d9576f2618155817d7a23178f21cf56b2b78d689
[linux-2.6.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
63
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
68
69 struct core_name {
70         char *corename;
71         int used, size;
72 };
73 static atomic_t call_count = ATOMIC_INIT(1);
74
75 /* The maximal length of core_pattern is also specified in sysctl.c */
76
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79
80 int __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82         if (!fmt)
83                 return -EINVAL;
84         write_lock(&binfmt_lock);
85         insert ? list_add(&fmt->lh, &formats) :
86                  list_add_tail(&fmt->lh, &formats);
87         write_unlock(&binfmt_lock);
88         return 0;       
89 }
90
91 EXPORT_SYMBOL(__register_binfmt);
92
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95         write_lock(&binfmt_lock);
96         list_del(&fmt->lh);
97         write_unlock(&binfmt_lock);
98 }
99
100 EXPORT_SYMBOL(unregister_binfmt);
101
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104         module_put(fmt->module);
105 }
106
107 /*
108  * Note that a shared library must be both readable and executable due to
109  * security reasons.
110  *
111  * Also note that we take the address to load from from the file itself.
112  */
113 SYSCALL_DEFINE1(uselib, const char __user *, library)
114 {
115         struct file *file;
116         char *tmp = getname(library);
117         int error = PTR_ERR(tmp);
118         static const struct open_flags uselib_flags = {
119                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
120                 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
121                 .intent = LOOKUP_OPEN
122         };
123
124         if (IS_ERR(tmp))
125                 goto out;
126
127         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
128         putname(tmp);
129         error = PTR_ERR(file);
130         if (IS_ERR(file))
131                 goto out;
132
133         error = -EINVAL;
134         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
135                 goto exit;
136
137         error = -EACCES;
138         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
139                 goto exit;
140
141         fsnotify_open(file);
142
143         error = -ENOEXEC;
144         if(file->f_op) {
145                 struct linux_binfmt * fmt;
146
147                 read_lock(&binfmt_lock);
148                 list_for_each_entry(fmt, &formats, lh) {
149                         if (!fmt->load_shlib)
150                                 continue;
151                         if (!try_module_get(fmt->module))
152                                 continue;
153                         read_unlock(&binfmt_lock);
154                         error = fmt->load_shlib(file);
155                         read_lock(&binfmt_lock);
156                         put_binfmt(fmt);
157                         if (error != -ENOEXEC)
158                                 break;
159                 }
160                 read_unlock(&binfmt_lock);
161         }
162 exit:
163         fput(file);
164 out:
165         return error;
166 }
167
168 #ifdef CONFIG_MMU
169 /*
170  * The nascent bprm->mm is not visible until exec_mmap() but it can
171  * use a lot of memory, account these pages in current->mm temporary
172  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
173  * change the counter back via acct_arg_size(0).
174  */
175 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
176 {
177         struct mm_struct *mm = current->mm;
178         long diff = (long)(pages - bprm->vma_pages);
179
180         if (!mm || !diff)
181                 return;
182
183         bprm->vma_pages = pages;
184
185 #ifdef SPLIT_RSS_COUNTING
186         add_mm_counter(mm, MM_ANONPAGES, diff);
187 #else
188         spin_lock(&mm->page_table_lock);
189         add_mm_counter(mm, MM_ANONPAGES, diff);
190         spin_unlock(&mm->page_table_lock);
191 #endif
192 }
193
194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195                 int write)
196 {
197         struct page *page;
198         int ret;
199
200 #ifdef CONFIG_STACK_GROWSUP
201         if (write) {
202                 ret = expand_downwards(bprm->vma, pos);
203                 if (ret < 0)
204                         return NULL;
205         }
206 #endif
207         ret = get_user_pages(current, bprm->mm, pos,
208                         1, write, 1, &page, NULL);
209         if (ret <= 0)
210                 return NULL;
211
212         if (write) {
213                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
214                 struct rlimit *rlim;
215
216                 acct_arg_size(bprm, size / PAGE_SIZE);
217
218                 /*
219                  * We've historically supported up to 32 pages (ARG_MAX)
220                  * of argument strings even with small stacks
221                  */
222                 if (size <= ARG_MAX)
223                         return page;
224
225                 /*
226                  * Limit to 1/4-th the stack size for the argv+env strings.
227                  * This ensures that:
228                  *  - the remaining binfmt code will not run out of stack space,
229                  *  - the program will have a reasonable amount of stack left
230                  *    to work from.
231                  */
232                 rlim = current->signal->rlim;
233                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
234                         put_page(page);
235                         return NULL;
236                 }
237         }
238
239         return page;
240 }
241
242 static void put_arg_page(struct page *page)
243 {
244         put_page(page);
245 }
246
247 static void free_arg_page(struct linux_binprm *bprm, int i)
248 {
249 }
250
251 static void free_arg_pages(struct linux_binprm *bprm)
252 {
253 }
254
255 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
256                 struct page *page)
257 {
258         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
259 }
260
261 static int __bprm_mm_init(struct linux_binprm *bprm)
262 {
263         int err;
264         struct vm_area_struct *vma = NULL;
265         struct mm_struct *mm = bprm->mm;
266
267         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
268         if (!vma)
269                 return -ENOMEM;
270
271         down_write(&mm->mmap_sem);
272         vma->vm_mm = mm;
273
274         /*
275          * Place the stack at the largest stack address the architecture
276          * supports. Later, we'll move this to an appropriate place. We don't
277          * use STACK_TOP because that can depend on attributes which aren't
278          * configured yet.
279          */
280         BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
281         vma->vm_end = STACK_TOP_MAX;
282         vma->vm_start = vma->vm_end - PAGE_SIZE;
283         vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
284         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
285         INIT_LIST_HEAD(&vma->anon_vma_chain);
286
287         err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
288         if (err)
289                 goto err;
290
291         err = insert_vm_struct(mm, vma);
292         if (err)
293                 goto err;
294
295         mm->stack_vm = mm->total_vm = 1;
296         up_write(&mm->mmap_sem);
297         bprm->p = vma->vm_end - sizeof(void *);
298         return 0;
299 err:
300         up_write(&mm->mmap_sem);
301         bprm->vma = NULL;
302         kmem_cache_free(vm_area_cachep, vma);
303         return err;
304 }
305
306 static bool valid_arg_len(struct linux_binprm *bprm, long len)
307 {
308         return len <= MAX_ARG_STRLEN;
309 }
310
311 #else
312
313 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
314 {
315 }
316
317 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
318                 int write)
319 {
320         struct page *page;
321
322         page = bprm->page[pos / PAGE_SIZE];
323         if (!page && write) {
324                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
325                 if (!page)
326                         return NULL;
327                 bprm->page[pos / PAGE_SIZE] = page;
328         }
329
330         return page;
331 }
332
333 static void put_arg_page(struct page *page)
334 {
335 }
336
337 static void free_arg_page(struct linux_binprm *bprm, int i)
338 {
339         if (bprm->page[i]) {
340                 __free_page(bprm->page[i]);
341                 bprm->page[i] = NULL;
342         }
343 }
344
345 static void free_arg_pages(struct linux_binprm *bprm)
346 {
347         int i;
348
349         for (i = 0; i < MAX_ARG_PAGES; i++)
350                 free_arg_page(bprm, i);
351 }
352
353 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
354                 struct page *page)
355 {
356 }
357
358 static int __bprm_mm_init(struct linux_binprm *bprm)
359 {
360         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
361         return 0;
362 }
363
364 static bool valid_arg_len(struct linux_binprm *bprm, long len)
365 {
366         return len <= bprm->p;
367 }
368
369 #endif /* CONFIG_MMU */
370
371 /*
372  * Create a new mm_struct and populate it with a temporary stack
373  * vm_area_struct.  We don't have enough context at this point to set the stack
374  * flags, permissions, and offset, so we use temporary values.  We'll update
375  * them later in setup_arg_pages().
