x86,kgdb: Fix hw breakpoint regression
[linux-2.6.git] / fs / ceph / mds_client.c
1 #include "ceph_debug.h"
2
3 #include <linux/wait.h>
4 #include <linux/slab.h>
5 #include <linux/sched.h>
6
7 #include "mds_client.h"
8 #include "mon_client.h"
9 #include "super.h"
10 #include "messenger.h"
11 #include "decode.h"
12 #include "auth.h"
13 #include "pagelist.h"
14
15 /*
16  * A cluster of MDS (metadata server) daemons is responsible for
17  * managing the file system namespace (the directory hierarchy and
18  * inodes) and for coordinating shared access to storage.  Metadata is
19  * partitioning hierarchically across a number of servers, and that
20  * partition varies over time as the cluster adjusts the distribution
21  * in order to balance load.
22  *
23  * The MDS client is primarily responsible to managing synchronous
24  * metadata requests for operations like open, unlink, and so forth.
25  * If there is a MDS failure, we find out about it when we (possibly
26  * request and) receive a new MDS map, and can resubmit affected
27  * requests.
28  *
29  * For the most part, though, we take advantage of a lossless
30  * communications channel to the MDS, and do not need to worry about
31  * timing out or resubmitting requests.
32  *
33  * We maintain a stateful "session" with each MDS we interact with.
34  * Within each session, we sent periodic heartbeat messages to ensure
35  * any capabilities or leases we have been issues remain valid.  If
36  * the session times out and goes stale, our leases and capabilities
37  * are no longer valid.
38  */
39
40 static void __wake_requests(struct ceph_mds_client *mdsc,
41                             struct list_head *head);
42
43 static const struct ceph_connection_operations mds_con_ops;
44
45
46 /*
47  * mds reply parsing
48  */
49
50 /*
51  * parse individual inode info
52  */
53 static int parse_reply_info_in(void **p, void *end,
54                                struct ceph_mds_reply_info_in *info)
55 {
56         int err = -EIO;
57
58         info->in = *p;
59         *p += sizeof(struct ceph_mds_reply_inode) +
60                 sizeof(*info->in->fragtree.splits) *
61                 le32_to_cpu(info->in->fragtree.nsplits);
62
63         ceph_decode_32_safe(p, end, info->symlink_len, bad);
64         ceph_decode_need(p, end, info->symlink_len, bad);
65         info->symlink = *p;
66         *p += info->symlink_len;
67
68         ceph_decode_32_safe(p, end, info->xattr_len, bad);
69         ceph_decode_need(p, end, info->xattr_len, bad);
70         info->xattr_data = *p;
71         *p += info->xattr_len;
72         return 0;
73 bad:
74         return err;
75 }
76
77 /*
78  * parse a normal reply, which may contain a (dir+)dentry and/or a
79  * target inode.
80  */
81 static int parse_reply_info_trace(void **p, void *end,
82                                   struct ceph_mds_reply_info_parsed *info)
83 {
84         int err;
85
86         if (info->head->is_dentry) {
87                 err = parse_reply_info_in(p, end, &info->diri);
88                 if (err < 0)
89                         goto out_bad;
90
91                 if (unlikely(*p + sizeof(*info->dirfrag) > end))
92                         goto bad;
93                 info->dirfrag = *p;
94                 *p += sizeof(*info->dirfrag) +
95                         sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
96                 if (unlikely(*p > end))
97                         goto bad;
98
99                 ceph_decode_32_safe(p, end, info->dname_len, bad);
100                 ceph_decode_need(p, end, info->dname_len, bad);
101                 info->dname = *p;
102                 *p += info->dname_len;
103                 info->dlease = *p;
104                 *p += sizeof(*info->dlease);
105         }
106
107         if (info->head->is_target) {
108                 err = parse_reply_info_in(p, end, &info->targeti);
109                 if (err < 0)
110                         goto out_bad;
111         }
112
113         if (unlikely(*p != end))
114                 goto bad;
115         return 0;
116
117 bad:
118         err = -EIO;
119 out_bad:
120         pr_err("problem parsing mds trace %d\n", err);
121         return err;
122 }
123
124 /*
125  * parse readdir results
126  */
127 static int parse_reply_info_dir(void **p, void *end,
128                                 struct ceph_mds_reply_info_parsed *info)
129 {
130         u32 num, i = 0;
131         int err;
132
133         info->dir_dir = *p;
134         if (*p + sizeof(*info->dir_dir) > end)
135                 goto bad;
136         *p += sizeof(*info->dir_dir) +
137                 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
138         if (*p > end)
139                 goto bad;
140
141         ceph_decode_need(p, end, sizeof(num) + 2, bad);
142         num = ceph_decode_32(p);
143         info->dir_end = ceph_decode_8(p);
144         info->dir_complete = ceph_decode_8(p);
145         if (num == 0)
146                 goto done;
147
148         /* alloc large array */
149         info->dir_nr = num;
150         info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
151                                sizeof(*info->dir_dname) +
152                                sizeof(*info->dir_dname_len) +
153                                sizeof(*info->dir_dlease),
154                                GFP_NOFS);
155         if (info->dir_in == NULL) {
156                 err = -ENOMEM;
157                 goto out_bad;
158         }
159         info->dir_dname = (void *)(info->dir_in + num);
160         info->dir_dname_len = (void *)(info->dir_dname + num);
161         info->dir_dlease = (void *)(info->dir_dname_len + num);
162
163         while (num) {
164                 /* dentry */
165                 ceph_decode_need(p, end, sizeof(u32)*2, bad);
166                 info->dir_dname_len[i] = ceph_decode_32(p);
167                 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
168                 info->dir_dname[i] = *p;
169                 *p += info->dir_dname_len[i];
170                 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
171                      info->dir_dname[i]);
172                 info->dir_dlease[i] = *p;
173                 *p += sizeof(struct ceph_mds_reply_lease);
174
175                 /* inode */
176                 err = parse_reply_info_in(p, end, &info->dir_in[i]);
177                 if (err < 0)
178                         goto out_bad;
179                 i++;
180                 num--;
181         }
182
183 done:
184         if (*p != end)
185                 goto bad;
186         return 0;
187
188 bad:
189         err = -EIO;
190 out_bad:
191         pr_err("problem parsing dir contents %d\n", err);
192         return err;
193 }
194
195 /*
196  * parse entire mds reply
197  */
198 static int parse_reply_info(struct ceph_msg *msg,
199                             struct ceph_mds_reply_info_parsed *info)
200 {
201         void *p, *end;
202         u32 len;
203         int err;
204
205         info->head = msg->front.iov_base;
206         p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
207         end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
208
209         /* trace */
210         ceph_decode_32_safe(&p, end, len, bad);
211         if (len > 0) {
212                 err = parse_reply_info_trace(&p, p+len, info);
213                 if (err < 0)
214                         goto out_bad;
215         }
216
217         /* dir content */
218         ceph_decode_32_safe(&p, end, len, bad);
219         if (len > 0) {
220                 err = parse_reply_info_dir(&p, p+len, info);
221                 if (err < 0)
222                         goto out_bad;
223         }
224
225         /* snap blob */
226         ceph_decode_32_safe(&p, end, len, bad);
227         info->snapblob_len = len;
228         info->snapblob = p;
229         p += len;
230
231         if (p != end)
232                 goto bad;
233         return 0;
234
235 bad:
236         err = -EIO;
237 out_bad:
238         pr_err("mds parse_reply err %d\n", err);
239         return err;
240 }
241
242 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
243 {
244         kfree(info->dir_in);
245 }
246
247
248 /*
249  * sessions
250  */
251 static const char *session_state_name(int s)
252 {
253         switch (s) {
254         case CEPH_MDS_SESSION_NEW: return "new";
255         case CEPH_MDS_SESSION_OPENING: return "opening";
256         case CEPH_MDS_SESSION_OPEN: return "open";
257         case CEPH_MDS_SESSION_HUNG: return "hung";
258         case CEPH_MDS_SESSION_CLOSING: return "closing";
259         case CEPH_MDS_SESSION_RESTARTING: return "restarting";
260         case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
261         default: return "???";
262         }
263 }
264
265 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
266 {
267         if (atomic_inc_not_zero(&s->s_ref)) {
268                 dout("mdsc get_session %p %d -> %d\n", s,
269                      atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
270                 return s;
271         } else {
272                 dout("mdsc get_session %p 0 -- FAIL", s);
273                 return NULL;
274         }
275 }
276
277 void ceph_put_mds_session(struct ceph_mds_session *s)
278 {
279         dout("mdsc put_session %p %d -> %d\n", s,
280              atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
281         if (atomic_dec_and_test(&s->s_ref)) {
282                 if (s->s_authorizer)
283                         s->s_mdsc->client->monc.auth->ops->destroy_authorizer(
284                                 s->s_mdsc->client->monc.auth, s->s_authorizer);
285                 kfree(s);
286         }
287 }
288
289 /*
290  * called under mdsc->mutex
291  */
292 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
293                                                    int mds)
294 {
295         struct ceph_mds_session *session;
296
297         if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
298                 return NULL;
299         session = mdsc->sessions[mds];
300         dout("lookup_mds_session %p %d\n", session,
301              atomic_read(&session->s_ref));
302         get_session(session);
303         return session;
304 }
305
306 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
307 {
308         if (mds >= mdsc->max_sessions)
309                 return false;
310         return mdsc->sessions[mds];
311 }
312
313 static int __verify_registered_session(struct ceph_mds_client *mdsc,
314                                        struct ceph_mds_session *s)
315 {
316         if (s->s_mds >= mdsc->max_sessions ||
317             mdsc->sessions[s->s_mds] != s)
318                 return -ENOENT;
319         return 0;
320 }
321
322 /*
323  * create+register a new session for given mds.
324  * called under mdsc->mutex.
325  */
326 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
327                                                  int mds)
328 {
329         struct ceph_mds_session *s;
330
331         s = kzalloc(sizeof(*s), GFP_NOFS);
332         if (!s)
333                 return ERR_PTR(-ENOMEM);
334         s->s_mdsc = mdsc;
335         s->s_mds = mds;
336         s->s_state = CEPH_MDS_SESSION_NEW;
337         s->s_ttl = 0;
338         s->s_seq = 0;
339         mutex_init(&s->s_mutex);
340
341         ceph_con_init(mdsc->client->msgr, &s->s_con);
342         s->s_con.private = s;
343         s->s_con.ops = &mds_con_ops;
344         s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS;
345         s->s_con.peer_name.num = cpu_to_le64(mds);
346
347         spin_lock_init(&s->s_cap_lock);
348         s->s_cap_gen = 0;
349         s->s_cap_ttl = 0;
350         s->s_renew_requested = 0;
351         s->s_renew_seq = 0;
352         INIT_LIST_HEAD(&s->s_caps);
353         s->s_nr_caps = 0;
354         s->s_trim_caps = 0;
355         atomic_set(&s->s_ref, 1);
356         INIT_LIST_HEAD(&s->s_waiting);
357         INIT_LIST_HEAD(&s->s_unsafe);
358         s->s_num_cap_releases = 0;
359         s->s_cap_iterator = NULL;
360         INIT_LIST_HEAD(&s->s_cap_releases);
361         INIT_LIST_HEAD(&s->s_cap_releases_done);
362         INIT_LIST_HEAD(&s->s_cap_flushing);
363         INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
364
365         dout("register_session mds%d\n", mds);
366         if (mds >= mdsc->max_sessions) {
367                 int newmax = 1 << get_count_order(mds+1);
368                 struct ceph_mds_session **sa;
369
370                 dout("register_session realloc to %d\n", newmax);
371                 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
372                 if (sa == NULL)
373                         goto fail_realloc;
374                 if (mdsc->sessions) {
375                         memcpy(sa, mdsc->sessions,
376                                mdsc->max_sessions * sizeof(void *));
377                         kfree(mdsc->sessions);
378                 }
379                 mdsc->sessions = sa;
380                 mdsc->max_sessions = newmax;
381         }
382         mdsc->sessions[mds] = s;
383         atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
384
385         ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
386
387         return s;
388
389 fail_realloc:
390         kfree(s);
391         return ERR_PTR(-ENOMEM);
392 }
393
394 /*
395  * called under mdsc->mutex
396  */
397 static void __unregister_session(struct ceph_mds_client *mdsc,
398                                struct ceph_mds_session *s)
399 {
400         dout("__unregister_session mds%d %p\n", s->s_mds, s);
401         BUG_ON(mdsc->sessions[s->s_mds] != s);
402         mdsc->sessions[s->s_mds] = NULL;
403         ceph_con_close(&s->s_con);
404         ceph_put_mds_session(s);
405 }
406
407 /*
408  * drop session refs in request.
