4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
151 static inline int rt_policy(int policy)
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
158 static inline int task_has_rt_policy(struct task_struct *p)
160 return rt_policy(p->policy);
164 * This is the priority-queue data structure of the RT scheduling class:
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
176 struct hrtimer rt_period_timer;
179 static struct rt_bandwidth def_rt_bandwidth;
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
198 idle = do_sched_rt_period_timer(rt_b, overrun);
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
210 spin_lock_init(&rt_b->rt_runtime_lock);
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
217 static inline int rt_bandwidth_enabled(void)
219 return sysctl_sched_rt_runtime >= 0;
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
229 if (hrtimer_active(&rt_b->rt_period_timer))
232 spin_lock(&rt_b->rt_runtime_lock);
237 if (hrtimer_active(&rt_b->rt_period_timer))
240 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
241 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
243 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
244 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
245 delta = ktime_to_ns(ktime_sub(hard, soft));
246 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
247 HRTIMER_MODE_ABS, 0);
249 spin_unlock(&rt_b->rt_runtime_lock);
252 #ifdef CONFIG_RT_GROUP_SCHED
253 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
255 hrtimer_cancel(&rt_b->rt_period_timer);
260 * sched_domains_mutex serializes calls to arch_init_sched_domains,
261 * detach_destroy_domains and partition_sched_domains.
263 static DEFINE_MUTEX(sched_domains_mutex);
265 #ifdef CONFIG_GROUP_SCHED
267 #include <linux/cgroup.h>
271 static LIST_HEAD(task_groups);
273 /* task group related information */
275 #ifdef CONFIG_CGROUP_SCHED
276 struct cgroup_subsys_state css;
279 #ifdef CONFIG_USER_SCHED
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284 /* schedulable entities of this group on each cpu */
285 struct sched_entity **se;
286 /* runqueue "owned" by this group on each cpu */
287 struct cfs_rq **cfs_rq;
288 unsigned long shares;
291 #ifdef CONFIG_RT_GROUP_SCHED
292 struct sched_rt_entity **rt_se;
293 struct rt_rq **rt_rq;
295 struct rt_bandwidth rt_bandwidth;
299 struct list_head list;
301 struct task_group *parent;
302 struct list_head siblings;
303 struct list_head children;
306 #ifdef CONFIG_USER_SCHED
308 /* Helper function to pass uid information to create_sched_user() */
309 void set_tg_uid(struct user_struct *user)
311 user->tg->uid = user->uid;
316 * Every UID task group (including init_task_group aka UID-0) will
317 * be a child to this group.
319 struct task_group root_task_group;
321 #ifdef CONFIG_FAIR_GROUP_SCHED
322 /* Default task group's sched entity on each cpu */
323 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
324 /* Default task group's cfs_rq on each cpu */
325 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
326 #endif /* CONFIG_FAIR_GROUP_SCHED */
328 #ifdef CONFIG_RT_GROUP_SCHED
329 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
330 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
331 #endif /* CONFIG_RT_GROUP_SCHED */
332 #else /* !CONFIG_USER_SCHED */
333 #define root_task_group init_task_group
334 #endif /* CONFIG_USER_SCHED */
336 /* task_group_lock serializes add/remove of task groups and also changes to
337 * a task group's cpu shares.
339 static DEFINE_SPINLOCK(task_group_lock);
342 static int root_task_group_empty(void)
344 return list_empty(&root_task_group.children);
348 #ifdef CONFIG_FAIR_GROUP_SCHED
349 #ifdef CONFIG_USER_SCHED
350 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
351 #else /* !CONFIG_USER_SCHED */
352 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
353 #endif /* CONFIG_USER_SCHED */
356 * A weight of 0 or 1 can cause arithmetics problems.
357 * A weight of a cfs_rq is the sum of weights of which entities
358 * are queued on this cfs_rq, so a weight of a entity should not be
359 * too large, so as the shares value of a task group.
360 * (The default weight is 1024 - so there's no practical
361 * limitation from this.)
364 #define MAX_SHARES (1UL << 18)
366 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
369 /* Default task group.
370 * Every task in system belong to this group at bootup.
372 struct task_group init_task_group;
374 /* return group to which a task belongs */
375 static inline struct task_group *task_group(struct task_struct *p)
377 struct task_group *tg;
379 #ifdef CONFIG_USER_SCHED
381 tg = __task_cred(p)->user->tg;
383 #elif defined(CONFIG_CGROUP_SCHED)
384 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
385 struct task_group, css);
387 tg = &init_task_group;
392 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
393 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
395 #ifdef CONFIG_FAIR_GROUP_SCHED
396 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
397 p->se.parent = task_group(p)->se[cpu];
400 #ifdef CONFIG_RT_GROUP_SCHED
401 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
402 p->rt.parent = task_group(p)->rt_se[cpu];
409 static int root_task_group_empty(void)
415 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
416 static inline struct task_group *task_group(struct task_struct *p)
421 #endif /* CONFIG_GROUP_SCHED */
423 /* CFS-related fields in a runqueue */
425 struct load_weight load;
426 unsigned long nr_running;
431 struct rb_root tasks_timeline;
432 struct rb_node *rb_leftmost;
434 struct list_head tasks;
435 struct list_head *balance_iterator;
438 * 'curr' points to currently running entity on this cfs_rq.
439 * It is set to NULL otherwise (i.e when none are currently running).
441 struct sched_entity *curr, *next, *last;
443 unsigned int nr_spread_over;
445 #ifdef CONFIG_FAIR_GROUP_SCHED
446 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
449 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
450 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
451 * (like users, containers etc.)
453 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
454 * list is used during load balance.
456 struct list_head leaf_cfs_rq_list;
457 struct task_group *tg; /* group that "owns" this runqueue */
461 * the part of load.weight contributed by tasks
463 unsigned long task_weight;
466 * h_load = weight * f(tg)
468 * Where f(tg) is the recursive weight fraction assigned to
471 unsigned long h_load;
474 * this cpu's part of tg->shares
476 unsigned long shares;
479 * load.weight at the time we set shares
481 unsigned long rq_weight;
486 /* Real-Time classes' related field in a runqueue: */
488 struct rt_prio_array active;
489 unsigned long rt_nr_running;
490 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
492 int curr; /* highest queued rt task prio */
494 int next; /* next highest */
499 unsigned long rt_nr_migratory;
501 struct plist_head pushable_tasks;
506 /* Nests inside the rq lock: */
507 spinlock_t rt_runtime_lock;
509 #ifdef CONFIG_RT_GROUP_SCHED
510 unsigned long rt_nr_boosted;
513 struct list_head leaf_rt_rq_list;
514 struct task_group *tg;
515 struct sched_rt_entity *rt_se;
522 * We add the notion of a root-domain which will be used to define per-domain
523 * variables. Each exclusive cpuset essentially defines an island domain by
524 * fully partitioning the member cpus from any other cpuset. Whenever a new
525 * exclusive cpuset is created, we also create and attach a new root-domain
532 cpumask_var_t online;
535 * The "RT overload" flag: it gets set if a CPU has more than
536 * one runnable RT task.
538 cpumask_var_t rto_mask;
541 struct cpupri cpupri;
543 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
545 * Preferred wake up cpu nominated by sched_mc balance that will be
546 * used when most cpus are idle in the system indicating overall very
547 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
549 unsigned int sched_mc_preferred_wakeup_cpu;
554 * By default the system creates a single root-domain with all cpus as
555 * members (mimicking the global state we have today).
557 static struct root_domain def_root_domain;
562 * This is the main, per-CPU runqueue data structure.
564 * Locking rule: those places that want to lock multiple runqueues
565 * (such as the load balancing or the thread migration code), lock
566 * acquire operations must be ordered by ascending &runqueue.
573 * nr_running and cpu_load should be in the same cacheline because
574 * remote CPUs use both these fields when doing load calculation.
576 unsigned long nr_running;
577 #define CPU_LOAD_IDX_MAX 5
578 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
580 unsigned long last_tick_seen;
581 unsigned char in_nohz_recently;
583 /* capture load from *all* tasks on this cpu: */
584 struct load_weight load;
585 unsigned long nr_load_updates;
591 #ifdef CONFIG_FAIR_GROUP_SCHED
592 /* list of leaf cfs_rq on this cpu: */
593 struct list_head leaf_cfs_rq_list;
595 #ifdef CONFIG_RT_GROUP_SCHED
596 struct list_head leaf_rt_rq_list;
600 * This is part of a global counter where only the total sum
601 * over all CPUs matters. A task can increase this counter on
602 * one CPU and if it got migrated afterwards it may decrease
603 * it on another CPU. Always updated under the runqueue lock:
605 unsigned long nr_uninterruptible;
607 struct task_struct *curr, *idle;
608 unsigned long next_balance;
609 struct mm_struct *prev_mm;
616 struct root_domain *rd;
617 struct sched_domain *sd;
619 unsigned char idle_at_tick;
620 /* For active balancing */
623 /* cpu of this runqueue: */
627 unsigned long avg_load_per_task;
629 struct task_struct *migration_thread;
630 struct list_head migration_queue;
633 #ifdef CONFIG_SCHED_HRTICK
635 int hrtick_csd_pending;
636 struct call_single_data hrtick_csd;
638 struct hrtimer hrtick_timer;
641 #ifdef CONFIG_SCHEDSTATS
643 struct sched_info rq_sched_info;
644 unsigned long long rq_cpu_time;
645 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
647 /* sys_sched_yield() stats */
648 unsigned int yld_count;
650 /* schedule() stats */
651 unsigned int sched_switch;
652 unsigned int sched_count;
653 unsigned int sched_goidle;
655 /* try_to_wake_up() stats */
656 unsigned int ttwu_count;
657 unsigned int ttwu_local;
660 unsigned int bkl_count;
664 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
666 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
668 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
671 static inline int cpu_of(struct rq *rq)
681 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
682 * See detach_destroy_domains: synchronize_sched for details.
684 * The domain tree of any CPU may only be accessed from within
685 * preempt-disabled sections.
687 #define for_each_domain(cpu, __sd) \
688 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
690 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
691 #define this_rq() (&__get_cpu_var(runqueues))
692 #define task_rq(p) cpu_rq(task_cpu(p))
693 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
695 static inline void update_rq_clock(struct rq *rq)
697 rq->clock = sched_clock_cpu(cpu_of(rq));
701 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
703 #ifdef CONFIG_SCHED_DEBUG
704 # define const_debug __read_mostly
706 # define const_debug static const
712 * Returns true if the current cpu runqueue is locked.
713 * This interface allows printk to be called with the runqueue lock
714 * held and know whether or not it is OK to wake up the klogd.
716 int runqueue_is_locked(void)
719 struct rq *rq = cpu_rq(cpu);
722 ret = spin_is_locked(&rq->lock);
728 * Debugging: various feature bits
731 #define SCHED_FEAT(name, enabled) \
732 __SCHED_FEAT_##name ,
735 #include "sched_features.h"
740 #define SCHED_FEAT(name, enabled) \
741 (1UL << __SCHED_FEAT_##name) * enabled |
743 const_debug unsigned int sysctl_sched_features =
744 #include "sched_features.h"
749 #ifdef CONFIG_SCHED_DEBUG
750 #define SCHED_FEAT(name, enabled) \
753 static __read_mostly char *sched_feat_names[] = {
754 #include "sched_features.h"
760 static int sched_feat_show(struct seq_file *m, void *v)
764 for (i = 0; sched_feat_names[i]; i++) {
765 if (!(sysctl_sched_features & (1UL << i)))
767 seq_printf(m, "%s ", sched_feat_names[i]);
775 sched_feat_write(struct file *filp, const char __user *ubuf,
776 size_t cnt, loff_t *ppos)
786 if (copy_from_user(&buf, ubuf, cnt))
791 if (strncmp(buf, "NO_", 3) == 0) {
796 for (i = 0; sched_feat_names[i]; i++) {
797 int len = strlen(sched_feat_names[i]);
799 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
801 sysctl_sched_features &= ~(1UL << i);
803 sysctl_sched_features |= (1UL << i);
808 if (!sched_feat_names[i])
816 static int sched_feat_open(struct inode *inode, struct file *filp)
818 return single_open(filp, sched_feat_show, NULL);
821 static struct file_operations sched_feat_fops = {
822 .open = sched_feat_open,
823 .write = sched_feat_write,
826 .release = single_release,
829 static __init int sched_init_debug(void)
831 debugfs_create_file("sched_features", 0644, NULL, NULL,
836 late_initcall(sched_init_debug);
840 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
843 * Number of tasks to iterate in a single balance run.
844 * Limited because this is done with IRQs disabled.
846 const_debug unsigned int sysctl_sched_nr_migrate = 32;
849 * ratelimit for updating the group shares.
852 unsigned int sysctl_sched_shares_ratelimit = 250000;
855 * Inject some fuzzyness into changing the per-cpu group shares
856 * this avoids remote rq-locks at the expense of fairness.
859 unsigned int sysctl_sched_shares_thresh = 4;
862 * period over which we measure -rt task cpu usage in us.
865 unsigned int sysctl_sched_rt_period = 1000000;
867 static __read_mostly int scheduler_running;
870 * part of the period that we allow rt tasks to run in us.
873 int sysctl_sched_rt_runtime = 950000;
875 static inline u64 global_rt_period(void)
877 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
880 static inline u64 global_rt_runtime(void)
882 if (sysctl_sched_rt_runtime < 0)
885 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
888 #ifndef prepare_arch_switch
889 # define prepare_arch_switch(next) do { } while (0)
891 #ifndef finish_arch_switch
892 # define finish_arch_switch(prev) do { } while (0)
895 static inline int task_current(struct rq *rq, struct task_struct *p)
897 return rq->curr == p;
900 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
901 static inline int task_running(struct rq *rq, struct task_struct *p)
903 return task_current(rq, p);
906 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
912 #ifdef CONFIG_DEBUG_SPINLOCK
913 /* this is a valid case when another task releases the spinlock */
914 rq->lock.owner = current;
917 * If we are tracking spinlock dependencies then we have to
918 * fix up the runqueue lock - which gets 'carried over' from
921 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
923 spin_unlock_irq(&rq->lock);
926 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
927 static inline int task_running(struct rq *rq, struct task_struct *p)
932 return task_current(rq, p);
936 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
940 * We can optimise this out completely for !SMP, because the
941 * SMP rebalancing from interrupt is the only thing that cares
946 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 spin_unlock_irq(&rq->lock);
949 spin_unlock(&rq->lock);
953 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
957 * After ->oncpu is cleared, the task can be moved to a different CPU.
958 * We must ensure this doesn't happen until the switch is completely
964 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
968 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
971 * __task_rq_lock - lock the runqueue a given task resides on.
972 * Must be called interrupts disabled.
974 static inline struct rq *__task_rq_lock(struct task_struct *p)
978 struct rq *rq = task_rq(p);
979 spin_lock(&rq->lock);
980 if (likely(rq == task_rq(p)))
982 spin_unlock(&rq->lock);
987 * task_rq_lock - lock the runqueue a given task resides on and disable
988 * interrupts. Note the ordering: we can safely lookup the task_rq without
989 * explicitly disabling preemption.
991 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
997 local_irq_save(*flags);
999 spin_lock(&rq->lock);
1000 if (likely(rq == task_rq(p)))
1002 spin_unlock_irqrestore(&rq->lock, *flags);
1006 void task_rq_unlock_wait(struct task_struct *p)
1008 struct rq *rq = task_rq(p);
1010 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1011 spin_unlock_wait(&rq->lock);
1014 static void __task_rq_unlock(struct rq *rq)
1015 __releases(rq->lock)
1017 spin_unlock(&rq->lock);
1020 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1021 __releases(rq->lock)
1023 spin_unlock_irqrestore(&rq->lock, *flags);
1027 * this_rq_lock - lock this runqueue and disable interrupts.
1029 static struct rq *this_rq_lock(void)
1030 __acquires(rq->lock)
1034 local_irq_disable();
1036 spin_lock(&rq->lock);
1041 #ifdef CONFIG_SCHED_HRTICK
1043 * Use HR-timers to deliver accurate preemption points.
1045 * Its all a bit involved since we cannot program an hrt while holding the
1046 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1049 * When we get rescheduled we reprogram the hrtick_timer outside of the
1055 * - enabled by features
1056 * - hrtimer is actually high res
1058 static inline int hrtick_enabled(struct rq *rq)
1060 if (!sched_feat(HRTICK))
1062 if (!cpu_active(cpu_of(rq)))
1064 return hrtimer_is_hres_active(&rq->hrtick_timer);
1067 static void hrtick_clear(struct rq *rq)
1069 if (hrtimer_active(&rq->hrtick_timer))
1070 hrtimer_cancel(&rq->hrtick_timer);
1074 * High-resolution timer tick.
1075 * Runs from hardirq context with interrupts disabled.
1077 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1079 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1081 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1083 spin_lock(&rq->lock);
1084 update_rq_clock(rq);
1085 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1086 spin_unlock(&rq->lock);
1088 return HRTIMER_NORESTART;
1093 * called from hardirq (IPI) context
1095 static void __hrtick_start(void *arg)
1097 struct rq *rq = arg;
1099 spin_lock(&rq->lock);
1100 hrtimer_restart(&rq->hrtick_timer);
1101 rq->hrtick_csd_pending = 0;
1102 spin_unlock(&rq->lock);
1106 * Called to set the hrtick timer state.
1108 * called with rq->lock held and irqs disabled
1110 static void hrtick_start(struct rq *rq, u64 delay)
1112 struct hrtimer *timer = &rq->hrtick_timer;
1113 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1115 hrtimer_set_expires(timer, time);
1117 if (rq == this_rq()) {
1118 hrtimer_restart(timer);
1119 } else if (!rq->hrtick_csd_pending) {
1120 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1121 rq->hrtick_csd_pending = 1;
1126 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1128 int cpu = (int)(long)hcpu;
1131 case CPU_UP_CANCELED:
1132 case CPU_UP_CANCELED_FROZEN:
1133 case CPU_DOWN_PREPARE:
1134 case CPU_DOWN_PREPARE_FROZEN:
1136 case CPU_DEAD_FROZEN:
1137 hrtick_clear(cpu_rq(cpu));
1144 static __init void init_hrtick(void)
1146 hotcpu_notifier(hotplug_hrtick, 0);
1150 * Called to set the hrtick timer state.