376  */
377 int bprm_mm_init(struct linux_binprm *bprm)
378 {
379         int err;
380         struct mm_struct *mm = NULL;
381
382         bprm->mm = mm = mm_alloc();
383         err = -ENOMEM;
384         if (!mm)
385                 goto err;
386
387         err = init_new_context(current, mm);
388         if (err)
389                 goto err;
390
391         err = __bprm_mm_init(bprm);
392         if (err)
393                 goto err;
394
395         return 0;
396
397 err:
398         if (mm) {
399                 bprm->mm = NULL;
400                 mmdrop(mm);
401         }
402
403         return err;
404 }
405
406 struct user_arg_ptr {
407 #ifdef CONFIG_COMPAT
408         bool is_compat;
409 #endif
410         union {
411                 const char __user *const __user *native;
412 #ifdef CONFIG_COMPAT
413                 compat_uptr_t __user *compat;
414 #endif
415         } ptr;
416 };
417
418 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
419 {
420         const char __user *native;
421
422 #ifdef CONFIG_COMPAT
423         if (unlikely(argv.is_compat)) {
424                 compat_uptr_t compat;
425
426                 if (get_user(compat, argv.ptr.compat + nr))
427                         return ERR_PTR(-EFAULT);
428
429                 return compat_ptr(compat);
430         }
431 #endif
432
433         if (get_user(native, argv.ptr.native + nr))
434                 return ERR_PTR(-EFAULT);
435
436         return native;
437 }
438
439 /*
440  * count() counts the number of strings in array ARGV.
441  */
442 static int count(struct user_arg_ptr argv, int max)
443 {
444         int i = 0;
445
446         if (argv.ptr.native != NULL) {
447                 for (;;) {
448                         const char __user *p = get_user_arg_ptr(argv, i);
449
450                         if (!p)
451                                 break;
452
453                         if (IS_ERR(p))
454                                 return -EFAULT;
455
456                         if (i++ >= max)
457                                 return -E2BIG;
458
459                         if (fatal_signal_pending(current))
460                                 return -ERESTARTNOHAND;
461                         cond_resched();
462                 }
463         }
464         return i;
465 }
466
467 /*
468  * 'copy_strings()' copies argument/environment strings from the old
469  * processes's memory to the new process's stack.  The call to get_user_pages()
470  * ensures the destination page is created and not swapped out.
471  */
472 static int copy_strings(int argc, struct user_arg_ptr argv,
473                         struct linux_binprm *bprm)
474 {
475         struct page *kmapped_page = NULL;
476         char *kaddr = NULL;
477         unsigned long kpos = 0;
478         int ret;
479
480         while (argc-- > 0) {
481                 const char __user *str;
482                 int len;
483                 unsigned long pos;
484
485                 ret = -EFAULT;
486                 str = get_user_arg_ptr(argv, argc);
487                 if (IS_ERR(str))
488                         goto out;
489
490                 len = strnlen_user(str, MAX_ARG_STRLEN);
491                 if (!len)
492                         goto out;
493
494                 ret = -E2BIG;
495                 if (!valid_arg_len(bprm, len))
496                         goto out;
497
498                 /* We're going to work our way backwords. */
499                 pos = bprm->p;
500                 str += len;
501                 bprm->p -= len;
502
503                 while (len > 0) {
504                         int offset, bytes_to_copy;
505
506                         if (fatal_signal_pending(current)) {
507                                 ret = -ERESTARTNOHAND;
508                                 goto out;
509                         }
510                         cond_resched();
511
512                         offset = pos % PAGE_SIZE;
513                         if (offset == 0)
514                                 offset = PAGE_SIZE;
515
516                         bytes_to_copy = offset;
517                         if (bytes_to_copy > len)
518                                 bytes_to_copy = len;
519
520                         offset -= bytes_to_copy;
521                         pos -= bytes_to_copy;
522                         str -= bytes_to_copy;
523                         len -= bytes_to_copy;
524
525                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
526                                 struct page *page;
527
528                                 page = get_arg_page(bprm, pos, 1);
529                                 if (!page) {
530                                         ret = -E2BIG;
531                                         goto out;
532                                 }
533
534                                 if (kmapped_page) {
535                                         flush_kernel_dcache_page(kmapped_page);
536                                         kunmap(kmapped_page);
537                                         put_arg_page(kmapped_page);
538                                 }
539                                 kmapped_page = page;
540                                 kaddr = kmap(kmapped_page);
541                                 kpos = pos & PAGE_MASK;
542                                 flush_arg_page(bprm, kpos, kmapped_page);
543                         }
544                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
545                                 ret = -EFAULT;
546                                 goto out;
547                         }
548                 }
549         }
550         ret = 0;
551 out:
552         if (kmapped_page) {
553                 flush_kernel_dcache_page(kmapped_page);
554                 kunmap(kmapped_page);
555                 put_arg_page(kmapped_page);
556         }
557         return ret;
558 }
559
560 /*
561  * Like copy_strings, but get argv and its values from kernel memory.
562  */
563 int copy_strings_kernel(int argc, const char *const *__argv,
564                         struct linux_binprm *bprm)
565 {
566         int r;
567         mm_segment_t oldfs = get_fs();
568         struct user_arg_ptr argv = {
569                 .ptr.native = (const char __user *const  __user *)__argv,
570         };
571
572         set_fs(KERNEL_DS);
573         r = copy_strings(argc, argv, bprm);
574         set_fs(oldfs);
575
576         return r;
577 }
578 EXPORT_SYMBOL(copy_strings_kernel);
579
580 #ifdef CONFIG_MMU
581
582 /*
583  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
584  * the binfmt code determines where the new stack should reside, we shift it to
585  * its final location.  The process proceeds as follows:
586  *
587  * 1) Use shift to calculate the new vma endpoints.
588  * 2) Extend vma to cover both the old and new ranges.  This ensures the
589  *    arguments passed to subsequent functions are consistent.
590  * 3) Move vma's page tables to the new range.
591  * 4) Free up any cleared pgd range.
592  * 5) Shrink the vma to cover only the new range.
593  */
594 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
595 {
596         struct mm_struct *mm = vma->vm_mm;
597         unsigned long old_start = vma->vm_start;
598         unsigned long old_end = vma->vm_end;
599         unsigned long length = old_end - old_start;
600         unsigned long new_start = old_start - shift;
601         unsigned long new_end = old_end - shift;
602         struct mmu_gather tlb;
603
604         BUG_ON(new_start > new_end);
605
606         /*
607          * ensure there are no vmas between where we want to go
608          * and where we are
609          */
610         if (vma != find_vma(mm, new_start))
611                 return -EFAULT;
612
613         /*
614          * cover the whole range: [new_start, old_end)
615          */
616         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
617                 return -ENOMEM;
618
619         /*
620          * move the page tables downwards, on failure we rely on
621          * process cleanup to remove whatever mess we made.
622          */
623         if (length != move_page_tables(vma, old_start,
624                                        vma, new_start, length))
625                 return -ENOMEM;
626
627         lru_add_drain();
628         tlb_gather_mmu(&tlb, mm, 0);
629         if (new_end > old_start) {
630                 /*
631                  * when the old and new regions overlap clear from new_end.
632                  */
633                 free_pgd_range(&tlb, new_end, old_end, new_end,
634                         vma->vm_next ? vma->vm_next->vm_start : 0);
635         } else {
636                 /*
637                  * otherwise, clean from old_start; this is done to not touch
638                  * the address space in [new_end, old_start) some architectures
639                  * have constraints on va-space that make this illegal (IA64) -
640                  * for the others its just a little faster.
641                  */
642                 free_pgd_range(&tlb, old_start, old_end, new_end,
643                         vma->vm_next ? vma->vm_next->vm_start : 0);
644         }
645         tlb_finish_mmu(&tlb, new_end, old_end);
646
647         /*
648          * Shrink the vma to just the new range.  Always succeeds.
649          */
650         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
651
652         return 0;
653 }
654
655 /*
656  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
657  * the stack is optionally relocated, and some extra space is added.
