4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/reciprocal_div.h>
68 #include <linux/unistd.h>
69 #include <linux/pagemap.h>
70 #include <linux/hrtimer.h>
71 #include <linux/tick.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
125 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
140 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
147 static inline int rt_policy(int policy)
149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 static inline int task_has_rt_policy(struct task_struct *p)
156 return rt_policy(p->policy);
160 * This is the priority-queue data structure of the RT scheduling class:
162 struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
167 struct rt_bandwidth {
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
172 struct hrtimer rt_period_timer;
175 static struct rt_bandwidth def_rt_bandwidth;
177 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194 idle = do_sched_rt_period_timer(rt_b, overrun);
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
201 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
206 spin_lock_init(&rt_b->rt_runtime_lock);
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
213 static inline int rt_bandwidth_enabled(void)
215 return sysctl_sched_rt_runtime >= 0;
218 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
225 if (hrtimer_active(&rt_b->rt_period_timer))
228 spin_lock(&rt_b->rt_runtime_lock);
233 if (hrtimer_active(&rt_b->rt_period_timer))
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS_PINNED, 0);
245 spin_unlock(&rt_b->rt_runtime_lock);
248 #ifdef CONFIG_RT_GROUP_SCHED
249 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
251 hrtimer_cancel(&rt_b->rt_period_timer);
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
259 static DEFINE_MUTEX(sched_domains_mutex);
261 #ifdef CONFIG_GROUP_SCHED
263 #include <linux/cgroup.h>
267 static LIST_HEAD(task_groups);
269 /* task group related information */
271 #ifdef CONFIG_CGROUP_SCHED
272 struct cgroup_subsys_state css;
275 #ifdef CONFIG_USER_SCHED
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
287 #ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
291 struct rt_bandwidth rt_bandwidth;
295 struct list_head list;
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
302 #ifdef CONFIG_USER_SCHED
304 /* Helper function to pass uid information to create_sched_user() */
305 void set_tg_uid(struct user_struct *user)
307 user->tg->uid = user->uid;
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
315 struct task_group root_task_group;
317 #ifdef CONFIG_FAIR_GROUP_SCHED
318 /* Default task group's sched entity on each cpu */
319 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320 /* Default task group's cfs_rq on each cpu */
321 static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
322 #endif /* CONFIG_FAIR_GROUP_SCHED */
324 #ifdef CONFIG_RT_GROUP_SCHED
325 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327 #endif /* CONFIG_RT_GROUP_SCHED */
328 #else /* !CONFIG_USER_SCHED */
329 #define root_task_group init_task_group
330 #endif /* CONFIG_USER_SCHED */
332 /* task_group_lock serializes add/remove of task groups and also changes to
333 * a task group's cpu shares.
335 static DEFINE_SPINLOCK(task_group_lock);
338 static int root_task_group_empty(void)
340 return list_empty(&root_task_group.children);
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 #ifdef CONFIG_USER_SCHED
346 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
347 #else /* !CONFIG_USER_SCHED */
348 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
349 #endif /* CONFIG_USER_SCHED */
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
360 #define MAX_SHARES (1UL << 18)
362 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
365 /* Default task group.
366 * Every task in system belong to this group at bootup.
368 struct task_group init_task_group;
370 /* return group to which a task belongs */
371 static inline struct task_group *task_group(struct task_struct *p)
373 struct task_group *tg;
375 #ifdef CONFIG_USER_SCHED
377 tg = __task_cred(p)->user->tg;
379 #elif defined(CONFIG_CGROUP_SCHED)
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
383 tg = &init_task_group;
388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
389 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
396 #ifdef CONFIG_RT_GROUP_SCHED
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
405 static int root_task_group_empty(void)
411 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 static inline struct task_group *task_group(struct task_struct *p)
417 #endif /* CONFIG_GROUP_SCHED */
419 /* CFS-related fields in a runqueue */
421 struct load_weight load;
422 unsigned long nr_running;
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
430 struct list_head tasks;
431 struct list_head *balance_iterator;
434 * 'curr' points to currently running entity on this cfs_rq.
435 * It is set to NULL otherwise (i.e when none are currently running).
437 struct sched_entity *curr, *next, *last;
439 unsigned int nr_spread_over;
441 #ifdef CONFIG_FAIR_GROUP_SCHED
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
457 * the part of load.weight contributed by tasks
459 unsigned long task_weight;
462 * h_load = weight * f(tg)
464 * Where f(tg) is the recursive weight fraction assigned to
467 unsigned long h_load;
470 * this cpu's part of tg->shares
472 unsigned long shares;
475 * load.weight at the time we set shares
477 unsigned long rq_weight;
482 /* Real-Time classes' related field in a runqueue: */
484 struct rt_prio_array active;
485 unsigned long rt_nr_running;
486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
488 int curr; /* highest queued rt task prio */
490 int next; /* next highest */
495 unsigned long rt_nr_migratory;
496 unsigned long rt_nr_total;
498 struct plist_head pushable_tasks;
503 /* Nests inside the rq lock: */
504 spinlock_t rt_runtime_lock;
506 #ifdef CONFIG_RT_GROUP_SCHED
507 unsigned long rt_nr_boosted;
510 struct list_head leaf_rt_rq_list;
511 struct task_group *tg;
512 struct sched_rt_entity *rt_se;
519 * We add the notion of a root-domain which will be used to define per-domain
520 * variables. Each exclusive cpuset essentially defines an island domain by
521 * fully partitioning the member cpus from any other cpuset. Whenever a new
522 * exclusive cpuset is created, we also create and attach a new root-domain
529 cpumask_var_t online;
532 * The "RT overload" flag: it gets set if a CPU has more than
533 * one runnable RT task.
535 cpumask_var_t rto_mask;
538 struct cpupri cpupri;
540 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
542 * Preferred wake up cpu nominated by sched_mc balance that will be
543 * used when most cpus are idle in the system indicating overall very
544 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
546 unsigned int sched_mc_preferred_wakeup_cpu;
551 * By default the system creates a single root-domain with all cpus as
552 * members (mimicking the global state we have today).
554 static struct root_domain def_root_domain;
559 * This is the main, per-CPU runqueue data structure.
561 * Locking rule: those places that want to lock multiple runqueues
562 * (such as the load balancing or the thread migration code), lock
563 * acquire operations must be ordered by ascending &runqueue.
570 * nr_running and cpu_load should be in the same cacheline because
571 * remote CPUs use both these fields when doing load calculation.
573 unsigned long nr_running;
574 #define CPU_LOAD_IDX_MAX 5
575 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
577 unsigned long last_tick_seen;
578 unsigned char in_nohz_recently;
580 /* capture load from *all* tasks on this cpu: */
581 struct load_weight load;
582 unsigned long nr_load_updates;
584 u64 nr_migrations_in;
589 #ifdef CONFIG_FAIR_GROUP_SCHED
590 /* list of leaf cfs_rq on this cpu: */
591 struct list_head leaf_cfs_rq_list;
593 #ifdef CONFIG_RT_GROUP_SCHED
594 struct list_head leaf_rt_rq_list;
598 * This is part of a global counter where only the total sum
599 * over all CPUs matters. A task can increase this counter on
600 * one CPU and if it got migrated afterwards it may decrease
601 * it on another CPU. Always updated under the runqueue lock:
603 unsigned long nr_uninterruptible;
605 struct task_struct *curr, *idle;
606 unsigned long next_balance;
607 struct mm_struct *prev_mm;
614 struct root_domain *rd;
615 struct sched_domain *sd;
617 unsigned char idle_at_tick;
618 /* For active balancing */
622 /* cpu of this runqueue: */
626 unsigned long avg_load_per_task;
628 struct task_struct *migration_thread;
629 struct list_head migration_queue;
632 /* calc_load related fields */
633 unsigned long calc_load_update;
634 long calc_load_active;
636 #ifdef CONFIG_SCHED_HRTICK
638 int hrtick_csd_pending;
639 struct call_single_data hrtick_csd;
641 struct hrtimer hrtick_timer;
644 #ifdef CONFIG_SCHEDSTATS
646 struct sched_info rq_sched_info;
647 unsigned long long rq_cpu_time;
648 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
650 /* sys_sched_yield() stats */
651 unsigned int yld_count;
653 /* schedule() stats */
654 unsigned int sched_switch;
655 unsigned int sched_count;
656 unsigned int sched_goidle;
658 /* try_to_wake_up() stats */
659 unsigned int ttwu_count;
660 unsigned int ttwu_local;
663 unsigned int bkl_count;
667 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
669 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
671 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
674 static inline int cpu_of(struct rq *rq)
684 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
685 * See detach_destroy_domains: synchronize_sched for details.
687 * The domain tree of any CPU may only be accessed from within
688 * preempt-disabled sections.
690 #define for_each_domain(cpu, __sd) \
691 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
693 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
694 #define this_rq() (&__get_cpu_var(runqueues))
695 #define task_rq(p) cpu_rq(task_cpu(p))
696 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
697 #define raw_rq() (&__raw_get_cpu_var(runqueues))
699 inline void update_rq_clock(struct rq *rq)
701 rq->clock = sched_clock_cpu(cpu_of(rq));
705 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
707 #ifdef CONFIG_SCHED_DEBUG
708 # define const_debug __read_mostly
710 # define const_debug static const
716 * Returns true if the current cpu runqueue is locked.
717 * This interface allows printk to be called with the runqueue lock
718 * held and know whether or not it is OK to wake up the klogd.
720 int runqueue_is_locked(void)
723 struct rq *rq = cpu_rq(cpu);
726 ret = spin_is_locked(&rq->lock);
732 * Debugging: various feature bits
735 #define SCHED_FEAT(name, enabled) \
736 __SCHED_FEAT_##name ,
739 #include "sched_features.h"
744 #define SCHED_FEAT(name, enabled) \
745 (1UL << __SCHED_FEAT_##name) * enabled |
747 const_debug unsigned int sysctl_sched_features =
748 #include "sched_features.h"
753 #ifdef CONFIG_SCHED_DEBUG
754 #define SCHED_FEAT(name, enabled) \
757 static __read_mostly char *sched_feat_names[] = {
758 #include "sched_features.h"
764 static int sched_feat_show(struct seq_file *m, void *v)
768 for (i = 0; sched_feat_names[i]; i++) {
769 if (!(sysctl_sched_features & (1UL << i)))
771 seq_printf(m, "%s ", sched_feat_names[i]);
779 sched_feat_write(struct file *filp, const char __user *ubuf,
780 size_t cnt, loff_t *ppos)
790 if (copy_from_user(&buf, ubuf, cnt))
795 if (strncmp(buf, "NO_", 3) == 0) {
800 for (i = 0; sched_feat_names[i]; i++) {
801 int len = strlen(sched_feat_names[i]);
803 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
805 sysctl_sched_features &= ~(1UL << i);
807 sysctl_sched_features |= (1UL << i);
812 if (!sched_feat_names[i])
820 static int sched_feat_open(struct inode *inode, struct file *filp)
822 return single_open(filp, sched_feat_show, NULL);
825 static struct file_operations sched_feat_fops = {
826 .open = sched_feat_open,
827 .write = sched_feat_write,
830 .release = single_release,
833 static __init int sched_init_debug(void)
835 debugfs_create_file("sched_features", 0644, NULL, NULL,
840 late_initcall(sched_init_debug);
844 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
847 * Number of tasks to iterate in a single balance run.
848 * Limited because this is done with IRQs disabled.
850 const_debug unsigned int sysctl_sched_nr_migrate = 32;
853 * ratelimit for updating the group shares.
856 unsigned int sysctl_sched_shares_ratelimit = 250000;
859 * Inject some fuzzyness into changing the per-cpu group shares
860 * this avoids remote rq-locks at the expense of fairness.
863 unsigned int sysctl_sched_shares_thresh = 4;
866 * period over which we measure -rt task cpu usage in us.
869 unsigned int sysctl_sched_rt_period = 1000000;
871 static __read_mostly int scheduler_running;
874 * part of the period that we allow rt tasks to run in us.
877 int sysctl_sched_rt_runtime = 950000;
879 static inline u64 global_rt_period(void)
881 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
884 static inline u64 global_rt_runtime(void)
886 if (sysctl_sched_rt_runtime < 0)
889 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
892 #ifndef prepare_arch_switch
893 # define prepare_arch_switch(next) do { } while (0)
895 #ifndef finish_arch_switch
896 # define finish_arch_switch(prev) do { } while (0)
899 static inline int task_current(struct rq *rq, struct task_struct *p)
901 return rq->curr == p;
904 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
905 static inline int task_running(struct rq *rq, struct task_struct *p)
907 return task_current(rq, p);
910 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
914 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
916 #ifdef CONFIG_DEBUG_SPINLOCK
917 /* this is a valid case when another task releases the spinlock */
918 rq->lock.owner = current;
921 * If we are tracking spinlock dependencies then we have to
922 * fix up the runqueue lock - which gets 'carried over' from
925 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
927 spin_unlock_irq(&rq->lock);
930 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
931 static inline int task_running(struct rq *rq, struct task_struct *p)
936 return task_current(rq, p);
940 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
944 * We can optimise this out completely for !SMP, because the
945 * SMP rebalancing from interrupt is the only thing that cares
950 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
951 spin_unlock_irq(&rq->lock);
953 spin_unlock(&rq->lock);
957 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
961 * After ->oncpu is cleared, the task can be moved to a different CPU.
962 * We must ensure this doesn't happen until the switch is completely
968 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
972 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
975 * __task_rq_lock - lock the runqueue a given task resides on.
976 * Must be called interrupts disabled.
978 static inline struct rq *__task_rq_lock(struct task_struct *p)
982 struct rq *rq = task_rq(p);
983 spin_lock(&rq->lock);
984 if (likely(rq == task_rq(p)))
986 spin_unlock(&rq->lock);
991 * task_rq_lock - lock the runqueue a given task resides on and disable
992 * interrupts. Note the ordering: we can safely lookup the task_rq without
993 * explicitly disabling preemption.
995 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1001 local_irq_save(*flags);
1003 spin_lock(&rq->lock);
1004 if (likely(rq == task_rq(p)))
1006 spin_unlock_irqrestore(&rq->lock, *flags);
1010 void task_rq_unlock_wait(struct task_struct *p)
1012 struct rq *rq = task_rq(p);
1014 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1015 spin_unlock_wait(&rq->lock);
1018 static void __task_rq_unlock(struct rq *rq)
1019 __releases(rq->lock)
1021 spin_unlock(&rq->lock);
1024 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1025 __releases(rq->lock)
1027 spin_unlock_irqrestore(&rq->lock, *flags);
1031 * this_rq_lock - lock this runqueue and disable interrupts.
1033 static struct rq *this_rq_lock(void)
1034 __acquires(rq->lock)
1038 local_irq_disable();
1040 spin_lock(&rq->lock);
1045 #ifdef CONFIG_SCHED_HRTICK
1047 * Use HR-timers to deliver accurate preemption points.
1049 * Its all a bit involved since we cannot program an hrt while holding the
1050 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1053 * When we get rescheduled we reprogram the hrtick_timer outside of the
1059 * - enabled by features
1060 * - hrtimer is actually high res
1062 static inline int hrtick_enabled(struct rq *rq)
1064 if (!sched_feat(HRTICK))
1066 if (!cpu_active(cpu_of(rq)))
1068 return hrtimer_is_hres_active(&rq->hrtick_timer);
1071 static void hrtick_clear(struct rq *rq)
1073 if (hrtimer_active(&rq->hrtick_timer))
1074 hrtimer_cancel(&rq->hrtick_timer);
1078 * High-resolution timer tick.
1079 * Runs from hardirq context with interrupts disabled.
1081 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1083 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1085 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1087 spin_lock(&rq->lock);
1088 update_rq_clock(rq);
1089 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1090 spin_unlock(&rq->lock);
1092 return HRTIMER_NORESTART;
1097 * called from hardirq (IPI) context
1099 static void __hrtick_start(void *arg)
1101 struct rq *rq = arg;
1103 spin_lock(&rq->lock);
1104 hrtimer_restart(&rq->hrtick_timer);
1105 rq->hrtick_csd_pending = 0;
1106 spin_unlock(&rq->lock);
1110 * Called to set the hrtick timer state.
1112 * called with rq->lock held and irqs disabled
1114 static void hrtick_start(struct rq *rq, u64 delay)
1116 struct hrtimer *timer = &rq->hrtick_timer;
1117 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1119 hrtimer_set_expires(timer, time);
1121 if (rq == this_rq()) {
1122 hrtimer_restart(timer);
1123 } else if (!rq->hrtick_csd_pending) {
1124 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1125 rq->hrtick_csd_pending = 1;
1130 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1132 int cpu = (int)(long)hcpu;
1135 case CPU_UP_CANCELED:
1136 case CPU_UP_CANCELED_FROZEN:
1137 case CPU_DOWN_PREPARE:
1138 case CPU_DOWN_PREPARE_FROZEN:
1140 case CPU_DEAD_FROZEN:
1141 hrtick_clear(cpu_rq(cpu));
1148 static __init void init_hrtick(void)
1150 hotcpu_notifier(hotplug_hrtick, 0);
1154 * Called to set the hrtick timer state.
1156 * called with rq->lock held and irqs disabled
1158 static void hrtick_start(struct rq *rq, u64 delay)
1160 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1161 HRTIMER_MODE_REL_PINNED, 0);
1164 static inline void init_hrtick(void)
1167 #endif /* CONFIG_SMP */
1169 static void init_rq_hrtick(struct rq *rq)
1172 rq->hrtick_csd_pending = 0;
1174 rq->hrtick_csd.flags = 0;
1175 rq->hrtick_csd.func = __hrtick_start;
1176 rq->hrtick_csd.info = rq;
1179 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1180 rq->hrtick_timer.function = hrtick;
1182 #else /* CONFIG_SCHED_HRTICK */
1183 static inline void hrtick_clear(struct rq *rq)
1187 static inline void init_rq_hrtick(struct rq *rq)
1191 static inline void init_hrtick(void)
1194 #endif /* CONFIG_SCHED_HRTICK */
1197 * resched_task - mark a task 'to be rescheduled now'.
