fc4290b6691c4de09ea8500641ef2bb05619bc96
[linux-2.6.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  * 
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41 #include <linux/mutex.h>
42
43 #include <linux/usb.h>
44
45 #include "usb.h"
46 #include "hcd.h"
47 #include "hub.h"
48
49
50 /*-------------------------------------------------------------------------*/
51
52 /*
53  * USB Host Controller Driver framework
54  *
55  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
56  * HCD-specific behaviors/bugs.
57  *
58  * This does error checks, tracks devices and urbs, and delegates to a
59  * "hc_driver" only for code (and data) that really needs to know about
60  * hardware differences.  That includes root hub registers, i/o queues,
61  * and so on ... but as little else as possible.
62  *
63  * Shared code includes most of the "root hub" code (these are emulated,
64  * though each HC's hardware works differently) and PCI glue, plus request
65  * tracking overhead.  The HCD code should only block on spinlocks or on
66  * hardware handshaking; blocking on software events (such as other kernel
67  * threads releasing resources, or completing actions) is all generic.
68  *
69  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
70  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
71  * only by the hub driver ... and that neither should be seen or used by
72  * usb client device drivers.
73  *
74  * Contributors of ideas or unattributed patches include: David Brownell,
75  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
76  *
77  * HISTORY:
78  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
79  *              associated cleanup.  "usb_hcd" still != "usb_bus".
80  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
81  */
82
83 /*-------------------------------------------------------------------------*/
84
85 /* Keep track of which host controller drivers are loaded */
86 unsigned long usb_hcds_loaded;
87 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
88
89 /* host controllers we manage */
90 LIST_HEAD (usb_bus_list);
91 EXPORT_SYMBOL_GPL (usb_bus_list);
92
93 /* used when allocating bus numbers */
94 #define USB_MAXBUS              64
95 struct usb_busmap {
96         unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
97 };
98 static struct usb_busmap busmap;
99
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118         return (udev->parent == NULL);
119 }
120
121 /*-------------------------------------------------------------------------*/
122
123 /*
124  * Sharable chunks of root hub code.
125  */
126
127 /*-------------------------------------------------------------------------*/
128
129 #define KERNEL_REL      ((LINUX_VERSION_CODE >> 16) & 0x0ff)
130 #define KERNEL_VER      ((LINUX_VERSION_CODE >> 8) & 0x0ff)
131
132 /* usb 3.0 root hub device descriptor */
133 static const u8 usb3_rh_dev_descriptor[18] = {
134         0x12,       /*  __u8  bLength; */
135         0x01,       /*  __u8  bDescriptorType; Device */
136         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
137
138         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
139         0x00,       /*  __u8  bDeviceSubClass; */
140         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
141         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
142
143         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
144         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
145         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
146
147         0x03,       /*  __u8  iManufacturer; */
148         0x02,       /*  __u8  iProduct; */
149         0x01,       /*  __u8  iSerialNumber; */
150         0x01        /*  __u8  bNumConfigurations; */
151 };
152
153 /* usb 2.0 root hub device descriptor */
154 static const u8 usb2_rh_dev_descriptor [18] = {
155         0x12,       /*  __u8  bLength; */
156         0x01,       /*  __u8  bDescriptorType; Device */
157         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
158
159         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
160         0x00,       /*  __u8  bDeviceSubClass; */
161         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
162         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
163
164         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
165         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
166         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
167
168         0x03,       /*  __u8  iManufacturer; */
169         0x02,       /*  __u8  iProduct; */
170         0x01,       /*  __u8  iSerialNumber; */
171         0x01        /*  __u8  bNumConfigurations; */
172 };
173
174 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
175
176 /* usb 1.1 root hub device descriptor */
177 static const u8 usb11_rh_dev_descriptor [18] = {
178         0x12,       /*  __u8  bLength; */
179         0x01,       /*  __u8  bDescriptorType; Device */
180         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
181
182         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
183         0x00,       /*  __u8  bDeviceSubClass; */
184         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
185         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
186
187         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
188         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
189         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
190
191         0x03,       /*  __u8  iManufacturer; */
192         0x02,       /*  __u8  iProduct; */
193         0x01,       /*  __u8  iSerialNumber; */
194         0x01        /*  __u8  bNumConfigurations; */
195 };
196
197
198 /*-------------------------------------------------------------------------*/
199
200 /* Configuration descriptors for our root hubs */
201
202 static const u8 fs_rh_config_descriptor [] = {
203
204         /* one configuration */
205         0x09,       /*  __u8  bLength; */
206         0x02,       /*  __u8  bDescriptorType; Configuration */
207         0x19, 0x00, /*  __le16 wTotalLength; */
208         0x01,       /*  __u8  bNumInterfaces; (1) */
209         0x01,       /*  __u8  bConfigurationValue; */