658  */
659 int setup_arg_pages(struct linux_binprm *bprm,
660                     unsigned long stack_top,
661                     int executable_stack)
662 {
663         unsigned long ret;
664         unsigned long stack_shift;
665         struct mm_struct *mm = current->mm;
666         struct vm_area_struct *vma = bprm->vma;
667         struct vm_area_struct *prev = NULL;
668         unsigned long vm_flags;
669         unsigned long stack_base;
670         unsigned long stack_size;
671         unsigned long stack_expand;
672         unsigned long rlim_stack;
673
674 #ifdef CONFIG_STACK_GROWSUP
675         /* Limit stack size to 1GB */
676         stack_base = rlimit_max(RLIMIT_STACK);
677         if (stack_base > (1 << 30))
678                 stack_base = 1 << 30;
679
680         /* Make sure we didn't let the argument array grow too large. */
681         if (vma->vm_end - vma->vm_start > stack_base)
682                 return -ENOMEM;
683
684         stack_base = PAGE_ALIGN(stack_top - stack_base);
685
686         stack_shift = vma->vm_start - stack_base;
687         mm->arg_start = bprm->p - stack_shift;
688         bprm->p = vma->vm_end - stack_shift;
689 #else
690         stack_top = arch_align_stack(stack_top);
691         stack_top = PAGE_ALIGN(stack_top);
692
693         if (unlikely(stack_top < mmap_min_addr) ||
694             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
695                 return -ENOMEM;
696
697         stack_shift = vma->vm_end - stack_top;
698
699         bprm->p -= stack_shift;
700         mm->arg_start = bprm->p;
701 #endif
702
703         if (bprm->loader)
704                 bprm->loader -= stack_shift;
705         bprm->exec -= stack_shift;
706
707         down_write(&mm->mmap_sem);
708         vm_flags = VM_STACK_FLAGS;
709
710         /*
711          * Adjust stack execute permissions; explicitly enable for
712          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
713          * (arch default) otherwise.
714          */
715         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
716                 vm_flags |= VM_EXEC;
717         else if (executable_stack == EXSTACK_DISABLE_X)
718                 vm_flags &= ~VM_EXEC;
719         vm_flags |= mm->def_flags;
720         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
721
722         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
723                         vm_flags);
724         if (ret)
725                 goto out_unlock;
726         BUG_ON(prev != vma);
727
728         /* Move stack pages down in memory. */
729         if (stack_shift) {
730                 ret = shift_arg_pages(vma, stack_shift);
731                 if (ret)
732                         goto out_unlock;
733         }
734
735         /* mprotect_fixup is overkill to remove the temporary stack flags */
736         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
737
738         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
739         stack_size = vma->vm_end - vma->vm_start;
740         /*
741          * Align this down to a page boundary as expand_stack
742          * will align it up.
743          */
744         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
745 #ifdef CONFIG_STACK_GROWSUP
746         if (stack_size + stack_expand > rlim_stack)
747                 stack_base = vma->vm_start + rlim_stack;
748         else
749                 stack_base = vma->vm_end + stack_expand;
750 #else
751         if (stack_size + stack_expand > rlim_stack)
752                 stack_base = vma->vm_end - rlim_stack;
753         else
754                 stack_base = vma->vm_start - stack_expand;
755 #endif
756         current->mm->start_stack = bprm->p;
757         ret = expand_stack(vma, stack_base);
758         if (ret)
759                 ret = -EFAULT;
760
761 out_unlock:
762         up_write(&mm->mmap_sem);
763         return ret;
764 }
765 EXPORT_SYMBOL(setup_arg_pages);
766
767 #endif /* CONFIG_MMU */
768
769 struct file *open_exec(const char *name)
770 {
771         struct file *file;
772         int err;
773         static const struct open_flags open_exec_flags = {
774                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
775                 .acc_mode = MAY_EXEC | MAY_OPEN,
776                 .intent = LOOKUP_OPEN
777         };
778
779         file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
780         if (IS_ERR(file))
781                 goto out;
782
783         err = -EACCES;
784         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
785                 goto exit;
786
787         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
788                 goto exit;
789
790         fsnotify_open(file);
791
792         err = deny_write_access(file);
793         if (err)
794                 goto exit;
795
796 out:
797         return file;
798
799 exit:
800         fput(file);
801         return ERR_PTR(err);
802 }
803 EXPORT_SYMBOL(open_exec);
804
805 int kernel_read(struct file *file, loff_t offset,
806                 char *addr, unsigned long count)
807 {
808         mm_segment_t old_fs;
809         loff_t pos = offset;
810         int result;
811
812         old_fs = get_fs();
813         set_fs(get_ds());
814         /* The cast to a user pointer is valid due to the set_fs() */
815         result = vfs_read(file, (void __user *)addr, count, &pos);
816         set_fs(old_fs);
817         return result;
818 }
819
820 EXPORT_SYMBOL(kernel_read);
821
822 static int exec_mmap(struct mm_struct *mm)
823 {
824         struct task_struct *tsk;
825         struct mm_struct * old_mm, *active_mm;
826
827         /* Notify parent that we're no longer interested in the old VM */
828         tsk = current;
829         old_mm = current->mm;
830         sync_mm_rss(tsk, old_mm);
831         mm_release(tsk, old_mm);
832
833         if (old_mm) {
834                 /*
835                  * Make sure that if there is a core dump in progress
836                  * for the old mm, we get out and die instead of going
837                  * through with the exec.  We must hold mmap_sem around
838                  * checking core_state and changing tsk->mm.
839                  */
840                 down_read(&old_mm->mmap_sem);
841                 if (unlikely(old_mm->core_state)) {
842                         up_read(&old_mm->mmap_sem);
843                         return -EINTR;
844                 }
845         }
846         task_lock(tsk);
847         active_mm = tsk->active_mm;
848         tsk->mm = mm;
849         tsk->active_mm = mm;
850         activate_mm(active_mm, mm);
851         if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
852                 atomic_dec(&old_mm->oom_disable_count);
853                 atomic_inc(&tsk->mm->oom_disable_count);
854         }
855         task_unlock(tsk);
856         arch_pick_mmap_layout(mm);
857         if (old_mm) {
858                 up_read(&old_mm->mmap_sem);
859                 BUG_ON(active_mm != old_mm);
860                 mm_update_next_owner(old_mm);
861                 mmput(old_mm);
862                 return 0;
863         }
864         mmdrop(active_mm);
865         return 0;
866 }
867
868 /*
869  * This function makes sure the current process has its own signal table,
870  * so that flush_signal_handlers can later reset the handlers without
871  * disturbing other processes.  (Other processes might share the signal
872  * table via the CLONE_SIGHAND option to clone().)
873  */
874 static int de_thread(struct task_struct *tsk)
875 {
876         struct signal_struct *sig = tsk->signal;
877         struct sighand_struct *oldsighand = tsk->sighand;
878         spinlock_t *lock = &oldsighand->siglock;
879
880         if (thread_group_empty(tsk))
881                 goto no_thread_group;
882
883         /*
884          * Kill all other threads in the thread group.
885          */
886         spin_lock_irq(lock);
887         if (signal_group_exit(sig)) {
888                 /*
889                  * Another group action in progress, just
890                  * return so that the signal is processed.
891                  */
892                 spin_unlock_irq(lock);
893                 return -EAGAIN;
894         }
895
896         sig->group_exit_task = tsk;
897         sig->notify_count = zap_other_threads(tsk);
898         if (!thread_group_leader(tsk))
899                 sig->notify_count--;
900
901         while (sig->notify_count) {
902                 __set_current_state(TASK_UNINTERRUPTIBLE);
903                 spin_unlock_irq(lock);
904                 schedule();
905                 spin_lock_irq(lock);
906         }
907         spin_unlock_irq(lock);
908
909         /*
910          * At this point all other threads have exited, all we have to
911          * do is to wait for the thread group leader to become inactive,
912          * and to assume its PID:
913          */
914         if (!thread_group_leader(tsk)) {
915                 struct task_struct *leader = tsk->group_leader;
916
917                 sig->notify_count = -1; /* for exit_notify() */
918                 for (;;) {
919                         write_lock_irq(&tasklist_lock);
920                         if (likely(leader->exit_state))
921                                 break;
922                         __set_current_state(TASK_UNINTERRUPTIBLE);
923                         write_unlock_irq(&tasklist_lock);
924                         schedule();
925                 }
926
927                 /*
928                  * The only record we have of the real-time age of a
929                  * process, regardless of execs it's done, is start_time.
930                  * All the past CPU time is accumulated in signal_struct
931                  * from sister threads now dead.  But in this non-leader
932                  * exec, nothing survives from the original leader thread,
933                  * whose birth marks the true age of this process now.
934                  * When we take on its identity by switching to its PID, we
935                  * also take its birthdate (always earlier than our own).
936                  */
937                 tsk->start_time = leader->start_time;
938
939                 BUG_ON(!same_thread_group(leader, tsk));
940                 BUG_ON(has_group_leader_pid(tsk));
941                 /*
942                  * An exec() starts a new thread group with the
943                  * TGID of the previous thread group. Rehash the
944                  * two threads with a switched PID, and release
945                  * the former thread group leader:
946                  */
947
948                 /* Become a process group leader with the old leader's pid.