409  *
410  * should be last request ref, or hold mdsc->mutex
411  */
412 static void put_request_session(struct ceph_mds_request *req)
413 {
414         if (req->r_session) {
415                 ceph_put_mds_session(req->r_session);
416                 req->r_session = NULL;
417         }
418 }
419
420 void ceph_mdsc_release_request(struct kref *kref)
421 {
422         struct ceph_mds_request *req = container_of(kref,
423                                                     struct ceph_mds_request,
424                                                     r_kref);
425         if (req->r_request)
426                 ceph_msg_put(req->r_request);
427         if (req->r_reply) {
428                 ceph_msg_put(req->r_reply);
429                 destroy_reply_info(&req->r_reply_info);
430         }
431         if (req->r_inode) {
432                 ceph_put_cap_refs(ceph_inode(req->r_inode),
433                                   CEPH_CAP_PIN);
434                 iput(req->r_inode);
435         }
436         if (req->r_locked_dir)
437                 ceph_put_cap_refs(ceph_inode(req->r_locked_dir),
438                                   CEPH_CAP_PIN);
439         if (req->r_target_inode)
440                 iput(req->r_target_inode);
441         if (req->r_dentry)
442                 dput(req->r_dentry);
443         if (req->r_old_dentry) {
444                 ceph_put_cap_refs(
445                         ceph_inode(req->r_old_dentry->d_parent->d_inode),
446                         CEPH_CAP_PIN);
447                 dput(req->r_old_dentry);
448         }
449         kfree(req->r_path1);
450         kfree(req->r_path2);
451         put_request_session(req);
452         ceph_unreserve_caps(&req->r_caps_reservation);
453         kfree(req);
454 }
455
456 /*
457  * lookup session, bump ref if found.
458  *
459  * called under mdsc->mutex.
460  */
461 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
462                                              u64 tid)
463 {
464         struct ceph_mds_request *req;
465         struct rb_node *n = mdsc->request_tree.rb_node;
466
467         while (n) {
468                 req = rb_entry(n, struct ceph_mds_request, r_node);
469                 if (tid < req->r_tid)
470                         n = n->rb_left;
471                 else if (tid > req->r_tid)
472                         n = n->rb_right;
473                 else {
474                         ceph_mdsc_get_request(req);
475                         return req;
476                 }
477         }
478         return NULL;
479 }
480
481 static void __insert_request(struct ceph_mds_client *mdsc,
482                              struct ceph_mds_request *new)
483 {
484         struct rb_node **p = &mdsc->request_tree.rb_node;
485         struct rb_node *parent = NULL;
486         struct ceph_mds_request *req = NULL;
487
488         while (*p) {
489                 parent = *p;
490                 req = rb_entry(parent, struct ceph_mds_request, r_node);
491                 if (new->r_tid < req->r_tid)
492                         p = &(*p)->rb_left;
493                 else if (new->r_tid > req->r_tid)
494                         p = &(*p)->rb_right;
495                 else
496                         BUG();
497         }
498
499         rb_link_node(&new->r_node, parent, p);
500         rb_insert_color(&new->r_node, &mdsc->request_tree);
501 }
502
503 /*
504  * Register an in-flight request, and assign a tid.  Link to directory
505  * are modifying (if any).
506  *
507  * Called under mdsc->mutex.
508  */
509 static void __register_request(struct ceph_mds_client *mdsc,
510                                struct ceph_mds_request *req,
511                                struct inode *dir)
512 {
513         req->r_tid = ++mdsc->last_tid;
514         if (req->r_num_caps)
515                 ceph_reserve_caps(&req->r_caps_reservation, req->r_num_caps);
516         dout("__register_request %p tid %lld\n", req, req->r_tid);
517         ceph_mdsc_get_request(req);
518         __insert_request(mdsc, req);
519
520         if (dir) {
521                 struct ceph_inode_info *ci = ceph_inode(dir);
522
523                 spin_lock(&ci->i_unsafe_lock);
524                 req->r_unsafe_dir = dir;
525                 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
526                 spin_unlock(&ci->i_unsafe_lock);
527         }
528 }
529
530 static void __unregister_request(struct ceph_mds_client *mdsc,
531                                  struct ceph_mds_request *req)
532 {
533         dout("__unregister_request %p tid %lld\n", req, req->r_tid);
534         rb_erase(&req->r_node, &mdsc->request_tree);
535         RB_CLEAR_NODE(&req->r_node);
536
537         if (req->r_unsafe_dir) {
538                 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
539
540                 spin_lock(&ci->i_unsafe_lock);
541                 list_del_init(&req->r_unsafe_dir_item);
542                 spin_unlock(&ci->i_unsafe_lock);
543         }
544
545         ceph_mdsc_put_request(req);
546 }
547
548 /*
549  * Choose mds to send request to next.  If there is a hint set in the
550  * request (e.g., due to a prior forward hint from the mds), use that.
551  * Otherwise, consult frag tree and/or caps to identify the
552  * appropriate mds.  If all else fails, choose randomly.
553  *
554  * Called under mdsc->mutex.
555  */
556 static int __choose_mds(struct ceph_mds_client *mdsc,
557                         struct ceph_mds_request *req)
558 {
559         struct inode *inode;
560         struct ceph_inode_info *ci;
561         struct ceph_cap *cap;
562         int mode = req->r_direct_mode;
563         int mds = -1;
564         u32 hash = req->r_direct_hash;
565         bool is_hash = req->r_direct_is_hash;
566
567         /*
568          * is there a specific mds we should try?  ignore hint if we have
569          * no session and the mds is not up (active or recovering).
570          */
571         if (req->r_resend_mds >= 0 &&
572             (__have_session(mdsc, req->r_resend_mds) ||
573              ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
574                 dout("choose_mds using resend_mds mds%d\n",
575                      req->r_resend_mds);
576                 return req->r_resend_mds;
577         }
578
579         if (mode == USE_RANDOM_MDS)
580                 goto random;
581
582         inode = NULL;
583         if (req->r_inode) {
584                 inode = req->r_inode;
585         } else if (req->r_dentry) {
586                 if (req->r_dentry->d_inode) {
587                         inode = req->r_dentry->d_inode;
588                 } else {
589                         inode = req->r_dentry->d_parent->d_inode;
590                         hash = req->r_dentry->d_name.hash;
591                         is_hash = true;
592                 }
593         }
594         dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
595              (int)hash, mode);
596         if (!inode)
597                 goto random;
598         ci = ceph_inode(inode);
599
600         if (is_hash && S_ISDIR(inode->i_mode)) {
601                 struct ceph_inode_frag frag;
602                 int found;
603
604                 ceph_choose_frag(ci, hash, &frag, &found);
605                 if (found) {
606                         if (mode == USE_ANY_MDS && frag.ndist > 0) {
607                                 u8 r;
608
609                                 /* choose a random replica */
610                                 get_random_bytes(&r, 1);
611                                 r %= frag.ndist;
612                                 mds = frag.dist[r];
613                                 dout("choose_mds %p %llx.%llx "
614                                      "frag %u mds%d (%d/%d)\n",
615                                      inode, ceph_vinop(inode),
616                                      frag.frag, frag.mds,
617                                      (int)r, frag.ndist);
618                                 return mds;
619                         }
620
621                         /* since this file/dir wasn't known to be
622                          * replicated, then we want to look for the
623                          * authoritative mds. */
624                         mode = USE_AUTH_MDS;
625                         if (frag.mds >= 0) {
626                                 /* choose auth mds */
627                                 mds = frag.mds;
628                                 dout("choose_mds %p %llx.%llx "
629                                      "frag %u mds%d (auth)\n",
630                                      inode, ceph_vinop(inode), frag.frag, mds);
631                                 return mds;
632                         }
633                 }
634         }
635
636         spin_lock(&inode->i_lock);
637         cap = NULL;
638         if (mode == USE_AUTH_MDS)
639                 cap = ci->i_auth_cap;
640         if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
641                 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
642         if (!cap) {
643                 spin_unlock(&inode->i_lock);
644                 goto random;
645         }
646         mds = cap->session->s_mds;
647         dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
648              inode, ceph_vinop(inode), mds,
649              cap == ci->i_auth_cap ? "auth " : "", cap);
650         spin_unlock(&inode->i_lock);
651         return mds;
652
653 random:
654         mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
655         dout("choose_mds chose random mds%d\n", mds);
656         return mds;
657 }
658
659
660 /*
661  * session messages
662  */
663 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
664 {
665         struct ceph_msg *msg;
666         struct ceph_mds_session_head *h;
667
668         msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS);
669         if (!msg) {
670                 pr_err("create_session_msg ENOMEM creating msg\n");
671                 return NULL;
672         }
673         h = msg->front.iov_base;
674         h->op = cpu_to_le32(op);
675         h->seq = cpu_to_le64(seq);
676         return msg;
677 }
678
679 /*
680  * send session open request.
681  *
682  * called under mdsc->mutex
683  */
684 static int __open_session(struct ceph_mds_client *mdsc,
685                           struct ceph_mds_session *session)
686 {
687         struct ceph_msg *msg;
688         int mstate;
689         int mds = session->s_mds;
690
691         /* wait for mds to go active? */
692         mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
693         dout("open_session to mds%d (%s)\n", mds,
694              ceph_mds_state_name(mstate));
695         session->s_state = CEPH_MDS_SESSION_OPENING;
696         session->s_renew_requested = jiffies;
697
698         /* send connect message */
699         msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
700         if (!msg)
701                 return -ENOMEM;
702         ceph_con_send(&session->s_con, msg);
703         return 0;
704 }
705
706 /*
707  * session caps
708  */
709
710 /*
711  * Free preallocated cap messages assigned to this session
712  */
713 static void cleanup_cap_releases(struct ceph_mds_session *session)
714 {
715         struct ceph_msg *msg;
716
717         spin_lock(&session->s_cap_lock);
718         while (!list_empty(&session->s_cap_releases)) {
719                 msg = list_first_entry(&session->s_cap_releases,
720                                        struct ceph_msg, list_head);
721                 list_del_init(&msg->list_head);
722                 ceph_msg_put(msg);
723         }
724         while (!list_empty(&session->s_cap_releases_done)) {
725                 msg = list_first_entry(&session->s_cap_releases_done,
726                                        struct ceph_msg, list_head);
727                 list_del_init(&msg->list_head);
728                 ceph_msg_put(msg);
729         }
730         spin_unlock(&session->s_cap_lock);
731 }
732
733 /*
734  * Helper to safely iterate over all caps associated with a session, with
735  * special care taken to handle a racing __ceph_remove_cap().
736  *
737  * Caller must hold session s_mutex.
738  */
739 static int iterate_session_caps(struct ceph_mds_session *session,
740                                  int (*cb)(struct inode *, struct ceph_cap *,
741                                             void *), void *arg)
742 {
743         struct list_head *p;
744         struct ceph_cap *cap;
745         struct inode *inode, *last_inode = NULL;
746         struct ceph_cap *old_cap = NULL;
747         int ret;
748
749         dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
750         spin_lock(&session->s_cap_lock);
751         p = session->s_caps.next;
752         while (p != &session->s_caps) {
753                 cap = list_entry(p, struct ceph_cap, session_caps);
754                 inode = igrab(&cap->ci->vfs_inode);
755                 if (!inode) {
756                         p = p->next;
757                         continue;
758                 }
759                 session->s_cap_iterator = cap;
760                 spin_unlock(&session->s_cap_lock);
761
762                 if (last_inode) {
763                         iput(last_inode);
764                         last_inode = NULL;
765                 }
766                 if (old_cap) {
767                         ceph_put_cap(old_cap);
768                         old_cap = NULL;
769                 }
770
771                 ret = cb(inode, cap, arg);
772                 last_inode = inode;
773
774                 spin_lock(&session->s_cap_lock);
775                 p = p->next;
776                 if (cap->ci == NULL) {
777                         dout("iterate_session_caps  finishing cap %p removal\n",
778                              cap);
779                         BUG_ON(cap->session != session);
780                         list_del_init(&cap->session_caps);
781                         session->s_nr_caps--;
782                         cap->session = NULL;
783                         old_cap = cap;  /* put_cap it w/o locks held */
784                 }
785                 if (ret < 0)
786                         goto out;
787         }
788         ret = 0;
789 out:
790         session->s_cap_iterator = NULL;
791         spin_unlock(&session->s_cap_lock);
792
793         if (last_inode)
794                 iput(last_inode);
795         if (old_cap)
796                 ceph_put_cap(old_cap);
797
798         return ret;
799 }
800
801 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
802                                   void *arg)
803 {
804         struct ceph_inode_info *ci = ceph_inode(inode);
805         int drop = 0;
806
807         dout("removing cap %p, ci is %p, inode is %p\n",
808              cap, ci, &ci->vfs_inode);
809         spin_lock(&inode->i_lock);
810         __ceph_remove_cap(cap);
811         if (!__ceph_is_any_real_caps(ci)) {
812                 struct ceph_mds_client *mdsc =
813                         &ceph_sb_to_client(inode->i_sb)->mdsc;
814
815                 spin_lock(&mdsc->cap_dirty_lock);
816                 if (!list_empty(&ci->i_dirty_item)) {
817                         pr_info(" dropping dirty %s state for %p %lld\n",
818                                 ceph_cap_string(ci->i_dirty_caps),
819                                 inode, ceph_ino(inode));
820                         ci->i_dirty_caps = 0;
821                         list_del_init(&ci->i_dirty_item);
822                         drop = 1;
823                 }
824                 if (!list_empty(&ci->i_flushing_item)) {
825                         pr_info(" dropping dirty+flushing %s state for %p %lld\n",
826                                 ceph_cap_string(ci->i_flushing_caps),
827                                 inode, ceph_ino(inode));
828                         ci->i_flushing_caps = 0;
829                         list_del_init(&ci->i_flushing_item);
830                         mdsc->num_cap_flushing--;
831                         drop = 1;
832                 }
833                 if (drop && ci->i_wrbuffer_ref) {
834                         pr_info(" dropping dirty data for %p %lld\n",
835                                 inode, ceph_ino(inode));
836                         ci->i_wrbuffer_ref = 0;
837                         ci->i_wrbuffer_ref_head = 0;
838                         drop++;
839                 }
840                 spin_unlock(&mdsc->cap_dirty_lock);
841         }
842         spin_unlock(&inode->i_lock);
843         while (drop--)
844                 iput(inode);
845         return 0;
846 }
847
848 /*
849  * caller must hold session s_mutex
850  */
851 static void remove_session_caps(struct ceph_mds_session *session)
852 {
853         dout("remove_session_caps on %p\n", session);
854         iterate_session_caps(session, remove_session_caps_cb, NULL);
855         BUG_ON(session->s_nr_caps > 0);
856         BUG_ON(!list_empty(&session->s_cap_flushing));
857         cleanup_cap_releases(session);
858 }
859
860 /*
861  * wake up any threads waiting on this session's caps.  if the cap is
862  * old (didn't get renewed on the client reconnect), remove it now.