210         0x00,       /*  __u8  iConfiguration; */
211         0xc0,       /*  __u8  bmAttributes; 
212                                  Bit 7: must be set,
213                                      6: Self-powered,
214                                      5: Remote wakeup,
215                                      4..0: resvd */
216         0x00,       /*  __u8  MaxPower; */
217       
218         /* USB 1.1:
219          * USB 2.0, single TT organization (mandatory):
220          *      one interface, protocol 0
221          *
222          * USB 2.0, multiple TT organization (optional):
223          *      two interfaces, protocols 1 (like single TT)
224          *      and 2 (multiple TT mode) ... config is
225          *      sometimes settable
226          *      NOT IMPLEMENTED
227          */
228
229         /* one interface */
230         0x09,       /*  __u8  if_bLength; */
231         0x04,       /*  __u8  if_bDescriptorType; Interface */
232         0x00,       /*  __u8  if_bInterfaceNumber; */
233         0x00,       /*  __u8  if_bAlternateSetting; */
234         0x01,       /*  __u8  if_bNumEndpoints; */
235         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
236         0x00,       /*  __u8  if_bInterfaceSubClass; */
237         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
238         0x00,       /*  __u8  if_iInterface; */
239      
240         /* one endpoint (status change endpoint) */
241         0x07,       /*  __u8  ep_bLength; */
242         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
243         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
244         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
245         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
246         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
247 };
248
249 static const u8 hs_rh_config_descriptor [] = {
250
251         /* one configuration */
252         0x09,       /*  __u8  bLength; */
253         0x02,       /*  __u8  bDescriptorType; Configuration */
254         0x19, 0x00, /*  __le16 wTotalLength; */
255         0x01,       /*  __u8  bNumInterfaces; (1) */
256         0x01,       /*  __u8  bConfigurationValue; */
257         0x00,       /*  __u8  iConfiguration; */
258         0xc0,       /*  __u8  bmAttributes; 
259                                  Bit 7: must be set,
260                                      6: Self-powered,
261                                      5: Remote wakeup,
262                                      4..0: resvd */
263         0x00,       /*  __u8  MaxPower; */
264       
265         /* USB 1.1:
266          * USB 2.0, single TT organization (mandatory):
267          *      one interface, protocol 0
268          *
269          * USB 2.0, multiple TT organization (optional):
270          *      two interfaces, protocols 1 (like single TT)
271          *      and 2 (multiple TT mode) ... config is
272          *      sometimes settable
273          *      NOT IMPLEMENTED
274          */
275
276         /* one interface */
277         0x09,       /*  __u8  if_bLength; */
278         0x04,       /*  __u8  if_bDescriptorType; Interface */
279         0x00,       /*  __u8  if_bInterfaceNumber; */
280         0x00,       /*  __u8  if_bAlternateSetting; */
281         0x01,       /*  __u8  if_bNumEndpoints; */
282         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
283         0x00,       /*  __u8  if_bInterfaceSubClass; */
284         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
285         0x00,       /*  __u8  if_iInterface; */
286      
287         /* one endpoint (status change endpoint) */
288         0x07,       /*  __u8  ep_bLength; */
289         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
290         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
291         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
292                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
293                      * see hub.c:hub_configure() for details. */
294         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
295         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
296 };
297
298 static const u8 ss_rh_config_descriptor[] = {
299         /* one configuration */
300         0x09,       /*  __u8  bLength; */
301         0x02,       /*  __u8  bDescriptorType; Configuration */
302         0x19, 0x00, /*  __le16 wTotalLength; FIXME */
303         0x01,       /*  __u8  bNumInterfaces; (1) */
304         0x01,       /*  __u8  bConfigurationValue; */
305         0x00,       /*  __u8  iConfiguration; */
306         0xc0,       /*  __u8  bmAttributes;
307                                  Bit 7: must be set,
308                                      6: Self-powered,
309                                      5: Remote wakeup,
310                                      4..0: resvd */
311         0x00,       /*  __u8  MaxPower; */
312
313         /* one interface */
314         0x09,       /*  __u8  if_bLength; */
315         0x04,       /*  __u8  if_bDescriptorType; Interface */
316         0x00,       /*  __u8  if_bInterfaceNumber; */
317         0x00,       /*  __u8  if_bAlternateSetting; */
318         0x01,       /*  __u8  if_bNumEndpoints; */
319         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
320         0x00,       /*  __u8  if_bInterfaceSubClass; */
321         0x00,       /*  __u8  if_bInterfaceProtocol; */
322         0x00,       /*  __u8  if_iInterface; */
323
324         /* one endpoint (status change endpoint) */
325         0x07,       /*  __u8  ep_bLength; */
326         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
327         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
328         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
329                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
330                      * see hub.c:hub_configure() for details. */
331         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
332         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
333         /*
334          * All 3.0 hubs should have an endpoint companion descriptor,
335          * but we're ignoring that for now.  FIXME?