1199 * On UP this means the setting of the need_resched flag, on SMP it
1200 * might also involve a cross-CPU call to trigger the scheduler on
1205 #ifndef tsk_is_polling
1206 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1209 static void resched_task(struct task_struct *p)
1213 assert_spin_locked(&task_rq(p)->lock);
1215 if (test_tsk_need_resched(p))
1218 set_tsk_need_resched(p);
1221 if (cpu == smp_processor_id())
1224 /* NEED_RESCHED must be visible before we test polling */
1226 if (!tsk_is_polling(p))
1227 smp_send_reschedule(cpu);
1230 static void resched_cpu(int cpu)
1232 struct rq *rq = cpu_rq(cpu);
1233 unsigned long flags;
1235 if (!spin_trylock_irqsave(&rq->lock, flags))
1237 resched_task(cpu_curr(cpu));
1238 spin_unlock_irqrestore(&rq->lock, flags);
1243 * When add_timer_on() enqueues a timer into the timer wheel of an
1244 * idle CPU then this timer might expire before the next timer event
1245 * which is scheduled to wake up that CPU. In case of a completely
1246 * idle system the next event might even be infinite time into the
1247 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1248 * leaves the inner idle loop so the newly added timer is taken into
1249 * account when the CPU goes back to idle and evaluates the timer
1250 * wheel for the next timer event.
1252 void wake_up_idle_cpu(int cpu)
1254 struct rq *rq = cpu_rq(cpu);
1256 if (cpu == smp_processor_id())
1260 * This is safe, as this function is called with the timer
1261 * wheel base lock of (cpu) held. When the CPU is on the way
1262 * to idle and has not yet set rq->curr to idle then it will
1263 * be serialized on the timer wheel base lock and take the new
1264 * timer into account automatically.
1266 if (rq->curr != rq->idle)
1270 * We can set TIF_RESCHED on the idle task of the other CPU
1271 * lockless. The worst case is that the other CPU runs the
1272 * idle task through an additional NOOP schedule()
1274 set_tsk_need_resched(rq->idle);
1276 /* NEED_RESCHED must be visible before we test polling */
1278 if (!tsk_is_polling(rq->idle))
1279 smp_send_reschedule(cpu);
1281 #endif /* CONFIG_NO_HZ */
1283 #else /* !CONFIG_SMP */
1284 static void resched_task(struct task_struct *p)
1286 assert_spin_locked(&task_rq(p)->lock);
1287 set_tsk_need_resched(p);
1289 #endif /* CONFIG_SMP */
1291 #if BITS_PER_LONG == 32
1292 # define WMULT_CONST (~0UL)
1294 # define WMULT_CONST (1UL << 32)
1297 #define WMULT_SHIFT 32
1300 * Shift right and round:
1302 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1305 * delta *= weight / lw
1307 static unsigned long
1308 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1309 struct load_weight *lw)
1313 if (!lw->inv_weight) {
1314 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1317 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1321 tmp = (u64)delta_exec * weight;
1323 * Check whether we'd overflow the 64-bit multiplication:
1325 if (unlikely(tmp > WMULT_CONST))
1326 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1329 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1331 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1334 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1340 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1347 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1348 * of tasks with abnormal "nice" values across CPUs the contribution that
1349 * each task makes to its run queue's load is weighted according to its
1350 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1351 * scaled version of the new time slice allocation that they receive on time
1355 #define WEIGHT_IDLEPRIO 3
1356 #define WMULT_IDLEPRIO 1431655765
1359 * Nice levels are multiplicative, with a gentle 10% change for every
1360 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1361 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1362 * that remained on nice 0.
1364 * The "10% effect" is relative and cumulative: from _any_ nice level,
1365 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1366 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1367 * If a task goes up by ~10% and another task goes down by ~10% then
1368 * the relative distance between them is ~25%.)
1370 static const int prio_to_weight[40] = {
1371 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1372 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1373 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1374 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1375 /* 0 */ 1024, 820, 655, 526, 423,
1376 /* 5 */ 335, 272, 215, 172, 137,
1377 /* 10 */ 110, 87, 70, 56, 45,
1378 /* 15 */ 36, 29, 23, 18, 15,
1382 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1384 * In cases where the weight does not change often, we can use the
1385 * precalculated inverse to speed up arithmetics by turning divisions
1386 * into multiplications:
1388 static const u32 prio_to_wmult[40] = {
1389 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1390 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1391 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1392 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1393 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1394 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1395 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1396 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1399 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1402 * runqueue iterator, to support SMP load-balancing between different
1403 * scheduling classes, without having to expose their internal data
1404 * structures to the load-balancing proper:
1406 struct rq_iterator {
1408 struct task_struct *(*start)(void *);
1409 struct task_struct *(*next)(void *);
1413 static unsigned long
1414 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 unsigned long max_load_move, struct sched_domain *sd,
1416 enum cpu_idle_type idle, int *all_pinned,
1417 int *this_best_prio, struct rq_iterator *iterator);
1420 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1421 struct sched_domain *sd, enum cpu_idle_type idle,
1422 struct rq_iterator *iterator);
1425 /* Time spent by the tasks of the cpu accounting group executing in ... */
1426 enum cpuacct_stat_index {
1427 CPUACCT_STAT_USER, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1430 CPUACCT_STAT_NSTATS,
1433 #ifdef CONFIG_CGROUP_CPUACCT
1434 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1435 static void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val);
1438 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1439 static inline void cpuacct_update_stats(struct task_struct *tsk,
1440 enum cpuacct_stat_index idx, cputime_t val) {}
1443 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1445 update_load_add(&rq->load, load);
1448 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1450 update_load_sub(&rq->load, load);
1453 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1454 typedef int (*tg_visitor)(struct task_group *, void *);
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1460 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1462 struct task_group *parent, *child;
1466 parent = &root_task_group;
1468 ret = (*down)(parent, data);
1471 list_for_each_entry_rcu(child, &parent->children, siblings) {
1478 ret = (*up)(parent, data);
1483 parent = parent->parent;
1492 static int tg_nop(struct task_group *tg, void *data)
1499 static unsigned long source_load(int cpu, int type);
1500 static unsigned long target_load(int cpu, int type);
1501 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1503 static unsigned long cpu_avg_load_per_task(int cpu)
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1509 rq->avg_load_per_task = rq->load.weight / nr_running;
1511 rq->avg_load_per_task = 0;
1513 return rq->avg_load_per_task;
1516 #ifdef CONFIG_FAIR_GROUP_SCHED
1518 struct update_shares_data {
1519 unsigned long rq_weight[NR_CPUS];
1522 static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1524 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1527 * Calculate and set the cpu's group shares.
1529 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1530 unsigned long sd_shares,
1531 unsigned long sd_rq_weight,
1532 struct update_shares_data *usd)
1534 unsigned long shares, rq_weight;
1537 rq_weight = usd->rq_weight[cpu];
1540 rq_weight = NICE_0_LOAD;
1544 * \Sum_j shares_j * rq_weight_i
1545 * shares_i = -----------------------------
1546 * \Sum_j rq_weight_j
1548 shares = (sd_shares * rq_weight) / sd_rq_weight;
1549 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1551 if (abs(shares - tg->se[cpu]->load.weight) >
1552 sysctl_sched_shares_thresh) {
1553 struct rq *rq = cpu_rq(cpu);
1554 unsigned long flags;
1556 spin_lock_irqsave(&rq->lock, flags);
1557 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1558 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1559 __set_se_shares(tg->se[cpu], shares);
1560 spin_unlock_irqrestore(&rq->lock, flags);
1565 * Re-compute the task group their per cpu shares over the given domain.
1566 * This needs to be done in a bottom-up fashion because the rq weight of a
1567 * parent group depends on the shares of its child groups.
1569 static int tg_shares_up(struct task_group *tg, void *data)
1571 unsigned long weight, rq_weight = 0, shares = 0;
1572 struct update_shares_data *usd;
1573 struct sched_domain *sd = data;
1574 unsigned long flags;
1580 local_irq_save(flags);
1581 usd = &__get_cpu_var(update_shares_data);
1583 for_each_cpu(i, sched_domain_span(sd)) {
1584 weight = tg->cfs_rq[i]->load.weight;
1585 usd->rq_weight[i] = weight;
1588 * If there are currently no tasks on the cpu pretend there
1589 * is one of average load so that when a new task gets to
1590 * run here it will not get delayed by group starvation.
1593 weight = NICE_0_LOAD;
1595 rq_weight += weight;
1596 shares += tg->cfs_rq[i]->shares;
1599 if ((!shares && rq_weight) || shares > tg->shares)
1600 shares = tg->shares;
1602 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1603 shares = tg->shares;
1605 for_each_cpu(i, sched_domain_span(sd))
1606 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1608 local_irq_restore(flags);
1614 * Compute the cpu's hierarchical load factor for each task group.
1615 * This needs to be done in a top-down fashion because the load of a child
1616 * group is a fraction of its parents load.
1618 static int tg_load_down(struct task_group *tg, void *data)
1621 long cpu = (long)data;
1624 load = cpu_rq(cpu)->load.weight;
1626 load = tg->parent->cfs_rq[cpu]->h_load;
1627 load *= tg->cfs_rq[cpu]->shares;
1628 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1631 tg->cfs_rq[cpu]->h_load = load;
1636 static void update_shares(struct sched_domain *sd)
1641 if (root_task_group_empty())
1644 now = cpu_clock(raw_smp_processor_id());
1645 elapsed = now - sd->last_update;
1647 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1648 sd->last_update = now;
1649 walk_tg_tree(tg_nop, tg_shares_up, sd);
1653 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1655 if (root_task_group_empty())
1658 spin_unlock(&rq->lock);
1660 spin_lock(&rq->lock);
1663 static void update_h_load(long cpu)
1665 if (root_task_group_empty())
1668 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1673 static inline void update_shares(struct sched_domain *sd)
1677 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1683 #ifdef CONFIG_PREEMPT
1686 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1687 * way at the expense of forcing extra atomic operations in all
1688 * invocations. This assures that the double_lock is acquired using the
1689 * same underlying policy as the spinlock_t on this architecture, which
1690 * reduces latency compared to the unfair variant below. However, it
1691 * also adds more overhead and therefore may reduce throughput.
1693 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1694 __releases(this_rq->lock)
1695 __acquires(busiest->lock)
1696 __acquires(this_rq->lock)
1698 spin_unlock(&this_rq->lock);
1699 double_rq_lock(this_rq, busiest);
1706 * Unfair double_lock_balance: Optimizes throughput at the expense of
1707 * latency by eliminating extra atomic operations when the locks are
1708 * already in proper order on entry. This favors lower cpu-ids and will
1709 * grant the double lock to lower cpus over higher ids under contention,
1710 * regardless of entry order into the function.
1712 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1713 __releases(this_rq->lock)
1714 __acquires(busiest->lock)
1715 __acquires(this_rq->lock)
1719 if (unlikely(!spin_trylock(&busiest->lock))) {
1720 if (busiest < this_rq) {
1721 spin_unlock(&this_rq->lock);
1722 spin_lock(&busiest->lock);
1723 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1726 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1731 #endif /* CONFIG_PREEMPT */
1734 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1736 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1738 if (unlikely(!irqs_disabled())) {
1739 /* printk() doesn't work good under rq->lock */
1740 spin_unlock(&this_rq->lock);
1744 return _double_lock_balance(this_rq, busiest);
1747 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1748 __releases(busiest->lock)
1750 spin_unlock(&busiest->lock);
1751 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1755 #ifdef CONFIG_FAIR_GROUP_SCHED
1756 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1759 cfs_rq->shares = shares;
1764 static void calc_load_account_active(struct rq *this_rq);
1766 #include "sched_stats.h"
1767 #include "sched_idletask.c"
1768 #include "sched_fair.c"
1769 #include "sched_rt.c"
1770 #ifdef CONFIG_SCHED_DEBUG
1771 # include "sched_debug.c"
1774 #define sched_class_highest (&rt_sched_class)
1775 #define for_each_class(class) \
1776 for (class = sched_class_highest; class; class = class->next)
1778 static void inc_nr_running(struct rq *rq)
1783 static void dec_nr_running(struct rq *rq)
1788 static void set_load_weight(struct task_struct *p)
1790 if (task_has_rt_policy(p)) {
1791 p->se.load.weight = prio_to_weight[0] * 2;
1792 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1797 * SCHED_IDLE tasks get minimal weight:
1799 if (p->policy == SCHED_IDLE) {
1800 p->se.load.weight = WEIGHT_IDLEPRIO;
1801 p->se.load.inv_weight = WMULT_IDLEPRIO;
1805 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1806 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1809 static void update_avg(u64 *avg, u64 sample)
1811 s64 diff = sample - *avg;
1815 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1818 p->se.start_runtime = p->se.sum_exec_runtime;
1820 sched_info_queued(p);
1821 p->sched_class->enqueue_task(rq, p, wakeup);
1825 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1828 if (p->se.last_wakeup) {
1829 update_avg(&p->se.avg_overlap,
1830 p->se.sum_exec_runtime - p->se.last_wakeup);
1831 p->se.last_wakeup = 0;
1833 update_avg(&p->se.avg_wakeup,
1834 sysctl_sched_wakeup_granularity);
1838 sched_info_dequeued(p);
1839 p->sched_class->dequeue_task(rq, p, sleep);
1844 * __normal_prio - return the priority that is based on the static prio
1846 static inline int __normal_prio(struct task_struct *p)
1848 return p->static_prio;
1852 * Calculate the expected normal priority: i.e. priority
1853 * without taking RT-inheritance into account. Might be
1854 * boosted by interactivity modifiers. Changes upon fork,
1855 * setprio syscalls, and whenever the interactivity
1856 * estimator recalculates.
1858 static inline int normal_prio(struct task_struct *p)
1862 if (task_has_rt_policy(p))
1863 prio = MAX_RT_PRIO-1 - p->rt_priority;
1865 prio = __normal_prio(p);
1870 * Calculate the current priority, i.e. the priority
1871 * taken into account by the scheduler. This value might
1872 * be boosted by RT tasks, or might be boosted by
1873 * interactivity modifiers. Will be RT if the task got
1874 * RT-boosted. If not then it returns p->normal_prio.
1876 static int effective_prio(struct task_struct *p)
1878 p->normal_prio = normal_prio(p);
1880 * If we are RT tasks or we were boosted to RT priority,
1881 * keep the priority unchanged. Otherwise, update priority
1882 * to the normal priority:
1884 if (!rt_prio(p->prio))
1885 return p->normal_prio;
1890 * activate_task - move a task to the runqueue.
1892 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1894 if (task_contributes_to_load(p))
1895 rq->nr_uninterruptible--;
1897 enqueue_task(rq, p, wakeup);
1902 * deactivate_task - remove a task from the runqueue.
1904 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1906 if (task_contributes_to_load(p))
1907 rq->nr_uninterruptible++;
1909 dequeue_task(rq, p, sleep);
1914 * task_curr - is this task currently executing on a CPU?
1915 * @p: the task in question.
1917 inline int task_curr(const struct task_struct *p)
1919 return cpu_curr(task_cpu(p)) == p;
1922 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1924 set_task_rq(p, cpu);
1927 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1928 * successfuly executed on another CPU. We must ensure that updates of
1929 * per-task data have been completed by this moment.
1932 task_thread_info(p)->cpu = cpu;
1936 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1937 const struct sched_class *prev_class,
1938 int oldprio, int running)
1940 if (prev_class != p->sched_class) {
1941 if (prev_class->switched_from)
1942 prev_class->switched_from(rq, p, running);
1943 p->sched_class->switched_to(rq, p, running);
1945 p->sched_class->prio_changed(rq, p, oldprio, running);
1950 /* Used instead of source_load when we know the type == 0 */
1951 static unsigned long weighted_cpuload(const int cpu)
1953 return cpu_rq(cpu)->load.weight;
1957 * Is this task likely cache-hot:
1960 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1965 * Buddy candidates are cache hot:
1967 if (sched_feat(CACHE_HOT_BUDDY) &&
1968 (&p->se == cfs_rq_of(&p->se)->next ||
1969 &p->se == cfs_rq_of(&p->se)->last))
1972 if (p->sched_class != &fair_sched_class)
1975 if (sysctl_sched_migration_cost == -1)
1977 if (sysctl_sched_migration_cost == 0)
1980 delta = now - p->se.exec_start;
1982 return delta < (s64)sysctl_sched_migration_cost;
1986 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1988 int old_cpu = task_cpu(p);
1989 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1990 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1991 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1994 clock_offset = old_rq->clock - new_rq->clock;
1996 trace_sched_migrate_task(p, new_cpu);
1998 #ifdef CONFIG_SCHEDSTATS
1999 if (p->se.wait_start)
2000 p->se.wait_start -= clock_offset;
2001 if (p->se.sleep_start)
2002 p->se.sleep_start -= clock_offset;
2003 if (p->se.block_start)
2004 p->se.block_start -= clock_offset;
2006 if (old_cpu != new_cpu) {
2007 p->se.nr_migrations++;
2008 new_rq->nr_migrations_in++;
2009 #ifdef CONFIG_SCHEDSTATS
2010 if (task_hot(p, old_rq->clock, NULL))
2011 schedstat_inc(p, se.nr_forced2_migrations);
2013 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2016 p->se.vruntime -= old_cfsrq->min_vruntime -
2017 new_cfsrq->min_vruntime;
2019 __set_task_cpu(p, new_cpu);
2022 struct migration_req {
2023 struct list_head list;
2025 struct task_struct *task;
2028 struct completion done;
2032 * The task's runqueue lock must be held.
2033 * Returns true if you have to wait for migration thread.
2036 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2038 struct rq *rq = task_rq(p);
2041 * If the task is not on a runqueue (and not running), then
2042 * it is sufficient to simply update the task's cpu field.
2044 if (!p->se.on_rq && !task_running(rq, p)) {
2045 set_task_cpu(p, dest_cpu);
2049 init_completion(&req->done);
2051 req->dest_cpu = dest_cpu;
2052 list_add(&req->list, &rq->migration_queue);
2058 * wait_task_context_switch - wait for a thread to complete at least one
2061 * @p must not be current.