863  *
864  * caller must hold s_mutex.
865  */
866 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
867                               void *arg)
868 {
869         struct ceph_inode_info *ci = ceph_inode(inode);
870
871         wake_up(&ci->i_cap_wq);
872         if (arg) {
873                 spin_lock(&inode->i_lock);
874                 ci->i_wanted_max_size = 0;
875                 ci->i_requested_max_size = 0;
876                 spin_unlock(&inode->i_lock);
877         }
878         return 0;
879 }
880
881 static void wake_up_session_caps(struct ceph_mds_session *session,
882                                  int reconnect)
883 {
884         dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
885         iterate_session_caps(session, wake_up_session_cb,
886                              (void *)(unsigned long)reconnect);
887 }
888
889 /*
890  * Send periodic message to MDS renewing all currently held caps.  The
891  * ack will reset the expiration for all caps from this session.
892  *
893  * caller holds s_mutex
894  */
895 static int send_renew_caps(struct ceph_mds_client *mdsc,
896                            struct ceph_mds_session *session)
897 {
898         struct ceph_msg *msg;
899         int state;
900
901         if (time_after_eq(jiffies, session->s_cap_ttl) &&
902             time_after_eq(session->s_cap_ttl, session->s_renew_requested))
903                 pr_info("mds%d caps stale\n", session->s_mds);
904         session->s_renew_requested = jiffies;
905
906         /* do not try to renew caps until a recovering mds has reconnected
907          * with its clients. */
908         state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
909         if (state < CEPH_MDS_STATE_RECONNECT) {
910                 dout("send_renew_caps ignoring mds%d (%s)\n",
911                      session->s_mds, ceph_mds_state_name(state));
912                 return 0;
913         }
914
915         dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
916                 ceph_mds_state_name(state));
917         msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
918                                  ++session->s_renew_seq);
919         if (!msg)
920                 return -ENOMEM;
921         ceph_con_send(&session->s_con, msg);
922         return 0;
923 }
924
925 /*
926  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
927  *
928  * Called under session->s_mutex
929  */
930 static void renewed_caps(struct ceph_mds_client *mdsc,
931                          struct ceph_mds_session *session, int is_renew)
932 {
933         int was_stale;
934         int wake = 0;
935
936         spin_lock(&session->s_cap_lock);
937         was_stale = is_renew && (session->s_cap_ttl == 0 ||
938                                  time_after_eq(jiffies, session->s_cap_ttl));
939
940         session->s_cap_ttl = session->s_renew_requested +
941                 mdsc->mdsmap->m_session_timeout*HZ;
942
943         if (was_stale) {
944                 if (time_before(jiffies, session->s_cap_ttl)) {
945                         pr_info("mds%d caps renewed\n", session->s_mds);
946                         wake = 1;
947                 } else {
948                         pr_info("mds%d caps still stale\n", session->s_mds);
949                 }
950         }
951         dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
952              session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
953              time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
954         spin_unlock(&session->s_cap_lock);
955
956         if (wake)
957                 wake_up_session_caps(session, 0);
958 }
959
960 /*
961  * send a session close request
962  */
963 static int request_close_session(struct ceph_mds_client *mdsc,
964                                  struct ceph_mds_session *session)
965 {
966         struct ceph_msg *msg;
967
968         dout("request_close_session mds%d state %s seq %lld\n",
969              session->s_mds, session_state_name(session->s_state),
970              session->s_seq);
971         msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
972         if (!msg)
973                 return -ENOMEM;
974         ceph_con_send(&session->s_con, msg);
975         return 0;
976 }
977
978 /*
979  * Called with s_mutex held.
980  */
981 static int __close_session(struct ceph_mds_client *mdsc,
982                          struct ceph_mds_session *session)
983 {
984         if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
985                 return 0;
986         session->s_state = CEPH_MDS_SESSION_CLOSING;
987         return request_close_session(mdsc, session);
988 }
989
990 /*
991  * Trim old(er) caps.
992  *
993  * Because we can't cache an inode without one or more caps, we do
994  * this indirectly: if a cap is unused, we prune its aliases, at which
995  * point the inode will hopefully get dropped to.
996  *
997  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
998  * memory pressure from the MDS, though, so it needn't be perfect.
999  */
1000 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1001 {
1002         struct ceph_mds_session *session = arg;
1003         struct ceph_inode_info *ci = ceph_inode(inode);
1004         int used, oissued, mine;
1005
1006         if (session->s_trim_caps <= 0)
1007                 return -1;
1008
1009         spin_lock(&inode->i_lock);
1010         mine = cap->issued | cap->implemented;
1011         used = __ceph_caps_used(ci);
1012         oissued = __ceph_caps_issued_other(ci, cap);
1013
1014         dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1015              inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1016              ceph_cap_string(used));
1017         if (ci->i_dirty_caps)
1018                 goto out;   /* dirty caps */
1019         if ((used & ~oissued) & mine)
1020                 goto out;   /* we need these caps */
1021
1022         session->s_trim_caps--;
1023         if (oissued) {
1024                 /* we aren't the only cap.. just remove us */
1025                 __ceph_remove_cap(cap);
1026         } else {
1027                 /* try to drop referring dentries */
1028                 spin_unlock(&inode->i_lock);
1029                 d_prune_aliases(inode);
1030                 dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1031                      inode, cap, atomic_read(&inode->i_count));
1032                 return 0;
1033         }
1034
1035 out:
1036         spin_unlock(&inode->i_lock);
1037         return 0;
1038 }
1039
1040 /*
1041  * Trim session cap count down to some max number.
1042  */
1043 static int trim_caps(struct ceph_mds_client *mdsc,
1044                      struct ceph_mds_session *session,
1045                      int max_caps)
1046 {
1047         int trim_caps = session->s_nr_caps - max_caps;
1048
1049         dout("trim_caps mds%d start: %d / %d, trim %d\n",
1050              session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1051         if (trim_caps > 0) {
1052                 session->s_trim_caps = trim_caps;
1053                 iterate_session_caps(session, trim_caps_cb, session);
1054                 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1055                      session->s_mds, session->s_nr_caps, max_caps,
1056                         trim_caps - session->s_trim_caps);
1057                 session->s_trim_caps = 0;
1058         }
1059         return 0;
1060 }
1061
1062 /*
1063  * Allocate cap_release messages.  If there is a partially full message
1064  * in the queue, try to allocate enough to cover it's remainder, so that
1065  * we can send it immediately.
1066  *
1067  * Called under s_mutex.
1068  */
1069 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1070                           struct ceph_mds_session *session,
1071                           int extra)
1072 {
1073         struct ceph_msg *msg;
1074         struct ceph_mds_cap_release *head;
1075         int err = -ENOMEM;
1076
1077         if (extra < 0)
1078                 extra = mdsc->client->mount_args->cap_release_safety;
1079
1080         spin_lock(&session->s_cap_lock);
1081
1082         if (!list_empty(&session->s_cap_releases)) {
1083                 msg = list_first_entry(&session->s_cap_releases,
1084                                        struct ceph_msg,
1085                                  list_head);
1086                 head = msg->front.iov_base;
1087                 extra += CEPH_CAPS_PER_RELEASE - le32_to_cpu(head->num);
1088         }
1089
1090         while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1091                 spin_unlock(&session->s_cap_lock);
1092                 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1093                                    GFP_NOFS);
1094                 if (!msg)
1095                         goto out_unlocked;
1096                 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1097                      (int)msg->front.iov_len);
1098                 head = msg->front.iov_base;
1099                 head->num = cpu_to_le32(0);
1100                 msg->front.iov_len = sizeof(*head);
1101                 spin_lock(&session->s_cap_lock);
1102                 list_add(&msg->list_head, &session->s_cap_releases);
1103                 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1104         }
1105
1106         if (!list_empty(&session->s_cap_releases)) {
1107                 msg = list_first_entry(&session->s_cap_releases,
1108                                        struct ceph_msg,
1109                                        list_head);
1110                 head = msg->front.iov_base;
1111                 if (head->num) {
1112                         dout(" queueing non-full %p (%d)\n", msg,
1113                              le32_to_cpu(head->num));
1114                         list_move_tail(&msg->list_head,
1115                                       &session->s_cap_releases_done);
1116                         session->s_num_cap_releases -=
1117                                 CEPH_CAPS_PER_RELEASE - le32_to_cpu(head->num);
1118                 }
1119         }
1120         err = 0;
1121         spin_unlock(&session->s_cap_lock);
1122 out_unlocked:
1123         return err;
1124 }
1125
1126 /*
1127  * flush all dirty inode data to disk.
1128  *
1129  * returns true if we've flushed through want_flush_seq
1130  */
1131 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1132 {
1133         int mds, ret = 1;
1134
1135         dout("check_cap_flush want %lld\n", want_flush_seq);
1136         mutex_lock(&mdsc->mutex);
1137         for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1138                 struct ceph_mds_session *session = mdsc->sessions[mds];
1139
1140                 if (!session)
1141                         continue;
1142                 get_session(session);
1143                 mutex_unlock(&mdsc->mutex);
1144
1145                 mutex_lock(&session->s_mutex);
1146                 if (!list_empty(&session->s_cap_flushing)) {
1147                         struct ceph_inode_info *ci =
1148                                 list_entry(session->s_cap_flushing.next,
1149                                            struct ceph_inode_info,
1150                                            i_flushing_item);
1151                         struct inode *inode = &ci->vfs_inode;
1152
1153                         spin_lock(&inode->i_lock);
1154                         if (ci->i_cap_flush_seq <= want_flush_seq) {
1155                                 dout("check_cap_flush still flushing %p "
1156                                      "seq %lld <= %lld to mds%d\n", inode,
1157                                      ci->i_cap_flush_seq, want_flush_seq,
1158                                      session->s_mds);
1159                                 ret = 0;
1160                         }
1161                         spin_unlock(&inode->i_lock);
1162                 }
1163                 mutex_unlock(&session->s_mutex);
1164                 ceph_put_mds_session(session);
1165
1166                 if (!ret)
1167                         return ret;
1168                 mutex_lock(&mdsc->mutex);
1169         }
1170
1171         mutex_unlock(&mdsc->mutex);
1172         dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1173         return ret;
1174 }
1175
1176 /*
1177  * called under s_mutex
1178  */
1179 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1180                             struct ceph_mds_session *session)
1181 {
1182         struct ceph_msg *msg;
1183
1184         dout("send_cap_releases mds%d\n", session->s_mds);
1185         spin_lock(&session->s_cap_lock);
1186         while (!list_empty(&session->s_cap_releases_done)) {
1187                 msg = list_first_entry(&session->s_cap_releases_done,
1188                                  struct ceph_msg, list_head);
1189                 list_del_init(&msg->list_head);
1190                 spin_unlock(&session->s_cap_lock);
1191                 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1192                 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1193                 ceph_con_send(&session->s_con, msg);
1194                 spin_lock(&session->s_cap_lock);
1195         }
1196         spin_unlock(&session->s_cap_lock);
1197 }
1198
1199 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1200                                  struct ceph_mds_session *session)
1201 {
1202         struct ceph_msg *msg;
1203         struct ceph_mds_cap_release *head;
1204         unsigned num;
1205
1206         dout("discard_cap_releases mds%d\n", session->s_mds);
1207         spin_lock(&session->s_cap_lock);
1208
1209         /* zero out the in-progress message */
1210         msg = list_first_entry(&session->s_cap_releases,
1211                                struct ceph_msg, list_head);
1212         head = msg->front.iov_base;
1213         num = le32_to_cpu(head->num);
1214         dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1215         head->num = cpu_to_le32(0);
1216         session->s_num_cap_releases += num;
1217
1218         /* requeue completed messages */
1219         while (!list_empty(&session->s_cap_releases_done)) {
1220                 msg = list_first_entry(&session->s_cap_releases_done,
1221                                  struct ceph_msg, list_head);
1222                 list_del_init(&msg->list_head);
1223
1224                 head = msg->front.iov_base;
1225                 num = le32_to_cpu(head->num);
1226                 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1227                      num);
1228                 session->s_num_cap_releases += num;
1229                 head->num = cpu_to_le32(0);
1230                 msg->front.iov_len = sizeof(*head);
1231                 list_add(&msg->list_head, &session->s_cap_releases);
1232         }
1233
1234         spin_unlock(&session->s_cap_lock);
1235 }
1236
1237 /*
1238  * requests
1239  */
1240
1241 /*
1242  * Create an mds request.
