[PATCH] hrtimer: hrtimer core code
[linux-2.6.git] / include / linux / ktime.h
1 /*
2  *  include/linux/ktime.h
3  *
4  *  ktime_t - nanosecond-resolution time format.
5  *
6  *   Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
7  *   Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
8  *
9  *  data type definitions, declarations, prototypes and macros.
10  *
11  *  Started by: Thomas Gleixner and Ingo Molnar
12  *
13  *  For licencing details see kernel-base/COPYING
14  */
15 #ifndef _LINUX_KTIME_H
16 #define _LINUX_KTIME_H
17
18 #include <linux/time.h>
19 #include <linux/jiffies.h>
20
21 /*
22  * ktime_t:
23  *
24  * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
25  * internal representation of time values in scalar nanoseconds. The
26  * design plays out best on 64-bit CPUs, where most conversions are
27  * NOPs and most arithmetic ktime_t operations are plain arithmetic
28  * operations.
29  *
30  * On 32-bit CPUs an optimized representation of the timespec structure
31  * is used to avoid expensive conversions from and to timespecs. The
32  * endian-aware order of the tv struct members is choosen to allow
33  * mathematical operations on the tv64 member of the union too, which
34  * for certain operations produces better code.
35  *
36  * For architectures with efficient support for 64/32-bit conversions the
37  * plain scalar nanosecond based representation can be selected by the
38  * config switch CONFIG_KTIME_SCALAR.
39  */
40 typedef union {
41         s64     tv64;
42 #if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
43         struct {
44 # ifdef __BIG_ENDIAN
45         s32     sec, nsec;
46 # else
47         s32     nsec, sec;
48 # endif
49         } tv;
50 #endif
51 } ktime_t;
52
53 #define KTIME_MAX                       (~((u64)1 << 63))
54
55 /*
56  * ktime_t definitions when using the 64-bit scalar representation:
57  */
58
59 #if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
60
61 /* Define a ktime_t variable and initialize it to zero: */
62 #define DEFINE_KTIME(kt)                ktime_t kt = { .tv64 = 0 }
63
64 /**
65  * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
66  *
67  * @secs:       seconds to set
68  * @nsecs:      nanoseconds to set
69  *
70  * Return the ktime_t representation of the value
71  */
72 static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
73 {
74         return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
75 }
76
77 /* Subtract two ktime_t variables. rem = lhs -rhs: */
78 #define ktime_sub(lhs, rhs) \
79                 ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
80
81 /* Add two ktime_t variables. res = lhs + rhs: */
82 #define ktime_add(lhs, rhs) \
83                 ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
84
85 /*
86  * Add a ktime_t variable and a scalar nanosecond value.
87  * res = kt + nsval:
88  */
89 #define ktime_add_ns(kt, nsval) \
90                 ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
91
92 /* convert a timespec to ktime_t format: */
93 #define timespec_to_ktime(ts)           ktime_set((ts).tv_sec, (ts).tv_nsec)
94
95 /* convert a timeval to ktime_t format: */
96 #define timeval_to_ktime(tv)            ktime_set((tv).tv_sec, (tv).tv_usec * 1000)
97
98 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
99 #define ktime_to_timespec(kt)           ns_to_timespec((kt).tv64)
100
101 /* Map the ktime_t to timeval conversion to ns_to_timeval function */
102 #define ktime_to_timeval(kt)            ns_to_timeval((kt).tv64)
103
104 /* Map the ktime_t to clock_t conversion to the inline in jiffies.h: */
105 #define ktime_to_clock_t(kt)            nsec_to_clock_t((kt).tv64)
106
107 /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
108 #define ktime_to_ns(kt)                 ((kt).tv64)
109
110 #else
111
112 /*
113  * Helper macros/inlines to get the ktime_t math right in the timespec
114  * representation. The macros are sometimes ugly - their actual use is
115  * pretty okay-ish, given the circumstances. We do all this for
116  * performance reasons. The pure scalar nsec_t based code was nice and
117  * simple, but created too many 64-bit / 32-bit conversions and divisions.
118  *
119  * Be especially aware that negative values are represented in a way
120  * that the tv.sec field is negative and the tv.nsec field is greater
121  * or equal to zero but less than nanoseconds per second. This is the
122  * same representation which is used by timespecs.