2063 void wait_task_context_switch(struct task_struct *p)
2065 unsigned long nvcsw, nivcsw, flags;
2073 * The runqueue is assigned before the actual context
2074 * switch. We need to take the runqueue lock.
2076 * We could check initially without the lock but it is
2077 * very likely that we need to take the lock in every
2080 rq = task_rq_lock(p, &flags);
2081 running = task_running(rq, p);
2082 task_rq_unlock(rq, &flags);
2084 if (likely(!running))
2087 * The switch count is incremented before the actual
2088 * context switch. We thus wait for two switches to be
2089 * sure at least one completed.
2091 if ((p->nvcsw - nvcsw) > 1)
2093 if ((p->nivcsw - nivcsw) > 1)
2101 * wait_task_inactive - wait for a thread to unschedule.
2103 * If @match_state is nonzero, it's the @p->state value just checked and
2104 * not expected to change. If it changes, i.e. @p might have woken up,
2105 * then return zero. When we succeed in waiting for @p to be off its CPU,
2106 * we return a positive number (its total switch count). If a second call
2107 * a short while later returns the same number, the caller can be sure that
2108 * @p has remained unscheduled the whole time.
2110 * The caller must ensure that the task *will* unschedule sometime soon,
2111 * else this function might spin for a *long* time. This function can't
2112 * be called with interrupts off, or it may introduce deadlock with
2113 * smp_call_function() if an IPI is sent by the same process we are
2114 * waiting to become inactive.
2116 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2118 unsigned long flags;
2125 * We do the initial early heuristics without holding
2126 * any task-queue locks at all. We'll only try to get
2127 * the runqueue lock when things look like they will
2133 * If the task is actively running on another CPU
2134 * still, just relax and busy-wait without holding
2137 * NOTE! Since we don't hold any locks, it's not
2138 * even sure that "rq" stays as the right runqueue!
2139 * But we don't care, since "task_running()" will
2140 * return false if the runqueue has changed and p
2141 * is actually now running somewhere else!
2143 while (task_running(rq, p)) {
2144 if (match_state && unlikely(p->state != match_state))
2150 * Ok, time to look more closely! We need the rq
2151 * lock now, to be *sure*. If we're wrong, we'll
2152 * just go back and repeat.
2154 rq = task_rq_lock(p, &flags);
2155 trace_sched_wait_task(rq, p);
2156 running = task_running(rq, p);
2157 on_rq = p->se.on_rq;
2159 if (!match_state || p->state == match_state)
2160 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2161 task_rq_unlock(rq, &flags);
2164 * If it changed from the expected state, bail out now.
2166 if (unlikely(!ncsw))
2170 * Was it really running after all now that we
2171 * checked with the proper locks actually held?
2173 * Oops. Go back and try again..
2175 if (unlikely(running)) {
2181 * It's not enough that it's not actively running,
2182 * it must be off the runqueue _entirely_, and not
2185 * So if it was still runnable (but just not actively
2186 * running right now), it's preempted, and we should
2187 * yield - it could be a while.
2189 if (unlikely(on_rq)) {
2190 schedule_timeout_uninterruptible(1);
2195 * Ahh, all good. It wasn't running, and it wasn't
2196 * runnable, which means that it will never become
2197 * running in the future either. We're all done!
2206 * kick_process - kick a running thread to enter/exit the kernel
2207 * @p: the to-be-kicked thread
2209 * Cause a process which is running on another CPU to enter
2210 * kernel-mode, without any delay. (to get signals handled.)
2212 * NOTE: this function doesnt have to take the runqueue lock,
2213 * because all it wants to ensure is that the remote task enters
2214 * the kernel. If the IPI races and the task has been migrated
2215 * to another CPU then no harm is done and the purpose has been
2218 void kick_process(struct task_struct *p)
2224 if ((cpu != smp_processor_id()) && task_curr(p))
2225 smp_send_reschedule(cpu);
2228 EXPORT_SYMBOL_GPL(kick_process);
2231 * Return a low guess at the load of a migration-source cpu weighted
2232 * according to the scheduling class and "nice" value.
2234 * We want to under-estimate the load of migration sources, to
2235 * balance conservatively.
2237 static unsigned long source_load(int cpu, int type)
2239 struct rq *rq = cpu_rq(cpu);
2240 unsigned long total = weighted_cpuload(cpu);
2242 if (type == 0 || !sched_feat(LB_BIAS))
2245 return min(rq->cpu_load[type-1], total);
2249 * Return a high guess at the load of a migration-target cpu weighted
2250 * according to the scheduling class and "nice" value.
2252 static unsigned long target_load(int cpu, int type)
2254 struct rq *rq = cpu_rq(cpu);
2255 unsigned long total = weighted_cpuload(cpu);
2257 if (type == 0 || !sched_feat(LB_BIAS))
2260 return max(rq->cpu_load[type-1], total);
2264 * find_idlest_group finds and returns the least busy CPU group within the
2267 static struct sched_group *
2268 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2270 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2271 unsigned long min_load = ULONG_MAX, this_load = 0;
2272 int load_idx = sd->forkexec_idx;
2273 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2276 unsigned long load, avg_load;
2280 /* Skip over this group if it has no CPUs allowed */
2281 if (!cpumask_intersects(sched_group_cpus(group),
2285 local_group = cpumask_test_cpu(this_cpu,
2286 sched_group_cpus(group));
2288 /* Tally up the load of all CPUs in the group */
2291 for_each_cpu(i, sched_group_cpus(group)) {
2292 /* Bias balancing toward cpus of our domain */
2294 load = source_load(i, load_idx);
2296 load = target_load(i, load_idx);
2301 /* Adjust by relative CPU power of the group */
2302 avg_load = sg_div_cpu_power(group,
2303 avg_load * SCHED_LOAD_SCALE);
2306 this_load = avg_load;
2308 } else if (avg_load < min_load) {
2309 min_load = avg_load;
2312 } while (group = group->next, group != sd->groups);
2314 if (!idlest || 100*this_load < imbalance*min_load)
2320 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2323 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2325 unsigned long load, min_load = ULONG_MAX;
2329 /* Traverse only the allowed CPUs */
2330 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2331 load = weighted_cpuload(i);
2333 if (load < min_load || (load == min_load && i == this_cpu)) {
2343 * sched_balance_self: balance the current task (running on cpu) in domains
2344 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2347 * Balance, ie. select the least loaded group.
2349 * Returns the target CPU number, or the same CPU if no balancing is needed.
2351 * preempt must be disabled.
2353 static int sched_balance_self(int cpu, int flag)
2355 struct task_struct *t = current;
2356 struct sched_domain *tmp, *sd = NULL;
2358 for_each_domain(cpu, tmp) {
2360 * If power savings logic is enabled for a domain, stop there.
2362 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2364 if (tmp->flags & flag)
2372 struct sched_group *group;
2373 int new_cpu, weight;
2375 if (!(sd->flags & flag)) {
2380 group = find_idlest_group(sd, t, cpu);
2386 new_cpu = find_idlest_cpu(group, t, cpu);
2387 if (new_cpu == -1 || new_cpu == cpu) {
2388 /* Now try balancing at a lower domain level of cpu */
2393 /* Now try balancing at a lower domain level of new_cpu */
2395 weight = cpumask_weight(sched_domain_span(sd));
2397 for_each_domain(cpu, tmp) {
2398 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2400 if (tmp->flags & flag)
2403 /* while loop will break here if sd == NULL */
2409 #endif /* CONFIG_SMP */
2412 * task_oncpu_function_call - call a function on the cpu on which a task runs
2413 * @p: the task to evaluate
2414 * @func: the function to be called
2415 * @info: the function call argument
2417 * Calls the function @func when the task is currently running. This might
2418 * be on the current CPU, which just calls the function directly
2420 void task_oncpu_function_call(struct task_struct *p,
2421 void (*func) (void *info), void *info)
2428 smp_call_function_single(cpu, func, info, 1);
2433 * try_to_wake_up - wake up a thread
2434 * @p: the to-be-woken-up thread
2435 * @state: the mask of task states that can be woken
2436 * @sync: do a synchronous wakeup?
2438 * Put it on the run-queue if it's not already there. The "current"
2439 * thread is always on the run-queue (except when the actual
2440 * re-schedule is in progress), and as such you're allowed to do
2441 * the simpler "current->state = TASK_RUNNING" to mark yourself
2442 * runnable without the overhead of this.
2444 * returns failure only if the task is already active.
2446 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2448 int cpu, orig_cpu, this_cpu, success = 0;
2449 unsigned long flags;
2453 if (!sched_feat(SYNC_WAKEUPS))
2457 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2458 struct sched_domain *sd;
2460 this_cpu = raw_smp_processor_id();
2463 for_each_domain(this_cpu, sd) {
2464 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2473 rq = task_rq_lock(p, &flags);
2474 update_rq_clock(rq);
2475 old_state = p->state;
2476 if (!(old_state & state))
2484 this_cpu = smp_processor_id();
2487 if (unlikely(task_running(rq, p)))
2490 cpu = p->sched_class->select_task_rq(p, sync);
2491 if (cpu != orig_cpu) {
2492 set_task_cpu(p, cpu);
2493 task_rq_unlock(rq, &flags);
2494 /* might preempt at this point */
2495 rq = task_rq_lock(p, &flags);
2496 old_state = p->state;
2497 if (!(old_state & state))
2502 this_cpu = smp_processor_id();
2506 #ifdef CONFIG_SCHEDSTATS
2507 schedstat_inc(rq, ttwu_count);
2508 if (cpu == this_cpu)
2509 schedstat_inc(rq, ttwu_local);
2511 struct sched_domain *sd;
2512 for_each_domain(this_cpu, sd) {
2513 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2514 schedstat_inc(sd, ttwu_wake_remote);
2519 #endif /* CONFIG_SCHEDSTATS */
2522 #endif /* CONFIG_SMP */
2523 schedstat_inc(p, se.nr_wakeups);
2525 schedstat_inc(p, se.nr_wakeups_sync);
2526 if (orig_cpu != cpu)
2527 schedstat_inc(p, se.nr_wakeups_migrate);
2528 if (cpu == this_cpu)
2529 schedstat_inc(p, se.nr_wakeups_local);
2531 schedstat_inc(p, se.nr_wakeups_remote);
2532 activate_task(rq, p, 1);
2536 * Only attribute actual wakeups done by this task.
2538 if (!in_interrupt()) {
2539 struct sched_entity *se = ¤t->se;
2540 u64 sample = se->sum_exec_runtime;
2542 if (se->last_wakeup)
2543 sample -= se->last_wakeup;
2545 sample -= se->start_runtime;
2546 update_avg(&se->avg_wakeup, sample);
2548 se->last_wakeup = se->sum_exec_runtime;
2552 trace_sched_wakeup(rq, p, success);
2553 check_preempt_curr(rq, p, sync);
2555 p->state = TASK_RUNNING;
2557 if (p->sched_class->task_wake_up)
2558 p->sched_class->task_wake_up(rq, p);
2561 task_rq_unlock(rq, &flags);
2567 * wake_up_process - Wake up a specific process
2568 * @p: The process to be woken up.
2570 * Attempt to wake up the nominated process and move it to the set of runnable
2571 * processes. Returns 1 if the process was woken up, 0 if it was already
2574 * It may be assumed that this function implies a write memory barrier before
2575 * changing the task state if and only if any tasks are woken up.
2577 int wake_up_process(struct task_struct *p)
2579 return try_to_wake_up(p, TASK_ALL, 0);
2581 EXPORT_SYMBOL(wake_up_process);
2583 int wake_up_state(struct task_struct *p, unsigned int state)
2585 return try_to_wake_up(p, state, 0);
2589 * Perform scheduler related setup for a newly forked process p.
2590 * p is forked by current.
2592 * __sched_fork() is basic setup used by init_idle() too:
2594 static void __sched_fork(struct task_struct *p)
2596 p->se.exec_start = 0;
2597 p->se.sum_exec_runtime = 0;
2598 p->se.prev_sum_exec_runtime = 0;
2599 p->se.nr_migrations = 0;
2600 p->se.last_wakeup = 0;
2601 p->se.avg_overlap = 0;
2602 p->se.start_runtime = 0;
2603 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2605 #ifdef CONFIG_SCHEDSTATS
2606 p->se.wait_start = 0;
2608 p->se.wait_count = 0;
2611 p->se.sleep_start = 0;
2612 p->se.sleep_max = 0;
2613 p->se.sum_sleep_runtime = 0;
2615 p->se.block_start = 0;
2616 p->se.block_max = 0;
2618 p->se.slice_max = 0;
2620 p->se.nr_migrations_cold = 0;
2621 p->se.nr_failed_migrations_affine = 0;
2622 p->se.nr_failed_migrations_running = 0;
2623 p->se.nr_failed_migrations_hot = 0;
2624 p->se.nr_forced_migrations = 0;
2625 p->se.nr_forced2_migrations = 0;
2627 p->se.nr_wakeups = 0;
2628 p->se.nr_wakeups_sync = 0;
2629 p->se.nr_wakeups_migrate = 0;
2630 p->se.nr_wakeups_local = 0;
2631 p->se.nr_wakeups_remote = 0;
2632 p->se.nr_wakeups_affine = 0;
2633 p->se.nr_wakeups_affine_attempts = 0;
2634 p->se.nr_wakeups_passive = 0;
2635 p->se.nr_wakeups_idle = 0;
2639 INIT_LIST_HEAD(&p->rt.run_list);
2641 INIT_LIST_HEAD(&p->se.group_node);
2643 #ifdef CONFIG_PREEMPT_NOTIFIERS
2644 INIT_HLIST_HEAD(&p->preempt_notifiers);
2648 * We mark the process as running here, but have not actually
2649 * inserted it onto the runqueue yet. This guarantees that
2650 * nobody will actually run it, and a signal or other external
2651 * event cannot wake it up and insert it on the runqueue either.
2653 p->state = TASK_RUNNING;
2657 * fork()/clone()-time setup:
2659 void sched_fork(struct task_struct *p, int clone_flags)
2661 int cpu = get_cpu();
2666 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2668 set_task_cpu(p, cpu);
2671 * Make sure we do not leak PI boosting priority to the child.
2673 p->prio = current->normal_prio;
2676 * Revert to default priority/policy on fork if requested.
2678 if (unlikely(p->sched_reset_on_fork)) {
2679 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2680 p->policy = SCHED_NORMAL;
2682 if (p->normal_prio < DEFAULT_PRIO)
2683 p->prio = DEFAULT_PRIO;
2685 if (PRIO_TO_NICE(p->static_prio) < 0) {
2686 p->static_prio = NICE_TO_PRIO(0);
2691 * We don't need the reset flag anymore after the fork. It has
2692 * fulfilled its duty:
2694 p->sched_reset_on_fork = 0;
2697 if (!rt_prio(p->prio))
2698 p->sched_class = &fair_sched_class;
2700 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2701 if (likely(sched_info_on()))
2702 memset(&p->sched_info, 0, sizeof(p->sched_info));
2704 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2707 #ifdef CONFIG_PREEMPT
2708 /* Want to start with kernel preemption disabled. */
2709 task_thread_info(p)->preempt_count = 1;
2711 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2717 * wake_up_new_task - wake up a newly created task for the first time.
2719 * This function will do some initial scheduler statistics housekeeping
2720 * that must be done for every newly created context, then puts the task
2721 * on the runqueue and wakes it.
2723 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2725 unsigned long flags;
2728 rq = task_rq_lock(p, &flags);
2729 BUG_ON(p->state != TASK_RUNNING);
2730 update_rq_clock(rq);
2732 p->prio = effective_prio(p);
2734 if (!p->sched_class->task_new || !current->se.on_rq) {
2735 activate_task(rq, p, 0);
2738 * Let the scheduling class do new task startup
2739 * management (if any):
2741 p->sched_class->task_new(rq, p);
2744 trace_sched_wakeup_new(rq, p, 1);
2745 check_preempt_curr(rq, p, 0);
2747 if (p->sched_class->task_wake_up)
2748 p->sched_class->task_wake_up(rq, p);
2750 task_rq_unlock(rq, &flags);
2753 #ifdef CONFIG_PREEMPT_NOTIFIERS
2756 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2757 * @notifier: notifier struct to register
2759 void preempt_notifier_register(struct preempt_notifier *notifier)
2761 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2763 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2766 * preempt_notifier_unregister - no longer interested in preemption notifications
2767 * @notifier: notifier struct to unregister
2769 * This is safe to call from within a preemption notifier.
2771 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2773 hlist_del(¬ifier->link);
2775 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2777 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2779 struct preempt_notifier *notifier;
2780 struct hlist_node *node;
2782 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2783 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2787 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2788 struct task_struct *next)
2790 struct preempt_notifier *notifier;
2791 struct hlist_node *node;
2793 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2794 notifier->ops->sched_out(notifier, next);
2797 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2799 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2804 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2805 struct task_struct *next)
2809 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2812 * prepare_task_switch - prepare to switch tasks
2813 * @rq: the runqueue preparing to switch
2814 * @prev: the current task that is being switched out
2815 * @next: the task we are going to switch to.
2817 * This is called with the rq lock held and interrupts off. It must
2818 * be paired with a subsequent finish_task_switch after the context
2821 * prepare_task_switch sets up locking and calls architecture specific
2825 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2826 struct task_struct *next)
2828 fire_sched_out_preempt_notifiers(prev, next);
2829 prepare_lock_switch(rq, next);
2830 prepare_arch_switch(next);
2834 * finish_task_switch - clean up after a task-switch
2835 * @rq: runqueue associated with task-switch
2836 * @prev: the thread we just switched away from.
2838 * finish_task_switch must be called after the context switch, paired
2839 * with a prepare_task_switch call before the context switch.
2840 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2841 * and do any other architecture-specific cleanup actions.
2843 * Note that we may have delayed dropping an mm in context_switch(). If
2844 * so, we finish that here outside of the runqueue lock. (Doing it
2845 * with the lock held can cause deadlocks; see schedule() for
2848 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2849 __releases(rq->lock)
2851 struct mm_struct *mm = rq->prev_mm;
2857 * A task struct has one reference for the use as "current".
2858 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2859 * schedule one last time. The schedule call will never return, and
2860 * the scheduled task must drop that reference.