336          */
337 };
338
339 /*-------------------------------------------------------------------------*/
340
341 /**
342  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
343  * @s: Null-terminated ASCII (actually ISO-8859-1) string
344  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
345  * @len: Length (in bytes; may be odd) of descriptor buffer.
346  *
347  * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
348  * buflen, whichever is less.
349  *
350  * USB String descriptors can contain at most 126 characters; input
351  * strings longer than that are truncated.
352  */
353 static unsigned
354 ascii2desc(char const *s, u8 *buf, unsigned len)
355 {
356         unsigned n, t = 2 + 2*strlen(s);
357
358         if (t > 254)
359                 t = 254;        /* Longest possible UTF string descriptor */
360         if (len > t)
361                 len = t;
362
363         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
364
365         n = len;
366         while (n--) {
367                 *buf++ = t;
368                 if (!n--)
369                         break;
370                 *buf++ = t >> 8;
371                 t = (unsigned char)*s++;
372         }
373         return len;
374 }
375
376 /**
377  * rh_string() - provides string descriptors for root hub
378  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
379  * @hcd: the host controller for this root hub
380  * @data: buffer for output packet
381  * @len: length of the provided buffer
382  *
383  * Produces either a manufacturer, product or serial number string for the
384  * virtual root hub device.
385  * Returns the number of bytes filled in: the length of the descriptor or
386  * of the provided buffer, whichever is less.
387  */
388 static unsigned
389 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
390 {
391         char buf[100];
392         char const *s;
393         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
394
395         // language ids
396         switch (id) {
397         case 0:
398                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
399                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
400                 if (len > 4)
401                         len = 4;
402                 memcpy(data, langids, len);
403                 return len;
404         case 1:
405                 /* Serial number */
406                 s = hcd->self.bus_name;
407                 break;
408         case 2:
409                 /* Product name */
410                 s = hcd->product_desc;
411                 break;
412         case 3:
413                 /* Manufacturer */
414                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
415                         init_utsname()->release, hcd->driver->description);
416                 s = buf;
417                 break;
418         default:
419                 /* Can't happen; caller guarantees it */
420                 return 0;
421         }
422
423         return ascii2desc(s, data, len);
424 }
425
426
427 /* Root hub control transfers execute synchronously */
428 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
429 {
430         struct usb_ctrlrequest *cmd;
431         u16             typeReq, wValue, wIndex, wLength;
432         u8              *ubuf = urb->transfer_buffer;
433         u8              tbuf [sizeof (struct usb_hub_descriptor)]
434                 __attribute__((aligned(4)));
435         const u8        *bufp = tbuf;
436         unsigned        len = 0;
437         int             status;
438         u8              patch_wakeup = 0;
439         u8              patch_protocol = 0;
440
441         might_sleep();
442
443         spin_lock_irq(&hcd_root_hub_lock);
444         status = usb_hcd_link_urb_to_ep(hcd, urb);
445         spin_unlock_irq(&hcd_root_hub_lock);
446         if (status)
447                 return status;
448         urb->hcpriv = hcd;      /* Indicate it's queued */
449
450         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
451         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
452         wValue   = le16_to_cpu (cmd->wValue);
453         wIndex   = le16_to_cpu (cmd->wIndex);
454         wLength  = le16_to_cpu (cmd->wLength);
455
456         if (wLength > urb->transfer_buffer_length)
457                 goto error;
458
459         urb->actual_length = 0;
460         switch (typeReq) {
461
462         /* DEVICE REQUESTS */
463
464         /* The root hub's remote wakeup enable bit is implemented using
465          * driver model wakeup flags.  If this system supports wakeup
466          * through USB, userspace may change the default "allow wakeup"
467          * policy through sysfs or these calls.