1152 * called with rq->lock held and irqs disabled
1154 static void hrtick_start(struct rq *rq, u64 delay)
1156 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1157 HRTIMER_MODE_REL, 0);
1160 static inline void init_hrtick(void)
1163 #endif /* CONFIG_SMP */
1165 static void init_rq_hrtick(struct rq *rq)
1168 rq->hrtick_csd_pending = 0;
1170 rq->hrtick_csd.flags = 0;
1171 rq->hrtick_csd.func = __hrtick_start;
1172 rq->hrtick_csd.info = rq;
1175 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1176 rq->hrtick_timer.function = hrtick;
1178 #else /* CONFIG_SCHED_HRTICK */
1179 static inline void hrtick_clear(struct rq *rq)
1183 static inline void init_rq_hrtick(struct rq *rq)
1187 static inline void init_hrtick(void)
1190 #endif /* CONFIG_SCHED_HRTICK */
1193 * resched_task - mark a task 'to be rescheduled now'.
1195 * On UP this means the setting of the need_resched flag, on SMP it
1196 * might also involve a cross-CPU call to trigger the scheduler on
1201 #ifndef tsk_is_polling
1202 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1205 static void resched_task(struct task_struct *p)
1209 assert_spin_locked(&task_rq(p)->lock);
1211 if (test_tsk_need_resched(p))
1214 set_tsk_need_resched(p);
1217 if (cpu == smp_processor_id())
1220 /* NEED_RESCHED must be visible before we test polling */
1222 if (!tsk_is_polling(p))
1223 smp_send_reschedule(cpu);
1226 static void resched_cpu(int cpu)
1228 struct rq *rq = cpu_rq(cpu);
1229 unsigned long flags;
1231 if (!spin_trylock_irqsave(&rq->lock, flags))
1233 resched_task(cpu_curr(cpu));
1234 spin_unlock_irqrestore(&rq->lock, flags);
1239 * When add_timer_on() enqueues a timer into the timer wheel of an
1240 * idle CPU then this timer might expire before the next timer event
1241 * which is scheduled to wake up that CPU. In case of a completely
1242 * idle system the next event might even be infinite time into the
1243 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1244 * leaves the inner idle loop so the newly added timer is taken into
1245 * account when the CPU goes back to idle and evaluates the timer
1246 * wheel for the next timer event.
1248 void wake_up_idle_cpu(int cpu)
1250 struct rq *rq = cpu_rq(cpu);
1252 if (cpu == smp_processor_id())
1256 * This is safe, as this function is called with the timer
1257 * wheel base lock of (cpu) held. When the CPU is on the way
1258 * to idle and has not yet set rq->curr to idle then it will
1259 * be serialized on the timer wheel base lock and take the new
1260 * timer into account automatically.
1262 if (rq->curr != rq->idle)
1266 * We can set TIF_RESCHED on the idle task of the other CPU
1267 * lockless. The worst case is that the other CPU runs the
1268 * idle task through an additional NOOP schedule()
1270 set_tsk_need_resched(rq->idle);
1272 /* NEED_RESCHED must be visible before we test polling */
1274 if (!tsk_is_polling(rq->idle))
1275 smp_send_reschedule(cpu);
1277 #endif /* CONFIG_NO_HZ */
1279 #else /* !CONFIG_SMP */
1280 static void resched_task(struct task_struct *p)
1282 assert_spin_locked(&task_rq(p)->lock);
1283 set_tsk_need_resched(p);
1285 #endif /* CONFIG_SMP */
1287 #if BITS_PER_LONG == 32
1288 # define WMULT_CONST (~0UL)
1290 # define WMULT_CONST (1UL << 32)
1293 #define WMULT_SHIFT 32
1296 * Shift right and round:
1298 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1301 * delta *= weight / lw
1303 static unsigned long
1304 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1317 tmp = (u64)delta_exec * weight;
1319 * Check whether we'd overflow the 64-bit multiplication:
1321 if (unlikely(tmp > WMULT_CONST))
1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1330 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1336 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 * scaled version of the new time slice allocation that they receive on time
1351 #define WEIGHT_IDLEPRIO 3
1352 #define WMULT_IDLEPRIO 1431655765
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
1366 static const int prio_to_weight[40] = {
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1384 static const u32 prio_to_wmult[40] = {
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1395 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1402 struct rq_iterator {
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1409 static unsigned long
1410 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1416 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
1421 /* Time spent by the tasks of the cpu accounting group executing in ... */
1422 enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426 CPUACCT_STAT_NSTATS,
1429 #ifdef CONFIG_CGROUP_CPUACCT
1430 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431 static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
1434 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1435 static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
1439 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441 update_load_add(&rq->load, load);
1444 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446 update_load_sub(&rq->load, load);
1449 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1450 typedef int (*tg_visitor)(struct task_group *, void *);
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1456 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 struct task_group *parent, *child;
1462 parent = &root_task_group;
1464 ret = (*down)(parent, data);
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1474 ret = (*up)(parent, data);
1479 parent = parent->parent;
1488 static int tg_nop(struct task_group *tg, void *data)
1495 static unsigned long source_load(int cpu, int type);
1496 static unsigned long target_load(int cpu, int type);
1497 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1499 static unsigned long cpu_avg_load_per_task(int cpu)
1501 struct rq *rq = cpu_rq(cpu);
1502 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1505 rq->avg_load_per_task = rq->load.weight / nr_running;
1507 rq->avg_load_per_task = 0;
1509 return rq->avg_load_per_task;
1512 #ifdef CONFIG_FAIR_GROUP_SCHED
1514 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1517 * Calculate and set the cpu's group shares.
1520 update_group_shares_cpu(struct task_group *tg, int cpu,
1521 unsigned long sd_shares, unsigned long sd_rq_weight)
1523 unsigned long shares;
1524 unsigned long rq_weight;
1529 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1532 * \Sum shares * rq_weight
1533 * shares = -----------------------
1537 shares = (sd_shares * rq_weight) / sd_rq_weight;
1538 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1540 if (abs(shares - tg->se[cpu]->load.weight) >
1541 sysctl_sched_shares_thresh) {
1542 struct rq *rq = cpu_rq(cpu);
1543 unsigned long flags;
1545 spin_lock_irqsave(&rq->lock, flags);
1546 tg->cfs_rq[cpu]->shares = shares;
1548 __set_se_shares(tg->se[cpu], shares);
1549 spin_unlock_irqrestore(&rq->lock, flags);
1554 * Re-compute the task group their per cpu shares over the given domain.
1555 * This needs to be done in a bottom-up fashion because the rq weight of a
1556 * parent group depends on the shares of its child groups.
1558 static int tg_shares_up(struct task_group *tg, void *data)
1560 unsigned long weight, rq_weight = 0;
1561 unsigned long shares = 0;
1562 struct sched_domain *sd = data;
1565 for_each_cpu(i, sched_domain_span(sd)) {
1567 * If there are currently no tasks on the cpu pretend there
1568 * is one of average load so that when a new task gets to
1569 * run here it will not get delayed by group starvation.
1571 weight = tg->cfs_rq[i]->load.weight;
1573 weight = NICE_0_LOAD;
1575 tg->cfs_rq[i]->rq_weight = weight;
1576 rq_weight += weight;
1577 shares += tg->cfs_rq[i]->shares;
1580 if ((!shares && rq_weight) || shares > tg->shares)
1581 shares = tg->shares;
1583 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1584 shares = tg->shares;
1586 for_each_cpu(i, sched_domain_span(sd))
1587 update_group_shares_cpu(tg, i, shares, rq_weight);
1593 * Compute the cpu's hierarchical load factor for each task group.
1594 * This needs to be done in a top-down fashion because the load of a child
1595 * group is a fraction of its parents load.
1597 static int tg_load_down(struct task_group *tg, void *data)
1600 long cpu = (long)data;
1603 load = cpu_rq(cpu)->load.weight;
1605 load = tg->parent->cfs_rq[cpu]->h_load;
1606 load *= tg->cfs_rq[cpu]->shares;
1607 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1610 tg->cfs_rq[cpu]->h_load = load;
1615 static void update_shares(struct sched_domain *sd)
1617 u64 now = cpu_clock(raw_smp_processor_id());
1618 s64 elapsed = now - sd->last_update;
1620 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1621 sd->last_update = now;
1622 walk_tg_tree(tg_nop, tg_shares_up, sd);
1626 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628 spin_unlock(&rq->lock);
1630 spin_lock(&rq->lock);
1633 static void update_h_load(long cpu)
1635 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1640 static inline void update_shares(struct sched_domain *sd)
1644 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1650 #ifdef CONFIG_PREEMPT
1653 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1654 * way at the expense of forcing extra atomic operations in all
1655 * invocations. This assures that the double_lock is acquired using the
1656 * same underlying policy as the spinlock_t on this architecture, which
1657 * reduces latency compared to the unfair variant below. However, it
1658 * also adds more overhead and therefore may reduce throughput.
1660 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1661 __releases(this_rq->lock)
1662 __acquires(busiest->lock)
1663 __acquires(this_rq->lock)
1665 spin_unlock(&this_rq->lock);
1666 double_rq_lock(this_rq, busiest);
1673 * Unfair double_lock_balance: Optimizes throughput at the expense of
1674 * latency by eliminating extra atomic operations when the locks are
1675 * already in proper order on entry. This favors lower cpu-ids and will
1676 * grant the double lock to lower cpus over higher ids under contention,
1677 * regardless of entry order into the function.
1679 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1680 __releases(this_rq->lock)
1681 __acquires(busiest->lock)
1682 __acquires(this_rq->lock)
1686 if (unlikely(!spin_trylock(&busiest->lock))) {
1687 if (busiest < this_rq) {
1688 spin_unlock(&this_rq->lock);
1689 spin_lock(&busiest->lock);
1690 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1693 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1698 #endif /* CONFIG_PREEMPT */
1701 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1703 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1705 if (unlikely(!irqs_disabled())) {
1706 /* printk() doesn't work good under rq->lock */
1707 spin_unlock(&this_rq->lock);
1711 return _double_lock_balance(this_rq, busiest);
1714 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1715 __releases(busiest->lock)
1717 spin_unlock(&busiest->lock);
1718 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1722 #ifdef CONFIG_FAIR_GROUP_SCHED
1723 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1726 cfs_rq->shares = shares;
1731 #include "sched_stats.h"
1732 #include "sched_idletask.c"
1733 #include "sched_fair.c"
1734 #include "sched_rt.c"
1735 #ifdef CONFIG_SCHED_DEBUG
1736 # include "sched_debug.c"
1739 #define sched_class_highest (&rt_sched_class)
1740 #define for_each_class(class) \
1741 for (class = sched_class_highest; class; class = class->next)
1743 static void inc_nr_running(struct rq *rq)
1748 static void dec_nr_running(struct rq *rq)
1753 static void set_load_weight(struct task_struct *p)
1755 if (task_has_rt_policy(p)) {
1756 p->se.load.weight = prio_to_weight[0] * 2;
1757 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1762 * SCHED_IDLE tasks get minimal weight:
1764 if (p->policy == SCHED_IDLE) {
1765 p->se.load.weight = WEIGHT_IDLEPRIO;
1766 p->se.load.inv_weight = WMULT_IDLEPRIO;
1770 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1771 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1774 static void update_avg(u64 *avg, u64 sample)
1776 s64 diff = sample - *avg;
1780 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1783 p->se.start_runtime = p->se.sum_exec_runtime;
1785 sched_info_queued(p);
1786 p->sched_class->enqueue_task(rq, p, wakeup);
1790 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1793 if (p->se.last_wakeup) {
1794 update_avg(&p->se.avg_overlap,
1795 p->se.sum_exec_runtime - p->se.last_wakeup);
1796 p->se.last_wakeup = 0;
1798 update_avg(&p->se.avg_wakeup,
1799 sysctl_sched_wakeup_granularity);
1803 sched_info_dequeued(p);
1804 p->sched_class->dequeue_task(rq, p, sleep);
1809 * __normal_prio - return the priority that is based on the static prio
1811 static inline int __normal_prio(struct task_struct *p)
1813 return p->static_prio;
1817 * Calculate the expected normal priority: i.e. priority
1818 * without taking RT-inheritance into account. Might be
1819 * boosted by interactivity modifiers. Changes upon fork,
1820 * setprio syscalls, and whenever the interactivity
1821 * estimator recalculates.
1823 static inline int normal_prio(struct task_struct *p)
1827 if (task_has_rt_policy(p))
1828 prio = MAX_RT_PRIO-1 - p->rt_priority;
1830 prio = __normal_prio(p);
1835 * Calculate the current priority, i.e. the priority
1836 * taken into account by the scheduler. This value might
1837 * be boosted by RT tasks, or might be boosted by
1838 * interactivity modifiers. Will be RT if the task got
1839 * RT-boosted. If not then it returns p->normal_prio.
1841 static int effective_prio(struct task_struct *p)
1843 p->normal_prio = normal_prio(p);
1845 * If we are RT tasks or we were boosted to RT priority,
1846 * keep the priority unchanged. Otherwise, update priority
1847 * to the normal priority:
1849 if (!rt_prio(p->prio))
1850 return p->normal_prio;
1855 * activate_task - move a task to the runqueue.
1857 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1859 if (task_contributes_to_load(p))
1860 rq->nr_uninterruptible--;
1862 enqueue_task(rq, p, wakeup);
1867 * deactivate_task - remove a task from the runqueue.
1869 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1871 if (task_contributes_to_load(p))
1872 rq->nr_uninterruptible++;
1874 dequeue_task(rq, p, sleep);
1879 * task_curr - is this task currently executing on a CPU?
1880 * @p: the task in question.
1882 inline int task_curr(const struct task_struct *p)
1884 return cpu_curr(task_cpu(p)) == p;
1887 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1889 set_task_rq(p, cpu);
1892 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1893 * successfuly executed on another CPU. We must ensure that updates of
1894 * per-task data have been completed by this moment.
1897 task_thread_info(p)->cpu = cpu;
1901 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1902 const struct sched_class *prev_class,
1903 int oldprio, int running)
1905 if (prev_class != p->sched_class) {
1906 if (prev_class->switched_from)
1907 prev_class->switched_from(rq, p, running);
1908 p->sched_class->switched_to(rq, p, running);
1910 p->sched_class->prio_changed(rq, p, oldprio, running);
1915 /* Used instead of source_load when we know the type == 0 */
1916 static unsigned long weighted_cpuload(const int cpu)
1918 return cpu_rq(cpu)->load.weight;
1922 * Is this task likely cache-hot:
1925 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1930 * Buddy candidates are cache hot:
1932 if (sched_feat(CACHE_HOT_BUDDY) &&
1933 (&p->se == cfs_rq_of(&p->se)->next ||
1934 &p->se == cfs_rq_of(&p->se)->last))
1937 if (p->sched_class != &fair_sched_class)
1940 if (sysctl_sched_migration_cost == -1)
1942 if (sysctl_sched_migration_cost == 0)
1945 delta = now - p->se.exec_start;
1947 return delta < (s64)sysctl_sched_migration_cost;
1951 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1953 int old_cpu = task_cpu(p);
1954 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1955 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1956 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1959 clock_offset = old_rq->clock - new_rq->clock;
1961 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1963 #ifdef CONFIG_SCHEDSTATS
1964 if (p->se.wait_start)
1965 p->se.wait_start -= clock_offset;
1966 if (p->se.sleep_start)
1967 p->se.sleep_start -= clock_offset;
1968 if (p->se.block_start)
1969 p->se.block_start -= clock_offset;
1970 if (old_cpu != new_cpu) {
1971 schedstat_inc(p, se.nr_migrations);
1972 if (task_hot(p, old_rq->clock, NULL))
1973 schedstat_inc(p, se.nr_forced2_migrations);
1976 p->se.vruntime -= old_cfsrq->min_vruntime -
1977 new_cfsrq->min_vruntime;
1979 __set_task_cpu(p, new_cpu);
1982 struct migration_req {
1983 struct list_head list;
1985 struct task_struct *task;
1988 struct completion done;
1992 * The task's runqueue lock must be held.
1993 * Returns true if you have to wait for migration thread.
1996 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1998 struct rq *rq = task_rq(p);
2001 * If the task is not on a runqueue (and not running), then
2002 * it is sufficient to simply update the task's cpu field.
2004 if (!p->se.on_rq && !task_running(rq, p)) {
2005 set_task_cpu(p, dest_cpu);
2009 init_completion(&req->done);
2011 req->dest_cpu = dest_cpu;
2012 list_add(&req->list, &rq->migration_queue);
2018 * wait_task_inactive - wait for a thread to unschedule.
2020 * If @match_state is nonzero, it's the @p->state value just checked and
2021 * not expected to change. If it changes, i.e. @p might have woken up,
2022 * then return zero. When we succeed in waiting for @p to be off its CPU,
2023 * we return a positive number (its total switch count). If a second call
2024 * a short while later returns the same number, the caller can be sure that
2025 * @p has remained unscheduled the whole time.
2027 * The caller must ensure that the task *will* unschedule sometime soon,
2028 * else this function might spin for a *long* time. This function can't
2029 * be called with interrupts off, or it may introduce deadlock with
2030 * smp_call_function() if an IPI is sent by the same process we are
2031 * waiting to become inactive.
2033 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2035 unsigned long flags;
2042 * We do the initial early heuristics without holding
2043 * any task-queue locks at all. We'll only try to get
2044 * the runqueue lock when things look like they will
2050 * If the task is actively running on another CPU
2051 * still, just relax and busy-wait without holding
2054 * NOTE! Since we don't hold any locks, it's not
2055 * even sure that "rq" stays as the right runqueue!
2056 * But we don't care, since "task_running()" will
2057 * return false if the runqueue has changed and p
2058 * is actually now running somewhere else!
2060 while (task_running(rq, p)) {
2061 if (match_state && unlikely(p->state != match_state))
2067 * Ok, time to look more closely! We need the rq
2068 * lock now, to be *sure*. If we're wrong, we'll
2069 * just go back and repeat.