1243  */
1244 struct ceph_mds_request *
1245 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1246 {
1247         struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1248
1249         if (!req)
1250                 return ERR_PTR(-ENOMEM);
1251
1252         mutex_init(&req->r_fill_mutex);
1253         req->r_started = jiffies;
1254         req->r_resend_mds = -1;
1255         INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1256         req->r_fmode = -1;
1257         kref_init(&req->r_kref);
1258         INIT_LIST_HEAD(&req->r_wait);
1259         init_completion(&req->r_completion);
1260         init_completion(&req->r_safe_completion);
1261         INIT_LIST_HEAD(&req->r_unsafe_item);
1262
1263         req->r_op = op;
1264         req->r_direct_mode = mode;
1265         return req;
1266 }
1267
1268 /*
1269  * return oldest (lowest) request, tid in request tree, 0 if none.
1270  *
1271  * called under mdsc->mutex.
1272  */
1273 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1274 {
1275         if (RB_EMPTY_ROOT(&mdsc->request_tree))
1276                 return NULL;
1277         return rb_entry(rb_first(&mdsc->request_tree),
1278                         struct ceph_mds_request, r_node);
1279 }
1280
1281 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1282 {
1283         struct ceph_mds_request *req = __get_oldest_req(mdsc);
1284
1285         if (req)
1286                 return req->r_tid;
1287         return 0;
1288 }
1289
1290 /*
1291  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1292  * on build_path_from_dentry in fs/cifs/dir.c.
1293  *
1294  * If @stop_on_nosnap, generate path relative to the first non-snapped
1295  * inode.
1296  *
1297  * Encode hidden .snap dirs as a double /, i.e.
1298  *   foo/.snap/bar -> foo//bar
1299  */
1300 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1301                            int stop_on_nosnap)
1302 {
1303         struct dentry *temp;
1304         char *path;
1305         int len, pos;
1306
1307         if (dentry == NULL)
1308                 return ERR_PTR(-EINVAL);
1309
1310 retry:
1311         len = 0;
1312         for (temp = dentry; !IS_ROOT(temp);) {
1313                 struct inode *inode = temp->d_inode;
1314                 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1315                         len++;  /* slash only */
1316                 else if (stop_on_nosnap && inode &&
1317                          ceph_snap(inode) == CEPH_NOSNAP)
1318                         break;
1319                 else
1320                         len += 1 + temp->d_name.len;
1321                 temp = temp->d_parent;
1322                 if (temp == NULL) {
1323                         pr_err("build_path corrupt dentry %p\n", dentry);
1324                         return ERR_PTR(-EINVAL);
1325                 }
1326         }
1327         if (len)
1328                 len--;  /* no leading '/' */
1329
1330         path = kmalloc(len+1, GFP_NOFS);
1331         if (path == NULL)
1332                 return ERR_PTR(-ENOMEM);
1333         pos = len;
1334         path[pos] = 0;  /* trailing null */
1335         for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1336                 struct inode *inode = temp->d_inode;
1337
1338                 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1339                         dout("build_path path+%d: %p SNAPDIR\n",
1340                              pos, temp);
1341                 } else if (stop_on_nosnap && inode &&
1342                            ceph_snap(inode) == CEPH_NOSNAP) {
1343                         break;
1344                 } else {
1345                         pos -= temp->d_name.len;
1346                         if (pos < 0)
1347                                 break;
1348                         strncpy(path + pos, temp->d_name.name,
1349                                 temp->d_name.len);
1350                 }
1351                 if (pos)
1352                         path[--pos] = '/';
1353                 temp = temp->d_parent;
1354                 if (temp == NULL) {
1355                         pr_err("build_path corrupt dentry\n");
1356                         kfree(path);
1357                         return ERR_PTR(-EINVAL);
1358                 }
1359         }
1360         if (pos != 0) {
1361                 pr_err("build_path did not end path lookup where "
1362                        "expected, namelen is %d, pos is %d\n", len, pos);
1363                 /* presumably this is only possible if racing with a
1364                    rename of one of the parent directories (we can not
1365                    lock the dentries above us to prevent this, but
1366                    retrying should be harmless) */
1367                 kfree(path);
1368                 goto retry;
1369         }
1370
1371         *base = ceph_ino(temp->d_inode);
1372         *plen = len;
1373         dout("build_path on %p %d built %llx '%.*s'\n",
1374              dentry, atomic_read(&dentry->d_count), *base, len, path);
1375         return path;
1376 }
1377
1378 static int build_dentry_path(struct dentry *dentry,
1379                              const char **ppath, int *ppathlen, u64 *pino,
1380                              int *pfreepath)
1381 {
1382         char *path;
1383
1384         if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1385                 *pino = ceph_ino(dentry->d_parent->d_inode);
1386                 *ppath = dentry->d_name.name;
1387                 *ppathlen = dentry->d_name.len;
1388                 return 0;
1389         }
1390         path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1391         if (IS_ERR(path))
1392                 return PTR_ERR(path);
1393         *ppath = path;
1394         *pfreepath = 1;
1395         return 0;
1396 }
1397
1398 static int build_inode_path(struct inode *inode,
1399                             const char **ppath, int *ppathlen, u64 *pino,
1400                             int *pfreepath)
1401 {
1402         struct dentry *dentry;
1403         char *path;
1404
1405         if (ceph_snap(inode) == CEPH_NOSNAP) {
1406                 *pino = ceph_ino(inode);
1407                 *ppathlen = 0;
1408                 return 0;
1409         }
1410         dentry = d_find_alias(inode);
1411         path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1412         dput(dentry);
1413         if (IS_ERR(path))
1414                 return PTR_ERR(path);
1415         *ppath = path;
1416         *pfreepath = 1;
1417         return 0;
1418 }
1419
1420 /*
1421  * request arguments may be specified via an inode *, a dentry *, or
1422  * an explicit ino+path.
1423  */
1424 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1425                                   const char *rpath, u64 rino,
1426                                   const char **ppath, int *pathlen,
1427                                   u64 *ino, int *freepath)
1428 {
1429         int r = 0;
1430
1431         if (rinode) {
1432                 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1433                 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1434                      ceph_snap(rinode));
1435         } else if (rdentry) {
1436                 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1437                 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1438                      *ppath);
1439         } else if (rpath) {
1440                 *ino = rino;
1441                 *ppath = rpath;
1442                 *pathlen = strlen(rpath);
1443                 dout(" path %.*s\n", *pathlen, rpath);
1444         }
1445
1446         return r;
1447 }
1448
1449 /*
1450  * called under mdsc->mutex
1451  */
1452 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1453                                                struct ceph_mds_request *req,
1454                                                int mds)
1455 {
1456         struct ceph_msg *msg;
1457         struct ceph_mds_request_head *head;
1458         const char *path1 = NULL;
1459         const char *path2 = NULL;
1460         u64 ino1 = 0, ino2 = 0;
1461         int pathlen1 = 0, pathlen2 = 0;
1462         int freepath1 = 0, freepath2 = 0;
1463         int len;
1464         u16 releases;
1465         void *p, *end;
1466         int ret;
1467
1468         ret = set_request_path_attr(req->r_inode, req->r_dentry,
1469                               req->r_path1, req->r_ino1.ino,
1470                               &path1, &pathlen1, &ino1, &freepath1);
1471         if (ret < 0) {
1472                 msg = ERR_PTR(ret);
1473                 goto out;
1474         }
1475
1476         ret = set_request_path_attr(NULL, req->r_old_dentry,
1477                               req->r_path2, req->r_ino2.ino,
1478                               &path2, &pathlen2, &ino2, &freepath2);
1479         if (ret < 0) {
1480                 msg = ERR_PTR(ret);
1481                 goto out_free1;
1482         }
1483
1484         len = sizeof(*head) +
1485                 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1486
1487         /* calculate (max) length for cap releases */
1488         len += sizeof(struct ceph_mds_request_release) *
1489                 (!!req->r_inode_drop + !!req->r_dentry_drop +
1490                  !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1491         if (req->r_dentry_drop)
1492                 len += req->r_dentry->d_name.len;
1493         if (req->r_old_dentry_drop)
1494                 len += req->r_old_dentry->d_name.len;
1495
1496         msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS);
1497         if (!msg) {
1498                 msg = ERR_PTR(-ENOMEM);
1499                 goto out_free2;
1500         }
1501
1502         msg->hdr.tid = cpu_to_le64(req->r_tid);
1503
1504         head = msg->front.iov_base;
1505         p = msg->front.iov_base + sizeof(*head);
1506         end = msg->front.iov_base + msg->front.iov_len;
1507
1508         head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1509         head->op = cpu_to_le32(req->r_op);
1510         head->caller_uid = cpu_to_le32(current_fsuid());
1511         head->caller_gid = cpu_to_le32(current_fsgid());
1512         head->args = req->r_args;
1513
1514         ceph_encode_filepath(&p, end, ino1, path1);
1515         ceph_encode_filepath(&p, end, ino2, path2);
1516
1517         /* make note of release offset, in case we need to replay */
1518         req->r_request_release_offset = p - msg->front.iov_base;
1519
1520         /* cap releases */
1521         releases = 0;
1522         if (req->r_inode_drop)
1523                 releases += ceph_encode_inode_release(&p,
1524                       req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1525                       mds, req->r_inode_drop, req->r_inode_unless, 0);
1526         if (req->r_dentry_drop)
1527                 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1528                        mds, req->r_dentry_drop, req->r_dentry_unless);
1529         if (req->r_old_dentry_drop)
1530                 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1531                        mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1532         if (req->r_old_inode_drop)
1533                 releases += ceph_encode_inode_release(&p,
1534                       req->r_old_dentry->d_inode,
1535                       mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1536         head->num_releases = cpu_to_le16(releases);
1537
1538         BUG_ON(p > end);
1539         msg->front.iov_len = p - msg->front.iov_base;
1540         msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1541
1542         msg->pages = req->r_pages;
1543         msg->nr_pages = req->r_num_pages;
1544         msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1545         msg->hdr.data_off = cpu_to_le16(0);
1546
1547 out_free2:
1548         if (freepath2)
1549                 kfree((char *)path2);
1550 out_free1:
1551         if (freepath1)
1552                 kfree((char *)path1);
1553 out:
1554         return msg;
1555 }
1556
1557 /*
1558  * called under mdsc->mutex if error, under no mutex if
1559  * success.
1560  */
1561 static void complete_request(struct ceph_mds_client *mdsc,
1562                              struct ceph_mds_request *req)
1563 {
1564         if (req->r_callback)
1565                 req->r_callback(mdsc, req);
1566         else
1567                 complete(&req->r_completion);
1568 }
1569
1570 /*
1571  * called under mdsc->mutex
1572  */
1573 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1574                                   struct ceph_mds_request *req,
1575                                   int mds)
1576 {
1577         struct ceph_mds_request_head *rhead;
1578         struct ceph_msg *msg;
1579         int flags = 0;
1580
1581         req->r_mds = mds;
1582         req->r_attempts++;
1583         dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1584              req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1585
1586         if (req->r_got_unsafe) {
1587                 /*
1588                  * Replay.  Do not regenerate message (and rebuild
1589                  * paths, etc.); just use the original message.
1590                  * Rebuilding paths will break for renames because
1591                  * d_move mangles the src name.
1592                  */
1593                 msg = req->r_request;
1594                 rhead = msg->front.iov_base;
1595
1596                 flags = le32_to_cpu(rhead->flags);
1597                 flags |= CEPH_MDS_FLAG_REPLAY;
1598                 rhead->flags = cpu_to_le32(flags);
1599
1600                 if (req->r_target_inode)
1601                         rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1602
1603                 rhead->num_retry = req->r_attempts - 1;
1604
1605                 /* remove cap/dentry releases from message */
1606                 rhead->num_releases = 0;
1607                 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1608                 msg->front.iov_len = req->r_request_release_offset;
1609                 return 0;
1610         }
1611
1612         if (req->r_request) {
1613                 ceph_msg_put(req->r_request);
1614                 req->r_request = NULL;
1615         }
1616         msg = create_request_message(mdsc, req, mds);
1617         if (IS_ERR(msg)) {
1618                 req->r_err = PTR_ERR(msg);
1619                 complete_request(mdsc, req);
1620                 return PTR_ERR(msg);
1621         }
1622         req->r_request = msg;
1623
1624         rhead = msg->front.iov_base;
1625         rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1626         if (req->r_got_unsafe)
1627                 flags |= CEPH_MDS_FLAG_REPLAY;
1628         if (req->r_locked_dir)
1629                 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1630         rhead->flags = cpu_to_le32(flags);
1631         rhead->num_fwd = req->r_num_fwd;
1632         rhead->num_retry = req->r_attempts - 1;
1633         rhead->ino = 0;
1634
1635         dout(" r_locked_dir = %p\n", req->r_locked_dir);
1636         return 0;
1637 }
1638
1639 /*
1640  * send request, or put it on the appropriate wait list.