123  *
124  *   tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
125  */
126
127 /* Define a ktime_t variable and initialize it to zero: */
128 #define DEFINE_KTIME(kt)                ktime_t kt = { .tv64 = 0 }
129
130 /* Set a ktime_t variable to a value in sec/nsec representation: */
131 static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
132 {
133         return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
134 }
135
136 /**
137  * ktime_sub - subtract two ktime_t variables
138  *
139  * @lhs:        minuend
140  * @rhs:        subtrahend
141  *
142  * Returns the remainder of the substraction
143  */
144 static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
145 {
146         ktime_t res;
147
148         res.tv64 = lhs.tv64 - rhs.tv64;
149         if (res.tv.nsec < 0)
150                 res.tv.nsec += NSEC_PER_SEC;
151
152         return res;
153 }
154
155 /**
156  * ktime_add - add two ktime_t variables
157  *
158  * @add1:       addend1
159  * @add2:       addend2
160  *
161  * Returns the sum of addend1 and addend2
162  */
163 static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
164 {
165         ktime_t res;
166
167         res.tv64 = add1.tv64 + add2.tv64;
168         /*
169          * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
170          * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
171          *
172          * it's equivalent to:
173          *   tv.nsec -= NSEC_PER_SEC
174          *   tv.sec ++;
175          */
176         if (res.tv.nsec >= NSEC_PER_SEC)
177                 res.tv64 += (u32)-NSEC_PER_SEC;
178
179         return res;
180 }
181
182 /**
183  * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
184  *
185  * @kt:         addend
186  * @nsec:       the scalar nsec value to add
187  *
188  * Returns the sum of kt and nsec in ktime_t format
189  */
190 extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
191
192 /**
193  * timespec_to_ktime - convert a timespec to ktime_t format
194  *
195  * @ts:         the timespec variable to convert
196  *
197  * Returns a ktime_t variable with the converted timespec value
198  */
199 static inline ktime_t timespec_to_ktime(const struct timespec ts)
200 {
201         return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
202                                    .nsec = (s32)ts.tv_nsec } };
203 }
204
205 /**
206  * timeval_to_ktime - convert a timeval to ktime_t format
207  *
208  * @tv:         the timeval variable to convert
209  *
210  * Returns a ktime_t variable with the converted timeval value
211  */
212 static inline ktime_t timeval_to_ktime(const struct timeval tv)
213 {
214         return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
215                                    .nsec = (s32)tv.tv_usec * 1000 } };
216 }
217
218 /**
219  * ktime_to_timespec - convert a ktime_t variable to timespec format
220  *
221  * @kt:         the ktime_t variable to convert
222  *
223  * Returns the timespec representation of the ktime value
224  */
225 static inline struct timespec ktime_to_timespec(const ktime_t kt)
226 {
227         return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
228                                    .tv_nsec = (long) kt.tv.nsec };
229 }
230
231 /**
232  * ktime_to_timeval - convert a ktime_t variable to timeval format
233  *
234  * @kt:         the ktime_t variable to convert
235  *
236  * Returns the timeval representation of the ktime value
237  */
238 static inline struct timeval ktime_to_timeval(const ktime_t kt)
239 {
240         return (struct timeval) {
241                 .tv_sec = (time_t) kt.tv.sec,
242                 .tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
243 }
244
245 /**
246  * ktime_to_clock_t - convert a ktime_t variable to clock_t format
247  * @kt:         the ktime_t variable to convert
248  *
249  * Returns a clock_t variable with the converted value
250  */
251 static inline clock_t ktime_to_clock_t(const ktime_t kt)
252 {
253         return nsec_to_clock_t( (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec);
254 }
255
256 /**
257  * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
258  * @kt:         the ktime_t variable to convert
259  *
260  * Returns the scalar nanoseconds representation of kt
261  */
262 static inline u64 ktime_to_ns(const ktime_t kt)
263 {
264         return (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
265 }
266
267 #endif
268
269 /*
270  * The resolution of the clocks. The resolution value is returned in
271  * the clock_getres() system call to give application programmers an
272  * idea of the (in)accuracy of timers. Timer values are rounded up to
273  * this resolution values.
274  */
275 #define KTIME_REALTIME_RES      (NSEC_PER_SEC/HZ)
276 #define KTIME_MONOTONIC_RES     (NSEC_PER_SEC/HZ)
277
278 /* Get the monotonic time in timespec format: */
279 extern void ktime_get_ts(struct timespec *ts);
280
281 /* Get the real (wall-) time in timespec format: */
282 #define ktime_get_real_ts(ts)   getnstimeofday(ts)
283
284 #endif