2071 rq = task_rq_lock(p, &flags);
2072 trace_sched_wait_task(rq, p);
2073 running = task_running(rq, p);
2074 on_rq = p->se.on_rq;
2076 if (!match_state || p->state == match_state)
2077 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2078 task_rq_unlock(rq, &flags);
2081 * If it changed from the expected state, bail out now.
2083 if (unlikely(!ncsw))
2087 * Was it really running after all now that we
2088 * checked with the proper locks actually held?
2090 * Oops. Go back and try again..
2092 if (unlikely(running)) {
2098 * It's not enough that it's not actively running,
2099 * it must be off the runqueue _entirely_, and not
2102 * So if it was still runnable (but just not actively
2103 * running right now), it's preempted, and we should
2104 * yield - it could be a while.
2106 if (unlikely(on_rq)) {
2107 schedule_timeout_uninterruptible(1);
2112 * Ahh, all good. It wasn't running, and it wasn't
2113 * runnable, which means that it will never become
2114 * running in the future either. We're all done!
2123 * kick_process - kick a running thread to enter/exit the kernel
2124 * @p: the to-be-kicked thread
2126 * Cause a process which is running on another CPU to enter
2127 * kernel-mode, without any delay. (to get signals handled.)
2129 * NOTE: this function doesnt have to take the runqueue lock,
2130 * because all it wants to ensure is that the remote task enters
2131 * the kernel. If the IPI races and the task has been migrated
2132 * to another CPU then no harm is done and the purpose has been
2135 void kick_process(struct task_struct *p)
2141 if ((cpu != smp_processor_id()) && task_curr(p))
2142 smp_send_reschedule(cpu);
2147 * Return a low guess at the load of a migration-source cpu weighted
2148 * according to the scheduling class and "nice" value.
2150 * We want to under-estimate the load of migration sources, to
2151 * balance conservatively.
2153 static unsigned long source_load(int cpu, int type)
2155 struct rq *rq = cpu_rq(cpu);
2156 unsigned long total = weighted_cpuload(cpu);
2158 if (type == 0 || !sched_feat(LB_BIAS))
2161 return min(rq->cpu_load[type-1], total);
2165 * Return a high guess at the load of a migration-target cpu weighted
2166 * according to the scheduling class and "nice" value.
2168 static unsigned long target_load(int cpu, int type)
2170 struct rq *rq = cpu_rq(cpu);
2171 unsigned long total = weighted_cpuload(cpu);
2173 if (type == 0 || !sched_feat(LB_BIAS))
2176 return max(rq->cpu_load[type-1], total);
2180 * find_idlest_group finds and returns the least busy CPU group within the
2183 static struct sched_group *
2184 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2186 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2187 unsigned long min_load = ULONG_MAX, this_load = 0;
2188 int load_idx = sd->forkexec_idx;
2189 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2192 unsigned long load, avg_load;
2196 /* Skip over this group if it has no CPUs allowed */
2197 if (!cpumask_intersects(sched_group_cpus(group),
2201 local_group = cpumask_test_cpu(this_cpu,
2202 sched_group_cpus(group));
2204 /* Tally up the load of all CPUs in the group */
2207 for_each_cpu(i, sched_group_cpus(group)) {
2208 /* Bias balancing toward cpus of our domain */
2210 load = source_load(i, load_idx);
2212 load = target_load(i, load_idx);
2217 /* Adjust by relative CPU power of the group */
2218 avg_load = sg_div_cpu_power(group,
2219 avg_load * SCHED_LOAD_SCALE);
2222 this_load = avg_load;
2224 } else if (avg_load < min_load) {
2225 min_load = avg_load;
2228 } while (group = group->next, group != sd->groups);
2230 if (!idlest || 100*this_load < imbalance*min_load)
2236 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2239 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2241 unsigned long load, min_load = ULONG_MAX;
2245 /* Traverse only the allowed CPUs */
2246 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2247 load = weighted_cpuload(i);
2249 if (load < min_load || (load == min_load && i == this_cpu)) {
2259 * sched_balance_self: balance the current task (running on cpu) in domains
2260 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2263 * Balance, ie. select the least loaded group.
2265 * Returns the target CPU number, or the same CPU if no balancing is needed.
2267 * preempt must be disabled.
2269 static int sched_balance_self(int cpu, int flag)
2271 struct task_struct *t = current;
2272 struct sched_domain *tmp, *sd = NULL;
2274 for_each_domain(cpu, tmp) {
2276 * If power savings logic is enabled for a domain, stop there.
2278 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2280 if (tmp->flags & flag)
2288 struct sched_group *group;
2289 int new_cpu, weight;
2291 if (!(sd->flags & flag)) {
2296 group = find_idlest_group(sd, t, cpu);
2302 new_cpu = find_idlest_cpu(group, t, cpu);
2303 if (new_cpu == -1 || new_cpu == cpu) {
2304 /* Now try balancing at a lower domain level of cpu */
2309 /* Now try balancing at a lower domain level of new_cpu */
2311 weight = cpumask_weight(sched_domain_span(sd));
2313 for_each_domain(cpu, tmp) {
2314 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2316 if (tmp->flags & flag)
2319 /* while loop will break here if sd == NULL */
2325 #endif /* CONFIG_SMP */
2328 * try_to_wake_up - wake up a thread
2329 * @p: the to-be-woken-up thread
2330 * @state: the mask of task states that can be woken
2331 * @sync: do a synchronous wakeup?
2333 * Put it on the run-queue if it's not already there. The "current"
2334 * thread is always on the run-queue (except when the actual
2335 * re-schedule is in progress), and as such you're allowed to do
2336 * the simpler "current->state = TASK_RUNNING" to mark yourself
2337 * runnable without the overhead of this.
2339 * returns failure only if the task is already active.
2341 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2343 int cpu, orig_cpu, this_cpu, success = 0;
2344 unsigned long flags;
2348 if (!sched_feat(SYNC_WAKEUPS))
2352 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2353 struct sched_domain *sd;
2355 this_cpu = raw_smp_processor_id();
2358 for_each_domain(this_cpu, sd) {
2359 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2368 rq = task_rq_lock(p, &flags);
2369 update_rq_clock(rq);
2370 old_state = p->state;
2371 if (!(old_state & state))
2379 this_cpu = smp_processor_id();
2382 if (unlikely(task_running(rq, p)))
2385 cpu = p->sched_class->select_task_rq(p, sync);
2386 if (cpu != orig_cpu) {
2387 set_task_cpu(p, cpu);
2388 task_rq_unlock(rq, &flags);
2389 /* might preempt at this point */
2390 rq = task_rq_lock(p, &flags);
2391 old_state = p->state;
2392 if (!(old_state & state))
2397 this_cpu = smp_processor_id();
2401 #ifdef CONFIG_SCHEDSTATS
2402 schedstat_inc(rq, ttwu_count);
2403 if (cpu == this_cpu)
2404 schedstat_inc(rq, ttwu_local);
2406 struct sched_domain *sd;
2407 for_each_domain(this_cpu, sd) {
2408 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2409 schedstat_inc(sd, ttwu_wake_remote);
2414 #endif /* CONFIG_SCHEDSTATS */
2417 #endif /* CONFIG_SMP */
2418 schedstat_inc(p, se.nr_wakeups);
2420 schedstat_inc(p, se.nr_wakeups_sync);
2421 if (orig_cpu != cpu)
2422 schedstat_inc(p, se.nr_wakeups_migrate);
2423 if (cpu == this_cpu)
2424 schedstat_inc(p, se.nr_wakeups_local);
2426 schedstat_inc(p, se.nr_wakeups_remote);
2427 activate_task(rq, p, 1);
2431 * Only attribute actual wakeups done by this task.
2433 if (!in_interrupt()) {
2434 struct sched_entity *se = ¤t->se;
2435 u64 sample = se->sum_exec_runtime;
2437 if (se->last_wakeup)
2438 sample -= se->last_wakeup;
2440 sample -= se->start_runtime;
2441 update_avg(&se->avg_wakeup, sample);
2443 se->last_wakeup = se->sum_exec_runtime;
2447 trace_sched_wakeup(rq, p, success);
2448 check_preempt_curr(rq, p, sync);
2450 p->state = TASK_RUNNING;
2452 if (p->sched_class->task_wake_up)
2453 p->sched_class->task_wake_up(rq, p);
2456 task_rq_unlock(rq, &flags);
2461 int wake_up_process(struct task_struct *p)
2463 return try_to_wake_up(p, TASK_ALL, 0);
2465 EXPORT_SYMBOL(wake_up_process);
2467 int wake_up_state(struct task_struct *p, unsigned int state)
2469 return try_to_wake_up(p, state, 0);
2473 * Perform scheduler related setup for a newly forked process p.
2474 * p is forked by current.
2476 * __sched_fork() is basic setup used by init_idle() too:
2478 static void __sched_fork(struct task_struct *p)
2480 p->se.exec_start = 0;
2481 p->se.sum_exec_runtime = 0;
2482 p->se.prev_sum_exec_runtime = 0;
2483 p->se.last_wakeup = 0;
2484 p->se.avg_overlap = 0;
2485 p->se.start_runtime = 0;
2486 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2488 #ifdef CONFIG_SCHEDSTATS
2489 p->se.wait_start = 0;
2490 p->se.sum_sleep_runtime = 0;
2491 p->se.sleep_start = 0;
2492 p->se.block_start = 0;
2493 p->se.sleep_max = 0;
2494 p->se.block_max = 0;
2496 p->se.slice_max = 0;
2500 INIT_LIST_HEAD(&p->rt.run_list);
2502 INIT_LIST_HEAD(&p->se.group_node);
2504 #ifdef CONFIG_PREEMPT_NOTIFIERS
2505 INIT_HLIST_HEAD(&p->preempt_notifiers);
2509 * We mark the process as running here, but have not actually
2510 * inserted it onto the runqueue yet. This guarantees that
2511 * nobody will actually run it, and a signal or other external
2512 * event cannot wake it up and insert it on the runqueue either.
2514 p->state = TASK_RUNNING;
2518 * fork()/clone()-time setup:
2520 void sched_fork(struct task_struct *p, int clone_flags)
2522 int cpu = get_cpu();
2527 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2529 set_task_cpu(p, cpu);
2532 * Make sure we do not leak PI boosting priority to the child:
2534 p->prio = current->normal_prio;
2535 if (!rt_prio(p->prio))
2536 p->sched_class = &fair_sched_class;
2538 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2539 if (likely(sched_info_on()))
2540 memset(&p->sched_info, 0, sizeof(p->sched_info));
2542 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2545 #ifdef CONFIG_PREEMPT
2546 /* Want to start with kernel preemption disabled. */
2547 task_thread_info(p)->preempt_count = 1;
2549 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2555 * wake_up_new_task - wake up a newly created task for the first time.
2557 * This function will do some initial scheduler statistics housekeeping
2558 * that must be done for every newly created context, then puts the task
2559 * on the runqueue and wakes it.
2561 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2563 unsigned long flags;
2566 rq = task_rq_lock(p, &flags);
2567 BUG_ON(p->state != TASK_RUNNING);
2568 update_rq_clock(rq);
2570 p->prio = effective_prio(p);
2572 if (!p->sched_class->task_new || !current->se.on_rq) {
2573 activate_task(rq, p, 0);
2576 * Let the scheduling class do new task startup
2577 * management (if any):
2579 p->sched_class->task_new(rq, p);
2582 trace_sched_wakeup_new(rq, p, 1);
2583 check_preempt_curr(rq, p, 0);
2585 if (p->sched_class->task_wake_up)
2586 p->sched_class->task_wake_up(rq, p);
2588 task_rq_unlock(rq, &flags);
2591 #ifdef CONFIG_PREEMPT_NOTIFIERS
2594 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2595 * @notifier: notifier struct to register
2597 void preempt_notifier_register(struct preempt_notifier *notifier)
2599 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2601 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2604 * preempt_notifier_unregister - no longer interested in preemption notifications
2605 * @notifier: notifier struct to unregister
2607 * This is safe to call from within a preemption notifier.
2609 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2611 hlist_del(¬ifier->link);
2613 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2615 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2617 struct preempt_notifier *notifier;
2618 struct hlist_node *node;
2620 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2621 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2625 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2626 struct task_struct *next)
2628 struct preempt_notifier *notifier;
2629 struct hlist_node *node;
2631 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2632 notifier->ops->sched_out(notifier, next);
2635 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2637 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2642 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2643 struct task_struct *next)
2647 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2650 * prepare_task_switch - prepare to switch tasks
2651 * @rq: the runqueue preparing to switch
2652 * @prev: the current task that is being switched out
2653 * @next: the task we are going to switch to.
2655 * This is called with the rq lock held and interrupts off. It must
2656 * be paired with a subsequent finish_task_switch after the context
2659 * prepare_task_switch sets up locking and calls architecture specific
2663 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2664 struct task_struct *next)
2666 fire_sched_out_preempt_notifiers(prev, next);
2667 prepare_lock_switch(rq, next);
2668 prepare_arch_switch(next);
2672 * finish_task_switch - clean up after a task-switch
2673 * @rq: runqueue associated with task-switch
2674 * @prev: the thread we just switched away from.
2676 * finish_task_switch must be called after the context switch, paired
2677 * with a prepare_task_switch call before the context switch.
2678 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2679 * and do any other architecture-specific cleanup actions.
2681 * Note that we may have delayed dropping an mm in context_switch(). If
2682 * so, we finish that here outside of the runqueue lock. (Doing it
2683 * with the lock held can cause deadlocks; see schedule() for
2686 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2687 __releases(rq->lock)
2689 struct mm_struct *mm = rq->prev_mm;
2692 int post_schedule = 0;
2694 if (current->sched_class->needs_post_schedule)
2695 post_schedule = current->sched_class->needs_post_schedule(rq);
2701 * A task struct has one reference for the use as "current".
2702 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2703 * schedule one last time. The schedule call will never return, and
2704 * the scheduled task must drop that reference.
2705 * The test for TASK_DEAD must occur while the runqueue locks are
2706 * still held, otherwise prev could be scheduled on another cpu, die
2707 * there before we look at prev->state, and then the reference would
2709 * Manfred Spraul <manfred@colorfullife.com>
2711 prev_state = prev->state;
2712 finish_arch_switch(prev);
2713 finish_lock_switch(rq, prev);
2716 current->sched_class->post_schedule(rq);
2719 fire_sched_in_preempt_notifiers(current);
2722 if (unlikely(prev_state == TASK_DEAD)) {
2724 * Remove function-return probe instances associated with this
2725 * task and put them back on the free list.
2727 kprobe_flush_task(prev);
2728 put_task_struct(prev);
2733 * schedule_tail - first thing a freshly forked thread must call.
2734 * @prev: the thread we just switched away from.
2736 asmlinkage void schedule_tail(struct task_struct *prev)
2737 __releases(rq->lock)
2739 struct rq *rq = this_rq();
2741 finish_task_switch(rq, prev);
2742 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2743 /* In this case, finish_task_switch does not reenable preemption */
2746 if (current->set_child_tid)
2747 put_user(task_pid_vnr(current), current->set_child_tid);
2751 * context_switch - switch to the new MM and the new
2752 * thread's register state.
2755 context_switch(struct rq *rq, struct task_struct *prev,
2756 struct task_struct *next)
2758 struct mm_struct *mm, *oldmm;
2760 prepare_task_switch(rq, prev, next);
2761 trace_sched_switch(rq, prev, next);
2763 oldmm = prev->active_mm;
2765 * For paravirt, this is coupled with an exit in switch_to to
2766 * combine the page table reload and the switch backend into
2769 arch_start_context_switch(prev);
2771 if (unlikely(!mm)) {
2772 next->active_mm = oldmm;
2773 atomic_inc(&oldmm->mm_count);
2774 enter_lazy_tlb(oldmm, next);
2776 switch_mm(oldmm, mm, next);
2778 if (unlikely(!prev->mm)) {
2779 prev->active_mm = NULL;
2780 rq->prev_mm = oldmm;
2783 * Since the runqueue lock will be released by the next
2784 * task (which is an invalid locking op but in the case
2785 * of the scheduler it's an obvious special-case), so we
2786 * do an early lockdep release here:
2788 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2789 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2792 /* Here we just switch the register state and the stack. */
2793 switch_to(prev, next, prev);
2797 * this_rq must be evaluated again because prev may have moved
2798 * CPUs since it called schedule(), thus the 'rq' on its stack
2799 * frame will be invalid.
2801 finish_task_switch(this_rq(), prev);
2805 * nr_running, nr_uninterruptible and nr_context_switches:
2807 * externally visible scheduler statistics: current number of runnable
2808 * threads, current number of uninterruptible-sleeping threads, total
2809 * number of context switches performed since bootup.
2811 unsigned long nr_running(void)
2813 unsigned long i, sum = 0;
2815 for_each_online_cpu(i)
2816 sum += cpu_rq(i)->nr_running;
2821 unsigned long nr_uninterruptible(void)
2823 unsigned long i, sum = 0;
2825 for_each_possible_cpu(i)
2826 sum += cpu_rq(i)->nr_uninterruptible;
2829 * Since we read the counters lockless, it might be slightly
2830 * inaccurate. Do not allow it to go below zero though:
2832 if (unlikely((long)sum < 0))
2838 unsigned long long nr_context_switches(void)
2841 unsigned long long sum = 0;
2843 for_each_possible_cpu(i)
2844 sum += cpu_rq(i)->nr_switches;
2849 unsigned long nr_iowait(void)
2851 unsigned long i, sum = 0;
2853 for_each_possible_cpu(i)
2854 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2859 unsigned long nr_active(void)
2861 unsigned long i, running = 0, uninterruptible = 0;
2863 for_each_online_cpu(i) {
2864 running += cpu_rq(i)->nr_running;
2865 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2868 if (unlikely((long)uninterruptible < 0))
2869 uninterruptible = 0;
2871 return running + uninterruptible;
2875 * Update rq->cpu_load[] statistics. This function is usually called every
2876 * scheduler tick (TICK_NSEC).