949                  * The old leader becomes a thread of the this thread group.
950                  * Note: The old leader also uses this pid until release_task
951                  *       is called.  Odd but simple and correct.
952                  */
953                 detach_pid(tsk, PIDTYPE_PID);
954                 tsk->pid = leader->pid;
955                 attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
956                 transfer_pid(leader, tsk, PIDTYPE_PGID);
957                 transfer_pid(leader, tsk, PIDTYPE_SID);
958
959                 list_replace_rcu(&leader->tasks, &tsk->tasks);
960                 list_replace_init(&leader->sibling, &tsk->sibling);
961
962                 tsk->group_leader = tsk;
963                 leader->group_leader = tsk;
964
965                 tsk->exit_signal = SIGCHLD;
966                 leader->exit_signal = -1;
967
968                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
969                 leader->exit_state = EXIT_DEAD;
970
971                 /*
972                  * We are going to release_task()->ptrace_unlink() silently,
973                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
974                  * the tracer wont't block again waiting for this thread.
975                  */
976                 if (unlikely(leader->ptrace))
977                         __wake_up_parent(leader, leader->parent);
978                 write_unlock_irq(&tasklist_lock);
979
980                 release_task(leader);
981         }
982
983         sig->group_exit_task = NULL;
984         sig->notify_count = 0;
985
986 no_thread_group:
987         if (current->mm)
988                 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
989
990         exit_itimers(sig);
991         flush_itimer_signals();
992
993         if (atomic_read(&oldsighand->count) != 1) {
994                 struct sighand_struct *newsighand;
995                 /*
996                  * This ->sighand is shared with the CLONE_SIGHAND
997                  * but not CLONE_THREAD task, switch to the new one.
998                  */
999                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1000                 if (!newsighand)
1001                         return -ENOMEM;
1002
1003                 atomic_set(&newsighand->count, 1);
1004                 memcpy(newsighand->action, oldsighand->action,
1005                        sizeof(newsighand->action));
1006
1007                 write_lock_irq(&tasklist_lock);
1008                 spin_lock(&oldsighand->siglock);
1009                 rcu_assign_pointer(tsk->sighand, newsighand);
1010                 spin_unlock(&oldsighand->siglock);
1011                 write_unlock_irq(&tasklist_lock);
1012
1013                 __cleanup_sighand(oldsighand);
1014         }
1015
1016         BUG_ON(!thread_group_leader(tsk));
1017         return 0;
1018 }
1019
1020 /*
1021  * These functions flushes out all traces of the currently running executable
1022  * so that a new one can be started
1023  */
1024 static void flush_old_files(struct files_struct * files)
1025 {
1026         long j = -1;
1027         struct fdtable *fdt;
1028
1029         spin_lock(&files->file_lock);
1030         for (;;) {
1031                 unsigned long set, i;
1032
1033                 j++;
1034                 i = j * __NFDBITS;
1035                 fdt = files_fdtable(files);
1036                 if (i >= fdt->max_fds)
1037                         break;
1038                 set = fdt->close_on_exec->fds_bits[j];
1039                 if (!set)
1040                         continue;
1041                 fdt->close_on_exec->fds_bits[j] = 0;
1042                 spin_unlock(&files->file_lock);
1043                 for ( ; set ; i++,set >>= 1) {
1044                         if (set & 1) {
1045                                 sys_close(i);
1046                         }
1047                 }
1048                 spin_lock(&files->file_lock);
1049
1050         }
1051         spin_unlock(&files->file_lock);
1052 }
1053
1054 char *get_task_comm(char *buf, struct task_struct *tsk)
1055 {
1056         /* buf must be at least sizeof(tsk->comm) in size */
1057         task_lock(tsk);
1058         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1059         task_unlock(tsk);
1060         return buf;
1061 }
1062 EXPORT_SYMBOL_GPL(get_task_comm);
1063
1064 void set_task_comm(struct task_struct *tsk, char *buf)
1065 {
1066         task_lock(tsk);
1067
1068         /*
1069          * Threads may access current->comm without holding
1070          * the task lock, so write the string carefully.
1071          * Readers without a lock may see incomplete new
1072          * names but are safe from non-terminating string reads.
1073          */
1074         memset(tsk->comm, 0, TASK_COMM_LEN);
1075         wmb();
1076         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1077         task_unlock(tsk);
1078         perf_event_comm(tsk);
1079 }
1080
1081 int flush_old_exec(struct linux_binprm * bprm)
1082 {
1083         int retval;
1084
1085         /*
1086          * Make sure we have a private signal table and that
1087          * we are unassociated from the previous thread group.
1088          */
1089         retval = de_thread(current);
1090         if (retval)
1091                 goto out;
1092
1093         set_mm_exe_file(bprm->mm, bprm->file);
1094
1095         /*
1096          * Release all of the old mmap stuff
1097          */
1098         acct_arg_size(bprm, 0);
1099         retval = exec_mmap(bprm->mm);
1100         if (retval)
1101                 goto out;
1102
1103         bprm->mm = NULL;                /* We're using it now */
1104
1105         set_fs(USER_DS);
1106         current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1107         flush_thread();
1108         current->personality &= ~bprm->per_clear;
1109
1110         return 0;
1111
1112 out:
1113         return retval;
1114 }
1115 EXPORT_SYMBOL(flush_old_exec);
1116
1117 void setup_new_exec(struct linux_binprm * bprm)
1118 {
1119         int i, ch;
1120         const char *name;
1121         char tcomm[sizeof(current->comm)];
1122
1123         arch_pick_mmap_layout(current->mm);
1124
1125         /* This is the point of no return */
1126         current->sas_ss_sp = current->sas_ss_size = 0;
1127
1128         if (current_euid() == current_uid() && current_egid() == current_gid())
1129                 set_dumpable(current->mm, 1);
1130         else
1131                 set_dumpable(current->mm, suid_dumpable);
1132
1133         name = bprm->filename;
1134
1135         /* Copies the binary name from after last slash */
1136         for (i=0; (ch = *(name++)) != '\0';) {
1137                 if (ch == '/')
1138                         i = 0; /* overwrite what we wrote */
1139                 else
1140                         if (i < (sizeof(tcomm) - 1))
1141                                 tcomm[i++] = ch;
1142         }
1143         tcomm[i] = '\0';
1144         set_task_comm(current, tcomm);
1145
1146         /* Set the new mm task size. We have to do that late because it may
1147          * depend on TIF_32BIT which is only updated in flush_thread() on
1148          * some architectures like powerpc
1149          */
1150         current->mm->task_size = TASK_SIZE;
1151
1152         /* install the new credentials */
1153         if (bprm->cred->uid != current_euid() ||
1154             bprm->cred->gid != current_egid()) {
1155                 current->pdeath_signal = 0;
1156         } else if (file_permission(bprm->file, MAY_READ) ||
1157                    bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1158                 set_dumpable(current->mm, suid_dumpable);
1159         }
1160
1161         /*
1162          * Flush performance counters when crossing a
1163          * security domain:
1164          */
1165         if (!get_dumpable(current->mm))
1166                 perf_event_exit_task(current);
1167
1168         /* An exec changes our domain. We are no longer part of the thread
1169            group */
1170
1171         current->self_exec_id++;
1172                         
1173         flush_signal_handlers(current, 0);
1174         flush_old_files(current->files);
1175 }
1176 EXPORT_SYMBOL(setup_new_exec);
1177
1178 /*
1179  * Prepare credentials and lock ->cred_guard_mutex.
1180  * install_exec_creds() commits the new creds and drops the lock.
1181  * Or, if exec fails before, free_bprm() should release ->cred and
1182  * and unlock.
1183  */
1184 int prepare_bprm_creds(struct linux_binprm *bprm)
1185 {
1186         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1187                 return -ERESTARTNOINTR;
1188
1189         bprm->cred = prepare_exec_creds();
1190         if (likely(bprm->cred))
1191                 return 0;
1192
1193         mutex_unlock(&current->signal->cred_guard_mutex);
1194         return -ENOMEM;
1195 }
1196
1197 void free_bprm(struct linux_binprm *bprm)
1198 {
1199         free_arg_pages(bprm);
1200         if (bprm->cred) {
1201                 mutex_unlock(&current->signal->cred_guard_mutex);
1202                 abort_creds(bprm->cred);
1203         }
1204         kfree(bprm);
1205 }
1206
1207 /*
1208  * install the new credentials for this executable
1209  */
1210 void install_exec_creds(struct linux_binprm *bprm)
1211 {
1212         security_bprm_committing_creds(bprm);
1213
1214         commit_creds(bprm->cred);
1215         bprm->cred = NULL;
1216         /*
1217          * cred_guard_mutex must be held at least to this point to prevent
1218          * ptrace_attach() from altering our determination of the task's
1219          * credentials; any time after this it may be unlocked.