2861 * The test for TASK_DEAD must occur while the runqueue locks are
2862 * still held, otherwise prev could be scheduled on another cpu, die
2863 * there before we look at prev->state, and then the reference would
2865 * Manfred Spraul <manfred@colorfullife.com>
2867 prev_state = prev->state;
2868 finish_arch_switch(prev);
2869 perf_counter_task_sched_in(current, cpu_of(rq));
2870 finish_lock_switch(rq, prev);
2872 fire_sched_in_preempt_notifiers(current);
2875 if (unlikely(prev_state == TASK_DEAD)) {
2877 * Remove function-return probe instances associated with this
2878 * task and put them back on the free list.
2880 kprobe_flush_task(prev);
2881 put_task_struct(prev);
2887 /* assumes rq->lock is held */
2888 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2890 if (prev->sched_class->pre_schedule)
2891 prev->sched_class->pre_schedule(rq, prev);
2894 /* rq->lock is NOT held, but preemption is disabled */
2895 static inline void post_schedule(struct rq *rq)
2897 if (rq->post_schedule) {
2898 unsigned long flags;
2900 spin_lock_irqsave(&rq->lock, flags);
2901 if (rq->curr->sched_class->post_schedule)
2902 rq->curr->sched_class->post_schedule(rq);
2903 spin_unlock_irqrestore(&rq->lock, flags);
2905 rq->post_schedule = 0;
2911 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2915 static inline void post_schedule(struct rq *rq)
2922 * schedule_tail - first thing a freshly forked thread must call.
2923 * @prev: the thread we just switched away from.
2925 asmlinkage void schedule_tail(struct task_struct *prev)
2926 __releases(rq->lock)
2928 struct rq *rq = this_rq();
2930 finish_task_switch(rq, prev);
2933 * FIXME: do we need to worry about rq being invalidated by the
2938 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2939 /* In this case, finish_task_switch does not reenable preemption */
2942 if (current->set_child_tid)
2943 put_user(task_pid_vnr(current), current->set_child_tid);
2947 * context_switch - switch to the new MM and the new
2948 * thread's register state.
2951 context_switch(struct rq *rq, struct task_struct *prev,
2952 struct task_struct *next)
2954 struct mm_struct *mm, *oldmm;
2956 prepare_task_switch(rq, prev, next);
2957 trace_sched_switch(rq, prev, next);
2959 oldmm = prev->active_mm;
2961 * For paravirt, this is coupled with an exit in switch_to to
2962 * combine the page table reload and the switch backend into
2965 arch_start_context_switch(prev);
2967 if (unlikely(!mm)) {
2968 next->active_mm = oldmm;
2969 atomic_inc(&oldmm->mm_count);
2970 enter_lazy_tlb(oldmm, next);
2972 switch_mm(oldmm, mm, next);
2974 if (unlikely(!prev->mm)) {
2975 prev->active_mm = NULL;
2976 rq->prev_mm = oldmm;
2979 * Since the runqueue lock will be released by the next
2980 * task (which is an invalid locking op but in the case
2981 * of the scheduler it's an obvious special-case), so we
2982 * do an early lockdep release here:
2984 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2985 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2988 /* Here we just switch the register state and the stack. */
2989 switch_to(prev, next, prev);
2993 * this_rq must be evaluated again because prev may have moved
2994 * CPUs since it called schedule(), thus the 'rq' on its stack
2995 * frame will be invalid.
2997 finish_task_switch(this_rq(), prev);
3001 * nr_running, nr_uninterruptible and nr_context_switches:
3003 * externally visible scheduler statistics: current number of runnable
3004 * threads, current number of uninterruptible-sleeping threads, total
3005 * number of context switches performed since bootup.
3007 unsigned long nr_running(void)
3009 unsigned long i, sum = 0;
3011 for_each_online_cpu(i)
3012 sum += cpu_rq(i)->nr_running;
3017 unsigned long nr_uninterruptible(void)
3019 unsigned long i, sum = 0;
3021 for_each_possible_cpu(i)
3022 sum += cpu_rq(i)->nr_uninterruptible;
3025 * Since we read the counters lockless, it might be slightly
3026 * inaccurate. Do not allow it to go below zero though:
3028 if (unlikely((long)sum < 0))
3034 unsigned long long nr_context_switches(void)
3037 unsigned long long sum = 0;
3039 for_each_possible_cpu(i)
3040 sum += cpu_rq(i)->nr_switches;
3045 unsigned long nr_iowait(void)
3047 unsigned long i, sum = 0;
3049 for_each_possible_cpu(i)
3050 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3055 /* Variables and functions for calc_load */
3056 static atomic_long_t calc_load_tasks;
3057 static unsigned long calc_load_update;
3058 unsigned long avenrun[3];
3059 EXPORT_SYMBOL(avenrun);
3062 * get_avenrun - get the load average array
3063 * @loads: pointer to dest load array
3064 * @offset: offset to add
3065 * @shift: shift count to shift the result left
3067 * These values are estimates at best, so no need for locking.
3069 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3071 loads[0] = (avenrun[0] + offset) << shift;
3072 loads[1] = (avenrun[1] + offset) << shift;
3073 loads[2] = (avenrun[2] + offset) << shift;
3076 static unsigned long
3077 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3080 load += active * (FIXED_1 - exp);
3081 return load >> FSHIFT;
3085 * calc_load - update the avenrun load estimates 10 ticks after the
3086 * CPUs have updated calc_load_tasks.
3088 void calc_global_load(void)
3090 unsigned long upd = calc_load_update + 10;
3093 if (time_before(jiffies, upd))
3096 active = atomic_long_read(&calc_load_tasks);
3097 active = active > 0 ? active * FIXED_1 : 0;
3099 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3100 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3101 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3103 calc_load_update += LOAD_FREQ;
3107 * Either called from update_cpu_load() or from a cpu going idle
3109 static void calc_load_account_active(struct rq *this_rq)
3111 long nr_active, delta;
3113 nr_active = this_rq->nr_running;
3114 nr_active += (long) this_rq->nr_uninterruptible;
3116 if (nr_active != this_rq->calc_load_active) {
3117 delta = nr_active - this_rq->calc_load_active;
3118 this_rq->calc_load_active = nr_active;
3119 atomic_long_add(delta, &calc_load_tasks);
3124 * Externally visible per-cpu scheduler statistics:
3125 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3127 u64 cpu_nr_migrations(int cpu)
3129 return cpu_rq(cpu)->nr_migrations_in;
3133 * Update rq->cpu_load[] statistics. This function is usually called every
3134 * scheduler tick (TICK_NSEC).
3136 static void update_cpu_load(struct rq *this_rq)
3138 unsigned long this_load = this_rq->load.weight;
3141 this_rq->nr_load_updates++;
3143 /* Update our load: */
3144 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3145 unsigned long old_load, new_load;
3147 /* scale is effectively 1 << i now, and >> i divides by scale */
3149 old_load = this_rq->cpu_load[i];
3150 new_load = this_load;
3152 * Round up the averaging division if load is increasing. This
3153 * prevents us from getting stuck on 9 if the load is 10, for
3156 if (new_load > old_load)
3157 new_load += scale-1;
3158 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3161 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3162 this_rq->calc_load_update += LOAD_FREQ;
3163 calc_load_account_active(this_rq);
3170 * double_rq_lock - safely lock two runqueues
3172 * Note this does not disable interrupts like task_rq_lock,
3173 * you need to do so manually before calling.
3175 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3176 __acquires(rq1->lock)
3177 __acquires(rq2->lock)
3179 BUG_ON(!irqs_disabled());
3181 spin_lock(&rq1->lock);
3182 __acquire(rq2->lock); /* Fake it out ;) */
3185 spin_lock(&rq1->lock);
3186 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3188 spin_lock(&rq2->lock);
3189 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3192 update_rq_clock(rq1);
3193 update_rq_clock(rq2);
3197 * double_rq_unlock - safely unlock two runqueues
3199 * Note this does not restore interrupts like task_rq_unlock,
3200 * you need to do so manually after calling.
3202 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3203 __releases(rq1->lock)
3204 __releases(rq2->lock)
3206 spin_unlock(&rq1->lock);
3208 spin_unlock(&rq2->lock);
3210 __release(rq2->lock);
3214 * If dest_cpu is allowed for this process, migrate the task to it.
3215 * This is accomplished by forcing the cpu_allowed mask to only
3216 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3217 * the cpu_allowed mask is restored.
3219 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3221 struct migration_req req;
3222 unsigned long flags;
3225 rq = task_rq_lock(p, &flags);
3226 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3227 || unlikely(!cpu_active(dest_cpu)))
3230 /* force the process onto the specified CPU */
3231 if (migrate_task(p, dest_cpu, &req)) {
3232 /* Need to wait for migration thread (might exit: take ref). */
3233 struct task_struct *mt = rq->migration_thread;
3235 get_task_struct(mt);
3236 task_rq_unlock(rq, &flags);
3237 wake_up_process(mt);
3238 put_task_struct(mt);
3239 wait_for_completion(&req.done);
3244 task_rq_unlock(rq, &flags);
3248 * sched_exec - execve() is a valuable balancing opportunity, because at
3249 * this point the task has the smallest effective memory and cache footprint.
3251 void sched_exec(void)
3253 int new_cpu, this_cpu = get_cpu();
3254 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3256 if (new_cpu != this_cpu)
3257 sched_migrate_task(current, new_cpu);
3261 * pull_task - move a task from a remote runqueue to the local runqueue.
3262 * Both runqueues must be locked.
3264 static void pull_task(struct rq *src_rq, struct task_struct *p,
3265 struct rq *this_rq, int this_cpu)
3267 deactivate_task(src_rq, p, 0);
3268 set_task_cpu(p, this_cpu);
3269 activate_task(this_rq, p, 0);
3271 * Note that idle threads have a prio of MAX_PRIO, for this test
3272 * to be always true for them.
3274 check_preempt_curr(this_rq, p, 0);
3278 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3281 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3282 struct sched_domain *sd, enum cpu_idle_type idle,
3285 int tsk_cache_hot = 0;
3287 * We do not migrate tasks that are:
3288 * 1) running (obviously), or
3289 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3290 * 3) are cache-hot on their current CPU.
3292 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3293 schedstat_inc(p, se.nr_failed_migrations_affine);
3298 if (task_running(rq, p)) {
3299 schedstat_inc(p, se.nr_failed_migrations_running);
3304 * Aggressive migration if:
3305 * 1) task is cache cold, or
3306 * 2) too many balance attempts have failed.
3309 tsk_cache_hot = task_hot(p, rq->clock, sd);
3310 if (!tsk_cache_hot ||
3311 sd->nr_balance_failed > sd->cache_nice_tries) {
3312 #ifdef CONFIG_SCHEDSTATS
3313 if (tsk_cache_hot) {
3314 schedstat_inc(sd, lb_hot_gained[idle]);
3315 schedstat_inc(p, se.nr_forced_migrations);
3321 if (tsk_cache_hot) {
3322 schedstat_inc(p, se.nr_failed_migrations_hot);
3328 static unsigned long
3329 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3330 unsigned long max_load_move, struct sched_domain *sd,
3331 enum cpu_idle_type idle, int *all_pinned,
3332 int *this_best_prio, struct rq_iterator *iterator)
3334 int loops = 0, pulled = 0, pinned = 0;
3335 struct task_struct *p;
3336 long rem_load_move = max_load_move;
3338 if (max_load_move == 0)
3344 * Start the load-balancing iterator:
3346 p = iterator->start(iterator->arg);
3348 if (!p || loops++ > sysctl_sched_nr_migrate)
3351 if ((p->se.load.weight >> 1) > rem_load_move ||
3352 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3353 p = iterator->next(iterator->arg);
3357 pull_task(busiest, p, this_rq, this_cpu);
3359 rem_load_move -= p->se.load.weight;
3361 #ifdef CONFIG_PREEMPT
3363 * NEWIDLE balancing is a source of latency, so preemptible kernels
3364 * will stop after the first task is pulled to minimize the critical
3367 if (idle == CPU_NEWLY_IDLE)
3372 * We only want to steal up to the prescribed amount of weighted load.
3374 if (rem_load_move > 0) {
3375 if (p->prio < *this_best_prio)
3376 *this_best_prio = p->prio;
3377 p = iterator->next(iterator->arg);
3382 * Right now, this is one of only two places pull_task() is called,
3383 * so we can safely collect pull_task() stats here rather than
3384 * inside pull_task().
3386 schedstat_add(sd, lb_gained[idle], pulled);
3389 *all_pinned = pinned;
3391 return max_load_move - rem_load_move;
3395 * move_tasks tries to move up to max_load_move weighted load from busiest to
3396 * this_rq, as part of a balancing operation within domain "sd".
3397 * Returns 1 if successful and 0 otherwise.
3399 * Called with both runqueues locked.
3401 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3402 unsigned long max_load_move,
3403 struct sched_domain *sd, enum cpu_idle_type idle,
3406 const struct sched_class *class = sched_class_highest;
3407 unsigned long total_load_moved = 0;
3408 int this_best_prio = this_rq->curr->prio;
3412 class->load_balance(this_rq, this_cpu, busiest,
3413 max_load_move - total_load_moved,
3414 sd, idle, all_pinned, &this_best_prio);
3415 class = class->next;
3417 #ifdef CONFIG_PREEMPT
3419 * NEWIDLE balancing is a source of latency, so preemptible
3420 * kernels will stop after the first task is pulled to minimize
3421 * the critical section.
3423 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3426 } while (class && max_load_move > total_load_moved);
3428 return total_load_moved > 0;
3432 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3433 struct sched_domain *sd, enum cpu_idle_type idle,
3434 struct rq_iterator *iterator)
3436 struct task_struct *p = iterator->start(iterator->arg);
3440 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3441 pull_task(busiest, p, this_rq, this_cpu);
3443 * Right now, this is only the second place pull_task()
3444 * is called, so we can safely collect pull_task()
3445 * stats here rather than inside pull_task().
3447 schedstat_inc(sd, lb_gained[idle]);
3451 p = iterator->next(iterator->arg);
3458 * move_one_task tries to move exactly one task from busiest to this_rq, as
3459 * part of active balancing operations within "domain".
3460 * Returns 1 if successful and 0 otherwise.
3462 * Called with both runqueues locked.
3464 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3465 struct sched_domain *sd, enum cpu_idle_type idle)
3467 const struct sched_class *class;
3469 for_each_class(class) {
3470 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3476 /********** Helpers for find_busiest_group ************************/
3478 * sd_lb_stats - Structure to store the statistics of a sched_domain
3479 * during load balancing.
3481 struct sd_lb_stats {
3482 struct sched_group *busiest; /* Busiest group in this sd */
3483 struct sched_group *this; /* Local group in this sd */
3484 unsigned long total_load; /* Total load of all groups in sd */
3485 unsigned long total_pwr; /* Total power of all groups in sd */
3486 unsigned long avg_load; /* Average load across all groups in sd */
3488 /** Statistics of this group */
3489 unsigned long this_load;
3490 unsigned long this_load_per_task;
3491 unsigned long this_nr_running;
3493 /* Statistics of the busiest group */
3494 unsigned long max_load;
3495 unsigned long busiest_load_per_task;
3496 unsigned long busiest_nr_running;
3498 int group_imb; /* Is there imbalance in this sd */
3499 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3500 int power_savings_balance; /* Is powersave balance needed for this sd */
3501 struct sched_group *group_min; /* Least loaded group in sd */
3502 struct sched_group *group_leader; /* Group which relieves group_min */
3503 unsigned long min_load_per_task; /* load_per_task in group_min */
3504 unsigned long leader_nr_running; /* Nr running of group_leader */
3505 unsigned long min_nr_running; /* Nr running of group_min */
3510 * sg_lb_stats - stats of a sched_group required for load_balancing
3512 struct sg_lb_stats {
3513 unsigned long avg_load; /*Avg load across the CPUs of the group */
3514 unsigned long group_load; /* Total load over the CPUs of the group */
3515 unsigned long sum_nr_running; /* Nr tasks running in the group */
3516 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3517 unsigned long group_capacity;
3518 int group_imb; /* Is there an imbalance in the group ? */
3522 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3523 * @group: The group whose first cpu is to be returned.
3525 static inline unsigned int group_first_cpu(struct sched_group *group)
3527 return cpumask_first(sched_group_cpus(group));
3531 * get_sd_load_idx - Obtain the load index for a given sched domain.
3532 * @sd: The sched_domain whose load_idx is to be obtained.
3533 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3535 static inline int get_sd_load_idx(struct sched_domain *sd,
3536 enum cpu_idle_type idle)
3542 load_idx = sd->busy_idx;
3545 case CPU_NEWLY_IDLE:
3546 load_idx = sd->newidle_idx;
3549 load_idx = sd->idle_idx;
3557 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3559 * init_sd_power_savings_stats - Initialize power savings statistics for
3560 * the given sched_domain, during load balancing.
3562 * @sd: Sched domain whose power-savings statistics are to be initialized.
3563 * @sds: Variable containing the statistics for sd.
3564 * @idle: Idle status of the CPU at which we're performing load-balancing.
3566 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3567 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3570 * Busy processors will not participate in power savings
3573 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3574 sds->power_savings_balance = 0;
3576 sds->power_savings_balance = 1;
3577 sds->min_nr_running = ULONG_MAX;
3578 sds->leader_nr_running = 0;
3583 * update_sd_power_savings_stats - Update the power saving stats for a
3584 * sched_domain while performing load balancing.
3586 * @group: sched_group belonging to the sched_domain under consideration.
3587 * @sds: Variable containing the statistics of the sched_domain
3588 * @local_group: Does group contain the CPU for which we're performing
3590 * @sgs: Variable containing the statistics of the group.
3592 static inline void update_sd_power_savings_stats(struct sched_group *group,
3593 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3596 if (!sds->power_savings_balance)
3600 * If the local group is idle or completely loaded
3601 * no need to do power savings balance at this domain
3603 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3604 !sds->this_nr_running))
3605 sds->power_savings_balance = 0;
3608 * If a group is already running at full capacity or idle,
3609 * don't include that group in power savings calculations
3611 if (!sds->power_savings_balance ||
3612 sgs->sum_nr_running >= sgs->group_capacity ||
3613 !sgs->sum_nr_running)
3617 * Calculate the group which has the least non-idle load.