2878 static void update_cpu_load(struct rq *this_rq)
2880 unsigned long this_load = this_rq->load.weight;
2883 this_rq->nr_load_updates++;
2885 /* Update our load: */
2886 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2887 unsigned long old_load, new_load;
2889 /* scale is effectively 1 << i now, and >> i divides by scale */
2891 old_load = this_rq->cpu_load[i];
2892 new_load = this_load;
2894 * Round up the averaging division if load is increasing. This
2895 * prevents us from getting stuck on 9 if the load is 10, for
2898 if (new_load > old_load)
2899 new_load += scale-1;
2900 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2907 * double_rq_lock - safely lock two runqueues
2909 * Note this does not disable interrupts like task_rq_lock,
2910 * you need to do so manually before calling.
2912 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2913 __acquires(rq1->lock)
2914 __acquires(rq2->lock)
2916 BUG_ON(!irqs_disabled());
2918 spin_lock(&rq1->lock);
2919 __acquire(rq2->lock); /* Fake it out ;) */
2922 spin_lock(&rq1->lock);
2923 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2925 spin_lock(&rq2->lock);
2926 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2929 update_rq_clock(rq1);
2930 update_rq_clock(rq2);
2934 * double_rq_unlock - safely unlock two runqueues
2936 * Note this does not restore interrupts like task_rq_unlock,
2937 * you need to do so manually after calling.
2939 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2940 __releases(rq1->lock)
2941 __releases(rq2->lock)
2943 spin_unlock(&rq1->lock);
2945 spin_unlock(&rq2->lock);
2947 __release(rq2->lock);
2951 * If dest_cpu is allowed for this process, migrate the task to it.
2952 * This is accomplished by forcing the cpu_allowed mask to only
2953 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2954 * the cpu_allowed mask is restored.
2956 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2958 struct migration_req req;
2959 unsigned long flags;
2962 rq = task_rq_lock(p, &flags);
2963 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2964 || unlikely(!cpu_active(dest_cpu)))
2967 /* force the process onto the specified CPU */
2968 if (migrate_task(p, dest_cpu, &req)) {
2969 /* Need to wait for migration thread (might exit: take ref). */
2970 struct task_struct *mt = rq->migration_thread;
2972 get_task_struct(mt);
2973 task_rq_unlock(rq, &flags);
2974 wake_up_process(mt);
2975 put_task_struct(mt);
2976 wait_for_completion(&req.done);
2981 task_rq_unlock(rq, &flags);
2985 * sched_exec - execve() is a valuable balancing opportunity, because at
2986 * this point the task has the smallest effective memory and cache footprint.
2988 void sched_exec(void)
2990 int new_cpu, this_cpu = get_cpu();
2991 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2993 if (new_cpu != this_cpu)
2994 sched_migrate_task(current, new_cpu);
2998 * pull_task - move a task from a remote runqueue to the local runqueue.
2999 * Both runqueues must be locked.
3001 static void pull_task(struct rq *src_rq, struct task_struct *p,
3002 struct rq *this_rq, int this_cpu)
3004 deactivate_task(src_rq, p, 0);
3005 set_task_cpu(p, this_cpu);
3006 activate_task(this_rq, p, 0);
3008 * Note that idle threads have a prio of MAX_PRIO, for this test
3009 * to be always true for them.
3011 check_preempt_curr(this_rq, p, 0);
3015 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3018 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3019 struct sched_domain *sd, enum cpu_idle_type idle,
3022 int tsk_cache_hot = 0;
3024 * We do not migrate tasks that are:
3025 * 1) running (obviously), or
3026 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3027 * 3) are cache-hot on their current CPU.
3029 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3030 schedstat_inc(p, se.nr_failed_migrations_affine);
3035 if (task_running(rq, p)) {
3036 schedstat_inc(p, se.nr_failed_migrations_running);
3041 * Aggressive migration if:
3042 * 1) task is cache cold, or
3043 * 2) too many balance attempts have failed.
3046 tsk_cache_hot = task_hot(p, rq->clock, sd);
3047 if (!tsk_cache_hot ||
3048 sd->nr_balance_failed > sd->cache_nice_tries) {
3049 #ifdef CONFIG_SCHEDSTATS
3050 if (tsk_cache_hot) {
3051 schedstat_inc(sd, lb_hot_gained[idle]);
3052 schedstat_inc(p, se.nr_forced_migrations);
3058 if (tsk_cache_hot) {
3059 schedstat_inc(p, se.nr_failed_migrations_hot);
3065 static unsigned long
3066 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3067 unsigned long max_load_move, struct sched_domain *sd,
3068 enum cpu_idle_type idle, int *all_pinned,
3069 int *this_best_prio, struct rq_iterator *iterator)
3071 int loops = 0, pulled = 0, pinned = 0;
3072 struct task_struct *p;
3073 long rem_load_move = max_load_move;
3075 if (max_load_move == 0)
3081 * Start the load-balancing iterator:
3083 p = iterator->start(iterator->arg);
3085 if (!p || loops++ > sysctl_sched_nr_migrate)
3088 if ((p->se.load.weight >> 1) > rem_load_move ||
3089 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3090 p = iterator->next(iterator->arg);
3094 pull_task(busiest, p, this_rq, this_cpu);
3096 rem_load_move -= p->se.load.weight;
3098 #ifdef CONFIG_PREEMPT
3100 * NEWIDLE balancing is a source of latency, so preemptible kernels
3101 * will stop after the first task is pulled to minimize the critical
3104 if (idle == CPU_NEWLY_IDLE)
3109 * We only want to steal up to the prescribed amount of weighted load.
3111 if (rem_load_move > 0) {
3112 if (p->prio < *this_best_prio)
3113 *this_best_prio = p->prio;
3114 p = iterator->next(iterator->arg);
3119 * Right now, this is one of only two places pull_task() is called,
3120 * so we can safely collect pull_task() stats here rather than
3121 * inside pull_task().
3123 schedstat_add(sd, lb_gained[idle], pulled);
3126 *all_pinned = pinned;
3128 return max_load_move - rem_load_move;
3132 * move_tasks tries to move up to max_load_move weighted load from busiest to
3133 * this_rq, as part of a balancing operation within domain "sd".
3134 * Returns 1 if successful and 0 otherwise.
3136 * Called with both runqueues locked.
3138 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3139 unsigned long max_load_move,
3140 struct sched_domain *sd, enum cpu_idle_type idle,
3143 const struct sched_class *class = sched_class_highest;
3144 unsigned long total_load_moved = 0;
3145 int this_best_prio = this_rq->curr->prio;
3149 class->load_balance(this_rq, this_cpu, busiest,
3150 max_load_move - total_load_moved,
3151 sd, idle, all_pinned, &this_best_prio);
3152 class = class->next;
3154 #ifdef CONFIG_PREEMPT
3156 * NEWIDLE balancing is a source of latency, so preemptible
3157 * kernels will stop after the first task is pulled to minimize
3158 * the critical section.
3160 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3163 } while (class && max_load_move > total_load_moved);
3165 return total_load_moved > 0;
3169 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3170 struct sched_domain *sd, enum cpu_idle_type idle,
3171 struct rq_iterator *iterator)
3173 struct task_struct *p = iterator->start(iterator->arg);
3177 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3178 pull_task(busiest, p, this_rq, this_cpu);
3180 * Right now, this is only the second place pull_task()
3181 * is called, so we can safely collect pull_task()
3182 * stats here rather than inside pull_task().
3184 schedstat_inc(sd, lb_gained[idle]);
3188 p = iterator->next(iterator->arg);
3195 * move_one_task tries to move exactly one task from busiest to this_rq, as
3196 * part of active balancing operations within "domain".
3197 * Returns 1 if successful and 0 otherwise.
3199 * Called with both runqueues locked.
3201 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3202 struct sched_domain *sd, enum cpu_idle_type idle)
3204 const struct sched_class *class;
3206 for (class = sched_class_highest; class; class = class->next)
3207 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3212 /********** Helpers for find_busiest_group ************************/
3214 * sd_lb_stats - Structure to store the statistics of a sched_domain
3215 * during load balancing.
3217 struct sd_lb_stats {
3218 struct sched_group *busiest; /* Busiest group in this sd */
3219 struct sched_group *this; /* Local group in this sd */
3220 unsigned long total_load; /* Total load of all groups in sd */
3221 unsigned long total_pwr; /* Total power of all groups in sd */
3222 unsigned long avg_load; /* Average load across all groups in sd */
3224 /** Statistics of this group */
3225 unsigned long this_load;
3226 unsigned long this_load_per_task;
3227 unsigned long this_nr_running;
3229 /* Statistics of the busiest group */
3230 unsigned long max_load;
3231 unsigned long busiest_load_per_task;
3232 unsigned long busiest_nr_running;
3234 int group_imb; /* Is there imbalance in this sd */
3235 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3236 int power_savings_balance; /* Is powersave balance needed for this sd */
3237 struct sched_group *group_min; /* Least loaded group in sd */
3238 struct sched_group *group_leader; /* Group which relieves group_min */
3239 unsigned long min_load_per_task; /* load_per_task in group_min */
3240 unsigned long leader_nr_running; /* Nr running of group_leader */
3241 unsigned long min_nr_running; /* Nr running of group_min */
3246 * sg_lb_stats - stats of a sched_group required for load_balancing
3248 struct sg_lb_stats {
3249 unsigned long avg_load; /*Avg load across the CPUs of the group */
3250 unsigned long group_load; /* Total load over the CPUs of the group */
3251 unsigned long sum_nr_running; /* Nr tasks running in the group */
3252 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3253 unsigned long group_capacity;
3254 int group_imb; /* Is there an imbalance in the group ? */
3258 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3259 * @group: The group whose first cpu is to be returned.
3261 static inline unsigned int group_first_cpu(struct sched_group *group)
3263 return cpumask_first(sched_group_cpus(group));
3267 * get_sd_load_idx - Obtain the load index for a given sched domain.
3268 * @sd: The sched_domain whose load_idx is to be obtained.
3269 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3271 static inline int get_sd_load_idx(struct sched_domain *sd,
3272 enum cpu_idle_type idle)
3278 load_idx = sd->busy_idx;
3281 case CPU_NEWLY_IDLE:
3282 load_idx = sd->newidle_idx;
3285 load_idx = sd->idle_idx;
3293 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3295 * init_sd_power_savings_stats - Initialize power savings statistics for
3296 * the given sched_domain, during load balancing.
3298 * @sd: Sched domain whose power-savings statistics are to be initialized.
3299 * @sds: Variable containing the statistics for sd.
3300 * @idle: Idle status of the CPU at which we're performing load-balancing.
3302 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3303 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3306 * Busy processors will not participate in power savings
3309 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3310 sds->power_savings_balance = 0;
3312 sds->power_savings_balance = 1;
3313 sds->min_nr_running = ULONG_MAX;
3314 sds->leader_nr_running = 0;
3319 * update_sd_power_savings_stats - Update the power saving stats for a
3320 * sched_domain while performing load balancing.
3322 * @group: sched_group belonging to the sched_domain under consideration.
3323 * @sds: Variable containing the statistics of the sched_domain
3324 * @local_group: Does group contain the CPU for which we're performing
3326 * @sgs: Variable containing the statistics of the group.
3328 static inline void update_sd_power_savings_stats(struct sched_group *group,
3329 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3332 if (!sds->power_savings_balance)
3336 * If the local group is idle or completely loaded
3337 * no need to do power savings balance at this domain
3339 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3340 !sds->this_nr_running))
3341 sds->power_savings_balance = 0;
3344 * If a group is already running at full capacity or idle,
3345 * don't include that group in power savings calculations
3347 if (!sds->power_savings_balance ||
3348 sgs->sum_nr_running >= sgs->group_capacity ||
3349 !sgs->sum_nr_running)
3353 * Calculate the group which has the least non-idle load.
3354 * This is the group from where we need to pick up the load
3357 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3358 (sgs->sum_nr_running == sds->min_nr_running &&
3359 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3360 sds->group_min = group;
3361 sds->min_nr_running = sgs->sum_nr_running;
3362 sds->min_load_per_task = sgs->sum_weighted_load /
3363 sgs->sum_nr_running;
3367 * Calculate the group which is almost near its
3368 * capacity but still has some space to pick up some load
3369 * from other group and save more power
3371 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3374 if (sgs->sum_nr_running > sds->leader_nr_running ||
3375 (sgs->sum_nr_running == sds->leader_nr_running &&
3376 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3377 sds->group_leader = group;
3378 sds->leader_nr_running = sgs->sum_nr_running;
3383 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3384 * @sds: Variable containing the statistics of the sched_domain
3385 * under consideration.
3386 * @this_cpu: Cpu at which we're currently performing load-balancing.
3387 * @imbalance: Variable to store the imbalance.
3390 * Check if we have potential to perform some power-savings balance.
3391 * If yes, set the busiest group to be the least loaded group in the
3392 * sched_domain, so that it's CPUs can be put to idle.
3394 * Returns 1 if there is potential to perform power-savings balance.
3397 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3398 int this_cpu, unsigned long *imbalance)
3400 if (!sds->power_savings_balance)
3403 if (sds->this != sds->group_leader ||
3404 sds->group_leader == sds->group_min)
3407 *imbalance = sds->min_load_per_task;
3408 sds->busiest = sds->group_min;
3410 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3411 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3412 group_first_cpu(sds->group_leader);
3418 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3419 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3420 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3425 static inline void update_sd_power_savings_stats(struct sched_group *group,
3426 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3431 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3432 int this_cpu, unsigned long *imbalance)
3436 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3440 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3441 * @group: sched_group whose statistics are to be updated.
3442 * @this_cpu: Cpu for which load balance is currently performed.
3443 * @idle: Idle status of this_cpu
3444 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3445 * @sd_idle: Idle status of the sched_domain containing group.
3446 * @local_group: Does group contain this_cpu.
3447 * @cpus: Set of cpus considered for load balancing.
3448 * @balance: Should we balance.
3449 * @sgs: variable to hold the statistics for this group.
3451 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3452 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3453 int local_group, const struct cpumask *cpus,
3454 int *balance, struct sg_lb_stats *sgs)
3456 unsigned long load, max_cpu_load, min_cpu_load;
3458 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3459 unsigned long sum_avg_load_per_task;
3460 unsigned long avg_load_per_task;
3463 balance_cpu = group_first_cpu(group);
3465 /* Tally up the load of all CPUs in the group */
3466 sum_avg_load_per_task = avg_load_per_task = 0;
3468 min_cpu_load = ~0UL;
3470 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3471 struct rq *rq = cpu_rq(i);
3473 if (*sd_idle && rq->nr_running)
3476 /* Bias balancing toward cpus of our domain */
3478 if (idle_cpu(i) && !first_idle_cpu) {
3483 load = target_load(i, load_idx);
3485 load = source_load(i, load_idx);
3486 if (load > max_cpu_load)
3487 max_cpu_load = load;
3488 if (min_cpu_load > load)
3489 min_cpu_load = load;
3492 sgs->group_load += load;
3493 sgs->sum_nr_running += rq->nr_running;
3494 sgs->sum_weighted_load += weighted_cpuload(i);
3496 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3500 * First idle cpu or the first cpu(busiest) in this sched group
3501 * is eligible for doing load balancing at this and above
3502 * domains. In the newly idle case, we will allow all the cpu's
3503 * to do the newly idle load balance.
3505 if (idle != CPU_NEWLY_IDLE && local_group &&
3506 balance_cpu != this_cpu && balance) {
3511 /* Adjust by relative CPU power of the group */
3512 sgs->avg_load = sg_div_cpu_power(group,
3513 sgs->group_load * SCHED_LOAD_SCALE);
3517 * Consider the group unbalanced when the imbalance is larger
3518 * than the average weight of two tasks.
3520 * APZ: with cgroup the avg task weight can vary wildly and
3521 * might not be a suitable number - should we keep a
3522 * normalized nr_running number somewhere that negates
3525 avg_load_per_task = sg_div_cpu_power(group,
3526 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3528 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3531 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3536 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3537 * @sd: sched_domain whose statistics are to be updated.
3538 * @this_cpu: Cpu for which load balance is currently performed.
3539 * @idle: Idle status of this_cpu
3540 * @sd_idle: Idle status of the sched_domain containing group.
3541 * @cpus: Set of cpus considered for load balancing.
3542 * @balance: Should we balance.
3543 * @sds: variable to hold the statistics for this sched_domain.
3545 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3546 enum cpu_idle_type idle, int *sd_idle,
3547 const struct cpumask *cpus, int *balance,
3548 struct sd_lb_stats *sds)
3550 struct sched_group *group = sd->groups;
3551 struct sg_lb_stats sgs;
3554 init_sd_power_savings_stats(sd, sds, idle);
3555 load_idx = get_sd_load_idx(sd, idle);
3560 local_group = cpumask_test_cpu(this_cpu,
3561 sched_group_cpus(group));
3562 memset(&sgs, 0, sizeof(sgs));
3563 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3564 local_group, cpus, balance, &sgs);
3566 if (local_group && balance && !(*balance))
3569 sds->total_load += sgs.group_load;
3570 sds->total_pwr += group->__cpu_power;
3573 sds->this_load = sgs.avg_load;
3575 sds->this_nr_running = sgs.sum_nr_running;
3576 sds->this_load_per_task = sgs.sum_weighted_load;
3577 } else if (sgs.avg_load > sds->max_load &&
3578 (sgs.sum_nr_running > sgs.group_capacity ||
3580 sds->max_load = sgs.avg_load;
3581 sds->busiest = group;
3582 sds->busiest_nr_running = sgs.sum_nr_running;
3583 sds->busiest_load_per_task = sgs.sum_weighted_load;
3584 sds->group_imb = sgs.group_imb;
3587 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3588 group = group->next;
3589 } while (group != sd->groups);
3594 * fix_small_imbalance - Calculate the minor imbalance that exists
3595 * amongst the groups of a sched_domain, during
3597 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3598 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3599 * @imbalance: Variable to store the imbalance.