468          *
469          * Most root hubs support wakeup from downstream devices, for
470          * runtime power management (disabling USB clocks and reducing
471          * VBUS power usage).  However, not all of them do so; silicon,
472          * board, and BIOS bugs here are not uncommon, so these can't
473          * be treated quite like external hubs.
474          *
475          * Likewise, not all root hubs will pass wakeup events upstream,
476          * to wake up the whole system.  So don't assume root hub and
477          * controller capabilities are identical.
478          */
479
480         case DeviceRequest | USB_REQ_GET_STATUS:
481                 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
482                                         << USB_DEVICE_REMOTE_WAKEUP)
483                                 | (1 << USB_DEVICE_SELF_POWERED);
484                 tbuf [1] = 0;
485                 len = 2;
486                 break;
487         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
488                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
489                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
490                 else
491                         goto error;
492                 break;
493         case DeviceOutRequest | USB_REQ_SET_FEATURE:
494                 if (device_can_wakeup(&hcd->self.root_hub->dev)
495                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
496                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
497                 else
498                         goto error;
499                 break;
500         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
501                 tbuf [0] = 1;
502                 len = 1;
503                         /* FALLTHROUGH */
504         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
505                 break;
506         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
507                 switch (wValue & 0xff00) {
508                 case USB_DT_DEVICE << 8:
509                         switch (hcd->driver->flags & HCD_MASK) {
510                         case HCD_USB3:
511                                 bufp = usb3_rh_dev_descriptor;
512                                 break;
513                         case HCD_USB2:
514                                 bufp = usb2_rh_dev_descriptor;
515                                 break;
516                         case HCD_USB11:
517                                 bufp = usb11_rh_dev_descriptor;
518                                 break;
519                         default:
520                                 goto error;
521                         }
522                         len = 18;
523                         if (hcd->has_tt)
524                                 patch_protocol = 1;
525                         break;
526                 case USB_DT_CONFIG << 8:
527                         switch (hcd->driver->flags & HCD_MASK) {
528                         case HCD_USB3:
529                                 bufp = ss_rh_config_descriptor;
530                                 len = sizeof ss_rh_config_descriptor;
531                                 break;
532                         case HCD_USB2:
533                                 bufp = hs_rh_config_descriptor;
534                                 len = sizeof hs_rh_config_descriptor;
535                                 break;
536                         case HCD_USB11:
537                                 bufp = fs_rh_config_descriptor;
538                                 len = sizeof fs_rh_config_descriptor;
539                                 break;
540                         default:
541                                 goto error;
542                         }
543                         if (device_can_wakeup(&hcd->self.root_hub->dev))
544                                 patch_wakeup = 1;
545                         break;
546                 case USB_DT_STRING << 8:
547                         if ((wValue & 0xff) < 4)
548                                 urb->actual_length = rh_string(wValue & 0xff,
549                                                 hcd, ubuf, wLength);
550                         else /* unsupported IDs --> "protocol stall" */
551                                 goto error;
552                         break;
553                 default:
554                         goto error;
555                 }
556                 break;
557         case DeviceRequest | USB_REQ_GET_INTERFACE:
558                 tbuf [0] = 0;
559                 len = 1;
560                         /* FALLTHROUGH */
561         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
562                 break;
563         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
564                 // wValue == urb->dev->devaddr
565                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
566                         wValue);
567                 break;
568
569         /* INTERFACE REQUESTS (no defined feature/status flags) */
570
571         /* ENDPOINT REQUESTS */
572
573         case EndpointRequest | USB_REQ_GET_STATUS:
574                 // ENDPOINT_HALT flag
575                 tbuf [0] = 0;
576                 tbuf [1] = 0;
577                 len = 2;
578                         /* FALLTHROUGH */
579         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
580         case EndpointOutRequest | USB_REQ_SET_FEATURE:
581                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
582                 break;
583
584         /* CLASS REQUESTS (and errors) */
585
586         default:
587                 /* non-generic request */
588                 switch (typeReq) {
589                 case GetHubStatus:
590                 case GetPortStatus:
591                         len = 4;
592                         break;
593                 case GetHubDescriptor:
594                         len = sizeof (struct usb_hub_descriptor);
595                         break;
596                 }
597                 status = hcd->driver->hub_control (hcd,
598                         typeReq, wValue, wIndex,
599                         tbuf, wLength);
600                 break;
601 error:
602                 /* "protocol stall" on error */
603                 status = -EPIPE;
604         }
605
606         if (status) {
607                 len = 0;