1220          */
1221         security_bprm_committed_creds(bprm);
1222         mutex_unlock(&current->signal->cred_guard_mutex);
1223 }
1224 EXPORT_SYMBOL(install_exec_creds);
1225
1226 /*
1227  * determine how safe it is to execute the proposed program
1228  * - the caller must hold ->cred_guard_mutex to protect against
1229  *   PTRACE_ATTACH
1230  */
1231 int check_unsafe_exec(struct linux_binprm *bprm)
1232 {
1233         struct task_struct *p = current, *t;
1234         unsigned n_fs;
1235         int res = 0;
1236
1237         if (p->ptrace) {
1238                 if (p->ptrace & PT_PTRACE_CAP)
1239                         bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1240                 else
1241                         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1242         }
1243
1244         n_fs = 1;
1245         spin_lock(&p->fs->lock);
1246         rcu_read_lock();
1247         for (t = next_thread(p); t != p; t = next_thread(t)) {
1248                 if (t->fs == p->fs)
1249                         n_fs++;
1250         }
1251         rcu_read_unlock();
1252
1253         if (p->fs->users > n_fs) {
1254                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1255         } else {
1256                 res = -EAGAIN;
1257                 if (!p->fs->in_exec) {
1258                         p->fs->in_exec = 1;
1259                         res = 1;
1260                 }
1261         }
1262         spin_unlock(&p->fs->lock);
1263
1264         return res;
1265 }
1266
1267 /* 
1268  * Fill the binprm structure from the inode. 
1269  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1270  *
1271  * This may be called multiple times for binary chains (scripts for example).
1272  */
1273 int prepare_binprm(struct linux_binprm *bprm)
1274 {
1275         umode_t mode;
1276         struct inode * inode = bprm->file->f_path.dentry->d_inode;
1277         int retval;
1278
1279         mode = inode->i_mode;
1280         if (bprm->file->f_op == NULL)
1281                 return -EACCES;
1282
1283         /* clear any previous set[ug]id data from a previous binary */
1284         bprm->cred->euid = current_euid();
1285         bprm->cred->egid = current_egid();
1286
1287         if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1288                 /* Set-uid? */
1289                 if (mode & S_ISUID) {
1290                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1291                         bprm->cred->euid = inode->i_uid;
1292                 }
1293
1294                 /* Set-gid? */
1295                 /*
1296                  * If setgid is set but no group execute bit then this
1297                  * is a candidate for mandatory locking, not a setgid
1298                  * executable.
1299                  */
1300                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1301                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1302                         bprm->cred->egid = inode->i_gid;
1303                 }
1304         }
1305
1306         /* fill in binprm security blob */
1307         retval = security_bprm_set_creds(bprm);
1308         if (retval)
1309                 return retval;
1310         bprm->cred_prepared = 1;
1311
1312         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1313         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1314 }
1315
1316 EXPORT_SYMBOL(prepare_binprm);
1317
1318 /*
1319  * Arguments are '\0' separated strings found at the location bprm->p
1320  * points to; chop off the first by relocating brpm->p to right after
1321  * the first '\0' encountered.
1322  */
1323 int remove_arg_zero(struct linux_binprm *bprm)
1324 {
1325         int ret = 0;
1326         unsigned long offset;
1327         char *kaddr;
1328         struct page *page;
1329
1330         if (!bprm->argc)
1331                 return 0;
1332
1333         do {
1334                 offset = bprm->p & ~PAGE_MASK;
1335                 page = get_arg_page(bprm, bprm->p, 0);
1336                 if (!page) {
1337                         ret = -EFAULT;
1338                         goto out;
1339                 }
1340                 kaddr = kmap_atomic(page, KM_USER0);
1341
1342                 for (; offset < PAGE_SIZE && kaddr[offset];
1343                                 offset++, bprm->p++)
1344                         ;
1345
1346                 kunmap_atomic(kaddr, KM_USER0);
1347                 put_arg_page(page);
1348
1349                 if (offset == PAGE_SIZE)
1350                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1351         } while (offset == PAGE_SIZE);
1352
1353         bprm->p++;
1354         bprm->argc--;
1355         ret = 0;
1356
1357 out:
1358         return ret;
1359 }
1360 EXPORT_SYMBOL(remove_arg_zero);
1361
1362 /*
1363  * cycle the list of binary formats handler, until one recognizes the image
1364  */
1365 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1366 {
1367         unsigned int depth = bprm->recursion_depth;
1368         int try,retval;
1369         struct linux_binfmt *fmt;
1370         pid_t old_pid;
1371
1372         retval = security_bprm_check(bprm);
1373         if (retval)
1374                 return retval;
1375
1376         retval = audit_bprm(bprm);
1377         if (retval)
1378                 return retval;
1379
1380         /* Need to fetch pid before load_binary changes it */
1381         rcu_read_lock();
1382         old_pid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1383         rcu_read_unlock();
1384
1385         retval = -ENOENT;
1386         for (try=0; try<2; try++) {
1387                 read_lock(&binfmt_lock);
1388                 list_for_each_entry(fmt, &formats, lh) {
1389                         int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1390                         if (!fn)
1391                                 continue;
1392                         if (!try_module_get(fmt->module))
1393                                 continue;
1394                         read_unlock(&binfmt_lock);
1395                         retval = fn(bprm, regs);
1396                         /*
1397                          * Restore the depth counter to its starting value
1398                          * in this call, so we don't have to rely on every
1399                          * load_binary function to restore it on return.
1400                          */
1401                         bprm->recursion_depth = depth;
1402                         if (retval >= 0) {
1403                                 if (depth == 0)
1404                                         ptrace_event(PTRACE_EVENT_EXEC,
1405                                                         old_pid);
1406                                 put_binfmt(fmt);
1407                                 allow_write_access(bprm->file);
1408                                 if (bprm->file)
1409                                         fput(bprm->file);
1410                                 bprm->file = NULL;
1411                                 current->did_exec = 1;
1412                                 proc_exec_connector(current);
1413                                 return retval;
1414                         }
1415                         read_lock(&binfmt_lock);
1416                         put_binfmt(fmt);
1417                         if (retval != -ENOEXEC || bprm->mm == NULL)
1418                                 break;
1419                         if (!bprm->file) {
1420                                 read_unlock(&binfmt_lock);
1421                                 return retval;
1422                         }
1423                 }
1424                 read_unlock(&binfmt_lock);
1425                 if (retval != -ENOEXEC || bprm->mm == NULL) {
1426                         break;
1427 #ifdef CONFIG_MODULES
1428                 } else {
1429 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1430                         if (printable(bprm->buf[0]) &&
1431                             printable(bprm->buf[1]) &&
1432                             printable(bprm->buf[2]) &&
1433                             printable(bprm->buf[3]))
1434                                 break; /* -ENOEXEC */
1435                         request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1436 #endif
1437                 }
1438         }
1439         return retval;
1440 }
1441
1442 EXPORT_SYMBOL(search_binary_handler);
1443
1444 /*
1445  * sys_execve() executes a new program.