3601 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3602 int this_cpu, unsigned long *imbalance)
3604 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3605 unsigned int imbn = 2;
3607 if (sds->this_nr_running) {
3608 sds->this_load_per_task /= sds->this_nr_running;
3609 if (sds->busiest_load_per_task >
3610 sds->this_load_per_task)
3613 sds->this_load_per_task =
3614 cpu_avg_load_per_task(this_cpu);
3616 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3617 sds->busiest_load_per_task * imbn) {
3618 *imbalance = sds->busiest_load_per_task;
3623 * OK, we don't have enough imbalance to justify moving tasks,
3624 * however we may be able to increase total CPU power used by
3628 pwr_now += sds->busiest->__cpu_power *
3629 min(sds->busiest_load_per_task, sds->max_load);
3630 pwr_now += sds->this->__cpu_power *
3631 min(sds->this_load_per_task, sds->this_load);
3632 pwr_now /= SCHED_LOAD_SCALE;
3634 /* Amount of load we'd subtract */
3635 tmp = sg_div_cpu_power(sds->busiest,
3636 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3637 if (sds->max_load > tmp)
3638 pwr_move += sds->busiest->__cpu_power *
3639 min(sds->busiest_load_per_task, sds->max_load - tmp);
3641 /* Amount of load we'd add */
3642 if (sds->max_load * sds->busiest->__cpu_power <
3643 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3644 tmp = sg_div_cpu_power(sds->this,
3645 sds->max_load * sds->busiest->__cpu_power);
3647 tmp = sg_div_cpu_power(sds->this,
3648 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3649 pwr_move += sds->this->__cpu_power *
3650 min(sds->this_load_per_task, sds->this_load + tmp);
3651 pwr_move /= SCHED_LOAD_SCALE;
3653 /* Move if we gain throughput */
3654 if (pwr_move > pwr_now)
3655 *imbalance = sds->busiest_load_per_task;
3659 * calculate_imbalance - Calculate the amount of imbalance present within the
3660 * groups of a given sched_domain during load balance.
3661 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3662 * @this_cpu: Cpu for which currently load balance is being performed.
3663 * @imbalance: The variable to store the imbalance.
3665 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3666 unsigned long *imbalance)
3668 unsigned long max_pull;
3670 * In the presence of smp nice balancing, certain scenarios can have
3671 * max load less than avg load(as we skip the groups at or below
3672 * its cpu_power, while calculating max_load..)
3674 if (sds->max_load < sds->avg_load) {
3676 return fix_small_imbalance(sds, this_cpu, imbalance);
3679 /* Don't want to pull so many tasks that a group would go idle */
3680 max_pull = min(sds->max_load - sds->avg_load,
3681 sds->max_load - sds->busiest_load_per_task);
3683 /* How much load to actually move to equalise the imbalance */
3684 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3685 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3689 * if *imbalance is less than the average load per runnable task
3690 * there is no gaurantee that any tasks will be moved so we'll have
3691 * a think about bumping its value to force at least one task to be
3694 if (*imbalance < sds->busiest_load_per_task)
3695 return fix_small_imbalance(sds, this_cpu, imbalance);
3698 /******* find_busiest_group() helpers end here *********************/
3701 * find_busiest_group - Returns the busiest group within the sched_domain
3702 * if there is an imbalance. If there isn't an imbalance, and
3703 * the user has opted for power-savings, it returns a group whose
3704 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3705 * such a group exists.
3707 * Also calculates the amount of weighted load which should be moved
3708 * to restore balance.
3710 * @sd: The sched_domain whose busiest group is to be returned.
3711 * @this_cpu: The cpu for which load balancing is currently being performed.
3712 * @imbalance: Variable which stores amount of weighted load which should
3713 * be moved to restore balance/put a group to idle.
3714 * @idle: The idle status of this_cpu.
3715 * @sd_idle: The idleness of sd
3716 * @cpus: The set of CPUs under consideration for load-balancing.
3717 * @balance: Pointer to a variable indicating if this_cpu
3718 * is the appropriate cpu to perform load balancing at this_level.
3720 * Returns: - the busiest group if imbalance exists.
3721 * - If no imbalance and user has opted for power-savings balance,
3722 * return the least loaded group whose CPUs can be
3723 * put to idle by rebalancing its tasks onto our group.
3725 static struct sched_group *
3726 find_busiest_group(struct sched_domain *sd, int this_cpu,
3727 unsigned long *imbalance, enum cpu_idle_type idle,
3728 int *sd_idle, const struct cpumask *cpus, int *balance)
3730 struct sd_lb_stats sds;
3732 memset(&sds, 0, sizeof(sds));
3735 * Compute the various statistics relavent for load balancing at
3738 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3741 /* Cases where imbalance does not exist from POV of this_cpu */
3742 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3744 * 2) There is no busy sibling group to pull from.
3745 * 3) This group is the busiest group.
3746 * 4) This group is more busy than the avg busieness at this
3748 * 5) The imbalance is within the specified limit.
3749 * 6) Any rebalance would lead to ping-pong
3751 if (balance && !(*balance))
3754 if (!sds.busiest || sds.busiest_nr_running == 0)
3757 if (sds.this_load >= sds.max_load)
3760 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3762 if (sds.this_load >= sds.avg_load)
3765 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3768 sds.busiest_load_per_task /= sds.busiest_nr_running;
3770 sds.busiest_load_per_task =
3771 min(sds.busiest_load_per_task, sds.avg_load);
3774 * We're trying to get all the cpus to the average_load, so we don't
3775 * want to push ourselves above the average load, nor do we wish to
3776 * reduce the max loaded cpu below the average load, as either of these
3777 * actions would just result in more rebalancing later, and ping-pong
3778 * tasks around. Thus we look for the minimum possible imbalance.
3779 * Negative imbalances (*we* are more loaded than anyone else) will
3780 * be counted as no imbalance for these purposes -- we can't fix that
3781 * by pulling tasks to us. Be careful of negative numbers as they'll
3782 * appear as very large values with unsigned longs.
3784 if (sds.max_load <= sds.busiest_load_per_task)
3787 /* Looks like there is an imbalance. Compute it */
3788 calculate_imbalance(&sds, this_cpu, imbalance);
3793 * There is no obvious imbalance. But check if we can do some balancing
3796 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3804 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3807 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3808 unsigned long imbalance, const struct cpumask *cpus)
3810 struct rq *busiest = NULL, *rq;
3811 unsigned long max_load = 0;
3814 for_each_cpu(i, sched_group_cpus(group)) {
3817 if (!cpumask_test_cpu(i, cpus))
3821 wl = weighted_cpuload(i);
3823 if (rq->nr_running == 1 && wl > imbalance)
3826 if (wl > max_load) {
3836 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3837 * so long as it is large enough.
3839 #define MAX_PINNED_INTERVAL 512
3841 /* Working cpumask for load_balance and load_balance_newidle. */
3842 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3845 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3846 * tasks if there is an imbalance.
3848 static int load_balance(int this_cpu, struct rq *this_rq,
3849 struct sched_domain *sd, enum cpu_idle_type idle,
3852 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3853 struct sched_group *group;
3854 unsigned long imbalance;
3856 unsigned long flags;
3857 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3859 cpumask_setall(cpus);
3862 * When power savings policy is enabled for the parent domain, idle
3863 * sibling can pick up load irrespective of busy siblings. In this case,
3864 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3865 * portraying it as CPU_NOT_IDLE.
3867 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3868 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3871 schedstat_inc(sd, lb_count[idle]);
3875 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3882 schedstat_inc(sd, lb_nobusyg[idle]);
3886 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3888 schedstat_inc(sd, lb_nobusyq[idle]);
3892 BUG_ON(busiest == this_rq);
3894 schedstat_add(sd, lb_imbalance[idle], imbalance);
3897 if (busiest->nr_running > 1) {
3899 * Attempt to move tasks. If find_busiest_group has found
3900 * an imbalance but busiest->nr_running <= 1, the group is
3901 * still unbalanced. ld_moved simply stays zero, so it is
3902 * correctly treated as an imbalance.
3904 local_irq_save(flags);
3905 double_rq_lock(this_rq, busiest);
3906 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3907 imbalance, sd, idle, &all_pinned);
3908 double_rq_unlock(this_rq, busiest);
3909 local_irq_restore(flags);
3912 * some other cpu did the load balance for us.
3914 if (ld_moved && this_cpu != smp_processor_id())
3915 resched_cpu(this_cpu);
3917 /* All tasks on this runqueue were pinned by CPU affinity */
3918 if (unlikely(all_pinned)) {
3919 cpumask_clear_cpu(cpu_of(busiest), cpus);
3920 if (!cpumask_empty(cpus))
3927 schedstat_inc(sd, lb_failed[idle]);
3928 sd->nr_balance_failed++;
3930 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3932 spin_lock_irqsave(&busiest->lock, flags);
3934 /* don't kick the migration_thread, if the curr
3935 * task on busiest cpu can't be moved to this_cpu
3937 if (!cpumask_test_cpu(this_cpu,
3938 &busiest->curr->cpus_allowed)) {
3939 spin_unlock_irqrestore(&busiest->lock, flags);
3941 goto out_one_pinned;
3944 if (!busiest->active_balance) {
3945 busiest->active_balance = 1;
3946 busiest->push_cpu = this_cpu;
3949 spin_unlock_irqrestore(&busiest->lock, flags);
3951 wake_up_process(busiest->migration_thread);
3954 * We've kicked active balancing, reset the failure
3957 sd->nr_balance_failed = sd->cache_nice_tries+1;
3960 sd->nr_balance_failed = 0;
3962 if (likely(!active_balance)) {
3963 /* We were unbalanced, so reset the balancing interval */
3964 sd->balance_interval = sd->min_interval;
3967 * If we've begun active balancing, start to back off. This
3968 * case may not be covered by the all_pinned logic if there
3969 * is only 1 task on the busy runqueue (because we don't call
3972 if (sd->balance_interval < sd->max_interval)
3973 sd->balance_interval *= 2;
3976 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3977 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3983 schedstat_inc(sd, lb_balanced[idle]);
3985 sd->nr_balance_failed = 0;
3988 /* tune up the balancing interval */
3989 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3990 (sd->balance_interval < sd->max_interval))
3991 sd->balance_interval *= 2;
3993 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3994 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4005 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4006 * tasks if there is an imbalance.
4008 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4009 * this_rq is locked.
4012 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4014 struct sched_group *group;
4015 struct rq *busiest = NULL;
4016 unsigned long imbalance;
4020 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4022 cpumask_setall(cpus);
4025 * When power savings policy is enabled for the parent domain, idle
4026 * sibling can pick up load irrespective of busy siblings. In this case,
4027 * let the state of idle sibling percolate up as IDLE, instead of
4028 * portraying it as CPU_NOT_IDLE.
4030 if (sd->flags & SD_SHARE_CPUPOWER &&
4031 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4034 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4036 update_shares_locked(this_rq, sd);
4037 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4038 &sd_idle, cpus, NULL);
4040 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4044 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4046 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4050 BUG_ON(busiest == this_rq);
4052 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4055 if (busiest->nr_running > 1) {
4056 /* Attempt to move tasks */
4057 double_lock_balance(this_rq, busiest);
4058 /* this_rq->clock is already updated */
4059 update_rq_clock(busiest);
4060 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4061 imbalance, sd, CPU_NEWLY_IDLE,
4063 double_unlock_balance(this_rq, busiest);
4065 if (unlikely(all_pinned)) {
4066 cpumask_clear_cpu(cpu_of(busiest), cpus);
4067 if (!cpumask_empty(cpus))
4073 int active_balance = 0;
4075 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4076 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4077 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4080 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4083 if (sd->nr_balance_failed++ < 2)
4087 * The only task running in a non-idle cpu can be moved to this
4088 * cpu in an attempt to completely freeup the other CPU
4089 * package. The same method used to move task in load_balance()
4090 * have been extended for load_balance_newidle() to speedup
4091 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4093 * The package power saving logic comes from
4094 * find_busiest_group(). If there are no imbalance, then
4095 * f_b_g() will return NULL. However when sched_mc={1,2} then
4096 * f_b_g() will select a group from which a running task may be
4097 * pulled to this cpu in order to make the other package idle.
4098 * If there is no opportunity to make a package idle and if
4099 * there are no imbalance, then f_b_g() will return NULL and no
4100 * action will be taken in load_balance_newidle().
4102 * Under normal task pull operation due to imbalance, there
4103 * will be more than one task in the source run queue and
4104 * move_tasks() will succeed. ld_moved will be true and this
4105 * active balance code will not be triggered.
4108 /* Lock busiest in correct order while this_rq is held */
4109 double_lock_balance(this_rq, busiest);
4112 * don't kick the migration_thread, if the curr
4113 * task on busiest cpu can't be moved to this_cpu
4115 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4116 double_unlock_balance(this_rq, busiest);
4121 if (!busiest->active_balance) {
4122 busiest->active_balance = 1;
4123 busiest->push_cpu = this_cpu;
4127 double_unlock_balance(this_rq, busiest);
4129 * Should not call ttwu while holding a rq->lock
4131 spin_unlock(&this_rq->lock);
4133 wake_up_process(busiest->migration_thread);
4134 spin_lock(&this_rq->lock);
4137 sd->nr_balance_failed = 0;
4139 update_shares_locked(this_rq, sd);
4143 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4144 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4145 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4147 sd->nr_balance_failed = 0;
4153 * idle_balance is called by schedule() if this_cpu is about to become
4154 * idle. Attempts to pull tasks from other CPUs.
4156 static void idle_balance(int this_cpu, struct rq *this_rq)
4158 struct sched_domain *sd;
4159 int pulled_task = 0;
4160 unsigned long next_balance = jiffies + HZ;
4162 for_each_domain(this_cpu, sd) {
4163 unsigned long interval;
4165 if (!(sd->flags & SD_LOAD_BALANCE))
4168 if (sd->flags & SD_BALANCE_NEWIDLE)
4169 /* If we've pulled tasks over stop searching: */
4170 pulled_task = load_balance_newidle(this_cpu, this_rq,
4173 interval = msecs_to_jiffies(sd->balance_interval);
4174 if (time_after(next_balance, sd->last_balance + interval))
4175 next_balance = sd->last_balance + interval;
4179 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4181 * We are going idle. next_balance may be set based on
4182 * a busy processor. So reset next_balance.
4184 this_rq->next_balance = next_balance;
4189 * active_load_balance is run by migration threads. It pushes running tasks
4190 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4191 * running on each physical CPU where possible, and avoids physical /
4192 * logical imbalances.
4194 * Called with busiest_rq locked.
4196 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4198 int target_cpu = busiest_rq->push_cpu;
4199 struct sched_domain *sd;
4200 struct rq *target_rq;
4202 /* Is there any task to move? */
4203 if (busiest_rq->nr_running <= 1)
4206 target_rq = cpu_rq(target_cpu);
4209 * This condition is "impossible", if it occurs
4210 * we need to fix it. Originally reported by
4211 * Bjorn Helgaas on a 128-cpu setup.
4213 BUG_ON(busiest_rq == target_rq);
4215 /* move a task from busiest_rq to target_rq */
4216 double_lock_balance(busiest_rq, target_rq);
4217 update_rq_clock(busiest_rq);
4218 update_rq_clock(target_rq);
4220 /* Search for an sd spanning us and the target CPU. */
4221 for_each_domain(target_cpu, sd) {
4222 if ((sd->flags & SD_LOAD_BALANCE) &&
4223 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4228 schedstat_inc(sd, alb_count);
4230 if (move_one_task(target_rq, target_cpu, busiest_rq,
4232 schedstat_inc(sd, alb_pushed);
4234 schedstat_inc(sd, alb_failed);
4236 double_unlock_balance(busiest_rq, target_rq);
4241 atomic_t load_balancer;
4242 cpumask_var_t cpu_mask;
4243 } nohz ____cacheline_aligned = {
4244 .load_balancer = ATOMIC_INIT(-1),
4248 * This routine will try to nominate the ilb (idle load balancing)
4249 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4250 * load balancing on behalf of all those cpus. If all the cpus in the system
4251 * go into this tickless mode, then there will be no ilb owner (as there is
4252 * no need for one) and all the cpus will sleep till the next wakeup event
4255 * For the ilb owner, tick is not stopped. And this tick will be used
4256 * for idle load balancing. ilb owner will still be part of
4259 * While stopping the tick, this cpu will become the ilb owner if there
4260 * is no other owner. And will be the owner till that cpu becomes busy
4261 * or if all cpus in the system stop their ticks at which point
4262 * there is no need for ilb owner.
4264 * When the ilb owner becomes busy, it nominates another owner, during the
4265 * next busy scheduler_tick()
4267 int select_nohz_load_balancer(int stop_tick)
4269 int cpu = smp_processor_id();
4272 cpu_rq(cpu)->in_nohz_recently = 1;
4274 if (!cpu_active(cpu)) {
4275 if (atomic_read(&nohz.load_balancer) != cpu)
4279 * If we are going offline and still the leader,
4282 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4288 cpumask_set_cpu(cpu, nohz.cpu_mask);
4290 /* time for ilb owner also to sleep */
4291 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4292 if (atomic_read(&nohz.load_balancer) == cpu)
4293 atomic_set(&nohz.load_balancer, -1);
4297 if (atomic_read(&nohz.load_balancer) == -1) {
4298 /* make me the ilb owner */
4299 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4301 } else if (atomic_read(&nohz.load_balancer) == cpu)
4304 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4307 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4309 if (atomic_read(&nohz.load_balancer) == cpu)
4310 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4317 static DEFINE_SPINLOCK(balancing);
4320 * It checks each scheduling domain to see if it is due to be balanced,
4321 * and initiates a balancing operation if so.
4323 * Balancing parameters are set up in arch_init_sched_domains.