1641  */
1642 static int __do_request(struct ceph_mds_client *mdsc,
1643                         struct ceph_mds_request *req)
1644 {
1645         struct ceph_mds_session *session = NULL;
1646         int mds = -1;
1647         int err = -EAGAIN;
1648
1649         if (req->r_err || req->r_got_result)
1650                 goto out;
1651
1652         if (req->r_timeout &&
1653             time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1654                 dout("do_request timed out\n");
1655                 err = -EIO;
1656                 goto finish;
1657         }
1658
1659         mds = __choose_mds(mdsc, req);
1660         if (mds < 0 ||
1661             ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1662                 dout("do_request no mds or not active, waiting for map\n");
1663                 list_add(&req->r_wait, &mdsc->waiting_for_map);
1664                 goto out;
1665         }
1666
1667         /* get, open session */
1668         session = __ceph_lookup_mds_session(mdsc, mds);
1669         if (!session) {
1670                 session = register_session(mdsc, mds);
1671                 if (IS_ERR(session)) {
1672                         err = PTR_ERR(session);
1673                         goto finish;
1674                 }
1675         }
1676         dout("do_request mds%d session %p state %s\n", mds, session,
1677              session_state_name(session->s_state));
1678         if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1679             session->s_state != CEPH_MDS_SESSION_HUNG) {
1680                 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1681                     session->s_state == CEPH_MDS_SESSION_CLOSING)
1682                         __open_session(mdsc, session);
1683                 list_add(&req->r_wait, &session->s_waiting);
1684                 goto out_session;
1685         }
1686
1687         /* send request */
1688         req->r_session = get_session(session);
1689         req->r_resend_mds = -1;   /* forget any previous mds hint */
1690
1691         if (req->r_request_started == 0)   /* note request start time */
1692                 req->r_request_started = jiffies;
1693
1694         err = __prepare_send_request(mdsc, req, mds);
1695         if (!err) {
1696                 ceph_msg_get(req->r_request);
1697                 ceph_con_send(&session->s_con, req->r_request);
1698         }
1699
1700 out_session:
1701         ceph_put_mds_session(session);
1702 out:
1703         return err;
1704
1705 finish:
1706         req->r_err = err;
1707         complete_request(mdsc, req);
1708         goto out;
1709 }
1710
1711 /*
1712  * called under mdsc->mutex
1713  */
1714 static void __wake_requests(struct ceph_mds_client *mdsc,
1715                             struct list_head *head)
1716 {
1717         struct ceph_mds_request *req, *nreq;
1718
1719         list_for_each_entry_safe(req, nreq, head, r_wait) {
1720                 list_del_init(&req->r_wait);
1721                 __do_request(mdsc, req);
1722         }
1723 }
1724
1725 /*
1726  * Wake up threads with requests pending for @mds, so that they can
1727  * resubmit their requests to a possibly different mds.
1728  */
1729 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1730 {
1731         struct ceph_mds_request *req;
1732         struct rb_node *p;
1733
1734         dout("kick_requests mds%d\n", mds);
1735         for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1736                 req = rb_entry(p, struct ceph_mds_request, r_node);
1737                 if (req->r_got_unsafe)
1738                         continue;
1739                 if (req->r_session &&
1740                     req->r_session->s_mds == mds) {
1741                         dout(" kicking tid %llu\n", req->r_tid);
1742                         put_request_session(req);
1743                         __do_request(mdsc, req);
1744                 }
1745         }
1746 }
1747
1748 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1749                               struct ceph_mds_request *req)
1750 {
1751         dout("submit_request on %p\n", req);
1752         mutex_lock(&mdsc->mutex);
1753         __register_request(mdsc, req, NULL);
1754         __do_request(mdsc, req);
1755         mutex_unlock(&mdsc->mutex);
1756 }
1757
1758 /*
1759  * Synchrously perform an mds request.  Take care of all of the
1760  * session setup, forwarding, retry details.
1761  */
1762 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1763                          struct inode *dir,
1764                          struct ceph_mds_request *req)
1765 {
1766         int err;
1767
1768         dout("do_request on %p\n", req);
1769
1770         /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1771         if (req->r_inode)
1772                 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1773         if (req->r_locked_dir)
1774                 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1775         if (req->r_old_dentry)
1776                 ceph_get_cap_refs(
1777                         ceph_inode(req->r_old_dentry->d_parent->d_inode),
1778                         CEPH_CAP_PIN);
1779
1780         /* issue */
1781         mutex_lock(&mdsc->mutex);
1782         __register_request(mdsc, req, dir);
1783         __do_request(mdsc, req);
1784
1785         if (req->r_err) {
1786                 err = req->r_err;
1787                 __unregister_request(mdsc, req);
1788                 dout("do_request early error %d\n", err);
1789                 goto out;
1790         }
1791
1792         /* wait */
1793         mutex_unlock(&mdsc->mutex);
1794         dout("do_request waiting\n");
1795         if (req->r_timeout) {
1796                 err = (long)wait_for_completion_killable_timeout(
1797                         &req->r_completion, req->r_timeout);
1798                 if (err == 0)
1799                         err = -EIO;
1800         } else {
1801                 err = wait_for_completion_killable(&req->r_completion);
1802         }
1803         dout("do_request waited, got %d\n", err);
1804         mutex_lock(&mdsc->mutex);
1805
1806         /* only abort if we didn't race with a real reply */
1807         if (req->r_got_result) {
1808                 err = le32_to_cpu(req->r_reply_info.head->result);
1809         } else if (err < 0) {
1810                 dout("aborted request %lld with %d\n", req->r_tid, err);
1811
1812                 /*
1813                  * ensure we aren't running concurrently with
1814                  * ceph_fill_trace or ceph_readdir_prepopulate, which
1815                  * rely on locks (dir mutex) held by our caller.
1816                  */
1817                 mutex_lock(&req->r_fill_mutex);
1818                 req->r_err = err;
1819                 req->r_aborted = true;
1820                 mutex_unlock(&req->r_fill_mutex);
1821
1822                 if (req->r_locked_dir &&
1823                     (req->r_op & CEPH_MDS_OP_WRITE))
1824                         ceph_invalidate_dir_request(req);
1825         } else {
1826                 err = req->r_err;
1827         }
1828
1829 out:
1830         mutex_unlock(&mdsc->mutex);
1831         dout("do_request %p done, result %d\n", req, err);
1832         return err;
1833 }
1834
1835 /*
1836  * Invalidate dir I_COMPLETE, dentry lease state on an aborted MDS
1837  * namespace request.
1838  */
1839 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
1840 {
1841         struct inode *inode = req->r_locked_dir;
1842         struct ceph_inode_info *ci = ceph_inode(inode);
1843
1844         dout("invalidate_dir_request %p (I_COMPLETE, lease(s))\n", inode);
1845         spin_lock(&inode->i_lock);
1846         ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
1847         ci->i_release_count++;
1848         spin_unlock(&inode->i_lock);
1849
1850         if (req->r_dentry)
1851                 ceph_invalidate_dentry_lease(req->r_dentry);
1852         if (req->r_old_dentry)
1853                 ceph_invalidate_dentry_lease(req->r_old_dentry);
1854 }
1855
1856 /*
1857  * Handle mds reply.
1858  *
1859  * We take the session mutex and parse and process the reply immediately.
1860  * This preserves the logical ordering of replies, capabilities, etc., sent
1861  * by the MDS as they are applied to our local cache.
1862  */
1863 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
1864 {
1865         struct ceph_mds_client *mdsc = session->s_mdsc;
1866         struct ceph_mds_request *req;
1867         struct ceph_mds_reply_head *head = msg->front.iov_base;
1868         struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
1869         u64 tid;
1870         int err, result;
1871         int mds = session->s_mds;
1872
1873         if (msg->front.iov_len < sizeof(*head)) {
1874                 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
1875                 ceph_msg_dump(msg);
1876                 return;
1877         }
1878
1879         /* get request, session */
1880         tid = le64_to_cpu(msg->hdr.tid);
1881         mutex_lock(&mdsc->mutex);
1882         req = __lookup_request(mdsc, tid);
1883         if (!req) {
1884                 dout("handle_reply on unknown tid %llu\n", tid);
1885                 mutex_unlock(&mdsc->mutex);
1886                 return;
1887         }
1888         dout("handle_reply %p\n", req);
1889
1890         /* correct session? */
1891         if (req->r_session != session) {
1892                 pr_err("mdsc_handle_reply got %llu on session mds%d"
1893                        " not mds%d\n", tid, session->s_mds,
1894                        req->r_session ? req->r_session->s_mds : -1);
1895                 mutex_unlock(&mdsc->mutex);
1896                 goto out;
1897         }
1898
1899         /* dup? */
1900         if ((req->r_got_unsafe && !head->safe) ||
1901             (req->r_got_safe && head->safe)) {
1902                 pr_warning("got a dup %s reply on %llu from mds%d\n",
1903                            head->safe ? "safe" : "unsafe", tid, mds);
1904                 mutex_unlock(&mdsc->mutex);
1905                 goto out;
1906         }
1907         if (req->r_got_safe && !head->safe) {
1908                 pr_warning("got unsafe after safe on %llu from mds%d\n",
1909                            tid, mds);
1910                 mutex_unlock(&mdsc->mutex);
1911                 goto out;
1912         }
1913
1914         result = le32_to_cpu(head->result);
1915
1916         /*
1917          * Tolerate 2 consecutive ESTALEs from the same mds.
1918          * FIXME: we should be looking at the cap migrate_seq.
1919          */
1920         if (result == -ESTALE) {
1921                 req->r_direct_mode = USE_AUTH_MDS;
1922                 req->r_num_stale++;
1923                 if (req->r_num_stale <= 2) {
1924                         __do_request(mdsc, req);
1925                         mutex_unlock(&mdsc->mutex);
1926                         goto out;
1927                 }
1928         } else {
1929                 req->r_num_stale = 0;
1930         }
1931
1932         if (head->safe) {
1933                 req->r_got_safe = true;
1934                 __unregister_request(mdsc, req);
1935                 complete(&req->r_safe_completion);
1936
1937                 if (req->r_got_unsafe) {
1938                         /*
1939                          * We already handled the unsafe response, now do the
1940                          * cleanup.  No need to examine the response; the MDS
1941                          * doesn't include any result info in the safe
1942                          * response.  And even if it did, there is nothing
1943                          * useful we could do with a revised return value.
1944                          */
1945                         dout("got safe reply %llu, mds%d\n", tid, mds);
1946                         list_del_init(&req->r_unsafe_item);
1947
1948                         /* last unsafe request during umount? */
1949                         if (mdsc->stopping && !__get_oldest_req(mdsc))
1950                                 complete(&mdsc->safe_umount_waiters);
1951                         mutex_unlock(&mdsc->mutex);
1952                         goto out;
1953                 }
1954         } else {
1955                 req->r_got_unsafe = true;
1956                 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
1957         }
1958
1959         dout("handle_reply tid %lld result %d\n", tid, result);
1960         rinfo = &req->r_reply_info;
1961         err = parse_reply_info(msg, rinfo);
1962         mutex_unlock(&mdsc->mutex);
1963
1964         mutex_lock(&session->s_mutex);
1965         if (err < 0) {
1966                 pr_err("mdsc_handle_reply got corrupt reply mds%d\n", mds);
1967                 ceph_msg_dump(msg);
1968                 goto out_err;
1969         }
1970
1971         /* snap trace */
1972         if (rinfo->snapblob_len) {
1973                 down_write(&mdsc->snap_rwsem);
1974                 ceph_update_snap_trace(mdsc, rinfo->snapblob,
1975                                rinfo->snapblob + rinfo->snapblob_len,
1976                                le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
1977                 downgrade_write(&mdsc->snap_rwsem);
1978         } else {
1979                 down_read(&mdsc->snap_rwsem);
1980         }
1981
1982         /* insert trace into our cache */
1983         mutex_lock(&req->r_fill_mutex);
1984         err = ceph_fill_trace(mdsc->client->sb, req, req->r_session);
1985         if (err == 0) {
1986                 if (result == 0 && rinfo->dir_nr)
1987                         ceph_readdir_prepopulate(req, req->r_session);
1988                 ceph_unreserve_caps(&req->r_caps_reservation);
1989         }
1990         mutex_unlock(&req->r_fill_mutex);
1991
1992         up_read(&mdsc->snap_rwsem);
1993 out_err:
1994         mutex_lock(&mdsc->mutex);
1995         if (!req->r_aborted) {
1996                 if (err) {
1997                         req->r_err = err;
1998                 } else {
1999                         req->r_reply = msg;
2000                         ceph_msg_get(msg);
2001                         req->r_got_result = true;
2002                 }
2003         } else {
2004                 dout("reply arrived after request %lld was aborted\n", tid);
2005         }
2006         mutex_unlock(&mdsc->mutex);
2007
2008         ceph_add_cap_releases(mdsc, req->r_session, -1);
2009         mutex_unlock(&session->s_mutex);
2010
2011         /* kick calling process */
2012         complete_request(mdsc, req);
2013 out:
2014         ceph_mdsc_put_request(req);
2015         return;
2016 }
2017
2018
2019
2020 /*
2021  * handle mds notification that our request has been forwarded.