1446  */
1447 static int do_execve_common(const char *filename,
1448                                 struct user_arg_ptr argv,
1449                                 struct user_arg_ptr envp,
1450                                 struct pt_regs *regs)
1451 {
1452         struct linux_binprm *bprm;
1453         struct file *file;
1454         struct files_struct *displaced;
1455         bool clear_in_exec;
1456         int retval;
1457
1458         retval = unshare_files(&displaced);
1459         if (retval)
1460                 goto out_ret;
1461
1462         retval = -ENOMEM;
1463         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1464         if (!bprm)
1465                 goto out_files;
1466
1467         retval = prepare_bprm_creds(bprm);
1468         if (retval)
1469                 goto out_free;
1470
1471         retval = check_unsafe_exec(bprm);
1472         if (retval < 0)
1473                 goto out_free;
1474         clear_in_exec = retval;
1475         current->in_execve = 1;
1476
1477         file = open_exec(filename);
1478         retval = PTR_ERR(file);
1479         if (IS_ERR(file))
1480                 goto out_unmark;
1481
1482         sched_exec();
1483
1484         bprm->file = file;
1485         bprm->filename = filename;
1486         bprm->interp = filename;
1487
1488         retval = bprm_mm_init(bprm);
1489         if (retval)
1490                 goto out_file;
1491
1492         bprm->argc = count(argv, MAX_ARG_STRINGS);
1493         if ((retval = bprm->argc) < 0)
1494                 goto out;
1495
1496         bprm->envc = count(envp, MAX_ARG_STRINGS);
1497         if ((retval = bprm->envc) < 0)
1498                 goto out;
1499
1500         retval = prepare_binprm(bprm);
1501         if (retval < 0)
1502                 goto out;
1503
1504         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1505         if (retval < 0)
1506                 goto out;
1507
1508         bprm->exec = bprm->p;
1509         retval = copy_strings(bprm->envc, envp, bprm);
1510         if (retval < 0)
1511                 goto out;
1512
1513         retval = copy_strings(bprm->argc, argv, bprm);
1514         if (retval < 0)
1515                 goto out;
1516
1517         retval = search_binary_handler(bprm,regs);
1518         if (retval < 0)
1519                 goto out;
1520
1521         /* execve succeeded */
1522         current->fs->in_exec = 0;
1523         current->in_execve = 0;
1524         acct_update_integrals(current);
1525         free_bprm(bprm);
1526         if (displaced)
1527                 put_files_struct(displaced);
1528         return retval;
1529
1530 out:
1531         if (bprm->mm) {
1532                 acct_arg_size(bprm, 0);
1533                 mmput(bprm->mm);
1534         }
1535
1536 out_file:
1537         if (bprm->file) {
1538                 allow_write_access(bprm->file);
1539                 fput(bprm->file);
1540         }
1541
1542 out_unmark:
1543         if (clear_in_exec)
1544                 current->fs->in_exec = 0;
1545         current->in_execve = 0;
1546
1547 out_free:
1548         free_bprm(bprm);
1549
1550 out_files:
1551         if (displaced)
1552                 reset_files_struct(displaced);
1553 out_ret:
1554         return retval;
1555 }
1556
1557 int do_execve(const char *filename,
1558         const char __user *const __user *__argv,
1559         const char __user *const __user *__envp,
1560         struct pt_regs *regs)
1561 {
1562         struct user_arg_ptr argv = { .ptr.native = __argv };
1563         struct user_arg_ptr envp = { .ptr.native = __envp };
1564         return do_execve_common(filename, argv, envp, regs);
1565 }
1566
1567 #ifdef CONFIG_COMPAT
1568 int compat_do_execve(char *filename,
1569         compat_uptr_t __user *__argv,
1570         compat_uptr_t __user *__envp,
1571         struct pt_regs *regs)
1572 {
1573         struct user_arg_ptr argv = {
1574                 .is_compat = true,
1575                 .ptr.compat = __argv,
1576         };
1577         struct user_arg_ptr envp = {
1578                 .is_compat = true,
1579                 .ptr.compat = __envp,
1580         };
1581         return do_execve_common(filename, argv, envp, regs);
1582 }
1583 #endif
1584
1585 void set_binfmt(struct linux_binfmt *new)
1586 {
1587         struct mm_struct *mm = current->mm;
1588
1589         if (mm->binfmt)
1590                 module_put(mm->binfmt->module);
1591
1592         mm->binfmt = new;
1593         if (new)
1594                 __module_get(new->module);
1595 }
1596
1597 EXPORT_SYMBOL(set_binfmt);
1598
1599 static int expand_corename(struct core_name *cn)
1600 {
1601         char *old_corename = cn->corename;
1602
1603         cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1604         cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1605
1606         if (!cn->corename) {
1607                 kfree(old_corename);
1608                 return -ENOMEM;
1609         }
1610
1611         return 0;
1612 }
1613
1614 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1615 {
1616         char *cur;
1617         int need;
1618         int ret;
1619         va_list arg;
1620
1621         va_start(arg, fmt);
1622         need = vsnprintf(NULL, 0, fmt, arg);
1623         va_end(arg);
1624
1625         if (likely(need < cn->size - cn->used - 1))
1626                 goto out_printf;
1627
1628         ret = expand_corename(cn);
1629         if (ret)
1630                 goto expand_fail;
1631
1632 out_printf:
1633         cur = cn->corename + cn->used;
1634         va_start(arg, fmt);
1635         vsnprintf(cur, need + 1, fmt, arg);
1636         va_end(arg);
1637         cn->used += need;
1638         return 0;
1639
1640 expand_fail:
1641         return ret;
1642 }
1643
1644 static int cn_print_exe_file(struct core_name *cn)
1645 {
1646         struct file *exe_file;
1647         char *pathbuf, *path, *p;
1648         int ret;
1649
1650         exe_file = get_mm_exe_file(current->mm);
1651         if (!exe_file)
1652                 return cn_printf(cn, "(unknown)");
1653
1654         pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1655         if (!pathbuf) {
1656                 ret = -ENOMEM;
1657                 goto put_exe_file;
1658         }
1659
1660         path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1661         if (IS_ERR(path)) {
1662                 ret = PTR_ERR(path);
1663                 goto free_buf;
1664         }
1665
1666         for (p = path; *p; p++)
1667                 if (*p == '/')
1668                         *p = '!';
1669
1670         ret = cn_printf(cn, "%s", path);
1671
1672 free_buf:
1673         kfree(pathbuf);
1674 put_exe_file:
1675         fput(exe_file);
1676         return ret;
1677 }
1678
1679 /* format_corename will inspect the pattern parameter, and output a
1680  * name into corename, which must have space for at least
1681  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1682  */
1683 static int format_corename(struct core_name *cn, long signr)
1684 {
1685         const struct cred *cred = current_cred();
1686         const char *pat_ptr = core_pattern;
1687         int ispipe = (*pat_ptr == '|');
1688         int pid_in_pattern = 0;
1689         int err = 0;
1690
1691         cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1692         cn->corename = kmalloc(cn->size, GFP_KERNEL);
1693         cn->used = 0;
1694
1695         if (!cn->corename)
1696                 return -ENOMEM;
1697
1698         /* Repeat as long as we have more pattern to process and more output
1699            space */
1700         while (*pat_ptr) {
1701                 if (*pat_ptr != '%') {
1702                         if (*pat_ptr == 0)
1703                                 goto out;
1704                         err = cn_printf(cn, "%c", *pat_ptr++);
1705                 } else {
1706                         switch (*++pat_ptr) {
1707                         /* single % at the end, drop that */
1708                         case 0:
1709                                 goto out;
1710                         /* Double percent, output one percent */
1711                         case '%':
1712                                 err = cn_printf(cn, "%c", '%');
1713                                 break;
1714                         /* pid */
1715                         case 'p':
1716                                 pid_in_pattern = 1;
1717                                 err = cn_printf(cn, "%d",
1718                                               task_tgid_vnr(current));
1719                                 break;
1720                         /* uid */
1721                         case 'u':
1722                                 err = cn_printf(cn, "%d", cred->uid);
1723                                 break;
1724                         /* gid */
1725                         case 'g':
1726                                 err = cn_printf(cn, "%d", cred->gid);
1727                                 break;
1728                         /* signal that caused the coredump */
1729                         case 's':
1730                                 err = cn_printf(cn, "%ld", signr);
1731                                 break;
1732                         /* UNIX time of coredump */
1733                         case 't': {
1734                                 struct timeval tv;
1735                                 do_gettimeofday(&tv);
1736                                 err = cn_printf(cn, "%lu", tv.tv_sec);
1737                                 break;
1738                         }
1739                         /* hostname */
1740                         case 'h':
1741                                 down_read(&uts_sem);
1742                                 err = cn_printf(cn, "%s",
1743                                               utsname()->nodename);
1744                                 up_read(&uts_sem);
1745                                 break;
1746                         /* executable */
1747                         case 'e':