4325 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4328 struct rq *rq = cpu_rq(cpu);
4329 unsigned long interval;
4330 struct sched_domain *sd;
4331 /* Earliest time when we have to do rebalance again */
4332 unsigned long next_balance = jiffies + 60*HZ;
4333 int update_next_balance = 0;
4336 for_each_domain(cpu, sd) {
4337 if (!(sd->flags & SD_LOAD_BALANCE))
4340 interval = sd->balance_interval;
4341 if (idle != CPU_IDLE)
4342 interval *= sd->busy_factor;
4344 /* scale ms to jiffies */
4345 interval = msecs_to_jiffies(interval);
4346 if (unlikely(!interval))
4348 if (interval > HZ*NR_CPUS/10)
4349 interval = HZ*NR_CPUS/10;
4351 need_serialize = sd->flags & SD_SERIALIZE;
4353 if (need_serialize) {
4354 if (!spin_trylock(&balancing))
4358 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4359 if (load_balance(cpu, rq, sd, idle, &balance)) {
4361 * We've pulled tasks over so either we're no
4362 * longer idle, or one of our SMT siblings is
4365 idle = CPU_NOT_IDLE;
4367 sd->last_balance = jiffies;
4370 spin_unlock(&balancing);
4372 if (time_after(next_balance, sd->last_balance + interval)) {
4373 next_balance = sd->last_balance + interval;
4374 update_next_balance = 1;
4378 * Stop the load balance at this level. There is another
4379 * CPU in our sched group which is doing load balancing more
4387 * next_balance will be updated only when there is a need.
4388 * When the cpu is attached to null domain for ex, it will not be
4391 if (likely(update_next_balance))
4392 rq->next_balance = next_balance;
4396 * run_rebalance_domains is triggered when needed from the scheduler tick.
4397 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4398 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4400 static void run_rebalance_domains(struct softirq_action *h)
4402 int this_cpu = smp_processor_id();
4403 struct rq *this_rq = cpu_rq(this_cpu);
4404 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4405 CPU_IDLE : CPU_NOT_IDLE;
4407 rebalance_domains(this_cpu, idle);
4411 * If this cpu is the owner for idle load balancing, then do the
4412 * balancing on behalf of the other idle cpus whose ticks are
4415 if (this_rq->idle_at_tick &&
4416 atomic_read(&nohz.load_balancer) == this_cpu) {
4420 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4421 if (balance_cpu == this_cpu)
4425 * If this cpu gets work to do, stop the load balancing
4426 * work being done for other cpus. Next load
4427 * balancing owner will pick it up.
4432 rebalance_domains(balance_cpu, CPU_IDLE);
4434 rq = cpu_rq(balance_cpu);
4435 if (time_after(this_rq->next_balance, rq->next_balance))
4436 this_rq->next_balance = rq->next_balance;
4442 static inline int on_null_domain(int cpu)
4444 return !rcu_dereference(cpu_rq(cpu)->sd);
4448 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4450 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4451 * idle load balancing owner or decide to stop the periodic load balancing,
4452 * if the whole system is idle.
4454 static inline void trigger_load_balance(struct rq *rq, int cpu)
4458 * If we were in the nohz mode recently and busy at the current
4459 * scheduler tick, then check if we need to nominate new idle
4462 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4463 rq->in_nohz_recently = 0;
4465 if (atomic_read(&nohz.load_balancer) == cpu) {
4466 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4467 atomic_set(&nohz.load_balancer, -1);
4470 if (atomic_read(&nohz.load_balancer) == -1) {
4472 * simple selection for now: Nominate the
4473 * first cpu in the nohz list to be the next
4476 * TBD: Traverse the sched domains and nominate
4477 * the nearest cpu in the nohz.cpu_mask.
4479 int ilb = cpumask_first(nohz.cpu_mask);
4481 if (ilb < nr_cpu_ids)
4487 * If this cpu is idle and doing idle load balancing for all the
4488 * cpus with ticks stopped, is it time for that to stop?
4490 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4491 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4497 * If this cpu is idle and the idle load balancing is done by
4498 * someone else, then no need raise the SCHED_SOFTIRQ
4500 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4501 cpumask_test_cpu(cpu, nohz.cpu_mask))
4504 /* Don't need to rebalance while attached to NULL domain */
4505 if (time_after_eq(jiffies, rq->next_balance) &&
4506 likely(!on_null_domain(cpu)))
4507 raise_softirq(SCHED_SOFTIRQ);
4510 #else /* CONFIG_SMP */
4513 * on UP we do not need to balance between CPUs:
4515 static inline void idle_balance(int cpu, struct rq *rq)
4521 DEFINE_PER_CPU(struct kernel_stat, kstat);
4523 EXPORT_PER_CPU_SYMBOL(kstat);
4526 * Return any ns on the sched_clock that have not yet been accounted in
4527 * @p in case that task is currently running.
4529 * Called with task_rq_lock() held on @rq.
4531 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4535 if (task_current(rq, p)) {
4536 update_rq_clock(rq);
4537 ns = rq->clock - p->se.exec_start;
4545 unsigned long long task_delta_exec(struct task_struct *p)
4547 unsigned long flags;
4551 rq = task_rq_lock(p, &flags);
4552 ns = do_task_delta_exec(p, rq);
4553 task_rq_unlock(rq, &flags);
4559 * Return accounted runtime for the task.
4560 * In case the task is currently running, return the runtime plus current's
4561 * pending runtime that have not been accounted yet.
4563 unsigned long long task_sched_runtime(struct task_struct *p)
4565 unsigned long flags;
4569 rq = task_rq_lock(p, &flags);
4570 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4571 task_rq_unlock(rq, &flags);
4577 * Return sum_exec_runtime for the thread group.
4578 * In case the task is currently running, return the sum plus current's
4579 * pending runtime that have not been accounted yet.
4581 * Note that the thread group might have other running tasks as well,
4582 * so the return value not includes other pending runtime that other
4583 * running tasks might have.
4585 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4587 struct task_cputime totals;
4588 unsigned long flags;
4592 rq = task_rq_lock(p, &flags);
4593 thread_group_cputime(p, &totals);
4594 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4595 task_rq_unlock(rq, &flags);
4601 * Account user cpu time to a process.
4602 * @p: the process that the cpu time gets accounted to
4603 * @cputime: the cpu time spent in user space since the last update
4604 * @cputime_scaled: cputime scaled by cpu frequency
4606 void account_user_time(struct task_struct *p, cputime_t cputime,
4607 cputime_t cputime_scaled)
4609 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4612 /* Add user time to process. */
4613 p->utime = cputime_add(p->utime, cputime);
4614 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4615 account_group_user_time(p, cputime);
4617 /* Add user time to cpustat. */
4618 tmp = cputime_to_cputime64(cputime);
4619 if (TASK_NICE(p) > 0)
4620 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4622 cpustat->user = cputime64_add(cpustat->user, tmp);
4624 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4625 /* Account for user time used */
4626 acct_update_integrals(p);
4630 * Account guest cpu time to a process.
4631 * @p: the process that the cpu time gets accounted to
4632 * @cputime: the cpu time spent in virtual machine since the last update
4633 * @cputime_scaled: cputime scaled by cpu frequency
4635 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4636 cputime_t cputime_scaled)
4639 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4641 tmp = cputime_to_cputime64(cputime);
4643 /* Add guest time to process. */
4644 p->utime = cputime_add(p->utime, cputime);
4645 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4646 account_group_user_time(p, cputime);
4647 p->gtime = cputime_add(p->gtime, cputime);
4649 /* Add guest time to cpustat. */
4650 cpustat->user = cputime64_add(cpustat->user, tmp);
4651 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4655 * Account system cpu time to a process.
4656 * @p: the process that the cpu time gets accounted to
4657 * @hardirq_offset: the offset to subtract from hardirq_count()
4658 * @cputime: the cpu time spent in kernel space since the last update
4659 * @cputime_scaled: cputime scaled by cpu frequency
4661 void account_system_time(struct task_struct *p, int hardirq_offset,
4662 cputime_t cputime, cputime_t cputime_scaled)
4664 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4667 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4668 account_guest_time(p, cputime, cputime_scaled);
4672 /* Add system time to process. */
4673 p->stime = cputime_add(p->stime, cputime);
4674 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4675 account_group_system_time(p, cputime);
4677 /* Add system time to cpustat. */
4678 tmp = cputime_to_cputime64(cputime);
4679 if (hardirq_count() - hardirq_offset)
4680 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4681 else if (softirq_count())
4682 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4684 cpustat->system = cputime64_add(cpustat->system, tmp);
4686 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4688 /* Account for system time used */
4689 acct_update_integrals(p);
4693 * Account for involuntary wait time.
4694 * @steal: the cpu time spent in involuntary wait
4696 void account_steal_time(cputime_t cputime)
4698 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4699 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4701 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4705 * Account for idle time.
4706 * @cputime: the cpu time spent in idle wait
4708 void account_idle_time(cputime_t cputime)
4710 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4711 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4712 struct rq *rq = this_rq();
4714 if (atomic_read(&rq->nr_iowait) > 0)
4715 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4717 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4720 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4723 * Account a single tick of cpu time.
4724 * @p: the process that the cpu time gets accounted to
4725 * @user_tick: indicates if the tick is a user or a system tick
4727 void account_process_tick(struct task_struct *p, int user_tick)
4729 cputime_t one_jiffy = jiffies_to_cputime(1);
4730 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4731 struct rq *rq = this_rq();
4734 account_user_time(p, one_jiffy, one_jiffy_scaled);
4735 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4736 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4739 account_idle_time(one_jiffy);
4743 * Account multiple ticks of steal time.
4744 * @p: the process from which the cpu time has been stolen
4745 * @ticks: number of stolen ticks
4747 void account_steal_ticks(unsigned long ticks)
4749 account_steal_time(jiffies_to_cputime(ticks));
4753 * Account multiple ticks of idle time.
4754 * @ticks: number of stolen ticks
4756 void account_idle_ticks(unsigned long ticks)
4758 account_idle_time(jiffies_to_cputime(ticks));
4764 * Use precise platform statistics if available:
4766 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4767 cputime_t task_utime(struct task_struct *p)
4772 cputime_t task_stime(struct task_struct *p)
4777 cputime_t task_utime(struct task_struct *p)
4779 clock_t utime = cputime_to_clock_t(p->utime),
4780 total = utime + cputime_to_clock_t(p->stime);
4784 * Use CFS's precise accounting:
4786 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4790 do_div(temp, total);
4792 utime = (clock_t)temp;
4794 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4795 return p->prev_utime;
4798 cputime_t task_stime(struct task_struct *p)
4803 * Use CFS's precise accounting. (we subtract utime from
4804 * the total, to make sure the total observed by userspace
4805 * grows monotonically - apps rely on that):
4807 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4808 cputime_to_clock_t(task_utime(p));
4811 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4813 return p->prev_stime;
4817 inline cputime_t task_gtime(struct task_struct *p)
4823 * This function gets called by the timer code, with HZ frequency.
4824 * We call it with interrupts disabled.
4826 * It also gets called by the fork code, when changing the parent's
4829 void scheduler_tick(void)
4831 int cpu = smp_processor_id();
4832 struct rq *rq = cpu_rq(cpu);
4833 struct task_struct *curr = rq->curr;
4837 spin_lock(&rq->lock);
4838 update_rq_clock(rq);
4839 update_cpu_load(rq);
4840 curr->sched_class->task_tick(rq, curr, 0);
4841 spin_unlock(&rq->lock);
4844 rq->idle_at_tick = idle_cpu(cpu);
4845 trigger_load_balance(rq, cpu);
4849 notrace unsigned long get_parent_ip(unsigned long addr)
4851 if (in_lock_functions(addr)) {
4852 addr = CALLER_ADDR2;
4853 if (in_lock_functions(addr))
4854 addr = CALLER_ADDR3;
4859 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4860 defined(CONFIG_PREEMPT_TRACER))
4862 void __kprobes add_preempt_count(int val)
4864 #ifdef CONFIG_DEBUG_PREEMPT
4868 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4871 preempt_count() += val;
4872 #ifdef CONFIG_DEBUG_PREEMPT
4874 * Spinlock count overflowing soon?
4876 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4879 if (preempt_count() == val)
4880 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4882 EXPORT_SYMBOL(add_preempt_count);
4884 void __kprobes sub_preempt_count(int val)
4886 #ifdef CONFIG_DEBUG_PREEMPT
4890 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4893 * Is the spinlock portion underflowing?
4895 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4896 !(preempt_count() & PREEMPT_MASK)))
4900 if (preempt_count() == val)
4901 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4902 preempt_count() -= val;
4904 EXPORT_SYMBOL(sub_preempt_count);
4909 * Print scheduling while atomic bug:
4911 static noinline void __schedule_bug(struct task_struct *prev)
4913 struct pt_regs *regs = get_irq_regs();
4915 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4916 prev->comm, prev->pid, preempt_count());
4918 debug_show_held_locks(prev);
4920 if (irqs_disabled())
4921 print_irqtrace_events(prev);
4930 * Various schedule()-time debugging checks and statistics:
4932 static inline void schedule_debug(struct task_struct *prev)
4935 * Test if we are atomic. Since do_exit() needs to call into
4936 * schedule() atomically, we ignore that path for now.
4937 * Otherwise, whine if we are scheduling when we should not be.
4939 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4940 __schedule_bug(prev);
4942 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4944 schedstat_inc(this_rq(), sched_count);
4945 #ifdef CONFIG_SCHEDSTATS
4946 if (unlikely(prev->lock_depth >= 0)) {
4947 schedstat_inc(this_rq(), bkl_count);
4948 schedstat_inc(prev, sched_info.bkl_count);
4953 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4955 if (prev->state == TASK_RUNNING) {
4956 u64 runtime = prev->se.sum_exec_runtime;
4958 runtime -= prev->se.prev_sum_exec_runtime;
4959 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
4962 * In order to avoid avg_overlap growing stale when we are
4963 * indeed overlapping and hence not getting put to sleep, grow
4964 * the avg_overlap on preemption.
4966 * We use the average preemption runtime because that
4967 * correlates to the amount of cache footprint a task can
4970 update_avg(&prev->se.avg_overlap, runtime);
4972 prev->sched_class->put_prev_task(rq, prev);
4976 * Pick up the highest-prio task:
4978 static inline struct task_struct *
4979 pick_next_task(struct rq *rq)
4981 const struct sched_class *class;
4982 struct task_struct *p;
4985 * Optimization: we know that if all tasks are in
4986 * the fair class we can call that function directly:
4988 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4989 p = fair_sched_class.pick_next_task(rq);
4994 class = sched_class_highest;
4996 p = class->pick_next_task(rq);
5000 * Will never be NULL as the idle class always
5001 * returns a non-NULL p:
5003 class = class->next;
5008 * schedule() is the main scheduler function.
5010 asmlinkage void __sched __schedule(void)
5012 struct task_struct *prev, *next;
5013 unsigned long *switch_count;
5017 cpu = smp_processor_id();
5021 switch_count = &prev->nivcsw;
5023 release_kernel_lock(prev);
5024 need_resched_nonpreemptible:
5026 schedule_debug(prev);
5028 if (sched_feat(HRTICK))
5031 spin_lock_irq(&rq->lock);
5032 update_rq_clock(rq);
5033 clear_tsk_need_resched(prev);
5035 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5036 if (unlikely(signal_pending_state(prev->state, prev)))
5037 prev->state = TASK_RUNNING;
5039 deactivate_task(rq, prev, 1);
5040 switch_count = &prev->nvcsw;
5044 if (prev->sched_class->pre_schedule)
5045 prev->sched_class->pre_schedule(rq, prev);
5048 if (unlikely(!rq->nr_running))
5049 idle_balance(cpu, rq);
5051 put_prev_task(rq, prev);
5052 next = pick_next_task(rq);
5054 if (likely(prev != next)) {
5055 sched_info_switch(prev, next);
5061 context_switch(rq, prev, next); /* unlocks the rq */
5063 * the context switch might have flipped the stack from under
5064 * us, hence refresh the local variables.
5066 cpu = smp_processor_id();
5069 spin_unlock_irq(&rq->lock);
5071 if (unlikely(reacquire_kernel_lock(current) < 0))
5072 goto need_resched_nonpreemptible;
5075 asmlinkage void __sched schedule(void)
5080 preempt_enable_no_resched();
5081 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
5084 EXPORT_SYMBOL(schedule);
5088 * Look out! "owner" is an entirely speculative pointer
5089 * access and not reliable.
5091 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5096 if (!sched_feat(OWNER_SPIN))
5099 #ifdef CONFIG_DEBUG_PAGEALLOC
5101 * Need to access the cpu field knowing that
5102 * DEBUG_PAGEALLOC could have unmapped it if
5103 * the mutex owner just released it and exited.
5105 if (probe_kernel_address(&owner->cpu, cpu))
5112 * Even if the access succeeded (likely case),
5113 * the cpu field may no longer be valid.
5115 if (cpu >= nr_cpumask_bits)
5119 * We need to validate that we can do a
5120 * get_cpu() and that we have the percpu area.
5122 if (!cpu_online(cpu))
5129 * Owner changed, break to re-assess state.
5131 if (lock->owner != owner)
5135 * Is that owner really running on that cpu?
5137 if (task_thread_info(rq->curr) != owner || need_resched())
5147 #ifdef CONFIG_PREEMPT
5149 * this is the entry point to schedule() from in-kernel preemption
5150 * off of preempt_enable. Kernel preemptions off return from interrupt
5151 * occur there and call schedule directly.
5153 asmlinkage void __sched preempt_schedule(void)
5155 struct thread_info *ti = current_thread_info();
5158 * If there is a non-zero preempt_count or interrupts are disabled,
5159 * we do not want to preempt the current task. Just return..
5161 if (likely(ti->preempt_count || irqs_disabled()))
5165 add_preempt_count(PREEMPT_ACTIVE);
5167 sub_preempt_count(PREEMPT_ACTIVE);
5170 * Check again in case we missed a preemption opportunity
5171 * between schedule and now.
5174 } while (need_resched());
5176 EXPORT_SYMBOL(preempt_schedule);
5179 * this is the entry point to schedule() from kernel preemption
5180 * off of irq context.
5181 * Note, that this is called and return with irqs disabled. This will
5182 * protect us against recursive calling from irq.
5184 asmlinkage void __sched preempt_schedule_irq(void)
5186 struct thread_info *ti = current_thread_info();
5188 /* Catch callers which need to be fixed */
5189 BUG_ON(ti->preempt_count || !irqs_disabled());
5192 add_preempt_count(PREEMPT_ACTIVE);
5195 local_irq_disable();
5196 sub_preempt_count(PREEMPT_ACTIVE);
5199 * Check again in case we missed a preemption opportunity
5200 * between schedule and now.