3618 * This is the group from where we need to pick up the load
3621 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3622 (sgs->sum_nr_running == sds->min_nr_running &&
3623 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3624 sds->group_min = group;
3625 sds->min_nr_running = sgs->sum_nr_running;
3626 sds->min_load_per_task = sgs->sum_weighted_load /
3627 sgs->sum_nr_running;
3631 * Calculate the group which is almost near its
3632 * capacity but still has some space to pick up some load
3633 * from other group and save more power
3635 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3638 if (sgs->sum_nr_running > sds->leader_nr_running ||
3639 (sgs->sum_nr_running == sds->leader_nr_running &&
3640 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3641 sds->group_leader = group;
3642 sds->leader_nr_running = sgs->sum_nr_running;
3647 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3648 * @sds: Variable containing the statistics of the sched_domain
3649 * under consideration.
3650 * @this_cpu: Cpu at which we're currently performing load-balancing.
3651 * @imbalance: Variable to store the imbalance.
3654 * Check if we have potential to perform some power-savings balance.
3655 * If yes, set the busiest group to be the least loaded group in the
3656 * sched_domain, so that it's CPUs can be put to idle.
3658 * Returns 1 if there is potential to perform power-savings balance.
3661 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3662 int this_cpu, unsigned long *imbalance)
3664 if (!sds->power_savings_balance)
3667 if (sds->this != sds->group_leader ||
3668 sds->group_leader == sds->group_min)
3671 *imbalance = sds->min_load_per_task;
3672 sds->busiest = sds->group_min;
3674 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3675 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3676 group_first_cpu(sds->group_leader);
3682 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3683 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3684 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3689 static inline void update_sd_power_savings_stats(struct sched_group *group,
3690 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3695 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3696 int this_cpu, unsigned long *imbalance)
3700 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3702 unsigned long __weak arch_smt_gain(struct sched_domain *sd, int cpu)
3704 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3705 unsigned long smt_gain = sd->smt_gain;
3712 static void update_cpu_power(struct sched_domain *sd, int cpu)
3714 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3715 unsigned long power = SCHED_LOAD_SCALE;
3716 struct sched_group *sdg = sd->groups;
3717 unsigned long old = sdg->__cpu_power;
3719 /* here we could scale based on cpufreq */
3721 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3722 power *= arch_smt_gain(sd, cpu);
3723 power >>= SCHED_LOAD_SHIFT;
3726 /* here we could scale based on RT time */
3729 sdg->__cpu_power = power;
3730 sdg->reciprocal_cpu_power = reciprocal_value(power);
3734 static void update_group_power(struct sched_domain *sd, int cpu)
3736 struct sched_domain *child = sd->child;
3737 struct sched_group *group, *sdg = sd->groups;
3738 unsigned long power = sdg->__cpu_power;
3741 update_cpu_power(sd, cpu);
3745 sdg->__cpu_power = 0;
3747 group = child->groups;
3749 sdg->__cpu_power += group->__cpu_power;
3750 group = group->next;
3751 } while (group != child->groups);
3753 if (power != sdg->__cpu_power)
3754 sdg->reciprocal_cpu_power = reciprocal_value(sdg->__cpu_power);
3758 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3759 * @group: sched_group whose statistics are to be updated.
3760 * @this_cpu: Cpu for which load balance is currently performed.
3761 * @idle: Idle status of this_cpu
3762 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3763 * @sd_idle: Idle status of the sched_domain containing group.
3764 * @local_group: Does group contain this_cpu.
3765 * @cpus: Set of cpus considered for load balancing.
3766 * @balance: Should we balance.
3767 * @sgs: variable to hold the statistics for this group.
3769 static inline void update_sg_lb_stats(struct sched_domain *sd,
3770 struct sched_group *group, int this_cpu,
3771 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3772 int local_group, const struct cpumask *cpus,
3773 int *balance, struct sg_lb_stats *sgs)
3775 unsigned long load, max_cpu_load, min_cpu_load;
3777 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3778 unsigned long sum_avg_load_per_task;
3779 unsigned long avg_load_per_task;
3782 balance_cpu = group_first_cpu(group);
3783 if (balance_cpu == this_cpu)
3784 update_group_power(sd, this_cpu);
3787 /* Tally up the load of all CPUs in the group */
3788 sum_avg_load_per_task = avg_load_per_task = 0;
3790 min_cpu_load = ~0UL;
3792 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3793 struct rq *rq = cpu_rq(i);
3795 if (*sd_idle && rq->nr_running)
3798 /* Bias balancing toward cpus of our domain */
3800 if (idle_cpu(i) && !first_idle_cpu) {
3805 load = target_load(i, load_idx);
3807 load = source_load(i, load_idx);
3808 if (load > max_cpu_load)
3809 max_cpu_load = load;
3810 if (min_cpu_load > load)
3811 min_cpu_load = load;
3814 sgs->group_load += load;
3815 sgs->sum_nr_running += rq->nr_running;
3816 sgs->sum_weighted_load += weighted_cpuload(i);
3818 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3822 * First idle cpu or the first cpu(busiest) in this sched group
3823 * is eligible for doing load balancing at this and above
3824 * domains. In the newly idle case, we will allow all the cpu's
3825 * to do the newly idle load balance.
3827 if (idle != CPU_NEWLY_IDLE && local_group &&
3828 balance_cpu != this_cpu && balance) {
3833 /* Adjust by relative CPU power of the group */
3834 sgs->avg_load = sg_div_cpu_power(group,
3835 sgs->group_load * SCHED_LOAD_SCALE);
3839 * Consider the group unbalanced when the imbalance is larger
3840 * than the average weight of two tasks.
3842 * APZ: with cgroup the avg task weight can vary wildly and
3843 * might not be a suitable number - should we keep a
3844 * normalized nr_running number somewhere that negates
3847 avg_load_per_task = sg_div_cpu_power(group,
3848 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3850 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3853 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3858 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3859 * @sd: sched_domain whose statistics are to be updated.
3860 * @this_cpu: Cpu for which load balance is currently performed.
3861 * @idle: Idle status of this_cpu
3862 * @sd_idle: Idle status of the sched_domain containing group.
3863 * @cpus: Set of cpus considered for load balancing.
3864 * @balance: Should we balance.
3865 * @sds: variable to hold the statistics for this sched_domain.
3867 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3868 enum cpu_idle_type idle, int *sd_idle,
3869 const struct cpumask *cpus, int *balance,
3870 struct sd_lb_stats *sds)
3872 struct sched_domain *child = sd->child;
3873 struct sched_group *group = sd->groups;
3874 struct sg_lb_stats sgs;
3875 int load_idx, prefer_sibling = 0;
3877 if (child && child->flags & SD_PREFER_SIBLING)
3880 init_sd_power_savings_stats(sd, sds, idle);
3881 load_idx = get_sd_load_idx(sd, idle);
3886 local_group = cpumask_test_cpu(this_cpu,
3887 sched_group_cpus(group));
3888 memset(&sgs, 0, sizeof(sgs));
3889 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3890 local_group, cpus, balance, &sgs);
3892 if (local_group && balance && !(*balance))
3895 sds->total_load += sgs.group_load;
3896 sds->total_pwr += group->__cpu_power;
3899 * In case the child domain prefers tasks go to siblings
3900 * first, lower the group capacity to one so that we'll try
3901 * and move all the excess tasks away.
3904 sgs.group_capacity = 1;
3907 sds->this_load = sgs.avg_load;
3909 sds->this_nr_running = sgs.sum_nr_running;
3910 sds->this_load_per_task = sgs.sum_weighted_load;
3911 } else if (sgs.avg_load > sds->max_load &&
3912 (sgs.sum_nr_running > sgs.group_capacity ||
3914 sds->max_load = sgs.avg_load;
3915 sds->busiest = group;
3916 sds->busiest_nr_running = sgs.sum_nr_running;
3917 sds->busiest_load_per_task = sgs.sum_weighted_load;
3918 sds->group_imb = sgs.group_imb;
3921 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3922 group = group->next;
3923 } while (group != sd->groups);
3927 * fix_small_imbalance - Calculate the minor imbalance that exists
3928 * amongst the groups of a sched_domain, during
3930 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3931 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3932 * @imbalance: Variable to store the imbalance.
3934 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3935 int this_cpu, unsigned long *imbalance)
3937 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3938 unsigned int imbn = 2;
3940 if (sds->this_nr_running) {
3941 sds->this_load_per_task /= sds->this_nr_running;
3942 if (sds->busiest_load_per_task >
3943 sds->this_load_per_task)
3946 sds->this_load_per_task =
3947 cpu_avg_load_per_task(this_cpu);
3949 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3950 sds->busiest_load_per_task * imbn) {
3951 *imbalance = sds->busiest_load_per_task;
3956 * OK, we don't have enough imbalance to justify moving tasks,
3957 * however we may be able to increase total CPU power used by
3961 pwr_now += sds->busiest->__cpu_power *
3962 min(sds->busiest_load_per_task, sds->max_load);
3963 pwr_now += sds->this->__cpu_power *
3964 min(sds->this_load_per_task, sds->this_load);
3965 pwr_now /= SCHED_LOAD_SCALE;
3967 /* Amount of load we'd subtract */
3968 tmp = sg_div_cpu_power(sds->busiest,
3969 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3970 if (sds->max_load > tmp)
3971 pwr_move += sds->busiest->__cpu_power *
3972 min(sds->busiest_load_per_task, sds->max_load - tmp);
3974 /* Amount of load we'd add */
3975 if (sds->max_load * sds->busiest->__cpu_power <
3976 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3977 tmp = sg_div_cpu_power(sds->this,
3978 sds->max_load * sds->busiest->__cpu_power);
3980 tmp = sg_div_cpu_power(sds->this,
3981 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3982 pwr_move += sds->this->__cpu_power *
3983 min(sds->this_load_per_task, sds->this_load + tmp);
3984 pwr_move /= SCHED_LOAD_SCALE;
3986 /* Move if we gain throughput */
3987 if (pwr_move > pwr_now)
3988 *imbalance = sds->busiest_load_per_task;
3992 * calculate_imbalance - Calculate the amount of imbalance present within the
3993 * groups of a given sched_domain during load balance.
3994 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3995 * @this_cpu: Cpu for which currently load balance is being performed.
3996 * @imbalance: The variable to store the imbalance.
3998 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3999 unsigned long *imbalance)
4001 unsigned long max_pull;
4003 * In the presence of smp nice balancing, certain scenarios can have
4004 * max load less than avg load(as we skip the groups at or below
4005 * its cpu_power, while calculating max_load..)
4007 if (sds->max_load < sds->avg_load) {
4009 return fix_small_imbalance(sds, this_cpu, imbalance);
4012 /* Don't want to pull so many tasks that a group would go idle */
4013 max_pull = min(sds->max_load - sds->avg_load,
4014 sds->max_load - sds->busiest_load_per_task);
4016 /* How much load to actually move to equalise the imbalance */
4017 *imbalance = min(max_pull * sds->busiest->__cpu_power,
4018 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
4022 * if *imbalance is less than the average load per runnable task
4023 * there is no gaurantee that any tasks will be moved so we'll have
4024 * a think about bumping its value to force at least one task to be
4027 if (*imbalance < sds->busiest_load_per_task)
4028 return fix_small_imbalance(sds, this_cpu, imbalance);
4031 /******* find_busiest_group() helpers end here *********************/
4034 * find_busiest_group - Returns the busiest group within the sched_domain
4035 * if there is an imbalance. If there isn't an imbalance, and
4036 * the user has opted for power-savings, it returns a group whose
4037 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4038 * such a group exists.
4040 * Also calculates the amount of weighted load which should be moved
4041 * to restore balance.
4043 * @sd: The sched_domain whose busiest group is to be returned.
4044 * @this_cpu: The cpu for which load balancing is currently being performed.
4045 * @imbalance: Variable which stores amount of weighted load which should
4046 * be moved to restore balance/put a group to idle.
4047 * @idle: The idle status of this_cpu.
4048 * @sd_idle: The idleness of sd
4049 * @cpus: The set of CPUs under consideration for load-balancing.
4050 * @balance: Pointer to a variable indicating if this_cpu
4051 * is the appropriate cpu to perform load balancing at this_level.
4053 * Returns: - the busiest group if imbalance exists.
4054 * - If no imbalance and user has opted for power-savings balance,
4055 * return the least loaded group whose CPUs can be
4056 * put to idle by rebalancing its tasks onto our group.
4058 static struct sched_group *
4059 find_busiest_group(struct sched_domain *sd, int this_cpu,
4060 unsigned long *imbalance, enum cpu_idle_type idle,
4061 int *sd_idle, const struct cpumask *cpus, int *balance)
4063 struct sd_lb_stats sds;
4065 memset(&sds, 0, sizeof(sds));
4068 * Compute the various statistics relavent for load balancing at
4071 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4074 /* Cases where imbalance does not exist from POV of this_cpu */
4075 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4077 * 2) There is no busy sibling group to pull from.
4078 * 3) This group is the busiest group.
4079 * 4) This group is more busy than the avg busieness at this
4081 * 5) The imbalance is within the specified limit.
4082 * 6) Any rebalance would lead to ping-pong
4084 if (balance && !(*balance))
4087 if (!sds.busiest || sds.busiest_nr_running == 0)
4090 if (sds.this_load >= sds.max_load)
4093 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4095 if (sds.this_load >= sds.avg_load)
4098 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4101 sds.busiest_load_per_task /= sds.busiest_nr_running;
4103 sds.busiest_load_per_task =
4104 min(sds.busiest_load_per_task, sds.avg_load);
4107 * We're trying to get all the cpus to the average_load, so we don't
4108 * want to push ourselves above the average load, nor do we wish to
4109 * reduce the max loaded cpu below the average load, as either of these
4110 * actions would just result in more rebalancing later, and ping-pong
4111 * tasks around. Thus we look for the minimum possible imbalance.
4112 * Negative imbalances (*we* are more loaded than anyone else) will
4113 * be counted as no imbalance for these purposes -- we can't fix that
4114 * by pulling tasks to us. Be careful of negative numbers as they'll
4115 * appear as very large values with unsigned longs.
4117 if (sds.max_load <= sds.busiest_load_per_task)
4120 /* Looks like there is an imbalance. Compute it */
4121 calculate_imbalance(&sds, this_cpu, imbalance);
4126 * There is no obvious imbalance. But check if we can do some balancing
4129 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4137 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4140 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4141 unsigned long imbalance, const struct cpumask *cpus)
4143 struct rq *busiest = NULL, *rq;
4144 unsigned long max_load = 0;
4147 for_each_cpu(i, sched_group_cpus(group)) {
4150 if (!cpumask_test_cpu(i, cpus))
4154 wl = weighted_cpuload(i);
4156 if (rq->nr_running == 1 && wl > imbalance)
4159 if (wl > max_load) {
4169 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4170 * so long as it is large enough.
4172 #define MAX_PINNED_INTERVAL 512
4174 /* Working cpumask for load_balance and load_balance_newidle. */
4175 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4178 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4179 * tasks if there is an imbalance.
4181 static int load_balance(int this_cpu, struct rq *this_rq,
4182 struct sched_domain *sd, enum cpu_idle_type idle,
4185 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4186 struct sched_group *group;
4187 unsigned long imbalance;
4189 unsigned long flags;
4190 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4192 cpumask_setall(cpus);
4195 * When power savings policy is enabled for the parent domain, idle
4196 * sibling can pick up load irrespective of busy siblings. In this case,
4197 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4198 * portraying it as CPU_NOT_IDLE.
4200 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4201 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4204 schedstat_inc(sd, lb_count[idle]);
4208 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4215 schedstat_inc(sd, lb_nobusyg[idle]);
4219 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4221 schedstat_inc(sd, lb_nobusyq[idle]);
4225 BUG_ON(busiest == this_rq);
4227 schedstat_add(sd, lb_imbalance[idle], imbalance);
4230 if (busiest->nr_running > 1) {
4232 * Attempt to move tasks. If find_busiest_group has found
4233 * an imbalance but busiest->nr_running <= 1, the group is
4234 * still unbalanced. ld_moved simply stays zero, so it is
4235 * correctly treated as an imbalance.
4237 local_irq_save(flags);
4238 double_rq_lock(this_rq, busiest);
4239 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4240 imbalance, sd, idle, &all_pinned);
4241 double_rq_unlock(this_rq, busiest);
4242 local_irq_restore(flags);
4245 * some other cpu did the load balance for us.
4247 if (ld_moved && this_cpu != smp_processor_id())
4248 resched_cpu(this_cpu);
4250 /* All tasks on this runqueue were pinned by CPU affinity */
4251 if (unlikely(all_pinned)) {
4252 cpumask_clear_cpu(cpu_of(busiest), cpus);
4253 if (!cpumask_empty(cpus))
4260 schedstat_inc(sd, lb_failed[idle]);
4261 sd->nr_balance_failed++;
4263 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4265 spin_lock_irqsave(&busiest->lock, flags);
4267 /* don't kick the migration_thread, if the curr
4268 * task on busiest cpu can't be moved to this_cpu
4270 if (!cpumask_test_cpu(this_cpu,
4271 &busiest->curr->cpus_allowed)) {
4272 spin_unlock_irqrestore(&busiest->lock, flags);
4274 goto out_one_pinned;
4277 if (!busiest->active_balance) {
4278 busiest->active_balance = 1;
4279 busiest->push_cpu = this_cpu;
4282 spin_unlock_irqrestore(&busiest->lock, flags);
4284 wake_up_process(busiest->migration_thread);
4287 * We've kicked active balancing, reset the failure
4290 sd->nr_balance_failed = sd->cache_nice_tries+1;
4293 sd->nr_balance_failed = 0;
4295 if (likely(!active_balance)) {
4296 /* We were unbalanced, so reset the balancing interval */
4297 sd->balance_interval = sd->min_interval;
4300 * If we've begun active balancing, start to back off. This
4301 * case may not be covered by the all_pinned logic if there
4302 * is only 1 task on the busy runqueue (because we don't call
4305 if (sd->balance_interval < sd->max_interval)
4306 sd->balance_interval *= 2;
4309 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4310 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4316 schedstat_inc(sd, lb_balanced[idle]);
4318 sd->nr_balance_failed = 0;
4321 /* tune up the balancing interval */
4322 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4323 (sd->balance_interval < sd->max_interval))
4324 sd->balance_interval *= 2;
4326 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4327 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4338 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4339 * tasks if there is an imbalance.
