802         memset(p, 0, sizeof(*p));
1803         INIT_LIST_HEAD(&p->extent_list);
1804         p->flags = SWP_USED;
1805         p->next = -1;
1806         spin_unlock(&swap_lock);
1807         name = getname(specialfile);
1808         error = PTR_ERR(name);
1809         if (IS_ERR(name)) {
1810                 name = NULL;
1811                 goto bad_swap_2;
1812         }
1813         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1814         error = PTR_ERR(swap_file);
1815         if (IS_ERR(swap_file)) {
1816                 swap_file = NULL;
1817                 goto bad_swap_2;
1818         }
1819
1820         p->swap_file = swap_file;
1821         mapping = swap_file->f_mapping;
1822         inode = mapping->host;
1823
1824         error = -EBUSY;
1825         for (i = 0; i < nr_swapfiles; i++) {
1826                 struct swap_info_struct *q = &swap_info[i];
1827
1828                 if (i == type || !q->swap_file)
1829                         continue;
1830                 if (mapping == q->swap_file->f_mapping)
1831                         goto bad_swap;
1832         }
1833
1834         error = -EINVAL;
1835         if (S_ISBLK(inode->i_mode)) {
1836                 bdev = I_BDEV(inode);
1837                 error = bd_claim(bdev, sys_swapon);
1838                 if (error < 0) {
1839                         bdev = NULL;
1840                         error = -EINVAL;
1841                         goto bad_swap;
1842                 }
1843                 p->old_block_size = block_size(bdev);
1844                 error = set_blocksize(bdev, PAGE_SIZE);
1845                 if (error < 0)
1846                         goto bad_swap;
1847                 p->bdev = bdev;
1848         } else if (S_ISREG(inode->i_mode)) {
1849                 p->bdev = inode->i_sb->s_bdev;
1850                 mutex_lock(&inode->i_mutex);
1851                 did_down = 1;
1852                 if (IS_SWAPFILE(inode)) {
1853                         error = -EBUSY;
1854                         goto bad_swap;
1855                 }
1856         } else {
1857                 goto bad_swap;
1858         }
1859
1860         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1861
1862         /*
1863          * Read the swap header.
1864          */
1865         if (!mapping->a_ops->readpage) {
1866                 error = -EINVAL;
1867                 goto bad_swap;
1868         }
1869         page = read_mapping_page(mapping, 0, swap_file);
1870         if (IS_ERR(page)) {
1871                 error = PTR_ERR(page);
1872                 goto bad_swap;
1873         }
1874         swap_header = kmap(page);
1875
1876         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1877                 printk(KERN_ERR "Unable to find swap-space signature\n");
1878                 error = -EINVAL;
1879                 goto bad_swap;
1880         }
1881
1882         /* swap partition endianess hack... */
1883         if (swab32(swap_header->info.version) == 1) {
1884                 swab32s(&swap_header->info.version);
1885                 swab32s(&swap_header->info.last_page);
1886                 swab32s(&swap_header->info.nr_badpages);
1887                 for (i = 0; i < swap_header->info.nr_badpages; i++)
1888                         swab32s(&swap_header->info.badpages[i]);
1889         }
1890         /* Check the swap header's sub-version */
1891         if (swap_header->info.version != 1) {
1892                 printk(KERN_WARNING
1893                        "Unable to handle swap header version %d\n",
1894                        swap_header->info.version);
1895                 error = -EINVAL;
1896                 goto bad_swap;
1897         }
1898
1899         p->lowest_bit  = 1;
1900         p->cluster_next = 1;
1901
1902         /*
1903          * Find out how many pages are allowed for a single swap
1904          * device. There are two limiting factors: 1) the number of
1905          * bits for the swap offset in the swp_entry_t type and
1906          * 2) the number of bits in the a swap pte as defined by
1907          * the different architectures. In order to find the
1908          * largest possible bit mask a swap entry with swap type 0
1909          * and swap offset ~0UL is created, encoded to a swap pte,
1910          * decoded to a swp_entry_t again and finally the swap
1911          * offset is extracted. This will mask all the bits from
1912          * the initial ~0UL mask that can't be encoded in either
1913          * the swp_entry_t or the architecture definition of a
1914          * swap pte.