2022  */
2023 static void handle_forward(struct ceph_mds_client *mdsc,
2024                            struct ceph_mds_session *session,
2025                            struct ceph_msg *msg)
2026 {
2027         struct ceph_mds_request *req;
2028         u64 tid = le64_to_cpu(msg->hdr.tid);
2029         u32 next_mds;
2030         u32 fwd_seq;
2031         int err = -EINVAL;
2032         void *p = msg->front.iov_base;
2033         void *end = p + msg->front.iov_len;
2034
2035         ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2036         next_mds = ceph_decode_32(&p);
2037         fwd_seq = ceph_decode_32(&p);
2038
2039         mutex_lock(&mdsc->mutex);
2040         req = __lookup_request(mdsc, tid);
2041         if (!req) {
2042                 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2043                 goto out;  /* dup reply? */
2044         }
2045
2046         if (req->r_aborted) {
2047                 dout("forward tid %llu aborted, unregistering\n", tid);
2048                 __unregister_request(mdsc, req);
2049         } else if (fwd_seq <= req->r_num_fwd) {
2050                 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2051                      tid, next_mds, req->r_num_fwd, fwd_seq);
2052         } else {
2053                 /* resend. forward race not possible; mds would drop */
2054                 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2055                 BUG_ON(req->r_err);
2056                 BUG_ON(req->r_got_result);
2057                 req->r_num_fwd = fwd_seq;
2058                 req->r_resend_mds = next_mds;
2059                 put_request_session(req);
2060                 __do_request(mdsc, req);
2061         }
2062         ceph_mdsc_put_request(req);
2063 out:
2064         mutex_unlock(&mdsc->mutex);
2065         return;
2066
2067 bad:
2068         pr_err("mdsc_handle_forward decode error err=%d\n", err);
2069 }
2070
2071 /*
2072  * handle a mds session control message
2073  */
2074 static void handle_session(struct ceph_mds_session *session,
2075                            struct ceph_msg *msg)
2076 {
2077         struct ceph_mds_client *mdsc = session->s_mdsc;
2078         u32 op;
2079         u64 seq;
2080         int mds = session->s_mds;
2081         struct ceph_mds_session_head *h = msg->front.iov_base;
2082         int wake = 0;
2083
2084         /* decode */
2085         if (msg->front.iov_len != sizeof(*h))
2086                 goto bad;
2087         op = le32_to_cpu(h->op);
2088         seq = le64_to_cpu(h->seq);
2089
2090         mutex_lock(&mdsc->mutex);
2091         if (op == CEPH_SESSION_CLOSE)
2092                 __unregister_session(mdsc, session);
2093         /* FIXME: this ttl calculation is generous */
2094         session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2095         mutex_unlock(&mdsc->mutex);
2096
2097         mutex_lock(&session->s_mutex);
2098
2099         dout("handle_session mds%d %s %p state %s seq %llu\n",
2100              mds, ceph_session_op_name(op), session,
2101              session_state_name(session->s_state), seq);
2102
2103         if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2104                 session->s_state = CEPH_MDS_SESSION_OPEN;
2105                 pr_info("mds%d came back\n", session->s_mds);
2106         }
2107
2108         switch (op) {
2109         case CEPH_SESSION_OPEN:
2110                 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2111                         pr_info("mds%d reconnect success\n", session->s_mds);
2112                 session->s_state = CEPH_MDS_SESSION_OPEN;
2113                 renewed_caps(mdsc, session, 0);
2114                 wake = 1;
2115                 if (mdsc->stopping)
2116                         __close_session(mdsc, session);
2117                 break;
2118
2119         case CEPH_SESSION_RENEWCAPS:
2120                 if (session->s_renew_seq == seq)
2121                         renewed_caps(mdsc, session, 1);
2122                 break;
2123
2124         case CEPH_SESSION_CLOSE:
2125                 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2126                         pr_info("mds%d reconnect denied\n", session->s_mds);
2127                 remove_session_caps(session);
2128                 wake = 1; /* for good measure */
2129                 complete(&mdsc->session_close_waiters);
2130                 kick_requests(mdsc, mds);
2131                 break;
2132
2133         case CEPH_SESSION_STALE:
2134                 pr_info("mds%d caps went stale, renewing\n",
2135                         session->s_mds);
2136                 spin_lock(&session->s_cap_lock);
2137                 session->s_cap_gen++;
2138                 session->s_cap_ttl = 0;
2139                 spin_unlock(&session->s_cap_lock);
2140                 send_renew_caps(mdsc, session);
2141                 break;
2142
2143         case CEPH_SESSION_RECALL_STATE:
2144                 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2145                 break;
2146
2147         default:
2148                 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2149                 WARN_ON(1);
2150         }
2151
2152         mutex_unlock(&session->s_mutex);
2153         if (wake) {
2154                 mutex_lock(&mdsc->mutex);
2155                 __wake_requests(mdsc, &session->s_waiting);
2156                 mutex_unlock(&mdsc->mutex);
2157         }
2158         return;
2159
2160 bad:
2161         pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2162                (int)msg->front.iov_len);
2163         ceph_msg_dump(msg);
2164         return;
2165 }
2166
2167
2168 /*
2169  * called under session->mutex.
2170  */
2171 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2172                                    struct ceph_mds_session *session)
2173 {
2174         struct ceph_mds_request *req, *nreq;
2175         int err;
2176
2177         dout("replay_unsafe_requests mds%d\n", session->s_mds);
2178
2179         mutex_lock(&mdsc->mutex);
2180         list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2181                 err = __prepare_send_request(mdsc, req, session->s_mds);
2182                 if (!err) {
2183                         ceph_msg_get(req->r_request);
2184                         ceph_con_send(&session->s_con, req->r_request);
2185                 }
2186         }
2187         mutex_unlock(&mdsc->mutex);
2188 }
2189
2190 /*
2191  * Encode information about a cap for a reconnect with the MDS.
2192  */
2193 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2194                           void *arg)
2195 {
2196         struct ceph_mds_cap_reconnect rec;
2197         struct ceph_inode_info *ci;
2198         struct ceph_pagelist *pagelist = arg;
2199         char *path;
2200         int pathlen, err;
2201         u64 pathbase;
2202         struct dentry *dentry;
2203
2204         ci = cap->ci;
2205
2206         dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2207              inode, ceph_vinop(inode), cap, cap->cap_id,
2208              ceph_cap_string(cap->issued));
2209         err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2210         if (err)
2211                 return err;
2212
2213         dentry = d_find_alias(inode);
2214         if (dentry) {
2215                 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2216                 if (IS_ERR(path)) {
2217                         err = PTR_ERR(path);
2218                         BUG_ON(err);
2219                 }
2220         } else {
2221                 path = NULL;
2222                 pathlen = 0;
2223         }
2224         err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2225         if (err)
2226                 goto out;
2227
2228         spin_lock(&inode->i_lock);
2229         cap->seq = 0;        /* reset cap seq */
2230         cap->issue_seq = 0;  /* and issue_seq */
2231         rec.cap_id = cpu_to_le64(cap->cap_id);
2232         rec.pathbase = cpu_to_le64(pathbase);
2233         rec.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2234         rec.issued = cpu_to_le32(cap->issued);
2235         rec.size = cpu_to_le64(inode->i_size);
2236         ceph_encode_timespec(&rec.mtime, &inode->i_mtime);
2237         ceph_encode_timespec(&rec.atime, &inode->i_atime);
2238         rec.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2239         spin_unlock(&inode->i_lock);
2240
2241         err = ceph_pagelist_append(pagelist, &rec, sizeof(rec));
2242
2243 out:
2244         kfree(path);
2245         dput(dentry);
2246         return err;
2247 }
2248
2249
2250 /*
2251  * If an MDS fails and recovers, clients need to reconnect in order to
2252  * reestablish shared state.  This includes all caps issued through
2253  * this session _and_ the snap_realm hierarchy.  Because it's not
2254  * clear which snap realms the mds cares about, we send everything we
2255  * know about.. that ensures we'll then get any new info the
2256  * recovering MDS might have.
2257  *
2258  * This is a relatively heavyweight operation, but it's rare.
2259  *
2260  * called with mdsc->mutex held.
2261  */
2262 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2263                                struct ceph_mds_session *session)
2264 {
2265         struct ceph_msg *reply;
2266         struct rb_node *p;
2267         int mds = session->s_mds;
2268         int err = -ENOMEM;
2269         struct ceph_pagelist *pagelist;
2270
2271         pr_info("mds%d reconnect start\n", mds);
2272
2273         pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2274         if (!pagelist)
2275                 goto fail_nopagelist;
2276         ceph_pagelist_init(pagelist);
2277
2278         reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS);
2279         if (!reply)
2280                 goto fail_nomsg;
2281
2282         mutex_lock(&session->s_mutex);
2283         session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2284         session->s_seq = 0;
2285
2286         ceph_con_open(&session->s_con,
2287                       ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2288
2289         /* replay unsafe requests */
2290         replay_unsafe_requests(mdsc, session);
2291
2292         down_read(&mdsc->snap_rwsem);
2293
2294         dout("session %p state %s\n", session,
2295              session_state_name(session->s_state));
2296
2297         /* drop old cap expires; we're about to reestablish that state */
2298         discard_cap_releases(mdsc, session);
2299
2300         /* traverse this session's caps */
2301         err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2302         if (err)
2303                 goto fail;
2304         err = iterate_session_caps(session, encode_caps_cb, pagelist);
2305         if (err < 0)
2306                 goto fail;
2307
2308         /*
2309          * snaprealms.  we provide mds with the ino, seq (version), and
2310          * parent for all of our realms.  If the mds has any newer info,
2311          * it will tell us.
2312          */
2313         for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2314                 struct ceph_snap_realm *realm =
2315                         rb_entry(p, struct ceph_snap_realm, node);
2316                 struct ceph_mds_snaprealm_reconnect sr_rec;
2317
2318                 dout(" adding snap realm %llx seq %lld parent %llx\n",
2319                      realm->ino, realm->seq, realm->parent_ino);
2320                 sr_rec.ino = cpu_to_le64(realm->ino);
2321                 sr_rec.seq = cpu_to_le64(realm->seq);
2322                 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2323                 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2324                 if (err)
2325                         goto fail;
2326         }
2327
2328         reply->pagelist = pagelist;
2329         reply->hdr.data_len = cpu_to_le32(pagelist->length);
2330         reply->nr_pages = calc_pages_for(0, pagelist->length);
2331         ceph_con_send(&session->s_con, reply);
2332
2333         mutex_unlock(&session->s_mutex);
2334
2335         mutex_lock(&mdsc->mutex);
2336         __wake_requests(mdsc, &session->s_waiting);
2337         mutex_unlock(&mdsc->mutex);
2338
2339         up_read(&mdsc->snap_rwsem);
2340         return;
2341
2342 fail:
2343         ceph_msg_put(reply);
2344         up_read(&mdsc->snap_rwsem);
2345         mutex_unlock(&session->s_mutex);
2346 fail_nomsg:
2347         ceph_pagelist_release(pagelist);
2348         kfree(pagelist);
2349 fail_nopagelist:
2350         pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2351         return;
2352 }
2353
2354
2355 /*
2356  * compare old and new mdsmaps, kicking requests
2357  * and closing out old connections as necessary
2358  *
2359  * called under mdsc->mutex.
2360  */
2361 static void check_new_map(struct ceph_mds_client *mdsc,
2362                           struct ceph_mdsmap *newmap,
2363                           struct ceph_mdsmap *oldmap)
2364 {
2365         int i;
2366         int oldstate, newstate;
2367         struct ceph_mds_session *s;
2368
2369         dout("check_new_map new %u old %u\n",
2370              newmap->m_epoch, oldmap->m_epoch);
2371
2372         for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2373                 if (mdsc->sessions[i] == NULL)
2374                         continue;
2375                 s = mdsc->sessions[i];
2376                 oldstate = ceph_mdsmap_get_state(oldmap, i);
2377                 newstate = ceph_mdsmap_get_state(newmap, i);
2378
2379                 dout("check_new_map mds%d state %s -> %s (session %s)\n",
2380                      i, ceph_mds_state_name(oldstate),
2381                      ceph_mds_state_name(newstate),
2382                      session_state_name(s->s_state));
2383
2384                 if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2385                            ceph_mdsmap_get_addr(newmap, i),
2386                            sizeof(struct ceph_entity_addr))) {
2387                         if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2388                                 /* the session never opened, just close it
2389                                  * out now */
2390                                 __wake_requests(mdsc, &s->s_waiting);
2391                                 __unregister_session(mdsc, s);
2392                         } else {
2393                                 /* just close it */
2394                                 mutex_unlock(&mdsc->mutex);
2395                                 mutex_lock(&s->s_mutex);
2396                                 mutex_lock(&mdsc->mutex);
2397                                 ceph_con_close(&s->s_con);
2398                                 mutex_unlock(&s->s_mutex);
2399                                 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2400                         }
2401
2402                         /* kick any requests waiting on the recovering mds */
2403                         kick_requests(mdsc, i);
2404                 } else if (oldstate == newstate) {
2405                         continue;  /* nothing new with this mds */
2406                 }
2407
2408                 /*
2409                  * send reconnect?
2410                  */
2411                 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2412                     newstate >= CEPH_MDS_STATE_RECONNECT) {
2413                         mutex_unlock(&mdsc->mutex);
2414                         send_mds_reconnect(mdsc, s);
2415                         mutex_lock(&mdsc->mutex);
2416                 }
2417
2418                 /*
2419                  * kick request on any mds that has gone active.