4341 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4342 * this_rq is locked.
4345 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4347 struct sched_group *group;
4348 struct rq *busiest = NULL;
4349 unsigned long imbalance;
4353 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4355 cpumask_setall(cpus);
4358 * When power savings policy is enabled for the parent domain, idle
4359 * sibling can pick up load irrespective of busy siblings. In this case,
4360 * let the state of idle sibling percolate up as IDLE, instead of
4361 * portraying it as CPU_NOT_IDLE.
4363 if (sd->flags & SD_SHARE_CPUPOWER &&
4364 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4367 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4369 update_shares_locked(this_rq, sd);
4370 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4371 &sd_idle, cpus, NULL);
4373 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4377 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4379 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4383 BUG_ON(busiest == this_rq);
4385 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4388 if (busiest->nr_running > 1) {
4389 /* Attempt to move tasks */
4390 double_lock_balance(this_rq, busiest);
4391 /* this_rq->clock is already updated */
4392 update_rq_clock(busiest);
4393 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4394 imbalance, sd, CPU_NEWLY_IDLE,
4396 double_unlock_balance(this_rq, busiest);
4398 if (unlikely(all_pinned)) {
4399 cpumask_clear_cpu(cpu_of(busiest), cpus);
4400 if (!cpumask_empty(cpus))
4406 int active_balance = 0;
4408 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4409 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4410 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4413 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4416 if (sd->nr_balance_failed++ < 2)
4420 * The only task running in a non-idle cpu can be moved to this
4421 * cpu in an attempt to completely freeup the other CPU
4422 * package. The same method used to move task in load_balance()
4423 * have been extended for load_balance_newidle() to speedup
4424 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4426 * The package power saving logic comes from
4427 * find_busiest_group(). If there are no imbalance, then
4428 * f_b_g() will return NULL. However when sched_mc={1,2} then
4429 * f_b_g() will select a group from which a running task may be
4430 * pulled to this cpu in order to make the other package idle.
4431 * If there is no opportunity to make a package idle and if
4432 * there are no imbalance, then f_b_g() will return NULL and no
4433 * action will be taken in load_balance_newidle().
4435 * Under normal task pull operation due to imbalance, there
4436 * will be more than one task in the source run queue and
4437 * move_tasks() will succeed. ld_moved will be true and this
4438 * active balance code will not be triggered.
4441 /* Lock busiest in correct order while this_rq is held */
4442 double_lock_balance(this_rq, busiest);
4445 * don't kick the migration_thread, if the curr
4446 * task on busiest cpu can't be moved to this_cpu
4448 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4449 double_unlock_balance(this_rq, busiest);
4454 if (!busiest->active_balance) {
4455 busiest->active_balance = 1;
4456 busiest->push_cpu = this_cpu;
4460 double_unlock_balance(this_rq, busiest);
4462 * Should not call ttwu while holding a rq->lock
4464 spin_unlock(&this_rq->lock);
4466 wake_up_process(busiest->migration_thread);
4467 spin_lock(&this_rq->lock);
4470 sd->nr_balance_failed = 0;
4472 update_shares_locked(this_rq, sd);
4476 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4477 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4478 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4480 sd->nr_balance_failed = 0;
4486 * idle_balance is called by schedule() if this_cpu is about to become
4487 * idle. Attempts to pull tasks from other CPUs.
4489 static void idle_balance(int this_cpu, struct rq *this_rq)
4491 struct sched_domain *sd;
4492 int pulled_task = 0;
4493 unsigned long next_balance = jiffies + HZ;
4495 for_each_domain(this_cpu, sd) {
4496 unsigned long interval;
4498 if (!(sd->flags & SD_LOAD_BALANCE))
4501 if (sd->flags & SD_BALANCE_NEWIDLE)
4502 /* If we've pulled tasks over stop searching: */
4503 pulled_task = load_balance_newidle(this_cpu, this_rq,
4506 interval = msecs_to_jiffies(sd->balance_interval);
4507 if (time_after(next_balance, sd->last_balance + interval))
4508 next_balance = sd->last_balance + interval;
4512 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4514 * We are going idle. next_balance may be set based on
4515 * a busy processor. So reset next_balance.
4517 this_rq->next_balance = next_balance;
4522 * active_load_balance is run by migration threads. It pushes running tasks
4523 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4524 * running on each physical CPU where possible, and avoids physical /
4525 * logical imbalances.
4527 * Called with busiest_rq locked.
4529 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4531 int target_cpu = busiest_rq->push_cpu;
4532 struct sched_domain *sd;
4533 struct rq *target_rq;
4535 /* Is there any task to move? */
4536 if (busiest_rq->nr_running <= 1)
4539 target_rq = cpu_rq(target_cpu);
4542 * This condition is "impossible", if it occurs
4543 * we need to fix it. Originally reported by
4544 * Bjorn Helgaas on a 128-cpu setup.
4546 BUG_ON(busiest_rq == target_rq);
4548 /* move a task from busiest_rq to target_rq */
4549 double_lock_balance(busiest_rq, target_rq);
4550 update_rq_clock(busiest_rq);
4551 update_rq_clock(target_rq);
4553 /* Search for an sd spanning us and the target CPU. */
4554 for_each_domain(target_cpu, sd) {
4555 if ((sd->flags & SD_LOAD_BALANCE) &&
4556 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4561 schedstat_inc(sd, alb_count);
4563 if (move_one_task(target_rq, target_cpu, busiest_rq,
4565 schedstat_inc(sd, alb_pushed);
4567 schedstat_inc(sd, alb_failed);
4569 double_unlock_balance(busiest_rq, target_rq);
4574 atomic_t load_balancer;
4575 cpumask_var_t cpu_mask;
4576 cpumask_var_t ilb_grp_nohz_mask;
4577 } nohz ____cacheline_aligned = {
4578 .load_balancer = ATOMIC_INIT(-1),
4581 int get_nohz_load_balancer(void)
4583 return atomic_read(&nohz.load_balancer);
4586 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4588 * lowest_flag_domain - Return lowest sched_domain containing flag.
4589 * @cpu: The cpu whose lowest level of sched domain is to
4591 * @flag: The flag to check for the lowest sched_domain
4592 * for the given cpu.
4594 * Returns the lowest sched_domain of a cpu which contains the given flag.
4596 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4598 struct sched_domain *sd;
4600 for_each_domain(cpu, sd)
4601 if (sd && (sd->flags & flag))
4608 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4609 * @cpu: The cpu whose domains we're iterating over.
4610 * @sd: variable holding the value of the power_savings_sd
4612 * @flag: The flag to filter the sched_domains to be iterated.
4614 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4615 * set, starting from the lowest sched_domain to the highest.
4617 #define for_each_flag_domain(cpu, sd, flag) \
4618 for (sd = lowest_flag_domain(cpu, flag); \
4619 (sd && (sd->flags & flag)); sd = sd->parent)
4622 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4623 * @ilb_group: group to be checked for semi-idleness
4625 * Returns: 1 if the group is semi-idle. 0 otherwise.
4627 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4628 * and atleast one non-idle CPU. This helper function checks if the given
4629 * sched_group is semi-idle or not.
4631 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4633 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4634 sched_group_cpus(ilb_group));
4637 * A sched_group is semi-idle when it has atleast one busy cpu
4638 * and atleast one idle cpu.
4640 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4643 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4649 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4650 * @cpu: The cpu which is nominating a new idle_load_balancer.
4652 * Returns: Returns the id of the idle load balancer if it exists,
4653 * Else, returns >= nr_cpu_ids.
4655 * This algorithm picks the idle load balancer such that it belongs to a
4656 * semi-idle powersavings sched_domain. The idea is to try and avoid
4657 * completely idle packages/cores just for the purpose of idle load balancing
4658 * when there are other idle cpu's which are better suited for that job.
4660 static int find_new_ilb(int cpu)
4662 struct sched_domain *sd;
4663 struct sched_group *ilb_group;
4666 * Have idle load balancer selection from semi-idle packages only
4667 * when power-aware load balancing is enabled
4669 if (!(sched_smt_power_savings || sched_mc_power_savings))
4673 * Optimize for the case when we have no idle CPUs or only one
4674 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4676 if (cpumask_weight(nohz.cpu_mask) < 2)
4679 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4680 ilb_group = sd->groups;
4683 if (is_semi_idle_group(ilb_group))
4684 return cpumask_first(nohz.ilb_grp_nohz_mask);
4686 ilb_group = ilb_group->next;
4688 } while (ilb_group != sd->groups);
4692 return cpumask_first(nohz.cpu_mask);
4694 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4695 static inline int find_new_ilb(int call_cpu)
4697 return cpumask_first(nohz.cpu_mask);
4702 * This routine will try to nominate the ilb (idle load balancing)
4703 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4704 * load balancing on behalf of all those cpus. If all the cpus in the system
4705 * go into this tickless mode, then there will be no ilb owner (as there is
4706 * no need for one) and all the cpus will sleep till the next wakeup event
4709 * For the ilb owner, tick is not stopped. And this tick will be used
4710 * for idle load balancing. ilb owner will still be part of
4713 * While stopping the tick, this cpu will become the ilb owner if there
4714 * is no other owner. And will be the owner till that cpu becomes busy
4715 * or if all cpus in the system stop their ticks at which point
4716 * there is no need for ilb owner.
4718 * When the ilb owner becomes busy, it nominates another owner, during the
4719 * next busy scheduler_tick()
4721 int select_nohz_load_balancer(int stop_tick)
4723 int cpu = smp_processor_id();
4726 cpu_rq(cpu)->in_nohz_recently = 1;
4728 if (!cpu_active(cpu)) {
4729 if (atomic_read(&nohz.load_balancer) != cpu)
4733 * If we are going offline and still the leader,
4736 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4742 cpumask_set_cpu(cpu, nohz.cpu_mask);
4744 /* time for ilb owner also to sleep */
4745 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4746 if (atomic_read(&nohz.load_balancer) == cpu)
4747 atomic_set(&nohz.load_balancer, -1);
4751 if (atomic_read(&nohz.load_balancer) == -1) {
4752 /* make me the ilb owner */
4753 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4755 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4758 if (!(sched_smt_power_savings ||
4759 sched_mc_power_savings))
4762 * Check to see if there is a more power-efficient
4765 new_ilb = find_new_ilb(cpu);
4766 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4767 atomic_set(&nohz.load_balancer, -1);
4768 resched_cpu(new_ilb);
4774 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4777 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4779 if (atomic_read(&nohz.load_balancer) == cpu)
4780 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4787 static DEFINE_SPINLOCK(balancing);
4790 * It checks each scheduling domain to see if it is due to be balanced,
4791 * and initiates a balancing operation if so.
4793 * Balancing parameters are set up in arch_init_sched_domains.
4795 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4798 struct rq *rq = cpu_rq(cpu);
4799 unsigned long interval;
4800 struct sched_domain *sd;
4801 /* Earliest time when we have to do rebalance again */
4802 unsigned long next_balance = jiffies + 60*HZ;
4803 int update_next_balance = 0;
4806 for_each_domain(cpu, sd) {
4807 if (!(sd->flags & SD_LOAD_BALANCE))
4810 interval = sd->balance_interval;
4811 if (idle != CPU_IDLE)
4812 interval *= sd->busy_factor;
4814 /* scale ms to jiffies */
4815 interval = msecs_to_jiffies(interval);
4816 if (unlikely(!interval))
4818 if (interval > HZ*NR_CPUS/10)
4819 interval = HZ*NR_CPUS/10;
4821 need_serialize = sd->flags & SD_SERIALIZE;
4823 if (need_serialize) {
4824 if (!spin_trylock(&balancing))
4828 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4829 if (load_balance(cpu, rq, sd, idle, &balance)) {
4831 * We've pulled tasks over so either we're no
4832 * longer idle, or one of our SMT siblings is
4835 idle = CPU_NOT_IDLE;
4837 sd->last_balance = jiffies;
4840 spin_unlock(&balancing);
4842 if (time_after(next_balance, sd->last_balance + interval)) {
4843 next_balance = sd->last_balance + interval;
4844 update_next_balance = 1;
4848 * Stop the load balance at this level. There is another
4849 * CPU in our sched group which is doing load balancing more
4857 * next_balance will be updated only when there is a need.
4858 * When the cpu is attached to null domain for ex, it will not be
4861 if (likely(update_next_balance))
4862 rq->next_balance = next_balance;
4866 * run_rebalance_domains is triggered when needed from the scheduler tick.
4867 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4868 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4870 static void run_rebalance_domains(struct softirq_action *h)
4872 int this_cpu = smp_processor_id();
4873 struct rq *this_rq = cpu_rq(this_cpu);
4874 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4875 CPU_IDLE : CPU_NOT_IDLE;
4877 rebalance_domains(this_cpu, idle);
4881 * If this cpu is the owner for idle load balancing, then do the
4882 * balancing on behalf of the other idle cpus whose ticks are
4885 if (this_rq->idle_at_tick &&
4886 atomic_read(&nohz.load_balancer) == this_cpu) {
4890 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4891 if (balance_cpu == this_cpu)
4895 * If this cpu gets work to do, stop the load balancing
4896 * work being done for other cpus. Next load
4897 * balancing owner will pick it up.
4902 rebalance_domains(balance_cpu, CPU_IDLE);
4904 rq = cpu_rq(balance_cpu);
4905 if (time_after(this_rq->next_balance, rq->next_balance))
4906 this_rq->next_balance = rq->next_balance;
4912 static inline int on_null_domain(int cpu)
4914 return !rcu_dereference(cpu_rq(cpu)->sd);
4918 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4920 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4921 * idle load balancing owner or decide to stop the periodic load balancing,
4922 * if the whole system is idle.
4924 static inline void trigger_load_balance(struct rq *rq, int cpu)
4928 * If we were in the nohz mode recently and busy at the current
4929 * scheduler tick, then check if we need to nominate new idle
4932 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4933 rq->in_nohz_recently = 0;
4935 if (atomic_read(&nohz.load_balancer) == cpu) {
4936 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4937 atomic_set(&nohz.load_balancer, -1);
4940 if (atomic_read(&nohz.load_balancer) == -1) {
4941 int ilb = find_new_ilb(cpu);
4943 if (ilb < nr_cpu_ids)
4949 * If this cpu is idle and doing idle load balancing for all the
4950 * cpus with ticks stopped, is it time for that to stop?
4952 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4953 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4959 * If this cpu is idle and the idle load balancing is done by
4960 * someone else, then no need raise the SCHED_SOFTIRQ
4962 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4963 cpumask_test_cpu(cpu, nohz.cpu_mask))
4966 /* Don't need to rebalance while attached to NULL domain */
4967 if (time_after_eq(jiffies, rq->next_balance) &&
4968 likely(!on_null_domain(cpu)))
4969 raise_softirq(SCHED_SOFTIRQ);
4972 #else /* CONFIG_SMP */
4975 * on UP we do not need to balance between CPUs:
4977 static inline void idle_balance(int cpu, struct rq *rq)
4983 DEFINE_PER_CPU(struct kernel_stat, kstat);
4985 EXPORT_PER_CPU_SYMBOL(kstat);
4988 * Return any ns on the sched_clock that have not yet been accounted in
4989 * @p in case that task is currently running.
4991 * Called with task_rq_lock() held on @rq.
4993 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4997 if (task_current(rq, p)) {
4998 update_rq_clock(rq);
4999 ns = rq->clock - p->se.exec_start;
5007 unsigned long long task_delta_exec(struct task_struct *p)
5009 unsigned long flags;
5013 rq = task_rq_lock(p, &flags);
5014 ns = do_task_delta_exec(p, rq);
5015 task_rq_unlock(rq, &flags);
5021 * Return accounted runtime for the task.
5022 * In case the task is currently running, return the runtime plus current's
5023 * pending runtime that have not been accounted yet.
5025 unsigned long long task_sched_runtime(struct task_struct *p)
5027 unsigned long flags;
5031 rq = task_rq_lock(p, &flags);
5032 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5033 task_rq_unlock(rq, &flags);
5039 * Return sum_exec_runtime for the thread group.
5040 * In case the task is currently running, return the sum plus current's
5041 * pending runtime that have not been accounted yet.
5043 * Note that the thread group might have other running tasks as well,
5044 * so the return value not includes other pending runtime that other
5045 * running tasks might have.
5047 unsigned long long thread_group_sched_runtime(struct task_struct *p)
5049 struct task_cputime totals;
5050 unsigned long flags;
5054 rq = task_rq_lock(p, &flags);
5055 thread_group_cputime(p, &totals);
5056 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5057 task_rq_unlock(rq, &flags);
5063 * Account user cpu time to a process.
5064 * @p: the process that the cpu time gets accounted to
5065 * @cputime: the cpu time spent in user space since the last update
5066 * @cputime_scaled: cputime scaled by cpu frequency
5068 void account_user_time(struct task_struct *p, cputime_t cputime,
5069 cputime_t cputime_scaled)
5071 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5074 /* Add user time to process. */
5075 p->utime = cputime_add(p->utime, cputime);
5076 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5077 account_group_user_time(p, cputime);
5079 /* Add user time to cpustat. */
5080 tmp = cputime_to_cputime64(cputime);
5081 if (TASK_NICE(p) > 0)
5082 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5084 cpustat->user = cputime64_add(cpustat->user, tmp);
5086 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5087 /* Account for user time used */
5088 acct_update_integrals(p);
5092 * Account guest cpu time to a process.