1748                                 err = cn_printf(cn, "%s", current->comm);
1749                                 break;
1750                         case 'E':
1751                                 err = cn_print_exe_file(cn);
1752                                 break;
1753                         /* core limit size */
1754                         case 'c':
1755                                 err = cn_printf(cn, "%lu",
1756                                               rlimit(RLIMIT_CORE));
1757                                 break;
1758                         default:
1759                                 break;
1760                         }
1761                         ++pat_ptr;
1762                 }
1763
1764                 if (err)
1765                         return err;
1766         }
1767
1768         /* Backward compatibility with core_uses_pid:
1769          *
1770          * If core_pattern does not include a %p (as is the default)
1771          * and core_uses_pid is set, then .%pid will be appended to
1772          * the filename. Do not do this for piped commands. */
1773         if (!ispipe && !pid_in_pattern && core_uses_pid) {
1774                 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1775                 if (err)
1776                         return err;
1777         }
1778 out:
1779         return ispipe;
1780 }
1781
1782 static int zap_process(struct task_struct *start, int exit_code)
1783 {
1784         struct task_struct *t;
1785         int nr = 0;
1786
1787         start->signal->flags = SIGNAL_GROUP_EXIT;
1788         start->signal->group_exit_code = exit_code;
1789         start->signal->group_stop_count = 0;
1790
1791         t = start;
1792         do {
1793                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1794                 if (t != current && t->mm) {
1795                         sigaddset(&t->pending.signal, SIGKILL);
1796                         signal_wake_up(t, 1);
1797                         nr++;
1798                 }
1799         } while_each_thread(start, t);
1800
1801         return nr;
1802 }
1803
1804 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1805                                 struct core_state *core_state, int exit_code)
1806 {
1807         struct task_struct *g, *p;
1808         unsigned long flags;
1809         int nr = -EAGAIN;
1810
1811         spin_lock_irq(&tsk->sighand->siglock);
1812         if (!signal_group_exit(tsk->signal)) {
1813                 mm->core_state = core_state;
1814                 nr = zap_process(tsk, exit_code);
1815         }
1816         spin_unlock_irq(&tsk->sighand->siglock);
1817         if (unlikely(nr < 0))
1818                 return nr;
1819
1820         if (atomic_read(&mm->mm_users) == nr + 1)
1821                 goto done;
1822         /*
1823          * We should find and kill all tasks which use this mm, and we should
1824          * count them correctly into ->nr_threads. We don't take tasklist
1825          * lock, but this is safe wrt:
1826          *
1827          * fork:
1828          *      None of sub-threads can fork after zap_process(leader). All
1829          *      processes which were created before this point should be
1830          *      visible to zap_threads() because copy_process() adds the new
1831          *      process to the tail of init_task.tasks list, and lock/unlock
1832          *      of ->siglock provides a memory barrier.
1833          *
1834          * do_exit:
1835          *      The caller holds mm->mmap_sem. This means that the task which
1836          *      uses this mm can't pass exit_mm(), so it can't exit or clear
1837          *      its ->mm.
1838          *
1839          * de_thread:
1840          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
1841          *      we must see either old or new leader, this does not matter.
1842          *      However, it can change p->sighand, so lock_task_sighand(p)
1843          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
1844          *      it can't fail.
1845          *
1846          *      Note also that "g" can be the old leader with ->mm == NULL
1847          *      and already unhashed and thus removed from ->thread_group.
1848          *      This is OK, __unhash_process()->list_del_rcu() does not
1849          *      clear the ->next pointer, we will find the new leader via
1850          *      next_thread().
1851          */
1852         rcu_read_lock();
1853         for_each_process(g) {
1854                 if (g == tsk->group_leader)
1855                         continue;
1856                 if (g->flags & PF_KTHREAD)
1857                         continue;
1858                 p = g;
1859                 do {
1860                         if (p->mm) {
1861                                 if (unlikely(p->mm == mm)) {
1862                                         lock_task_sighand(p, &flags);
1863                                         nr += zap_process(p, exit_code);
1864                                         unlock_task_sighand(p, &flags);
1865                                 }
1866                                 break;
1867                         }
1868                 } while_each_thread(g, p);
1869         }
1870         rcu_read_unlock();
1871 done:
1872         atomic_set(&core_state->nr_threads, nr);
1873         return nr;
1874 }
1875
1876 static int coredump_wait(int exit_code, struct core_state *core_state)
1877 {
1878         struct task_struct *tsk = current;
1879         struct mm_struct *mm = tsk->mm;
1880         struct completion *vfork_done;
1881         int core_waiters = -EBUSY;
1882
1883         init_completion(&core_state->startup);
1884         core_state->dumper.task = tsk;
1885         core_state->dumper.next = NULL;
1886
1887         down_write(&mm->mmap_sem);
1888         if (!mm->core_state)
1889                 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1890         up_write(&mm->mmap_sem);
1891
1892         if (unlikely(core_waiters < 0))
1893                 goto fail;
1894
1895         /*
1896          * Make sure nobody is waiting for us to release the VM,
1897          * otherwise we can deadlock when we wait on each other
1898          */
1899         vfork_done = tsk->vfork_done;
1900         if (vfork_done) {
1901                 tsk->vfork_done = NULL;
1902                 complete(vfork_done);
1903         }
1904
1905         if (core_waiters)
1906                 wait_for_completion(&core_state->startup);
1907 fail:
1908         return core_waiters;
1909 }
1910
1911 static void coredump_finish(struct mm_struct *mm)
1912 {
1913         struct core_thread *curr, *next;
1914         struct task_struct *task;
1915
1916         next = mm->core_state->dumper.next;
1917         while ((curr = next) != NULL) {
1918                 next = curr->next;
1919                 task = curr->task;
1920                 /*
1921                  * see exit_mm(), curr->task must not see
1922                  * ->task == NULL before we read ->next.
1923                  */
1924                 smp_mb();
1925                 curr->task = NULL;
1926                 wake_up_process(task);
1927         }
1928
1929         mm->core_state = NULL;
1930 }
1931
1932 /*
1933  * set_dumpable converts traditional three-value dumpable to two flags and
1934  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1935  * these bits are not changed atomically.  So get_dumpable can observe the
1936  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1937  * return either old dumpable or new one by paying attention to the order of
1938  * modifying the bits.
1939  *
1940  * dumpable |   mm->flags (binary)
1941  * old  new | initial interim  final
1942  * ---------+-----------------------
1943  *  0    1  |   00      01      01
1944  *  0    2  |   00      10(*)   11
1945  *  1    0  |   01      00      00
1946  *  1    2  |   01      11      11
1947  *  2    0  |   11      10(*)   00
1948  *  2    1  |   11      11      01
1949  *
1950  * (*) get_dumpable regards interim value of 10 as 11.
1951  */
1952 void set_dumpable(struct mm_struct *mm, int value)
1953 {
1954         switch (value) {
1955         case 0:
1956                 clear_bit(MMF_DUMPABLE, &mm->flags);
1957                 smp_wmb();
1958                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1959                 break;
1960         case 1:
1961                 set_bit(MMF_DUMPABLE, &mm->flags);
1962                 smp_wmb();
1963                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1964                 break;
1965         case 2:
1966                 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1967                 smp_wmb();
1968                 set_bit(MMF_DUMPABLE, &mm->flags);
1969                 break;
1970         }
1971 }
1972
1973 static int __get_dumpable(unsigned long mm_flags)
1974 {
1975         int ret;
1976
1977         ret = mm_flags & MMF_DUMPABLE_MASK;
1978         return (ret >= 2) ? 2 : ret;
1979 }
1980
1981 int get_dumpable(struct mm_struct *mm)
1982 {
1983         return __get_dumpable(mm->flags);
1984 }
1985
1986 static void wait_for_dump_helpers(struct file *file)
1987 {
1988         struct pipe_inode_info *pipe;
1989
1990         pipe = file->f_path.dentry->d_inode->i_pipe;
1991
1992         pipe_lock(pipe);
1993         pipe->readers++;
1994         pipe->writers--;
1995
1996         while ((pipe->readers > 1) && (!signal_pending(current))) {
1997                 wake_up_interruptible_sync(&pipe->wait);
1998                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1999                 pipe_wait(pipe);
2000         }
2001
2002         pipe->readers--;
2003         pipe->writers++;
2004         pipe_unlock(pipe);
2005
2006 }
2007
2008
2009 /*
2010  * umh_pipe_setup
2011  * helper function to customize the process used
2012  * to collect the core in userspace.  Specifically
2013  * it sets up a pipe and installs it as fd 0 (stdin)
2014  * for the process.  Returns 0 on success, or
2015  * PTR_ERR on failure.