5203 } while (need_resched());
5206 #endif /* CONFIG_PREEMPT */
5208 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5211 return try_to_wake_up(curr->private, mode, sync);
5213 EXPORT_SYMBOL(default_wake_function);
5216 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5217 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5218 * number) then we wake all the non-exclusive tasks and one exclusive task.
5220 * There are circumstances in which we can try to wake a task which has already
5221 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5222 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5224 void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5225 int nr_exclusive, int sync, void *key)
5227 wait_queue_t *curr, *next;
5229 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5230 unsigned flags = curr->flags;
5232 if (curr->func(curr, mode, sync, key) &&
5233 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5239 * __wake_up - wake up threads blocked on a waitqueue.
5241 * @mode: which threads
5242 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5243 * @key: is directly passed to the wakeup function
5245 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5246 int nr_exclusive, void *key)
5248 unsigned long flags;
5250 spin_lock_irqsave(&q->lock, flags);
5251 __wake_up_common(q, mode, nr_exclusive, 0, key);
5252 spin_unlock_irqrestore(&q->lock, flags);
5254 EXPORT_SYMBOL(__wake_up);
5257 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5259 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5261 __wake_up_common(q, mode, 1, 0, NULL);
5264 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5266 __wake_up_common(q, mode, 1, 0, key);
5270 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5272 * @mode: which threads
5273 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5274 * @key: opaque value to be passed to wakeup targets
5276 * The sync wakeup differs that the waker knows that it will schedule
5277 * away soon, so while the target thread will be woken up, it will not
5278 * be migrated to another CPU - ie. the two threads are 'synchronized'
5279 * with each other. This can prevent needless bouncing between CPUs.
5281 * On UP it can prevent extra preemption.
5283 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5284 int nr_exclusive, void *key)
5286 unsigned long flags;
5292 if (unlikely(!nr_exclusive))
5295 spin_lock_irqsave(&q->lock, flags);
5296 __wake_up_common(q, mode, nr_exclusive, sync, key);
5297 spin_unlock_irqrestore(&q->lock, flags);
5299 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5302 * __wake_up_sync - see __wake_up_sync_key()
5304 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5306 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5308 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5311 * complete: - signals a single thread waiting on this completion
5312 * @x: holds the state of this particular completion
5314 * This will wake up a single thread waiting on this completion. Threads will be
5315 * awakened in the same order in which they were queued.
5317 * See also complete_all(), wait_for_completion() and related routines.
5319 void complete(struct completion *x)
5321 unsigned long flags;
5323 spin_lock_irqsave(&x->wait.lock, flags);
5325 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5326 spin_unlock_irqrestore(&x->wait.lock, flags);
5328 EXPORT_SYMBOL(complete);
5331 * complete_all: - signals all threads waiting on this completion
5332 * @x: holds the state of this particular completion
5334 * This will wake up all threads waiting on this particular completion event.
5336 void complete_all(struct completion *x)
5338 unsigned long flags;
5340 spin_lock_irqsave(&x->wait.lock, flags);
5341 x->done += UINT_MAX/2;
5342 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5343 spin_unlock_irqrestore(&x->wait.lock, flags);
5345 EXPORT_SYMBOL(complete_all);
5347 static inline long __sched
5348 do_wait_for_common(struct completion *x, long timeout, int state)
5351 DECLARE_WAITQUEUE(wait, current);
5353 wait.flags |= WQ_FLAG_EXCLUSIVE;
5354 __add_wait_queue_tail(&x->wait, &wait);
5356 if (signal_pending_state(state, current)) {
5357 timeout = -ERESTARTSYS;
5360 __set_current_state(state);
5361 spin_unlock_irq(&x->wait.lock);
5362 timeout = schedule_timeout(timeout);
5363 spin_lock_irq(&x->wait.lock);
5364 } while (!x->done && timeout);
5365 __remove_wait_queue(&x->wait, &wait);
5370 return timeout ?: 1;
5374 wait_for_common(struct completion *x, long timeout, int state)
5378 spin_lock_irq(&x->wait.lock);
5379 timeout = do_wait_for_common(x, timeout, state);
5380 spin_unlock_irq(&x->wait.lock);
5385 * wait_for_completion: - waits for completion of a task
5386 * @x: holds the state of this particular completion
5388 * This waits to be signaled for completion of a specific task. It is NOT
5389 * interruptible and there is no timeout.
5391 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5392 * and interrupt capability. Also see complete().
5394 void __sched wait_for_completion(struct completion *x)
5396 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5398 EXPORT_SYMBOL(wait_for_completion);
5401 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5402 * @x: holds the state of this particular completion
5403 * @timeout: timeout value in jiffies
5405 * This waits for either a completion of a specific task to be signaled or for a
5406 * specified timeout to expire. The timeout is in jiffies. It is not
5409 unsigned long __sched
5410 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5412 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5414 EXPORT_SYMBOL(wait_for_completion_timeout);
5417 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5418 * @x: holds the state of this particular completion
5420 * This waits for completion of a specific task to be signaled. It is
5423 int __sched wait_for_completion_interruptible(struct completion *x)
5425 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5426 if (t == -ERESTARTSYS)
5430 EXPORT_SYMBOL(wait_for_completion_interruptible);
5433 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5434 * @x: holds the state of this particular completion
5435 * @timeout: timeout value in jiffies
5437 * This waits for either a completion of a specific task to be signaled or for a
5438 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5440 unsigned long __sched
5441 wait_for_completion_interruptible_timeout(struct completion *x,
5442 unsigned long timeout)
5444 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5446 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5449 * wait_for_completion_killable: - waits for completion of a task (killable)
5450 * @x: holds the state of this particular completion
5452 * This waits to be signaled for completion of a specific task. It can be
5453 * interrupted by a kill signal.
5455 int __sched wait_for_completion_killable(struct completion *x)
5457 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5458 if (t == -ERESTARTSYS)
5462 EXPORT_SYMBOL(wait_for_completion_killable);
5465 * try_wait_for_completion - try to decrement a completion without blocking
5466 * @x: completion structure
5468 * Returns: 0 if a decrement cannot be done without blocking
5469 * 1 if a decrement succeeded.
5471 * If a completion is being used as a counting completion,
5472 * attempt to decrement the counter without blocking. This
5473 * enables us to avoid waiting if the resource the completion
5474 * is protecting is not available.
5476 bool try_wait_for_completion(struct completion *x)
5480 spin_lock_irq(&x->wait.lock);
5485 spin_unlock_irq(&x->wait.lock);
5488 EXPORT_SYMBOL(try_wait_for_completion);
5491 * completion_done - Test to see if a completion has any waiters
5492 * @x: completion structure
5494 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5495 * 1 if there are no waiters.
5498 bool completion_done(struct completion *x)
5502 spin_lock_irq(&x->wait.lock);
5505 spin_unlock_irq(&x->wait.lock);
5508 EXPORT_SYMBOL(completion_done);
5511 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5513 unsigned long flags;
5516 init_waitqueue_entry(&wait, current);
5518 __set_current_state(state);
5520 spin_lock_irqsave(&q->lock, flags);
5521 __add_wait_queue(q, &wait);
5522 spin_unlock(&q->lock);
5523 timeout = schedule_timeout(timeout);
5524 spin_lock_irq(&q->lock);
5525 __remove_wait_queue(q, &wait);
5526 spin_unlock_irqrestore(&q->lock, flags);
5531 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5533 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5535 EXPORT_SYMBOL(interruptible_sleep_on);
5538 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5540 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5542 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5544 void __sched sleep_on(wait_queue_head_t *q)
5546 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5548 EXPORT_SYMBOL(sleep_on);
5550 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5552 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5554 EXPORT_SYMBOL(sleep_on_timeout);
5556 #ifdef CONFIG_RT_MUTEXES
5559 * rt_mutex_setprio - set the current priority of a task
5561 * @prio: prio value (kernel-internal form)
5563 * This function changes the 'effective' priority of a task. It does
5564 * not touch ->normal_prio like __setscheduler().
5566 * Used by the rt_mutex code to implement priority inheritance logic.
5568 void rt_mutex_setprio(struct task_struct *p, int prio)
5570 unsigned long flags;
5571 int oldprio, on_rq, running;
5573 const struct sched_class *prev_class = p->sched_class;
5575 BUG_ON(prio < 0 || prio > MAX_PRIO);
5577 rq = task_rq_lock(p, &flags);
5578 update_rq_clock(rq);
5581 on_rq = p->se.on_rq;
5582 running = task_current(rq, p);
5584 dequeue_task(rq, p, 0);
5586 p->sched_class->put_prev_task(rq, p);
5589 p->sched_class = &rt_sched_class;
5591 p->sched_class = &fair_sched_class;
5596 p->sched_class->set_curr_task(rq);
5598 enqueue_task(rq, p, 0);
5600 check_class_changed(rq, p, prev_class, oldprio, running);
5602 task_rq_unlock(rq, &flags);
5607 void set_user_nice(struct task_struct *p, long nice)
5609 int old_prio, delta, on_rq;
5610 unsigned long flags;
5613 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5616 * We have to be careful, if called from sys_setpriority(),
5617 * the task might be in the middle of scheduling on another CPU.
5619 rq = task_rq_lock(p, &flags);
5620 update_rq_clock(rq);
5622 * The RT priorities are set via sched_setscheduler(), but we still
5623 * allow the 'normal' nice value to be set - but as expected
5624 * it wont have any effect on scheduling until the task is
5625 * SCHED_FIFO/SCHED_RR:
5627 if (task_has_rt_policy(p)) {
5628 p->static_prio = NICE_TO_PRIO(nice);
5631 on_rq = p->se.on_rq;
5633 dequeue_task(rq, p, 0);
5635 p->static_prio = NICE_TO_PRIO(nice);
5638 p->prio = effective_prio(p);
5639 delta = p->prio - old_prio;
5642 enqueue_task(rq, p, 0);
5644 * If the task increased its priority or is running and
5645 * lowered its priority, then reschedule its CPU:
5647 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5648 resched_task(rq->curr);
5651 task_rq_unlock(rq, &flags);
5653 EXPORT_SYMBOL(set_user_nice);
5656 * can_nice - check if a task can reduce its nice value
5660 int can_nice(const struct task_struct *p, const int nice)
5662 /* convert nice value [19,-20] to rlimit style value [1,40] */
5663 int nice_rlim = 20 - nice;
5665 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5666 capable(CAP_SYS_NICE));
5669 #ifdef __ARCH_WANT_SYS_NICE
5672 * sys_nice - change the priority of the current process.
5673 * @increment: priority increment
5675 * sys_setpriority is a more generic, but much slower function that
5676 * does similar things.
5678 SYSCALL_DEFINE1(nice, int, increment)
5683 * Setpriority might change our priority at the same moment.
5684 * We don't have to worry. Conceptually one call occurs first
5685 * and we have a single winner.
5687 if (increment < -40)
5692 nice = TASK_NICE(current) + increment;
5698 if (increment < 0 && !can_nice(current, nice))
5701 retval = security_task_setnice(current, nice);
5705 set_user_nice(current, nice);
5712 * task_prio - return the priority value of a given task.
5713 * @p: the task in question.
5715 * This is the priority value as seen by users in /proc.
5716 * RT tasks are offset by -200. Normal tasks are centered
5717 * around 0, value goes from -16 to +15.
5719 int task_prio(const struct task_struct *p)
5721 return p->prio - MAX_RT_PRIO;
5725 * task_nice - return the nice value of a given task.
5726 * @p: the task in question.
5728 int task_nice(const struct task_struct *p)
5730 return TASK_NICE(p);
5732 EXPORT_SYMBOL(task_nice);
5735 * idle_cpu - is a given cpu idle currently?
5736 * @cpu: the processor in question.
5738 int idle_cpu(int cpu)
5740 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5744 * idle_task - return the idle task for a given cpu.
5745 * @cpu: the processor in question.
5747 struct task_struct *idle_task(int cpu)
5749 return cpu_rq(cpu)->idle;
5753 * find_process_by_pid - find a process with a matching PID value.
5754 * @pid: the pid in question.
5756 static struct task_struct *find_process_by_pid(pid_t pid)
5758 return pid ? find_task_by_vpid(pid) : current;
5761 /* Actually do priority change: must hold rq lock. */
5763 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5765 BUG_ON(p->se.on_rq);
5768 switch (p->policy) {
5772 p->sched_class = &fair_sched_class;
5776 p->sched_class = &rt_sched_class;
5780 p->rt_priority = prio;
5781 p->normal_prio = normal_prio(p);
5782 /* we are holding p->pi_lock already */
5783 p->prio = rt_mutex_getprio(p);
5788 * check the target process has a UID that matches the current process's
5790 static bool check_same_owner(struct task_struct *p)
5792 const struct cred *cred = current_cred(), *pcred;
5796 pcred = __task_cred(p);
5797 match = (cred->euid == pcred->euid ||
5798 cred->euid == pcred->uid);
5803 static int __sched_setscheduler(struct task_struct *p, int policy,
5804 struct sched_param *param, bool user)
5806 int retval, oldprio, oldpolicy = -1, on_rq, running;
5807 unsigned long flags;
5808 const struct sched_class *prev_class = p->sched_class;
5811 /* may grab non-irq protected spin_locks */
5812 BUG_ON(in_interrupt());
5814 /* double check policy once rq lock held */
5816 policy = oldpolicy = p->policy;
5817 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5818 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5819 policy != SCHED_IDLE)
5822 * Valid priorities for SCHED_FIFO and SCHED_RR are
5823 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5824 * SCHED_BATCH and SCHED_IDLE is 0.
5826 if (param->sched_priority < 0 ||
5827 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5828 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5830 if (rt_policy(policy) != (param->sched_priority != 0))
5834 * Allow unprivileged RT tasks to decrease priority:
5836 if (user && !capable(CAP_SYS_NICE)) {
5837 if (rt_policy(policy)) {
5838 unsigned long rlim_rtprio;
5840 if (!lock_task_sighand(p, &flags))
5842 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5843 unlock_task_sighand(p, &flags);
5845 /* can't set/change the rt policy */
5846 if (policy != p->policy && !rlim_rtprio)
5849 /* can't increase priority */
5850 if (param->sched_priority > p->rt_priority &&
5851 param->sched_priority > rlim_rtprio)
5855 * Like positive nice levels, dont allow tasks to
5856 * move out of SCHED_IDLE either:
5858 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5861 /* can't change other user's priorities */
5862 if (!check_same_owner(p))
5867 #ifdef CONFIG_RT_GROUP_SCHED
5869 * Do not allow realtime tasks into groups that have no runtime
5872 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5873 task_group(p)->rt_bandwidth.rt_runtime == 0)
5877 retval = security_task_setscheduler(p, policy, param);
5883 * make sure no PI-waiters arrive (or leave) while we are
5884 * changing the priority of the task:
5886 spin_lock_irqsave(&p->pi_lock, flags);
5888 * To be able to change p->policy safely, the apropriate
5889 * runqueue lock must be held.
5891 rq = __task_rq_lock(p);
5892 /* recheck policy now with rq lock held */
5893 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5894 policy = oldpolicy = -1;
5895 __task_rq_unlock(rq);
5896 spin_unlock_irqrestore(&p->pi_lock, flags);
5899 update_rq_clock(rq);
5900 on_rq = p->se.on_rq;
5901 running = task_current(rq, p);
5903 deactivate_task(rq, p, 0);
5905 p->sched_class->put_prev_task(rq, p);
5908 __setscheduler(rq, p, policy, param->sched_priority);
5911 p->sched_class->set_curr_task(rq);
5913 activate_task(rq, p, 0);
5915 check_class_changed(rq, p, prev_class, oldprio, running);
5917 __task_rq_unlock(rq);
5918 spin_unlock_irqrestore(&p->pi_lock, flags);
5920 rt_mutex_adjust_pi(p);
5926 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5927 * @p: the task in question.
5928 * @policy: new policy.
5929 * @param: structure containing the new RT priority.
5931 * NOTE that the task may be already dead.
5933 int sched_setscheduler(struct task_struct *p, int policy,
5934 struct sched_param *param)
5936 return __sched_setscheduler(p, policy, param, true);
5938 EXPORT_SYMBOL_GPL(sched_setscheduler);
5941 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5942 * @p: the task in question.
5943 * @policy: new policy.
5944 * @param: structure containing the new RT priority.
5946 * Just like sched_setscheduler, only don't bother checking if the
5947 * current context has permission. For example, this is needed in
5948 * stop_machine(): we create temporary high priority worker threads,
5949 * but our caller might not have that capability.
5951 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5952 struct sched_param *param)
5954 return __sched_setscheduler(p, policy, param, false);
5958 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5960 struct sched_param lparam;
5961 struct task_struct *p;
5964 if (!param || pid < 0)
5966 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5971 p = find_process_by_pid(pid);
5973 retval = sched_setscheduler(p, policy, &lparam);
5980 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5981 * @pid: the pid in question.
5982 * @policy: new policy.
5983 * @param: structure containing the new RT priority.
5985 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5986 struct sched_param __user *, param)
5988 /* negative values for policy are not valid */
5992 return do_sched_setscheduler(pid, policy, param);
5996 * sys_sched_setparam - set/change the RT priority of a thread
5997 * @pid: the pid in question.
5998 * @param: structure containing the new RT priority.
6000 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6002 return do_sched_setscheduler(pid, -1, param);
6006 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6007 * @pid: the pid in question.
6009 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6011 struct task_struct *p;
6018 read_lock(&tasklist_lock);
6019 p = find_process_by_pid(pid);
6021 retval = security_task_getscheduler(p);
6025 read_unlock(&tasklist_lock);
6030 * sys_sched_getscheduler - get the RT priority of a thread
6031 * @pid: the pid in question.
6032 * @param: structure containing the RT priority.
6034 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6036 struct sched_param lp;
6037 struct task_struct *p;
6040 if (!param || pid < 0)
6043 read_lock(&tasklist_lock);
6044 p = find_process_by_pid(pid);
6049 retval = security_task_getscheduler(p);
6053 lp.sched_priority = p->rt_priority;
6054 read_unlock(&tasklist_lock);
6057 * This one might sleep, we cannot do it with a spinlock held ...