2420                  */
2421                 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2422                     newstate >= CEPH_MDS_STATE_ACTIVE) {
2423                         if (oldstate != CEPH_MDS_STATE_CREATING &&
2424                             oldstate != CEPH_MDS_STATE_STARTING)
2425                                 pr_info("mds%d recovery completed\n", s->s_mds);
2426                         kick_requests(mdsc, i);
2427                         ceph_kick_flushing_caps(mdsc, s);
2428                         wake_up_session_caps(s, 1);
2429                 }
2430         }
2431 }
2432
2433
2434
2435 /*
2436  * leases
2437  */
2438
2439 /*
2440  * caller must hold session s_mutex, dentry->d_lock
2441  */
2442 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2443 {
2444         struct ceph_dentry_info *di = ceph_dentry(dentry);
2445
2446         ceph_put_mds_session(di->lease_session);
2447         di->lease_session = NULL;
2448 }
2449
2450 static void handle_lease(struct ceph_mds_client *mdsc,
2451                          struct ceph_mds_session *session,
2452                          struct ceph_msg *msg)
2453 {
2454         struct super_block *sb = mdsc->client->sb;
2455         struct inode *inode;
2456         struct ceph_inode_info *ci;
2457         struct dentry *parent, *dentry;
2458         struct ceph_dentry_info *di;
2459         int mds = session->s_mds;
2460         struct ceph_mds_lease *h = msg->front.iov_base;
2461         u32 seq;
2462         struct ceph_vino vino;
2463         int mask;
2464         struct qstr dname;
2465         int release = 0;
2466
2467         dout("handle_lease from mds%d\n", mds);
2468
2469         /* decode */
2470         if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2471                 goto bad;
2472         vino.ino = le64_to_cpu(h->ino);
2473         vino.snap = CEPH_NOSNAP;
2474         mask = le16_to_cpu(h->mask);
2475         seq = le32_to_cpu(h->seq);
2476         dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2477         dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2478         if (dname.len != get_unaligned_le32(h+1))
2479                 goto bad;
2480
2481         mutex_lock(&session->s_mutex);
2482         session->s_seq++;
2483
2484         /* lookup inode */
2485         inode = ceph_find_inode(sb, vino);
2486         dout("handle_lease %s, mask %d, ino %llx %p %.*s\n",
2487              ceph_lease_op_name(h->action), mask, vino.ino, inode,
2488              dname.len, dname.name);
2489         if (inode == NULL) {
2490                 dout("handle_lease no inode %llx\n", vino.ino);
2491                 goto release;
2492         }
2493         ci = ceph_inode(inode);
2494
2495         /* dentry */
2496         parent = d_find_alias(inode);
2497         if (!parent) {
2498                 dout("no parent dentry on inode %p\n", inode);
2499                 WARN_ON(1);
2500                 goto release;  /* hrm... */
2501         }
2502         dname.hash = full_name_hash(dname.name, dname.len);
2503         dentry = d_lookup(parent, &dname);
2504         dput(parent);
2505         if (!dentry)
2506                 goto release;
2507
2508         spin_lock(&dentry->d_lock);
2509         di = ceph_dentry(dentry);
2510         switch (h->action) {
2511         case CEPH_MDS_LEASE_REVOKE:
2512                 if (di && di->lease_session == session) {
2513                         if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2514                                 h->seq = cpu_to_le32(di->lease_seq);
2515                         __ceph_mdsc_drop_dentry_lease(dentry);
2516                 }
2517                 release = 1;
2518                 break;
2519
2520         case CEPH_MDS_LEASE_RENEW:
2521                 if (di && di->lease_session == session &&
2522                     di->lease_gen == session->s_cap_gen &&
2523                     di->lease_renew_from &&
2524                     di->lease_renew_after == 0) {
2525                         unsigned long duration =
2526                                 le32_to_cpu(h->duration_ms) * HZ / 1000;
2527
2528                         di->lease_seq = seq;
2529                         dentry->d_time = di->lease_renew_from + duration;
2530                         di->lease_renew_after = di->lease_renew_from +
2531                                 (duration >> 1);
2532                         di->lease_renew_from = 0;
2533                 }
2534                 break;
2535         }
2536         spin_unlock(&dentry->d_lock);
2537         dput(dentry);
2538
2539         if (!release)
2540                 goto out;
2541
2542 release:
2543         /* let's just reuse the same message */
2544         h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2545         ceph_msg_get(msg);
2546         ceph_con_send(&session->s_con, msg);
2547
2548 out:
2549         iput(inode);
2550         mutex_unlock(&session->s_mutex);
2551         return;
2552
2553 bad:
2554         pr_err("corrupt lease message\n");
2555         ceph_msg_dump(msg);
2556 }
2557
2558 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2559                               struct inode *inode,
2560                               struct dentry *dentry, char action,
2561                               u32 seq)
2562 {
2563         struct ceph_msg *msg;
2564         struct ceph_mds_lease *lease;
2565         int len = sizeof(*lease) + sizeof(u32);
2566         int dnamelen = 0;
2567
2568         dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2569              inode, dentry, ceph_lease_op_name(action), session->s_mds);
2570         dnamelen = dentry->d_name.len;
2571         len += dnamelen;
2572
2573         msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS);
2574         if (!msg)
2575                 return;
2576         lease = msg->front.iov_base;
2577         lease->action = action;
2578         lease->mask = cpu_to_le16(1);
2579         lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2580         lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2581         lease->seq = cpu_to_le32(seq);
2582         put_unaligned_le32(dnamelen, lease + 1);
2583         memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2584
2585         /*
2586          * if this is a preemptive lease RELEASE, no need to
2587          * flush request stream, since the actual request will
2588          * soon follow.
2589          */
2590         msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2591
2592         ceph_con_send(&session->s_con, msg);
2593 }
2594
2595 /*
2596  * Preemptively release a lease we expect to invalidate anyway.
2597  * Pass @inode always, @dentry is optional.
2598  */
2599 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2600                              struct dentry *dentry, int mask)
2601 {
2602         struct ceph_dentry_info *di;
2603         struct ceph_mds_session *session;
2604         u32 seq;
2605
2606         BUG_ON(inode == NULL);
2607         BUG_ON(dentry == NULL);
2608         BUG_ON(mask == 0);
2609
2610         /* is dentry lease valid? */
2611         spin_lock(&dentry->d_lock);
2612         di = ceph_dentry(dentry);
2613         if (!di || !di->lease_session ||
2614             di->lease_session->s_mds < 0 ||
2615             di->lease_gen != di->lease_session->s_cap_gen ||
2616             !time_before(jiffies, dentry->d_time)) {
2617                 dout("lease_release inode %p dentry %p -- "
2618                      "no lease on %d\n",
2619                      inode, dentry, mask);
2620                 spin_unlock(&dentry->d_lock);
2621                 return;
2622         }
2623
2624         /* we do have a lease on this dentry; note mds and seq */
2625         session = ceph_get_mds_session(di->lease_session);
2626         seq = di->lease_seq;
2627         __ceph_mdsc_drop_dentry_lease(dentry);
2628         spin_unlock(&dentry->d_lock);
2629
2630         dout("lease_release inode %p dentry %p mask %d to mds%d\n",
2631              inode, dentry, mask, session->s_mds);
2632         ceph_mdsc_lease_send_msg(session, inode, dentry,
2633                                  CEPH_MDS_LEASE_RELEASE, seq);
2634         ceph_put_mds_session(session);
2635 }
2636
2637 /*
2638  * drop all leases (and dentry refs) in preparation for umount
2639  */
2640 static void drop_leases(struct ceph_mds_client *mdsc)
2641 {
2642         int i;
2643
2644         dout("drop_leases\n");
2645         mutex_lock(&mdsc->mutex);
2646         for (i = 0; i < mdsc->max_sessions; i++) {
2647                 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2648                 if (!s)
2649                         continue;
2650                 mutex_unlock(&mdsc->mutex);
2651                 mutex_lock(&s->s_mutex);
2652                 mutex_unlock(&s->s_mutex);
2653                 ceph_put_mds_session(s);
2654                 mutex_lock(&mdsc->mutex);
2655         }
2656         mutex_unlock(&mdsc->mutex);
2657 }
2658
2659
2660
2661 /*
2662  * delayed work -- periodically trim expired leases, renew caps with mds
2663  */
2664 static void schedule_delayed(struct ceph_mds_client *mdsc)
2665 {
2666         int delay = 5;
2667         unsigned hz = round_jiffies_relative(HZ * delay);
2668         schedule_delayed_work(&mdsc->delayed_work, hz);
2669 }
2670
2671 static void delayed_work(struct work_struct *work)
2672 {
2673         int i;
2674         struct ceph_mds_client *mdsc =
2675                 container_of(work, struct ceph_mds_client, delayed_work.work);
2676         int renew_interval;
2677         int renew_caps;
2678
2679         dout("mdsc delayed_work\n");
2680         ceph_check_delayed_caps(mdsc);
2681
2682         mutex_lock(&mdsc->mutex);
2683         renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2684         renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2685                                    mdsc->last_renew_caps);
2686         if (renew_caps)
2687                 mdsc->last_renew_caps = jiffies;
2688
2689         for (i = 0; i < mdsc->max_sessions; i++) {
2690                 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2691                 if (s == NULL)
2692                         continue;
2693                 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2694                         dout("resending session close request for mds%d\n",
2695                              s->s_mds);
2696                         request_close_session(mdsc, s);
2697                         ceph_put_mds_session(s);
2698                         continue;
2699                 }
2700                 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2701                         if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2702                                 s->s_state = CEPH_MDS_SESSION_HUNG;
2703                                 pr_info("mds%d hung\n", s->s_mds);
2704                         }
2705                 }
2706                 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2707                         /* this mds is failed or recovering, just wait */
2708                         ceph_put_mds_session(s);
2709                         continue;
2710                 }
2711                 mutex_unlock(&mdsc->mutex);
2712
2713                 mutex_lock(&s->s_mutex);
2714                 if (renew_caps)
2715                         send_renew_caps(mdsc, s);
2716                 else
2717                         ceph_con_keepalive(&s->s_con);
2718                 ceph_add_cap_releases(mdsc, s, -1);
2719                 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2720                     s->s_state == CEPH_MDS_SESSION_HUNG)
2721                         ceph_send_cap_releases(mdsc, s);
2722                 mutex_unlock(&s->s_mutex);
2723                 ceph_put_mds_session(s);
2724
2725                 mutex_lock(&mdsc->mutex);
2726         }
2727         mutex_unlock(&mdsc->mutex);
2728
2729         schedule_delayed(mdsc);
2730 }
2731
2732
2733 int ceph_mdsc_init(struct ceph_mds_client *mdsc, struct ceph_client *client)
2734 {
2735         mdsc->client = client;
2736         mutex_init(&mdsc->mutex);
2737         mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
2738         if (mdsc->mdsmap == NULL)
2739                 return -ENOMEM;
2740
2741         init_completion(&mdsc->safe_umount_waiters);
2742         init_completion(&mdsc->session_close_waiters);
2743         INIT_LIST_HEAD(&mdsc->waiting_for_map);
2744         mdsc->sessions = NULL;
2745         mdsc->max_sessions = 0;
2746         mdsc->stopping = 0;
2747         init_rwsem(&mdsc->snap_rwsem);
2748         mdsc->snap_realms = RB_ROOT;
2749         INIT_LIST_HEAD(&mdsc->snap_empty);
2750         spin_lock_init(&mdsc->snap_empty_lock);
2751         mdsc->last_tid = 0;
2752         mdsc->request_tree = RB_ROOT;
2753         INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
2754         mdsc->last_renew_caps = jiffies;
2755         INIT_LIST_HEAD(&mdsc->cap_delay_list);
2756         spin_lock_init(&mdsc->cap_delay_lock);
2757         INIT_LIST_HEAD(&mdsc->snap_flush_list);
2758         spin_lock_init(&mdsc->snap_flush_lock);
2759         mdsc->cap_flush_seq = 0;
2760         INIT_LIST_HEAD(&mdsc->cap_dirty);
2761         mdsc->num_cap_flushing = 0;
2762         spin_lock_init(&mdsc->cap_dirty_lock);
2763         init_waitqueue_head(&mdsc->cap_flushing_wq);
2764         spin_lock_init(&mdsc->dentry_lru_lock);
2765         INIT_LIST_HEAD(&mdsc->dentry_lru);
2766
2767         return 0;
2768 }
2769
2770 /*
2771  * Wait for safe replies on open mds requests.  If we time out, drop
2772  * all requests from the tree to avoid dangling dentry refs.
2773  */
2774 static void wait_requests(struct ceph_mds_client *mdsc)
2775 {
2776         struct ceph_mds_request *req;
2777         struct ceph_client *client = mdsc->client;
2778
2779         mutex_lock(&mdsc->mutex);
2780         if (__get_oldest_req(mdsc)) {
2781                 mutex_unlock(&mdsc->mutex);
2782
2783                 dout("wait_requests waiting for requests\n");
2784                 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
2785                                     client->mount_args->mount_timeout * HZ);
2786
2787                 /* tear down remaining requests */
2788                 mutex_lock(&mdsc->mutex);
2789                 while ((req = __get_oldest_req(mdsc))) {
2790                         dout("wait_requests timed out on tid %llu\n",
2791                              req->r_tid);
2792                         __unregister_request(mdsc, req);
2793                 }
2794         }
2795         mutex_unlock(&mdsc->mutex);
2796         dout("wait_requests done\n");
2797 }
2798
2799 /*
2800  * called before mount is ro, and before dentries are torn down.