5093 * @p: the process that the cpu time gets accounted to
5094 * @cputime: the cpu time spent in virtual machine since the last update
5095 * @cputime_scaled: cputime scaled by cpu frequency
5097 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5098 cputime_t cputime_scaled)
5101 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5103 tmp = cputime_to_cputime64(cputime);
5105 /* Add guest time to process. */
5106 p->utime = cputime_add(p->utime, cputime);
5107 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5108 account_group_user_time(p, cputime);
5109 p->gtime = cputime_add(p->gtime, cputime);
5111 /* Add guest time to cpustat. */
5112 cpustat->user = cputime64_add(cpustat->user, tmp);
5113 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5117 * Account system cpu time to a process.
5118 * @p: the process that the cpu time gets accounted to
5119 * @hardirq_offset: the offset to subtract from hardirq_count()
5120 * @cputime: the cpu time spent in kernel space since the last update
5121 * @cputime_scaled: cputime scaled by cpu frequency
5123 void account_system_time(struct task_struct *p, int hardirq_offset,
5124 cputime_t cputime, cputime_t cputime_scaled)
5126 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5129 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5130 account_guest_time(p, cputime, cputime_scaled);
5134 /* Add system time to process. */
5135 p->stime = cputime_add(p->stime, cputime);
5136 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5137 account_group_system_time(p, cputime);
5139 /* Add system time to cpustat. */
5140 tmp = cputime_to_cputime64(cputime);
5141 if (hardirq_count() - hardirq_offset)
5142 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5143 else if (softirq_count())
5144 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5146 cpustat->system = cputime64_add(cpustat->system, tmp);
5148 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5150 /* Account for system time used */
5151 acct_update_integrals(p);
5155 * Account for involuntary wait time.
5156 * @steal: the cpu time spent in involuntary wait
5158 void account_steal_time(cputime_t cputime)
5160 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5161 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5163 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5167 * Account for idle time.
5168 * @cputime: the cpu time spent in idle wait
5170 void account_idle_time(cputime_t cputime)
5172 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5173 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5174 struct rq *rq = this_rq();
5176 if (atomic_read(&rq->nr_iowait) > 0)
5177 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5179 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5182 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5185 * Account a single tick of cpu time.
5186 * @p: the process that the cpu time gets accounted to
5187 * @user_tick: indicates if the tick is a user or a system tick
5189 void account_process_tick(struct task_struct *p, int user_tick)
5191 cputime_t one_jiffy = jiffies_to_cputime(1);
5192 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5193 struct rq *rq = this_rq();
5196 account_user_time(p, one_jiffy, one_jiffy_scaled);
5197 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5198 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5201 account_idle_time(one_jiffy);
5205 * Account multiple ticks of steal time.
5206 * @p: the process from which the cpu time has been stolen
5207 * @ticks: number of stolen ticks
5209 void account_steal_ticks(unsigned long ticks)
5211 account_steal_time(jiffies_to_cputime(ticks));
5215 * Account multiple ticks of idle time.
5216 * @ticks: number of stolen ticks
5218 void account_idle_ticks(unsigned long ticks)
5220 account_idle_time(jiffies_to_cputime(ticks));
5226 * Use precise platform statistics if available:
5228 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5229 cputime_t task_utime(struct task_struct *p)
5234 cputime_t task_stime(struct task_struct *p)
5239 cputime_t task_utime(struct task_struct *p)
5241 clock_t utime = cputime_to_clock_t(p->utime),
5242 total = utime + cputime_to_clock_t(p->stime);
5246 * Use CFS's precise accounting:
5248 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5252 do_div(temp, total);
5254 utime = (clock_t)temp;
5256 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5257 return p->prev_utime;
5260 cputime_t task_stime(struct task_struct *p)
5265 * Use CFS's precise accounting. (we subtract utime from
5266 * the total, to make sure the total observed by userspace
5267 * grows monotonically - apps rely on that):
5269 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5270 cputime_to_clock_t(task_utime(p));
5273 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5275 return p->prev_stime;
5279 inline cputime_t task_gtime(struct task_struct *p)
5285 * This function gets called by the timer code, with HZ frequency.
5286 * We call it with interrupts disabled.
5288 * It also gets called by the fork code, when changing the parent's
5291 void scheduler_tick(void)
5293 int cpu = smp_processor_id();
5294 struct rq *rq = cpu_rq(cpu);
5295 struct task_struct *curr = rq->curr;
5299 spin_lock(&rq->lock);
5300 update_rq_clock(rq);
5301 update_cpu_load(rq);
5302 curr->sched_class->task_tick(rq, curr, 0);
5303 spin_unlock(&rq->lock);
5305 perf_counter_task_tick(curr, cpu);
5308 rq->idle_at_tick = idle_cpu(cpu);
5309 trigger_load_balance(rq, cpu);
5313 notrace unsigned long get_parent_ip(unsigned long addr)
5315 if (in_lock_functions(addr)) {
5316 addr = CALLER_ADDR2;
5317 if (in_lock_functions(addr))
5318 addr = CALLER_ADDR3;
5323 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5324 defined(CONFIG_PREEMPT_TRACER))
5326 void __kprobes add_preempt_count(int val)
5328 #ifdef CONFIG_DEBUG_PREEMPT
5332 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5335 preempt_count() += val;
5336 #ifdef CONFIG_DEBUG_PREEMPT
5338 * Spinlock count overflowing soon?
5340 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5343 if (preempt_count() == val)
5344 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5346 EXPORT_SYMBOL(add_preempt_count);
5348 void __kprobes sub_preempt_count(int val)
5350 #ifdef CONFIG_DEBUG_PREEMPT
5354 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5357 * Is the spinlock portion underflowing?
5359 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5360 !(preempt_count() & PREEMPT_MASK)))
5364 if (preempt_count() == val)
5365 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5366 preempt_count() -= val;
5368 EXPORT_SYMBOL(sub_preempt_count);
5373 * Print scheduling while atomic bug:
5375 static noinline void __schedule_bug(struct task_struct *prev)
5377 struct pt_regs *regs = get_irq_regs();
5379 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5380 prev->comm, prev->pid, preempt_count());
5382 debug_show_held_locks(prev);
5384 if (irqs_disabled())
5385 print_irqtrace_events(prev);
5394 * Various schedule()-time debugging checks and statistics:
5396 static inline void schedule_debug(struct task_struct *prev)
5399 * Test if we are atomic. Since do_exit() needs to call into
5400 * schedule() atomically, we ignore that path for now.
5401 * Otherwise, whine if we are scheduling when we should not be.
5403 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5404 __schedule_bug(prev);
5406 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5408 schedstat_inc(this_rq(), sched_count);
5409 #ifdef CONFIG_SCHEDSTATS
5410 if (unlikely(prev->lock_depth >= 0)) {
5411 schedstat_inc(this_rq(), bkl_count);
5412 schedstat_inc(prev, sched_info.bkl_count);
5417 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5419 if (prev->state == TASK_RUNNING) {
5420 u64 runtime = prev->se.sum_exec_runtime;
5422 runtime -= prev->se.prev_sum_exec_runtime;
5423 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5426 * In order to avoid avg_overlap growing stale when we are
5427 * indeed overlapping and hence not getting put to sleep, grow
5428 * the avg_overlap on preemption.
5430 * We use the average preemption runtime because that
5431 * correlates to the amount of cache footprint a task can
5434 update_avg(&prev->se.avg_overlap, runtime);
5436 prev->sched_class->put_prev_task(rq, prev);
5440 * Pick up the highest-prio task:
5442 static inline struct task_struct *
5443 pick_next_task(struct rq *rq)
5445 const struct sched_class *class;
5446 struct task_struct *p;
5449 * Optimization: we know that if all tasks are in
5450 * the fair class we can call that function directly:
5452 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5453 p = fair_sched_class.pick_next_task(rq);
5458 class = sched_class_highest;
5460 p = class->pick_next_task(rq);
5464 * Will never be NULL as the idle class always
5465 * returns a non-NULL p:
5467 class = class->next;
5472 * schedule() is the main scheduler function.
5474 asmlinkage void __sched schedule(void)
5476 struct task_struct *prev, *next;
5477 unsigned long *switch_count;
5483 cpu = smp_processor_id();
5487 switch_count = &prev->nivcsw;
5489 release_kernel_lock(prev);
5490 need_resched_nonpreemptible:
5492 schedule_debug(prev);
5494 if (sched_feat(HRTICK))
5497 spin_lock_irq(&rq->lock);
5498 update_rq_clock(rq);
5499 clear_tsk_need_resched(prev);
5501 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5502 if (unlikely(signal_pending_state(prev->state, prev)))
5503 prev->state = TASK_RUNNING;
5505 deactivate_task(rq, prev, 1);
5506 switch_count = &prev->nvcsw;
5509 pre_schedule(rq, prev);
5511 if (unlikely(!rq->nr_running))
5512 idle_balance(cpu, rq);
5514 put_prev_task(rq, prev);
5515 next = pick_next_task(rq);
5517 if (likely(prev != next)) {
5518 sched_info_switch(prev, next);
5519 perf_counter_task_sched_out(prev, next, cpu);
5525 context_switch(rq, prev, next); /* unlocks the rq */
5527 * the context switch might have flipped the stack from under
5528 * us, hence refresh the local variables.
5530 cpu = smp_processor_id();
5533 spin_unlock_irq(&rq->lock);
5537 if (unlikely(reacquire_kernel_lock(current) < 0))
5538 goto need_resched_nonpreemptible;
5540 preempt_enable_no_resched();
5544 EXPORT_SYMBOL(schedule);
5548 * Look out! "owner" is an entirely speculative pointer
5549 * access and not reliable.
5551 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5556 if (!sched_feat(OWNER_SPIN))
5559 #ifdef CONFIG_DEBUG_PAGEALLOC
5561 * Need to access the cpu field knowing that
5562 * DEBUG_PAGEALLOC could have unmapped it if
5563 * the mutex owner just released it and exited.
5565 if (probe_kernel_address(&owner->cpu, cpu))
5572 * Even if the access succeeded (likely case),
5573 * the cpu field may no longer be valid.
5575 if (cpu >= nr_cpumask_bits)
5579 * We need to validate that we can do a
5580 * get_cpu() and that we have the percpu area.
5582 if (!cpu_online(cpu))
5589 * Owner changed, break to re-assess state.
5591 if (lock->owner != owner)
5595 * Is that owner really running on that cpu?
5597 if (task_thread_info(rq->curr) != owner || need_resched())
5607 #ifdef CONFIG_PREEMPT
5609 * this is the entry point to schedule() from in-kernel preemption
5610 * off of preempt_enable. Kernel preemptions off return from interrupt
5611 * occur there and call schedule directly.
5613 asmlinkage void __sched preempt_schedule(void)
5615 struct thread_info *ti = current_thread_info();
5618 * If there is a non-zero preempt_count or interrupts are disabled,
5619 * we do not want to preempt the current task. Just return..
5621 if (likely(ti->preempt_count || irqs_disabled()))
5625 add_preempt_count(PREEMPT_ACTIVE);
5627 sub_preempt_count(PREEMPT_ACTIVE);
5630 * Check again in case we missed a preemption opportunity
5631 * between schedule and now.
5634 } while (need_resched());
5636 EXPORT_SYMBOL(preempt_schedule);
5639 * this is the entry point to schedule() from kernel preemption
5640 * off of irq context.
5641 * Note, that this is called and return with irqs disabled. This will
5642 * protect us against recursive calling from irq.
5644 asmlinkage void __sched preempt_schedule_irq(void)
5646 struct thread_info *ti = current_thread_info();
5648 /* Catch callers which need to be fixed */
5649 BUG_ON(ti->preempt_count || !irqs_disabled());
5652 add_preempt_count(PREEMPT_ACTIVE);
5655 local_irq_disable();
5656 sub_preempt_count(PREEMPT_ACTIVE);
5659 * Check again in case we missed a preemption opportunity
5660 * between schedule and now.
5663 } while (need_resched());
5666 #endif /* CONFIG_PREEMPT */
5668 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5671 return try_to_wake_up(curr->private, mode, sync);
5673 EXPORT_SYMBOL(default_wake_function);
5676 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5677 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5678 * number) then we wake all the non-exclusive tasks and one exclusive task.
5680 * There are circumstances in which we can try to wake a task which has already
5681 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5682 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5684 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5685 int nr_exclusive, int sync, void *key)
5687 wait_queue_t *curr, *next;
5689 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5690 unsigned flags = curr->flags;
5692 if (curr->func(curr, mode, sync, key) &&
5693 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5699 * __wake_up - wake up threads blocked on a waitqueue.
5701 * @mode: which threads
5702 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5703 * @key: is directly passed to the wakeup function
5705 * It may be assumed that this function implies a write memory barrier before
5706 * changing the task state if and only if any tasks are woken up.
5708 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5709 int nr_exclusive, void *key)
5711 unsigned long flags;
5713 spin_lock_irqsave(&q->lock, flags);
5714 __wake_up_common(q, mode, nr_exclusive, 0, key);
5715 spin_unlock_irqrestore(&q->lock, flags);
5717 EXPORT_SYMBOL(__wake_up);
5720 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5722 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5724 __wake_up_common(q, mode, 1, 0, NULL);
5727 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5729 __wake_up_common(q, mode, 1, 0, key);
5733 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5735 * @mode: which threads
5736 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5737 * @key: opaque value to be passed to wakeup targets
5739 * The sync wakeup differs that the waker knows that it will schedule
5740 * away soon, so while the target thread will be woken up, it will not
5741 * be migrated to another CPU - ie. the two threads are 'synchronized'
5742 * with each other. This can prevent needless bouncing between CPUs.
5744 * On UP it can prevent extra preemption.
5746 * It may be assumed that this function implies a write memory barrier before
5747 * changing the task state if and only if any tasks are woken up.
5749 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5750 int nr_exclusive, void *key)
5752 unsigned long flags;
5758 if (unlikely(!nr_exclusive))
5761 spin_lock_irqsave(&q->lock, flags);
5762 __wake_up_common(q, mode, nr_exclusive, sync, key);
5763 spin_unlock_irqrestore(&q->lock, flags);
5765 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5768 * __wake_up_sync - see __wake_up_sync_key()
5770 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5772 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5774 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5777 * complete: - signals a single thread waiting on this completion
5778 * @x: holds the state of this particular completion
5780 * This will wake up a single thread waiting on this completion. Threads will be
5781 * awakened in the same order in which they were queued.
5783 * See also complete_all(), wait_for_completion() and related routines.
5785 * It may be assumed that this function implies a write memory barrier before
5786 * changing the task state if and only if any tasks are woken up.
5788 void complete(struct completion *x)
5790 unsigned long flags;
5792 spin_lock_irqsave(&x->wait.lock, flags);
5794 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5795 spin_unlock_irqrestore(&x->wait.lock, flags);
5797 EXPORT_SYMBOL(complete);
5800 * complete_all: - signals all threads waiting on this completion
5801 * @x: holds the state of this particular completion
5803 * This will wake up all threads waiting on this particular completion event.
5805 * It may be assumed that this function implies a write memory barrier before
5806 * changing the task state if and only if any tasks are woken up.
5808 void complete_all(struct completion *x)
5810 unsigned long flags;
5812 spin_lock_irqsave(&x->wait.lock, flags);
5813 x->done += UINT_MAX/2;
5814 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5815 spin_unlock_irqrestore(&x->wait.lock, flags);
5817 EXPORT_SYMBOL(complete_all);
5819 static inline long __sched
5820 do_wait_for_common(struct completion *x, long timeout, int state)
5823 DECLARE_WAITQUEUE(wait, current);
5825 wait.flags |= WQ_FLAG_EXCLUSIVE;
5826 __add_wait_queue_tail(&x->wait, &wait);
5828 if (signal_pending_state(state, current)) {
5829 timeout = -ERESTARTSYS;
5832 __set_current_state(state);
5833 spin_unlock_irq(&x->wait.lock);
5834 timeout = schedule_timeout(timeout);
5835 spin_lock_irq(&x->wait.lock);
5836 } while (!x->done && timeout);
5837 __remove_wait_queue(&x->wait, &wait);
5842 return timeout ?: 1;
5846 wait_for_common(struct completion *x, long timeout, int state)
5850 spin_lock_irq(&x->wait.lock);
5851 timeout = do_wait_for_common(x, timeout, state);
5852 spin_unlock_irq(&x->wait.lock);
5857 * wait_for_completion: - waits for completion of a task
5858 * @x: holds the state of this particular completion
5860 * This waits to be signaled for completion of a specific task. It is NOT
5861 * interruptible and there is no timeout.
5863 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5864 * and interrupt capability. Also see complete().
5866 void __sched wait_for_completion(struct completion *x)
5868 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5870 EXPORT_SYMBOL(wait_for_completion);
5873 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5874 * @x: holds the state of this particular completion
5875 * @timeout: timeout value in jiffies
5877 * This waits for either a completion of a specific task to be signaled or for a
5878 * specified timeout to expire. The timeout is in jiffies. It is not
5881 unsigned long __sched
5882 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5884 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5886 EXPORT_SYMBOL(wait_for_completion_timeout);
5889 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5890 * @x: holds the state of this particular completion
5892 * This waits for completion of a specific task to be signaled. It is
5895 int __sched wait_for_completion_interruptible(struct completion *x)
5897 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5898 if (t == -ERESTARTSYS)
5902 EXPORT_SYMBOL(wait_for_completion_interruptible);
5905 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5906 * @x: holds the state of this particular completion
5907 * @timeout: timeout value in jiffies
5909 * This waits for either a completion of a specific task to be signaled or for a
5910 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5912 unsigned long __sched
5913 wait_for_completion_interruptible_timeout(struct completion *x,
5914 unsigned long timeout)
5916 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5918 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5921 * wait_for_completion_killable: - waits for completion of a task (killable)
5922 * @x: holds the state of this particular completion
5924 * This waits to be signaled for completion of a specific task. It can be
5925 * interrupted by a kill signal.
5927 int __sched wait_for_completion_killable(struct completion *x)
5929 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5930 if (t == -ERESTARTSYS)
5934 EXPORT_SYMBOL(wait_for_completion_killable);
5937 * try_wait_for_completion - try to decrement a completion without blocking
5938 * @x: completion structure
5940 * Returns: 0 if a decrement cannot be done without blocking
5941 * 1 if a decrement succeeded.
5943 * If a completion is being used as a counting completion,
5944 * attempt to decrement the counter without blocking. This
5945 * enables us to avoid waiting if the resource the completion
5946 * is protecting is not available.