1915          */
1916         maxpages = swp_offset(pte_to_swp_entry(
1917                         swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1918         if (maxpages > swap_header->info.last_page)
1919                 maxpages = swap_header->info.last_page;
1920         p->highest_bit = maxpages - 1;
1921
1922         error = -EINVAL;
1923         if (!maxpages)
1924                 goto bad_swap;
1925         if (swapfilepages && maxpages > swapfilepages) {
1926                 printk(KERN_WARNING
1927                        "Swap area shorter than signature indicates\n");
1928                 goto bad_swap;
1929         }
1930         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1931                 goto bad_swap;
1932         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1933                 goto bad_swap;
1934
1935         /* OK, set up the swap map and apply the bad block list */
1936         swap_map = vmalloc(maxpages * sizeof(short));
1937         if (!swap_map) {
1938                 error = -ENOMEM;
1939                 goto bad_swap;
1940         }
1941
1942         memset(swap_map, 0, maxpages * sizeof(short));
1943         for (i = 0; i < swap_header->info.nr_badpages; i++) {
1944                 int page_nr = swap_header->info.badpages[i];
1945                 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1946                         error = -EINVAL;
1947                         goto bad_swap;
1948                 }
1949                 swap_map[page_nr] = SWAP_MAP_BAD;
1950         }
1951
1952         error = swap_cgroup_swapon(type, maxpages);
1953         if (error)
1954                 goto bad_swap;
1955
1956         nr_good_pages = swap_header->info.last_page -
1957                         swap_header->info.nr_badpages -
1958                         1 /* header page */;
1959
1960         if (nr_good_pages) {
1961                 swap_map[0] = SWAP_MAP_BAD;
1962                 p->max = maxpages;
1963                 p->pages = nr_good_pages;
1964                 nr_extents = setup_swap_extents(p, &span);
1965                 if (nr_extents < 0) {
1966                         error = nr_extents;
1967                         goto bad_swap;
1968                 }
1969                 nr_good_pages = p->pages;
1970         }
1971         if (!nr_good_pages) {
1972                 printk(KERN_WARNING "Empty swap-file\n");
1973                 error = -EINVAL;
1974                 goto bad_swap;
1975         }
1976
1977         if (p->bdev) {
1978                 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1979                         p->flags |= SWP_SOLIDSTATE;
1980                         p->cluster_next = 1 + (random32() % p->highest_bit);
1981                 }
1982                 if (discard_swap(p) == 0)
1983                         p->flags |= SWP_DISCARDABLE;
1984         }
1985
1986         mutex_lock(&swapon_mutex);
1987         spin_lock(&swap_lock);
1988         if (swap_flags & SWAP_FLAG_PREFER)
1989                 p->prio =
1990                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1991         else
1992                 p->prio = --least_priority;
1993         p->swap_map = swap_map;
1994         p->flags |= SWP_WRITEOK;
1995         nr_swap_pages += nr_good_pages;
1996         total_swap_pages += nr_good_pages;
1997
1998         printk(KERN_INFO "Adding %uk swap on %s.  "
1999                         "Priority:%d extents:%d across:%lluk %s%s\n",
2000                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2001                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2002                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2003                 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2004
2005         /* insert swap space into swap_list: */
2006         prev = -1;
2007         for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
2008                 if (p->prio >= swap_info[i].prio) {
2009                         break;
2010                 }
2011                 prev = i;
2012         }
2013         p->next = i;
2014         if (prev < 0) {
2015                 swap_list.head = swap_list.next = p - swap_info;
2016         } else {
2017                 swap_info[prev].next = p - swap_info;
2018         }
2019         spin_unlock(&swap_lock);
2020         mutex_unlock(&swapon_mutex);
2021         error = 0;
2022         goto out;
2023 bad_swap:
2024         if (bdev) {
2025                 set_blocksize(bdev, p->old_block_size);
2026                 bd_release(bdev);
2027         }
2028         destroy_swap_extents(p);
2029         swap_cgroup_swapoff(type);
2030 bad_swap_2:
2031         spin_lock(&swap_lock);
2032         p->swap_file = NULL;
2033         p->flags = 0;
2034         spin_unlock(&swap_lock);
2035         vfree(swap_map);
2036         if (swap_file)
2037                 filp_close(swap_file, NULL);
2038 out:
2039         if (page && !IS_ERR(page)) {
2040                 kunmap(page);
2041                 page_cache_release(page);
2042         }
2043         if (name)
2044                 putname(name);
2045         if (did_down) {
2046                 if (!error)
2047                         inode->i_flags |= S_SWAPFILE;
2048                 mutex_unlock(&inode->i_mutex);
2049         }
2050         return error;
2051 }
2052
2053 void si_swapinfo(struct sysinfo *val)
2054 {
2055         unsigned int i;
2056         unsigned long nr_to_be_unused = 0;
2057
2058         spin_lock(&swap_lock);
2059         for (i = 0; i < nr_swapfiles; i++) {
2060                 if (!(swap_info[i].flags & SWP_USED) ||
2061                      (swap_info[i].flags & SWP_WRITEOK))
2062                         continue;
2063                 nr_to_be_unused += swap_info[i].inuse_pages;
2064         }
2065         val->freeswap = nr_swap_pages + nr_to_be_unused;
2066         val->totalswap = total_swap_pages + nr_to_be_unused;
2067         spin_unlock(&swap_lock);
2068 }
2069
2070 /*
2071  * Verify that a swap entry is valid and increment its swap map count.
2072  *
2073  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
2074  * "permanent", but will be reclaimed by the next swapoff.
2075  * Returns error code in following case.