2801  * (hmm, does this still race with new lookups?)
2802  */
2803 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
2804 {
2805         dout("pre_umount\n");
2806         mdsc->stopping = 1;
2807
2808         drop_leases(mdsc);
2809         ceph_flush_dirty_caps(mdsc);
2810         wait_requests(mdsc);
2811
2812         /*
2813          * wait for reply handlers to drop their request refs and
2814          * their inode/dcache refs
2815          */
2816         ceph_msgr_flush();
2817 }
2818
2819 /*
2820  * wait for all write mds requests to flush.
2821  */
2822 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
2823 {
2824         struct ceph_mds_request *req = NULL, *nextreq;
2825         struct rb_node *n;
2826
2827         mutex_lock(&mdsc->mutex);
2828         dout("wait_unsafe_requests want %lld\n", want_tid);
2829 restart:
2830         req = __get_oldest_req(mdsc);
2831         while (req && req->r_tid <= want_tid) {
2832                 /* find next request */
2833                 n = rb_next(&req->r_node);
2834                 if (n)
2835                         nextreq = rb_entry(n, struct ceph_mds_request, r_node);
2836                 else
2837                         nextreq = NULL;
2838                 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
2839                         /* write op */
2840                         ceph_mdsc_get_request(req);
2841                         if (nextreq)
2842                                 ceph_mdsc_get_request(nextreq);
2843                         mutex_unlock(&mdsc->mutex);
2844                         dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
2845                              req->r_tid, want_tid);
2846                         wait_for_completion(&req->r_safe_completion);
2847                         mutex_lock(&mdsc->mutex);
2848                         ceph_mdsc_put_request(req);
2849                         if (!nextreq)
2850                                 break;  /* next dne before, so we're done! */
2851                         if (RB_EMPTY_NODE(&nextreq->r_node)) {
2852                                 /* next request was removed from tree */
2853                                 ceph_mdsc_put_request(nextreq);
2854                                 goto restart;
2855                         }
2856                         ceph_mdsc_put_request(nextreq);  /* won't go away */
2857                 }
2858                 req = nextreq;
2859         }
2860         mutex_unlock(&mdsc->mutex);
2861         dout("wait_unsafe_requests done\n");
2862 }
2863
2864 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
2865 {
2866         u64 want_tid, want_flush;
2867
2868         if (mdsc->client->mount_state == CEPH_MOUNT_SHUTDOWN)
2869                 return;
2870
2871         dout("sync\n");
2872         mutex_lock(&mdsc->mutex);
2873         want_tid = mdsc->last_tid;
2874         want_flush = mdsc->cap_flush_seq;
2875         mutex_unlock(&mdsc->mutex);
2876         dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
2877
2878         ceph_flush_dirty_caps(mdsc);
2879
2880         wait_unsafe_requests(mdsc, want_tid);
2881         wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
2882 }
2883
2884
2885 /*
2886  * called after sb is ro.
2887  */
2888 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
2889 {
2890         struct ceph_mds_session *session;
2891         int i;
2892         int n;
2893         struct ceph_client *client = mdsc->client;
2894         unsigned long started, timeout = client->mount_args->mount_timeout * HZ;
2895
2896         dout("close_sessions\n");
2897
2898         mutex_lock(&mdsc->mutex);
2899
2900         /* close sessions */
2901         started = jiffies;
2902         while (time_before(jiffies, started + timeout)) {
2903                 dout("closing sessions\n");
2904                 n = 0;
2905                 for (i = 0; i < mdsc->max_sessions; i++) {
2906                         session = __ceph_lookup_mds_session(mdsc, i);
2907                         if (!session)
2908                                 continue;
2909                         mutex_unlock(&mdsc->mutex);
2910                         mutex_lock(&session->s_mutex);
2911                         __close_session(mdsc, session);
2912                         mutex_unlock(&session->s_mutex);
2913                         ceph_put_mds_session(session);
2914                         mutex_lock(&mdsc->mutex);
2915                         n++;
2916                 }
2917                 if (n == 0)
2918                         break;
2919
2920                 if (client->mount_state == CEPH_MOUNT_SHUTDOWN)
2921                         break;
2922
2923                 dout("waiting for sessions to close\n");
2924                 mutex_unlock(&mdsc->mutex);
2925                 wait_for_completion_timeout(&mdsc->session_close_waiters,
2926                                             timeout);
2927                 mutex_lock(&mdsc->mutex);
2928         }
2929
2930         /* tear down remaining sessions */
2931         for (i = 0; i < mdsc->max_sessions; i++) {
2932                 if (mdsc->sessions[i]) {
2933                         session = get_session(mdsc->sessions[i]);
2934                         __unregister_session(mdsc, session);
2935                         mutex_unlock(&mdsc->mutex);
2936                         mutex_lock(&session->s_mutex);
2937                         remove_session_caps(session);
2938                         mutex_unlock(&session->s_mutex);
2939                         ceph_put_mds_session(session);
2940                         mutex_lock(&mdsc->mutex);
2941                 }
2942         }
2943
2944         WARN_ON(!list_empty(&mdsc->cap_delay_list));
2945
2946         mutex_unlock(&mdsc->mutex);
2947
2948         ceph_cleanup_empty_realms(mdsc);
2949
2950         cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
2951
2952         dout("stopped\n");
2953 }
2954
2955 void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
2956 {
2957         dout("stop\n");
2958         cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
2959         if (mdsc->mdsmap)
2960                 ceph_mdsmap_destroy(mdsc->mdsmap);
2961         kfree(mdsc->sessions);
2962 }
2963
2964
2965 /*
2966  * handle mds map update.
2967  */
2968 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
2969 {
2970         u32 epoch;
2971         u32 maplen;
2972         void *p = msg->front.iov_base;
2973         void *end = p + msg->front.iov_len;
2974         struct ceph_mdsmap *newmap, *oldmap;
2975         struct ceph_fsid fsid;
2976         int err = -EINVAL;
2977
2978         ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
2979         ceph_decode_copy(&p, &fsid, sizeof(fsid));
2980         if (ceph_check_fsid(mdsc->client, &fsid) < 0)
2981                 return;
2982         epoch = ceph_decode_32(&p);
2983         maplen = ceph_decode_32(&p);
2984         dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
2985
2986         /* do we need it? */
2987         ceph_monc_got_mdsmap(&mdsc->client->monc, epoch);
2988         mutex_lock(&mdsc->mutex);
2989         if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
2990                 dout("handle_map epoch %u <= our %u\n",
2991                      epoch, mdsc->mdsmap->m_epoch);
2992                 mutex_unlock(&mdsc->mutex);
2993                 return;
2994         }
2995
2996         newmap = ceph_mdsmap_decode(&p, end);
2997         if (IS_ERR(newmap)) {
2998                 err = PTR_ERR(newmap);
2999                 goto bad_unlock;
3000         }
3001
3002         /* swap into place */
3003         if (mdsc->mdsmap) {
3004                 oldmap = mdsc->mdsmap;
3005                 mdsc->mdsmap = newmap;
3006                 check_new_map(mdsc, newmap, oldmap);
3007                 ceph_mdsmap_destroy(oldmap);
3008         } else {
3009                 mdsc->mdsmap = newmap;  /* first mds map */
3010         }
3011         mdsc->client->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3012
3013         __wake_requests(mdsc, &mdsc->waiting_for_map);
3014
3015         mutex_unlock(&mdsc->mutex);
3016         schedule_delayed(mdsc);
3017         return;
3018
3019 bad_unlock:
3020         mutex_unlock(&mdsc->mutex);
3021 bad:
3022         pr_err("error decoding mdsmap %d\n", err);
3023         return;
3024 }
3025
3026 static struct ceph_connection *con_get(struct ceph_connection *con)
3027 {
3028         struct ceph_mds_session *s = con->private;
3029
3030         if (get_session(s)) {
3031                 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3032                 return con;
3033         }
3034         dout("mdsc con_get %p FAIL\n", s);
3035         return NULL;
3036 }
3037
3038 static void con_put(struct ceph_connection *con)
3039 {
3040         struct ceph_mds_session *s = con->private;
3041
3042         ceph_put_mds_session(s);
3043         dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref));
3044 }
3045
3046 /*
3047  * if the client is unresponsive for long enough, the mds will kill
3048  * the session entirely.
3049  */
3050 static void peer_reset(struct ceph_connection *con)
3051 {
3052         struct ceph_mds_session *s = con->private;
3053         struct ceph_mds_client *mdsc = s->s_mdsc;
3054
3055         pr_warning("mds%d closed our session\n", s->s_mds);
3056         send_mds_reconnect(mdsc, s);
3057 }
3058
3059 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3060 {
3061         struct ceph_mds_session *s = con->private;
3062         struct ceph_mds_client *mdsc = s->s_mdsc;
3063         int type = le16_to_cpu(msg->hdr.type);
3064
3065         mutex_lock(&mdsc->mutex);
3066         if (__verify_registered_session(mdsc, s) < 0) {
3067                 mutex_unlock(&mdsc->mutex);
3068                 goto out;
3069         }
3070         mutex_unlock(&mdsc->mutex);
3071
3072         switch (type) {
3073         case CEPH_MSG_MDS_MAP:
3074                 ceph_mdsc_handle_map(mdsc, msg);
3075                 break;
3076         case CEPH_MSG_CLIENT_SESSION:
3077                 handle_session(s, msg);
3078                 break;
3079         case CEPH_MSG_CLIENT_REPLY:
3080                 handle_reply(s, msg);
3081                 break;
3082         case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3083                 handle_forward(mdsc, s, msg);
3084                 break;
3085         case CEPH_MSG_CLIENT_CAPS:
3086                 ceph_handle_caps(s, msg);
3087                 break;
3088         case CEPH_MSG_CLIENT_SNAP:
3089                 ceph_handle_snap(mdsc, s, msg);
3090                 break;
3091         case CEPH_MSG_CLIENT_LEASE:
3092                 handle_lease(mdsc, s, msg);
3093                 break;
3094
3095         default:
3096                 pr_err("received unknown message type %d %s\n", type,
3097                        ceph_msg_type_name(type));
3098         }
3099 out:
3100         ceph_msg_put(msg);
3101 }
3102
3103 /*
3104  * authentication
3105  */
3106 static int get_authorizer(struct ceph_connection *con,
3107                           void **buf, int *len, int *proto,
3108                           void **reply_buf, int *reply_len, int force_new)
3109 {
3110         struct ceph_mds_session *s = con->private;
3111         struct ceph_mds_client *mdsc = s->s_mdsc;
3112         struct ceph_auth_client *ac = mdsc->client->monc.auth;
3113         int ret = 0;
3114
3115         if (force_new && s->s_authorizer) {
3116                 ac->ops->destroy_authorizer(ac, s->s_authorizer);
3117                 s->s_authorizer = NULL;
3118         }
3119         if (s->s_authorizer == NULL) {
3120                 if (ac->ops->create_authorizer) {
3121                         ret = ac->ops->create_authorizer(
3122                                 ac, CEPH_ENTITY_TYPE_MDS,
3123                                 &s->s_authorizer,
3124                                 &s->s_authorizer_buf,
3125                                 &s->s_authorizer_buf_len,
3126                                 &s->s_authorizer_reply_buf,
3127                                 &s->s_authorizer_reply_buf_len);
3128                         if (ret)
3129                                 return ret;
3130                 }
3131         }
3132
3133         *proto = ac->protocol;
3134         *buf = s->s_authorizer_buf;
3135         *len = s->s_authorizer_buf_len;
3136         *reply_buf = s->s_authorizer_reply_buf;
3137         *reply_len = s->s_authorizer_reply_buf_len;
3138         return 0;
3139 }
3140
3141
3142 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3143 {
3144         struct ceph_mds_session *s = con->private;
3145         struct ceph_mds_client *mdsc = s->s_mdsc;
3146         struct ceph_auth_client *ac = mdsc->client->monc.auth;
3147
3148         return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len);
3149 }
3150
3151 static int invalidate_authorizer(struct ceph_connection *con)
3152 {
3153         struct ceph_mds_session *s = con->private;
3154         struct ceph_mds_client *mdsc = s->s_mdsc;
3155         struct ceph_auth_client *ac = mdsc->client->monc.auth;
3156
3157         if (ac->ops->invalidate_authorizer)
3158                 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3159
3160         return ceph_monc_validate_auth(&mdsc->client->monc);
3161 }
3162
3163 static const struct ceph_connection_operations mds_con_ops = {
3164         .get = con_get,
3165         .put = con_put,
3166         .dispatch = dispatch,
3167         .get_authorizer = get_authorizer,
3168         .verify_authorizer_reply = verify_authorizer_reply,
3169         .invalidate_authorizer = invalidate_authorizer,
3170         .peer_reset = peer_reset,
3171 };
3172
3173
3174
3175
3176 /* eof */