608                 if (status != -EPIPE) {
609                         dev_dbg (hcd->self.controller,
610                                 "CTRL: TypeReq=0x%x val=0x%x "
611                                 "idx=0x%x len=%d ==> %d\n",
612                                 typeReq, wValue, wIndex,
613                                 wLength, status);
614                 }
615         }
616         if (len) {
617                 if (urb->transfer_buffer_length < len)
618                         len = urb->transfer_buffer_length;
619                 urb->actual_length = len;
620                 // always USB_DIR_IN, toward host
621                 memcpy (ubuf, bufp, len);
622
623                 /* report whether RH hardware supports remote wakeup */
624                 if (patch_wakeup &&
625                                 len > offsetof (struct usb_config_descriptor,
626                                                 bmAttributes))
627                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
628                                 |= USB_CONFIG_ATT_WAKEUP;
629
630                 /* report whether RH hardware has an integrated TT */
631                 if (patch_protocol &&
632                                 len > offsetof(struct usb_device_descriptor,
633                                                 bDeviceProtocol))
634                         ((struct usb_device_descriptor *) ubuf)->
635                                         bDeviceProtocol = 1;
636         }
637
638         /* any errors get returned through the urb completion */
639         spin_lock_irq(&hcd_root_hub_lock);
640         usb_hcd_unlink_urb_from_ep(hcd, urb);
641
642         /* This peculiar use of spinlocks echoes what real HC drivers do.
643          * Avoiding calls to local_irq_disable/enable makes the code
644          * RT-friendly.
645          */
646         spin_unlock(&hcd_root_hub_lock);
647         usb_hcd_giveback_urb(hcd, urb, status);
648         spin_lock(&hcd_root_hub_lock);
649
650         spin_unlock_irq(&hcd_root_hub_lock);
651         return 0;
652 }
653
654 /*-------------------------------------------------------------------------*/
655
656 /*
657  * Root Hub interrupt transfers are polled using a timer if the
658  * driver requests it; otherwise the driver is responsible for
659  * calling usb_hcd_poll_rh_status() when an event occurs.
660  *
661  * Completions are called in_interrupt(), but they may or may not
662  * be in_irq().
663  */
664 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
665 {
666         struct urb      *urb;
667         int             length;
668         unsigned long   flags;
669         char            buffer[6];      /* Any root hubs with > 31 ports? */
670
671         if (unlikely(!hcd->rh_registered))
672                 return;
673         if (!hcd->uses_new_polling && !hcd->status_urb)
674                 return;
675
676         length = hcd->driver->hub_status_data(hcd, buffer);
677         if (length > 0) {
678
679                 /* try to complete the status urb */
680                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
681                 urb = hcd->status_urb;
682                 if (urb) {
683                         hcd->poll_pending = 0;
684                         hcd->status_urb = NULL;
685                         urb->actual_length = length;
686                         memcpy(urb->transfer_buffer, buffer, length);
687
688                         usb_hcd_unlink_urb_from_ep(hcd, urb);
689                         spin_unlock(&hcd_root_hub_lock);
690                         usb_hcd_giveback_urb(hcd, urb, 0);
691                         spin_lock(&hcd_root_hub_lock);
692                 } else {
693                         length = 0;
694                         hcd->poll_pending = 1;
695                 }
696                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
697         }
698
699         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
700          * exceed that limit if HZ is 100. The math is more clunky than
701          * maybe expected, this is to make sure that all timers for USB devices
702          * fire at the same time to give the CPU a break inbetween */
703         if (hcd->uses_new_polling ? hcd->poll_rh :
704                         (length == 0 && hcd->status_urb != NULL))
705                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
706 }
707 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
708
709 /* timer callback */
710 static void rh_timer_func (unsigned long _hcd)
711 {
712         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
713 }
714
715 /*-------------------------------------------------------------------------*/
716
717 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
718 {
719         int             retval;
720         unsigned long   flags;
721         unsigned        len = 1 + (urb->dev->maxchild / 8);
722
723         spin_lock_irqsave (&hcd_root_hub_lock, flags);
724         if (hcd->status_urb || urb->transfer_buffer_length < len) {
725                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
726                 retval = -EINVAL;
727                 goto done;
728         }
729
730         retval = usb_hcd_link_urb_to_ep(hcd, urb);
731         if (retval)
732                 goto done;
733
734         hcd->status_urb = urb;
735         urb->hcpriv = hcd;      /* indicate it's queued */
736         if (!hcd->uses_new_polling)
737                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
738
739         /* If a status change has already occurred, report it ASAP */
740         else if (hcd->poll_pending)
741                 mod_timer(&hcd->rh_timer, jiffies);
742         retval = 0;
743  done:
744         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
745         return retval;
746 }
747
748 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
749 {
750         if (usb_endpoint_xfer_int(&urb->ep->desc))
751                 return rh_queue_status (hcd, urb);
752         if (usb_endpoint_xfer_control(&urb->ep->desc))
753                 return rh_call_control (hcd, urb);
754         return -EINVAL;
755 }
756
757 /*-------------------------------------------------------------------------*/
758
759 /* Unlinks of root-hub control URBs are legal, but they don't do anything
760  * since these URBs always execute synchronously.