6059 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6064 read_unlock(&tasklist_lock);
6068 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6070 cpumask_var_t cpus_allowed, new_mask;
6071 struct task_struct *p;
6075 read_lock(&tasklist_lock);
6077 p = find_process_by_pid(pid);
6079 read_unlock(&tasklist_lock);
6085 * It is not safe to call set_cpus_allowed with the
6086 * tasklist_lock held. We will bump the task_struct's
6087 * usage count and then drop tasklist_lock.
6090 read_unlock(&tasklist_lock);
6092 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6096 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6098 goto out_free_cpus_allowed;
6101 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6104 retval = security_task_setscheduler(p, 0, NULL);
6108 cpuset_cpus_allowed(p, cpus_allowed);
6109 cpumask_and(new_mask, in_mask, cpus_allowed);
6111 retval = set_cpus_allowed_ptr(p, new_mask);
6114 cpuset_cpus_allowed(p, cpus_allowed);
6115 if (!cpumask_subset(new_mask, cpus_allowed)) {
6117 * We must have raced with a concurrent cpuset
6118 * update. Just reset the cpus_allowed to the
6119 * cpuset's cpus_allowed
6121 cpumask_copy(new_mask, cpus_allowed);
6126 free_cpumask_var(new_mask);
6127 out_free_cpus_allowed:
6128 free_cpumask_var(cpus_allowed);
6135 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6136 struct cpumask *new_mask)
6138 if (len < cpumask_size())
6139 cpumask_clear(new_mask);
6140 else if (len > cpumask_size())
6141 len = cpumask_size();
6143 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6147 * sys_sched_setaffinity - set the cpu affinity of a process
6148 * @pid: pid of the process
6149 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6150 * @user_mask_ptr: user-space pointer to the new cpu mask
6152 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6153 unsigned long __user *, user_mask_ptr)
6155 cpumask_var_t new_mask;
6158 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6161 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6163 retval = sched_setaffinity(pid, new_mask);
6164 free_cpumask_var(new_mask);
6168 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6170 struct task_struct *p;
6174 read_lock(&tasklist_lock);
6177 p = find_process_by_pid(pid);
6181 retval = security_task_getscheduler(p);
6185 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6188 read_unlock(&tasklist_lock);
6195 * sys_sched_getaffinity - get the cpu affinity of a process
6196 * @pid: pid of the process
6197 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6198 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6200 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6201 unsigned long __user *, user_mask_ptr)
6206 if (len < cpumask_size())
6209 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6212 ret = sched_getaffinity(pid, mask);
6214 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6217 ret = cpumask_size();
6219 free_cpumask_var(mask);
6225 * sys_sched_yield - yield the current processor to other threads.
6227 * This function yields the current CPU to other tasks. If there are no
6228 * other threads running on this CPU then this function will return.
6230 SYSCALL_DEFINE0(sched_yield)
6232 struct rq *rq = this_rq_lock();
6234 schedstat_inc(rq, yld_count);
6235 current->sched_class->yield_task(rq);
6238 * Since we are going to call schedule() anyway, there's
6239 * no need to preempt or enable interrupts:
6241 __release(rq->lock);
6242 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6243 _raw_spin_unlock(&rq->lock);
6244 preempt_enable_no_resched();
6251 static void __cond_resched(void)
6253 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6254 __might_sleep(__FILE__, __LINE__);
6257 * The BKS might be reacquired before we have dropped
6258 * PREEMPT_ACTIVE, which could trigger a second
6259 * cond_resched() call.
6262 add_preempt_count(PREEMPT_ACTIVE);
6264 sub_preempt_count(PREEMPT_ACTIVE);
6265 } while (need_resched());
6268 int __sched _cond_resched(void)
6270 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6271 system_state == SYSTEM_RUNNING) {
6277 EXPORT_SYMBOL(_cond_resched);
6280 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6281 * call schedule, and on return reacquire the lock.
6283 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6284 * operations here to prevent schedule() from being called twice (once via
6285 * spin_unlock(), once by hand).
6287 int cond_resched_lock(spinlock_t *lock)
6289 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6292 if (spin_needbreak(lock) || resched) {
6294 if (resched && need_resched())
6303 EXPORT_SYMBOL(cond_resched_lock);
6305 int __sched cond_resched_softirq(void)
6307 BUG_ON(!in_softirq());
6309 if (need_resched() && system_state == SYSTEM_RUNNING) {
6317 EXPORT_SYMBOL(cond_resched_softirq);
6320 * yield - yield the current processor to other threads.
6322 * This is a shortcut for kernel-space yielding - it marks the
6323 * thread runnable and calls sys_sched_yield().
6325 void __sched yield(void)
6327 set_current_state(TASK_RUNNING);
6330 EXPORT_SYMBOL(yield);
6333 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6334 * that process accounting knows that this is a task in IO wait state.
6336 * But don't do that if it is a deliberate, throttling IO wait (this task
6337 * has set its backing_dev_info: the queue against which it should throttle)
6339 void __sched io_schedule(void)
6341 struct rq *rq = &__raw_get_cpu_var(runqueues);
6343 delayacct_blkio_start();
6344 atomic_inc(&rq->nr_iowait);
6346 atomic_dec(&rq->nr_iowait);
6347 delayacct_blkio_end();
6349 EXPORT_SYMBOL(io_schedule);
6351 long __sched io_schedule_timeout(long timeout)
6353 struct rq *rq = &__raw_get_cpu_var(runqueues);
6356 delayacct_blkio_start();
6357 atomic_inc(&rq->nr_iowait);
6358 ret = schedule_timeout(timeout);
6359 atomic_dec(&rq->nr_iowait);
6360 delayacct_blkio_end();
6365 * sys_sched_get_priority_max - return maximum RT priority.
6366 * @policy: scheduling class.
6368 * this syscall returns the maximum rt_priority that can be used
6369 * by a given scheduling class.
6371 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6378 ret = MAX_USER_RT_PRIO-1;
6390 * sys_sched_get_priority_min - return minimum RT priority.
6391 * @policy: scheduling class.
6393 * this syscall returns the minimum rt_priority that can be used
6394 * by a given scheduling class.
6396 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6414 * sys_sched_rr_get_interval - return the default timeslice of a process.
6415 * @pid: pid of the process.
6416 * @interval: userspace pointer to the timeslice value.
6418 * this syscall writes the default timeslice value of a given process
6419 * into the user-space timespec buffer. A value of '0' means infinity.
6421 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6422 struct timespec __user *, interval)
6424 struct task_struct *p;
6425 unsigned int time_slice;
6433 read_lock(&tasklist_lock);
6434 p = find_process_by_pid(pid);
6438 retval = security_task_getscheduler(p);
6443 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6444 * tasks that are on an otherwise idle runqueue:
6447 if (p->policy == SCHED_RR) {
6448 time_slice = DEF_TIMESLICE;
6449 } else if (p->policy != SCHED_FIFO) {
6450 struct sched_entity *se = &p->se;
6451 unsigned long flags;
6454 rq = task_rq_lock(p, &flags);
6455 if (rq->cfs.load.weight)
6456 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6457 task_rq_unlock(rq, &flags);
6459 read_unlock(&tasklist_lock);
6460 jiffies_to_timespec(time_slice, &t);
6461 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6465 read_unlock(&tasklist_lock);
6469 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6471 void sched_show_task(struct task_struct *p)
6473 unsigned long free = 0;
6476 state = p->state ? __ffs(p->state) + 1 : 0;
6477 printk(KERN_INFO "%-13.13s %c", p->comm,
6478 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6479 #if BITS_PER_LONG == 32
6480 if (state == TASK_RUNNING)
6481 printk(KERN_CONT " running ");
6483 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6485 if (state == TASK_RUNNING)
6486 printk(KERN_CONT " running task ");
6488 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6490 #ifdef CONFIG_DEBUG_STACK_USAGE
6491 free = stack_not_used(p);
6493 printk(KERN_CONT "%5lu %5d %6d\n", free,
6494 task_pid_nr(p), task_pid_nr(p->real_parent));
6496 show_stack(p, NULL);
6499 void show_state_filter(unsigned long state_filter)
6501 struct task_struct *g, *p;
6503 #if BITS_PER_LONG == 32
6505 " task PC stack pid father\n");
6508 " task PC stack pid father\n");
6510 read_lock(&tasklist_lock);
6511 do_each_thread(g, p) {
6513 * reset the NMI-timeout, listing all files on a slow
6514 * console might take alot of time:
6516 touch_nmi_watchdog();
6517 if (!state_filter || (p->state & state_filter))
6519 } while_each_thread(g, p);
6521 touch_all_softlockup_watchdogs();
6523 #ifdef CONFIG_SCHED_DEBUG
6524 sysrq_sched_debug_show();
6526 read_unlock(&tasklist_lock);
6528 * Only show locks if all tasks are dumped:
6530 if (state_filter == -1)
6531 debug_show_all_locks();
6534 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6536 idle->sched_class = &idle_sched_class;
6540 * init_idle - set up an idle thread for a given CPU
6541 * @idle: task in question
6542 * @cpu: cpu the idle task belongs to
6544 * NOTE: this function does not set the idle thread's NEED_RESCHED
6545 * flag, to make booting more robust.
6547 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6549 struct rq *rq = cpu_rq(cpu);
6550 unsigned long flags;
6552 spin_lock_irqsave(&rq->lock, flags);
6555 idle->se.exec_start = sched_clock();
6557 idle->prio = idle->normal_prio = MAX_PRIO;
6558 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6559 __set_task_cpu(idle, cpu);
6561 rq->curr = rq->idle = idle;
6562 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6565 spin_unlock_irqrestore(&rq->lock, flags);
6567 /* Set the preempt count _outside_ the spinlocks! */
6568 #if defined(CONFIG_PREEMPT)
6569 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6571 task_thread_info(idle)->preempt_count = 0;
6574 * The idle tasks have their own, simple scheduling class:
6576 idle->sched_class = &idle_sched_class;
6577 ftrace_graph_init_task(idle);
6581 * In a system that switches off the HZ timer nohz_cpu_mask
6582 * indicates which cpus entered this state. This is used
6583 * in the rcu update to wait only for active cpus. For system
6584 * which do not switch off the HZ timer nohz_cpu_mask should
6585 * always be CPU_BITS_NONE.
6587 cpumask_var_t nohz_cpu_mask;
6590 * Increase the granularity value when there are more CPUs,
6591 * because with more CPUs the 'effective latency' as visible
6592 * to users decreases. But the relationship is not linear,
6593 * so pick a second-best guess by going with the log2 of the
6596 * This idea comes from the SD scheduler of Con Kolivas:
6598 static inline void sched_init_granularity(void)
6600 unsigned int factor = 1 + ilog2(num_online_cpus());
6601 const unsigned long limit = 200000000;
6603 sysctl_sched_min_granularity *= factor;
6604 if (sysctl_sched_min_granularity > limit)
6605 sysctl_sched_min_granularity = limit;
6607 sysctl_sched_latency *= factor;
6608 if (sysctl_sched_latency > limit)
6609 sysctl_sched_latency = limit;
6611 sysctl_sched_wakeup_granularity *= factor;
6613 sysctl_sched_shares_ratelimit *= factor;
6618 * This is how migration works:
6620 * 1) we queue a struct migration_req structure in the source CPU's
6621 * runqueue and wake up that CPU's migration thread.
6622 * 2) we down() the locked semaphore => thread blocks.
6623 * 3) migration thread wakes up (implicitly it forces the migrated
6624 * thread off the CPU)
6625 * 4) it gets the migration request and checks whether the migrated
6626 * task is still in the wrong runqueue.
6627 * 5) if it's in the wrong runqueue then the migration thread removes
6628 * it and puts it into the right queue.
6629 * 6) migration thread up()s the semaphore.
6630 * 7) we wake up and the migration is done.
6634 * Change a given task's CPU affinity. Migrate the thread to a
6635 * proper CPU and schedule it away if the CPU it's executing on
6636 * is removed from the allowed bitmask.
6638 * NOTE: the caller must have a valid reference to the task, the
6639 * task must not exit() & deallocate itself prematurely. The
6640 * call is not atomic; no spinlocks may be held.
6642 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6644 struct migration_req req;
6645 unsigned long flags;
6649 rq = task_rq_lock(p, &flags);
6650 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6655 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6656 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6661 if (p->sched_class->set_cpus_allowed)
6662 p->sched_class->set_cpus_allowed(p, new_mask);
6664 cpumask_copy(&p->cpus_allowed, new_mask);
6665 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6668 /* Can the task run on the task's current CPU? If so, we're done */
6669 if (cpumask_test_cpu(task_cpu(p), new_mask))
6672 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6673 /* Need help from migration thread: drop lock and wait. */
6674 task_rq_unlock(rq, &flags);
6675 wake_up_process(rq->migration_thread);
6676 wait_for_completion(&req.done);
6677 tlb_migrate_finish(p->mm);
6681 task_rq_unlock(rq, &flags);
6685 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6688 * Move (not current) task off this cpu, onto dest cpu. We're doing
6689 * this because either it can't run here any more (set_cpus_allowed()
6690 * away from this CPU, or CPU going down), or because we're
6691 * attempting to rebalance this task on exec (sched_exec).
6693 * So we race with normal scheduler movements, but that's OK, as long
6694 * as the task is no longer on this CPU.
6696 * Returns non-zero if task was successfully migrated.
6698 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6700 struct rq *rq_dest, *rq_src;
6703 if (unlikely(!cpu_active(dest_cpu)))
6706 rq_src = cpu_rq(src_cpu);
6707 rq_dest = cpu_rq(dest_cpu);
6709 double_rq_lock(rq_src, rq_dest);
6710 /* Already moved. */
6711 if (task_cpu(p) != src_cpu)
6713 /* Affinity changed (again). */
6714 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6717 on_rq = p->se.on_rq;
6719 deactivate_task(rq_src, p, 0);
6721 set_task_cpu(p, dest_cpu);
6723 activate_task(rq_dest, p, 0);
6724 check_preempt_curr(rq_dest, p, 0);
6729 double_rq_unlock(rq_src, rq_dest);
6734 * migration_thread - this is a highprio system thread that performs
6735 * thread migration by bumping thread off CPU then 'pushing' onto
6738 static int migration_thread(void *data)
6740 int cpu = (long)data;
6744 BUG_ON(rq->migration_thread != current);
6746 set_current_state(TASK_INTERRUPTIBLE);
6747 while (!kthread_should_stop()) {
6748 struct migration_req *req;
6749 struct list_head *head;
6751 spin_lock_irq(&rq->lock);
6753 if (cpu_is_offline(cpu)) {
6754 spin_unlock_irq(&rq->lock);
6758 if (rq->active_balance) {
6759 active_load_balance(rq, cpu);
6760 rq->active_balance = 0;
6763 head = &rq->migration_queue;
6765 if (list_empty(head)) {
6766 spin_unlock_irq(&rq->lock);
6768 set_current_state(TASK_INTERRUPTIBLE);
6771 req = list_entry(head->next, struct migration_req, list);
6772 list_del_init(head->next);
6774 spin_unlock(&rq->lock);
6775 __migrate_task(req->task, cpu, req->dest_cpu);
6778 complete(&req->done);
6780 __set_current_state(TASK_RUNNING);
6784 /* Wait for kthread_stop */
6785 set_current_state(TASK_INTERRUPTIBLE);
6786 while (!kthread_should_stop()) {
6788 set_current_state(TASK_INTERRUPTIBLE);
6790 __set_current_state(TASK_RUNNING);
6794 #ifdef CONFIG_HOTPLUG_CPU
6796 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6800 local_irq_disable();
6801 ret = __migrate_task(p, src_cpu, dest_cpu);
6807 * Figure out where task on dead CPU should go, use force if necessary.
6809 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6812 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6815 /* Look for allowed, online CPU in same node. */
6816 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6817 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6820 /* Any allowed, online CPU? */
6821 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6822 if (dest_cpu < nr_cpu_ids)
6825 /* No more Mr. Nice Guy. */
6826 if (dest_cpu >= nr_cpu_ids) {
6827 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6828 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6831 * Don't tell them about moving exiting tasks or
6832 * kernel threads (both mm NULL), since they never
6835 if (p->mm && printk_ratelimit()) {
6836 printk(KERN_INFO "process %d (%s) no "
6837 "longer affine to cpu%d\n",
6838 task_pid_nr(p), p->comm, dead_cpu);
6843 /* It can have affinity changed while we were choosing. */
6844 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6849 * While a dead CPU has no uninterruptible tasks queued at this point,
6850 * it might still have a nonzero ->nr_uninterruptible counter, because
6851 * for performance reasons the counter is not stricly tracking tasks to
6852 * their home CPUs. So we just add the counter to another CPU's counter,
6853 * to keep the global sum constant after CPU-down:
6855 static void migrate_nr_uninterruptible(struct rq *rq_src)
6857 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6858 unsigned long flags;
6860 local_irq_save(flags);
6861 double_rq_lock(rq_src, rq_dest);
6862 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6863 rq_src->nr_uninterruptible = 0;
6864 double_rq_unlock(rq_src, rq_dest);
6865 local_irq_restore(flags);
6868 /* Run through task list and migrate tasks from the dead cpu. */
6869 static void migrate_live_tasks(int src_cpu)
6871 struct task_struct *p, *t;
6873 read_lock(&tasklist_lock);
6875 do_each_thread(t, p) {
6879 if (task_cpu(p) == src_cpu)
6880 move_task_off_dead_cpu(src_cpu, p);
6881 } while_each_thread(t, p);
6883 read_unlock(&tasklist_lock);
6887 * Schedules idle task to be the next runnable task on current CPU.
6888 * It does so by boosting its priority to highest possible.
6889 * Used by CPU offline code.
6891 void sched_idle_next(void)
6893 int this_cpu = smp_processor_id();
6894 struct rq *rq = cpu_rq(this_cpu);
6895 struct task_struct *p = rq->idle;
6896 unsigned long flags;
6898 /* cpu has to be offline */
6899 BUG_ON(cpu_online(this_cpu));
6902 * Strictly not necessary since rest of the CPUs are stopped by now
6903 * and interrupts disabled on the current cpu.