2016  * Note that it also sets the core limit to 1.  This
2017  * is a special value that we use to trap recursive
2018  * core dumps
2019  */
2020 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
2021 {
2022         struct file *rp, *wp;
2023         struct fdtable *fdt;
2024         struct coredump_params *cp = (struct coredump_params *)info->data;
2025         struct files_struct *cf = current->files;
2026
2027         wp = create_write_pipe(0);
2028         if (IS_ERR(wp))
2029                 return PTR_ERR(wp);
2030
2031         rp = create_read_pipe(wp, 0);
2032         if (IS_ERR(rp)) {
2033                 free_write_pipe(wp);
2034                 return PTR_ERR(rp);
2035         }
2036
2037         cp->file = wp;
2038
2039         sys_close(0);
2040         fd_install(0, rp);
2041         spin_lock(&cf->file_lock);
2042         fdt = files_fdtable(cf);
2043         FD_SET(0, fdt->open_fds);
2044         FD_CLR(0, fdt->close_on_exec);
2045         spin_unlock(&cf->file_lock);
2046
2047         /* and disallow core files too */
2048         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2049
2050         return 0;
2051 }
2052
2053 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
2054 {
2055         struct core_state core_state;
2056         struct core_name cn;
2057         struct mm_struct *mm = current->mm;
2058         struct linux_binfmt * binfmt;
2059         const struct cred *old_cred;
2060         struct cred *cred;
2061         int retval = 0;
2062         int flag = 0;
2063         int ispipe;
2064         static atomic_t core_dump_count = ATOMIC_INIT(0);
2065         struct coredump_params cprm = {
2066                 .signr = signr,
2067                 .regs = regs,
2068                 .limit = rlimit(RLIMIT_CORE),
2069                 /*
2070                  * We must use the same mm->flags while dumping core to avoid
2071                  * inconsistency of bit flags, since this flag is not protected
2072                  * by any locks.
2073                  */
2074                 .mm_flags = mm->flags,
2075         };
2076
2077         audit_core_dumps(signr);
2078
2079         binfmt = mm->binfmt;
2080         if (!binfmt || !binfmt->core_dump)
2081                 goto fail;
2082         if (!__get_dumpable(cprm.mm_flags))
2083                 goto fail;
2084
2085         cred = prepare_creds();
2086         if (!cred)
2087                 goto fail;
2088         /*
2089          *      We cannot trust fsuid as being the "true" uid of the
2090          *      process nor do we know its entire history. We only know it
2091          *      was tainted so we dump it as root in mode 2.
2092          */
2093         if (__get_dumpable(cprm.mm_flags) == 2) {
2094                 /* Setuid core dump mode */
2095                 flag = O_EXCL;          /* Stop rewrite attacks */
2096                 cred->fsuid = 0;        /* Dump root private */
2097         }
2098
2099         retval = coredump_wait(exit_code, &core_state);
2100         if (retval < 0)
2101                 goto fail_creds;
2102
2103         old_cred = override_creds(cred);
2104
2105         /*
2106          * Clear any false indication of pending signals that might
2107          * be seen by the filesystem code called to write the core file.
2108          */
2109         clear_thread_flag(TIF_SIGPENDING);
2110
2111         ispipe = format_corename(&cn, signr);
2112
2113         if (ispipe == -ENOMEM) {
2114                 printk(KERN_WARNING "format_corename failed\n");
2115                 printk(KERN_WARNING "Aborting core\n");
2116                 goto fail_corename;
2117         }
2118
2119         if (ispipe) {
2120                 int dump_count;
2121                 char **helper_argv;
2122
2123                 if (cprm.limit == 1) {
2124                         /*
2125                          * Normally core limits are irrelevant to pipes, since
2126                          * we're not writing to the file system, but we use
2127                          * cprm.limit of 1 here as a speacial value. Any
2128                          * non-1 limit gets set to RLIM_INFINITY below, but
2129                          * a limit of 0 skips the dump.  This is a consistent
2130                          * way to catch recursive crashes.  We can still crash
2131                          * if the core_pattern binary sets RLIM_CORE =  !1
2132                          * but it runs as root, and can do lots of stupid things
2133                          * Note that we use task_tgid_vnr here to grab the pid
2134                          * of the process group leader.  That way we get the
2135                          * right pid if a thread in a multi-threaded
2136                          * core_pattern process dies.
2137                          */
2138                         printk(KERN_WARNING
2139                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
2140                                 task_tgid_vnr(current), current->comm);
2141                         printk(KERN_WARNING "Aborting core\n");
2142                         goto fail_unlock;
2143                 }
2144                 cprm.limit = RLIM_INFINITY;
2145
2146                 dump_count = atomic_inc_return(&core_dump_count);
2147                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2148                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2149                                task_tgid_vnr(current), current->comm);
2150                         printk(KERN_WARNING "Skipping core dump\n");
2151                         goto fail_dropcount;
2152                 }
2153
2154                 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2155                 if (!helper_argv) {
2156                         printk(KERN_WARNING "%s failed to allocate memory\n",
2157                                __func__);
2158                         goto fail_dropcount;
2159                 }
2160
2161                 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2162                                         NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2163                                         NULL, &cprm);
2164                 argv_free(helper_argv);
2165                 if (retval) {
2166                         printk(KERN_INFO "Core dump to %s pipe failed\n",
2167                                cn.corename);
2168                         goto close_fail;
2169                 }
2170         } else {
2171                 struct inode *inode;
2172
2173                 if (cprm.limit < binfmt->min_coredump)
2174                         goto fail_unlock;
2175
2176                 cprm.file = filp_open(cn.corename,
2177                                  O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2178                                  0600);
2179                 if (IS_ERR(cprm.file))
2180                         goto fail_unlock;
2181
2182                 inode = cprm.file->f_path.dentry->d_inode;
2183                 if (inode->i_nlink > 1)
2184                         goto close_fail;
2185                 if (d_unhashed(cprm.file->f_path.dentry))
2186                         goto close_fail;
2187                 /*
2188                  * AK: actually i see no reason to not allow this for named
2189                  * pipes etc, but keep the previous behaviour for now.
2190                  */
2191                 if (!S_ISREG(inode->i_mode))
2192                         goto close_fail;
2193                 /*
2194                  * Dont allow local users get cute and trick others to coredump
2195                  * into their pre-created files.
2196                  */
2197                 if (inode->i_uid != current_fsuid())
2198                         goto close_fail;
2199                 if (!cprm.file->f_op || !cprm.file->f_op->write)
2200                         goto close_fail;
2201                 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2202                         goto close_fail;
2203         }
2204
2205         retval = binfmt->core_dump(&cprm);
2206         if (retval)
2207                 current->signal->group_exit_code |= 0x80;
2208
2209         if (ispipe && core_pipe_limit)
2210                 wait_for_dump_helpers(cprm.file);
2211 close_fail:
2212         if (cprm.file)
2213                 filp_close(cprm.file, NULL);
2214 fail_dropcount:
2215         if (ispipe)
2216                 atomic_dec(&core_dump_count);
2217 fail_unlock:
2218         kfree(cn.corename);
2219 fail_corename:
2220         coredump_finish(mm);
2221         revert_creds(old_cred);
2222 fail_creds:
2223         put_cred(cred);
2224 fail:
2225         return;
2226 }
2227
2228 /*
2229  * Core dumping helper functions.  These are the only things you should
2230  * do on a core-file: use only these functions to write out all the
2231  * necessary info.
2232  */
2233 int dump_write(struct file *file, const void *addr, int nr)
2234 {
2235         return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2236 }
2237 EXPORT_SYMBOL(dump_write);
2238
2239 int dump_seek(struct file *file, loff_t off)
2240 {
2241         int ret = 1;
2242
2243         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2244                 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2245                         return 0;
2246         } else {
2247                 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2248
2249                 if (!buf)
2250                         return 0;
2251                 while (off > 0) {
2252                         unsigned long n = off;
2253
2254                         if (n > PAGE_SIZE)
2255                                 n = PAGE_SIZE;
2256                         if (!dump_write(file, buf, n)) {
2257                                 ret = 0;
2258                                 break;
2259                         }
2260                         off -= n;
2261                 }
2262                 free_page((unsigned long)buf);
2263         }
2264         return ret;
2265 }
2266 EXPORT_SYMBOL(dump_seek);