5948 bool try_wait_for_completion(struct completion *x)
5952 spin_lock_irq(&x->wait.lock);
5957 spin_unlock_irq(&x->wait.lock);
5960 EXPORT_SYMBOL(try_wait_for_completion);
5963 * completion_done - Test to see if a completion has any waiters
5964 * @x: completion structure
5966 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5967 * 1 if there are no waiters.
5970 bool completion_done(struct completion *x)
5974 spin_lock_irq(&x->wait.lock);
5977 spin_unlock_irq(&x->wait.lock);
5980 EXPORT_SYMBOL(completion_done);
5983 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5985 unsigned long flags;
5988 init_waitqueue_entry(&wait, current);
5990 __set_current_state(state);
5992 spin_lock_irqsave(&q->lock, flags);
5993 __add_wait_queue(q, &wait);
5994 spin_unlock(&q->lock);
5995 timeout = schedule_timeout(timeout);
5996 spin_lock_irq(&q->lock);
5997 __remove_wait_queue(q, &wait);
5998 spin_unlock_irqrestore(&q->lock, flags);
6003 void __sched interruptible_sleep_on(wait_queue_head_t *q)
6005 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6007 EXPORT_SYMBOL(interruptible_sleep_on);
6010 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
6012 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
6014 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6016 void __sched sleep_on(wait_queue_head_t *q)
6018 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6020 EXPORT_SYMBOL(sleep_on);
6022 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
6024 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
6026 EXPORT_SYMBOL(sleep_on_timeout);
6028 #ifdef CONFIG_RT_MUTEXES
6031 * rt_mutex_setprio - set the current priority of a task
6033 * @prio: prio value (kernel-internal form)
6035 * This function changes the 'effective' priority of a task. It does
6036 * not touch ->normal_prio like __setscheduler().
6038 * Used by the rt_mutex code to implement priority inheritance logic.
6040 void rt_mutex_setprio(struct task_struct *p, int prio)
6042 unsigned long flags;
6043 int oldprio, on_rq, running;
6045 const struct sched_class *prev_class = p->sched_class;
6047 BUG_ON(prio < 0 || prio > MAX_PRIO);
6049 rq = task_rq_lock(p, &flags);
6050 update_rq_clock(rq);
6053 on_rq = p->se.on_rq;
6054 running = task_current(rq, p);
6056 dequeue_task(rq, p, 0);
6058 p->sched_class->put_prev_task(rq, p);
6061 p->sched_class = &rt_sched_class;
6063 p->sched_class = &fair_sched_class;
6068 p->sched_class->set_curr_task(rq);
6070 enqueue_task(rq, p, 0);
6072 check_class_changed(rq, p, prev_class, oldprio, running);
6074 task_rq_unlock(rq, &flags);
6079 void set_user_nice(struct task_struct *p, long nice)
6081 int old_prio, delta, on_rq;
6082 unsigned long flags;
6085 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6088 * We have to be careful, if called from sys_setpriority(),
6089 * the task might be in the middle of scheduling on another CPU.
6091 rq = task_rq_lock(p, &flags);
6092 update_rq_clock(rq);
6094 * The RT priorities are set via sched_setscheduler(), but we still
6095 * allow the 'normal' nice value to be set - but as expected
6096 * it wont have any effect on scheduling until the task is
6097 * SCHED_FIFO/SCHED_RR:
6099 if (task_has_rt_policy(p)) {
6100 p->static_prio = NICE_TO_PRIO(nice);
6103 on_rq = p->se.on_rq;
6105 dequeue_task(rq, p, 0);
6107 p->static_prio = NICE_TO_PRIO(nice);
6110 p->prio = effective_prio(p);
6111 delta = p->prio - old_prio;
6114 enqueue_task(rq, p, 0);
6116 * If the task increased its priority or is running and
6117 * lowered its priority, then reschedule its CPU:
6119 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6120 resched_task(rq->curr);
6123 task_rq_unlock(rq, &flags);
6125 EXPORT_SYMBOL(set_user_nice);
6128 * can_nice - check if a task can reduce its nice value
6132 int can_nice(const struct task_struct *p, const int nice)
6134 /* convert nice value [19,-20] to rlimit style value [1,40] */
6135 int nice_rlim = 20 - nice;
6137 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6138 capable(CAP_SYS_NICE));
6141 #ifdef __ARCH_WANT_SYS_NICE
6144 * sys_nice - change the priority of the current process.
6145 * @increment: priority increment
6147 * sys_setpriority is a more generic, but much slower function that
6148 * does similar things.
6150 SYSCALL_DEFINE1(nice, int, increment)
6155 * Setpriority might change our priority at the same moment.
6156 * We don't have to worry. Conceptually one call occurs first
6157 * and we have a single winner.
6159 if (increment < -40)
6164 nice = TASK_NICE(current) + increment;
6170 if (increment < 0 && !can_nice(current, nice))
6173 retval = security_task_setnice(current, nice);
6177 set_user_nice(current, nice);
6184 * task_prio - return the priority value of a given task.
6185 * @p: the task in question.
6187 * This is the priority value as seen by users in /proc.
6188 * RT tasks are offset by -200. Normal tasks are centered
6189 * around 0, value goes from -16 to +15.
6191 int task_prio(const struct task_struct *p)
6193 return p->prio - MAX_RT_PRIO;
6197 * task_nice - return the nice value of a given task.
6198 * @p: the task in question.
6200 int task_nice(const struct task_struct *p)
6202 return TASK_NICE(p);
6204 EXPORT_SYMBOL(task_nice);
6207 * idle_cpu - is a given cpu idle currently?
6208 * @cpu: the processor in question.
6210 int idle_cpu(int cpu)
6212 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6216 * idle_task - return the idle task for a given cpu.
6217 * @cpu: the processor in question.
6219 struct task_struct *idle_task(int cpu)
6221 return cpu_rq(cpu)->idle;
6225 * find_process_by_pid - find a process with a matching PID value.
6226 * @pid: the pid in question.
6228 static struct task_struct *find_process_by_pid(pid_t pid)
6230 return pid ? find_task_by_vpid(pid) : current;
6233 /* Actually do priority change: must hold rq lock. */
6235 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6237 BUG_ON(p->se.on_rq);
6240 switch (p->policy) {
6244 p->sched_class = &fair_sched_class;
6248 p->sched_class = &rt_sched_class;
6252 p->rt_priority = prio;
6253 p->normal_prio = normal_prio(p);
6254 /* we are holding p->pi_lock already */
6255 p->prio = rt_mutex_getprio(p);
6260 * check the target process has a UID that matches the current process's
6262 static bool check_same_owner(struct task_struct *p)
6264 const struct cred *cred = current_cred(), *pcred;
6268 pcred = __task_cred(p);
6269 match = (cred->euid == pcred->euid ||
6270 cred->euid == pcred->uid);
6275 static int __sched_setscheduler(struct task_struct *p, int policy,
6276 struct sched_param *param, bool user)
6278 int retval, oldprio, oldpolicy = -1, on_rq, running;
6279 unsigned long flags;
6280 const struct sched_class *prev_class = p->sched_class;
6284 /* may grab non-irq protected spin_locks */
6285 BUG_ON(in_interrupt());
6287 /* double check policy once rq lock held */
6289 reset_on_fork = p->sched_reset_on_fork;
6290 policy = oldpolicy = p->policy;
6292 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6293 policy &= ~SCHED_RESET_ON_FORK;
6295 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6296 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6297 policy != SCHED_IDLE)
6302 * Valid priorities for SCHED_FIFO and SCHED_RR are
6303 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6304 * SCHED_BATCH and SCHED_IDLE is 0.
6306 if (param->sched_priority < 0 ||
6307 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6308 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6310 if (rt_policy(policy) != (param->sched_priority != 0))
6314 * Allow unprivileged RT tasks to decrease priority:
6316 if (user && !capable(CAP_SYS_NICE)) {
6317 if (rt_policy(policy)) {
6318 unsigned long rlim_rtprio;
6320 if (!lock_task_sighand(p, &flags))
6322 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6323 unlock_task_sighand(p, &flags);
6325 /* can't set/change the rt policy */
6326 if (policy != p->policy && !rlim_rtprio)
6329 /* can't increase priority */
6330 if (param->sched_priority > p->rt_priority &&
6331 param->sched_priority > rlim_rtprio)
6335 * Like positive nice levels, dont allow tasks to
6336 * move out of SCHED_IDLE either:
6338 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6341 /* can't change other user's priorities */
6342 if (!check_same_owner(p))
6345 /* Normal users shall not reset the sched_reset_on_fork flag */
6346 if (p->sched_reset_on_fork && !reset_on_fork)
6351 #ifdef CONFIG_RT_GROUP_SCHED
6353 * Do not allow realtime tasks into groups that have no runtime
6356 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6357 task_group(p)->rt_bandwidth.rt_runtime == 0)
6361 retval = security_task_setscheduler(p, policy, param);
6367 * make sure no PI-waiters arrive (or leave) while we are
6368 * changing the priority of the task:
6370 spin_lock_irqsave(&p->pi_lock, flags);
6372 * To be able to change p->policy safely, the apropriate
6373 * runqueue lock must be held.
6375 rq = __task_rq_lock(p);
6376 /* recheck policy now with rq lock held */
6377 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6378 policy = oldpolicy = -1;
6379 __task_rq_unlock(rq);
6380 spin_unlock_irqrestore(&p->pi_lock, flags);
6383 update_rq_clock(rq);
6384 on_rq = p->se.on_rq;
6385 running = task_current(rq, p);
6387 deactivate_task(rq, p, 0);
6389 p->sched_class->put_prev_task(rq, p);
6391 p->sched_reset_on_fork = reset_on_fork;
6394 __setscheduler(rq, p, policy, param->sched_priority);
6397 p->sched_class->set_curr_task(rq);
6399 activate_task(rq, p, 0);
6401 check_class_changed(rq, p, prev_class, oldprio, running);
6403 __task_rq_unlock(rq);
6404 spin_unlock_irqrestore(&p->pi_lock, flags);
6406 rt_mutex_adjust_pi(p);
6412 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6413 * @p: the task in question.
6414 * @policy: new policy.
6415 * @param: structure containing the new RT priority.
6417 * NOTE that the task may be already dead.
6419 int sched_setscheduler(struct task_struct *p, int policy,
6420 struct sched_param *param)
6422 return __sched_setscheduler(p, policy, param, true);
6424 EXPORT_SYMBOL_GPL(sched_setscheduler);
6427 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6428 * @p: the task in question.
6429 * @policy: new policy.
6430 * @param: structure containing the new RT priority.
6432 * Just like sched_setscheduler, only don't bother checking if the
6433 * current context has permission. For example, this is needed in
6434 * stop_machine(): we create temporary high priority worker threads,
6435 * but our caller might not have that capability.
6437 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6438 struct sched_param *param)
6440 return __sched_setscheduler(p, policy, param, false);
6444 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6446 struct sched_param lparam;
6447 struct task_struct *p;
6450 if (!param || pid < 0)
6452 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6457 p = find_process_by_pid(pid);
6459 retval = sched_setscheduler(p, policy, &lparam);
6466 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6467 * @pid: the pid in question.
6468 * @policy: new policy.
6469 * @param: structure containing the new RT priority.
6471 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6472 struct sched_param __user *, param)
6474 /* negative values for policy are not valid */
6478 return do_sched_setscheduler(pid, policy, param);
6482 * sys_sched_setparam - set/change the RT priority of a thread
6483 * @pid: the pid in question.
6484 * @param: structure containing the new RT priority.
6486 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6488 return do_sched_setscheduler(pid, -1, param);
6492 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6493 * @pid: the pid in question.
6495 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6497 struct task_struct *p;
6504 read_lock(&tasklist_lock);
6505 p = find_process_by_pid(pid);
6507 retval = security_task_getscheduler(p);
6510 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6512 read_unlock(&tasklist_lock);
6517 * sys_sched_getparam - get the RT priority of a thread
6518 * @pid: the pid in question.
6519 * @param: structure containing the RT priority.
6521 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6523 struct sched_param lp;
6524 struct task_struct *p;
6527 if (!param || pid < 0)
6530 read_lock(&tasklist_lock);
6531 p = find_process_by_pid(pid);
6536 retval = security_task_getscheduler(p);
6540 lp.sched_priority = p->rt_priority;
6541 read_unlock(&tasklist_lock);
6544 * This one might sleep, we cannot do it with a spinlock held ...
6546 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6551 read_unlock(&tasklist_lock);
6555 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6557 cpumask_var_t cpus_allowed, new_mask;
6558 struct task_struct *p;
6562 read_lock(&tasklist_lock);
6564 p = find_process_by_pid(pid);
6566 read_unlock(&tasklist_lock);
6572 * It is not safe to call set_cpus_allowed with the
6573 * tasklist_lock held. We will bump the task_struct's
6574 * usage count and then drop tasklist_lock.
6577 read_unlock(&tasklist_lock);
6579 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6583 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6585 goto out_free_cpus_allowed;
6588 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6591 retval = security_task_setscheduler(p, 0, NULL);
6595 cpuset_cpus_allowed(p, cpus_allowed);
6596 cpumask_and(new_mask, in_mask, cpus_allowed);
6598 retval = set_cpus_allowed_ptr(p, new_mask);
6601 cpuset_cpus_allowed(p, cpus_allowed);
6602 if (!cpumask_subset(new_mask, cpus_allowed)) {
6604 * We must have raced with a concurrent cpuset
6605 * update. Just reset the cpus_allowed to the
6606 * cpuset's cpus_allowed
6608 cpumask_copy(new_mask, cpus_allowed);
6613 free_cpumask_var(new_mask);
6614 out_free_cpus_allowed:
6615 free_cpumask_var(cpus_allowed);
6622 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6623 struct cpumask *new_mask)
6625 if (len < cpumask_size())
6626 cpumask_clear(new_mask);
6627 else if (len > cpumask_size())
6628 len = cpumask_size();
6630 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6634 * sys_sched_setaffinity - set the cpu affinity of a process
6635 * @pid: pid of the process
6636 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6637 * @user_mask_ptr: user-space pointer to the new cpu mask
6639 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6640 unsigned long __user *, user_mask_ptr)
6642 cpumask_var_t new_mask;
6645 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6648 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6650 retval = sched_setaffinity(pid, new_mask);
6651 free_cpumask_var(new_mask);
6655 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6657 struct task_struct *p;
6661 read_lock(&tasklist_lock);
6664 p = find_process_by_pid(pid);
6668 retval = security_task_getscheduler(p);
6672 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6675 read_unlock(&tasklist_lock);
6682 * sys_sched_getaffinity - get the cpu affinity of a process
6683 * @pid: pid of the process
6684 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6685 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6687 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6688 unsigned long __user *, user_mask_ptr)
6693 if (len < cpumask_size())
6696 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6699 ret = sched_getaffinity(pid, mask);
6701 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6704 ret = cpumask_size();
6706 free_cpumask_var(mask);
6712 * sys_sched_yield - yield the current processor to other threads.
6714 * This function yields the current CPU to other tasks. If there are no
6715 * other threads running on this CPU then this function will return.
6717 SYSCALL_DEFINE0(sched_yield)
6719 struct rq *rq = this_rq_lock();
6721 schedstat_inc(rq, yld_count);
6722 current->sched_class->yield_task(rq);
6725 * Since we are going to call schedule() anyway, there's
6726 * no need to preempt or enable interrupts:
6728 __release(rq->lock);
6729 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6730 _raw_spin_unlock(&rq->lock);
6731 preempt_enable_no_resched();
6738 static inline int should_resched(void)
6740 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6743 static void __cond_resched(void)
6745 add_preempt_count(PREEMPT_ACTIVE);
6747 sub_preempt_count(PREEMPT_ACTIVE);
6750 int __sched _cond_resched(void)
6752 if (should_resched()) {
6758 EXPORT_SYMBOL(_cond_resched);
6761 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6762 * call schedule, and on return reacquire the lock.
6764 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6765 * operations here to prevent schedule() from being called twice (once via
6766 * spin_unlock(), once by hand).
6768 int __cond_resched_lock(spinlock_t *lock)
6770 int resched = should_resched();
6773 if (spin_needbreak(lock) || resched) {
6784 EXPORT_SYMBOL(__cond_resched_lock);
6786 int __sched __cond_resched_softirq(void)
6788 BUG_ON(!in_softirq());
6790 if (should_resched()) {
6798 EXPORT_SYMBOL(__cond_resched_softirq);
6801 * yield - yield the current processor to other threads.
6803 * This is a shortcut for kernel-space yielding - it marks the
6804 * thread runnable and calls sys_sched_yield().
6806 void __sched yield(void)
6808 set_current_state(TASK_RUNNING);
6811 EXPORT_SYMBOL(yield);
6814 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6815 * that process accounting knows that this is a task in IO wait state.
6817 * But don't do that if it is a deliberate, throttling IO wait (this task
6818 * has set its backing_dev_info: the queue against which it should throttle)
6820 void __sched io_schedule(void)
6822 struct rq *rq = raw_rq();
6824 delayacct_blkio_start();
6825 atomic_inc(&rq->nr_iowait);
6826 current->in_iowait = 1;
6828 current->in_iowait = 0;
6829 atomic_dec(&rq->nr_iowait);
6830 delayacct_blkio_end();
6832 EXPORT_SYMBOL(io_schedule);
6834 long __sched io_schedule_timeout(long timeout)
6836 struct rq *rq = raw_rq();
6839 delayacct_blkio_start();
6840 atomic_inc(&rq->nr_iowait);
6841 current->in_iowait = 1;
6842 ret = schedule_timeout(timeout);
6843 current->in_iowait = 0;
6844 atomic_dec(&rq->nr_iowait);
6845 delayacct_blkio_end();
6850 * sys_sched_get_priority_max - return maximum RT priority.
6851 * @policy: scheduling class.
6853 * this syscall returns the maximum rt_priority that can be used
6854 * by a given scheduling class.
6856 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6863 ret = MAX_USER_RT_PRIO-1;
6875 * sys_sched_get_priority_min - return minimum RT priority.
6876 * @policy: scheduling class.