2076  * - success -> 0
2077  * - swp_entry is invalid -> EINVAL
2078  * - swp_entry is migration entry -> EINVAL
2079  * - swap-cache reference is requested but there is already one. -> EEXIST
2080  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2081  */
2082 static int __swap_duplicate(swp_entry_t entry, bool cache)
2083 {
2084         struct swap_info_struct * p;
2085         unsigned long offset, type;
2086         int result = -EINVAL;
2087         int count;
2088         bool has_cache;
2089
2090         if (non_swap_entry(entry))
2091                 return -EINVAL;
2092
2093         type = swp_type(entry);
2094         if (type >= nr_swapfiles)
2095                 goto bad_file;
2096         p = type + swap_info;
2097         offset = swp_offset(entry);
2098
2099         spin_lock(&swap_lock);
2100
2101         if (unlikely(offset >= p->max))
2102                 goto unlock_out;
2103
2104         count = swap_count(p->swap_map[offset]);
2105         has_cache = swap_has_cache(p->swap_map[offset]);
2106
2107         if (cache == SWAP_CACHE) { /* called for swapcache/swapin-readahead */
2108
2109                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2110                 if (!has_cache && count) {
2111                         p->swap_map[offset] = encode_swapmap(count, true);
2112                         result = 0;
2113                 } else if (has_cache) /* someone added cache */
2114                         result = -EEXIST;
2115                 else if (!count) /* no users */
2116                         result = -ENOENT;
2117
2118         } else if (count || has_cache) {
2119                 if (count < SWAP_MAP_MAX - 1) {
2120                         p->swap_map[offset] = encode_swapmap(count + 1,
2121                                                              has_cache);
2122                         result = 0;
2123                 } else if (count <= SWAP_MAP_MAX) {
2124                         if (swap_overflow++ < 5)
2125                                 printk(KERN_WARNING
2126                                        "swap_dup: swap entry overflow\n");
2127                         p->swap_map[offset] = encode_swapmap(SWAP_MAP_MAX,
2128                                                               has_cache);
2129                         result = 0;
2130                 }
2131         } else
2132                 result = -ENOENT; /* unused swap entry */
2133 unlock_out:
2134         spin_unlock(&swap_lock);
2135 out:
2136         return result;
2137
2138 bad_file:
2139         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2140         goto out;
2141 }
2142 /*
2143  * increase reference count of swap entry by 1.
2144  */
2145 void swap_duplicate(swp_entry_t entry)
2146 {
2147         __swap_duplicate(entry, SWAP_MAP);
2148 }
2149
2150 /*
2151  * @entry: swap entry for which we allocate swap cache.
2152  *
2153  * Called when allocating swap cache for exising swap entry,
2154  * This can return error codes. Returns 0 at success.
2155  * -EBUSY means there is a swap cache.
2156  * Note: return code is different from swap_duplicate().
2157  */
2158 int swapcache_prepare(swp_entry_t entry)
2159 {
2160         return __swap_duplicate(entry, SWAP_CACHE);
2161 }
2162
2163
2164 struct swap_info_struct *
2165 get_swap_info_struct(unsigned type)
2166 {
2167         return &swap_info[type];
2168 }
2169
2170 /*
2171  * swap_lock prevents swap_map being freed. Don't grab an extra
2172  * reference on the swaphandle, it doesn't matter if it becomes unused.
2173  */
2174 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2175 {
2176         struct swap_info_struct *si;
2177         int our_page_cluster = page_cluster;
2178         pgoff_t target, toff;
2179         pgoff_t base, end;
2180         int nr_pages = 0;
2181
2182         if (!our_page_cluster)  /* no readahead */
2183                 return 0;
2184
2185         si = &swap_info[swp_type(entry)];
2186         target = swp_offset(entry);
2187         base = (target >> our_page_cluster) << our_page_cluster;
2188         end = base + (1 << our_page_cluster);
2189         if (!base)              /* first page is swap header */
2190                 base++;
2191
2192         spin_lock(&swap_lock);
2193         if (end > si->max)      /* don't go beyond end of map */
2194                 end = si->max;
2195
2196         /* Count contiguous allocated slots above our target */
2197         for (toff = target; ++toff < end; nr_pages++) {
2198                 /* Don't read in free or bad pages */
2199                 if (!si->swap_map[toff])
2200                         break;
2201                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2202                         break;
2203         }
2204         /* Count contiguous allocated slots below our target */
2205         for (toff = target; --toff >= base; nr_pages++) {
2206                 /* Don't read in free or bad pages */
2207                 if (!si->swap_map[toff])
2208                         break;
2209                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2210                         break;
2211         }
2212         spin_unlock(&swap_lock);
2213
2214         /*
2215          * Indicate starting offset, and return number of pages to get:
2216          * if only 1, say 0, since there's then no readahead to be done.
2217          */
2218         *offset = ++toff;
2219         return nr_pages? ++nr_pages: 0;
2220 }