761  */
762 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
763 {
764         unsigned long   flags;
765         int             rc;
766
767         spin_lock_irqsave(&hcd_root_hub_lock, flags);
768         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
769         if (rc)
770                 goto done;
771
772         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
773                 ;       /* Do nothing */
774
775         } else {                                /* Status URB */
776                 if (!hcd->uses_new_polling)
777                         del_timer (&hcd->rh_timer);
778                 if (urb == hcd->status_urb) {
779                         hcd->status_urb = NULL;
780                         usb_hcd_unlink_urb_from_ep(hcd, urb);
781
782                         spin_unlock(&hcd_root_hub_lock);
783                         usb_hcd_giveback_urb(hcd, urb, status);
784                         spin_lock(&hcd_root_hub_lock);
785                 }
786         }
787  done:
788         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
789         return rc;
790 }
791
792
793
794 /*
795  * Show & store the current value of authorized_default
796  */
797 static ssize_t usb_host_authorized_default_show(struct device *dev,
798                                                 struct device_attribute *attr,
799                                                 char *buf)
800 {
801         struct usb_device *rh_usb_dev = to_usb_device(dev);
802         struct usb_bus *usb_bus = rh_usb_dev->bus;
803         struct usb_hcd *usb_hcd;
804
805         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
806                 return -ENODEV;
807         usb_hcd = bus_to_hcd(usb_bus);
808         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
809 }
810
811 static ssize_t usb_host_authorized_default_store(struct device *dev,
812                                                  struct device_attribute *attr,
813                                                  const char *buf, size_t size)
814 {
815         ssize_t result;
816         unsigned val;
817         struct usb_device *rh_usb_dev = to_usb_device(dev);
818         struct usb_bus *usb_bus = rh_usb_dev->bus;
819         struct usb_hcd *usb_hcd;
820
821         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
822                 return -ENODEV;
823         usb_hcd = bus_to_hcd(usb_bus);
824         result = sscanf(buf, "%u\n", &val);
825         if (result == 1) {
826                 usb_hcd->authorized_default = val? 1 : 0;
827                 result = size;
828         }
829         else
830                 result = -EINVAL;
831         return result;
832 }
833
834 static DEVICE_ATTR(authorized_default, 0644,
835             usb_host_authorized_default_show,
836             usb_host_authorized_default_store);
837
838
839 /* Group all the USB bus attributes */
840 static struct attribute *usb_bus_attrs[] = {
841                 &dev_attr_authorized_default.attr,
842                 NULL,
843 };
844
845 static struct attribute_group usb_bus_attr_group = {
846         .name = NULL,   /* we want them in the same directory */
847         .attrs = usb_bus_attrs,
848 };
849
850
851
852 /*-------------------------------------------------------------------------*/
853
854 /**
855  * usb_bus_init - shared initialization code
856  * @bus: the bus structure being initialized
857  *
858  * This code is used to initialize a usb_bus structure, memory for which is
859  * separately managed.
860  */
861 static void usb_bus_init (struct usb_bus *bus)
862 {
863         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
864
865         bus->devnum_next = 1;
866
867         bus->root_hub = NULL;
868         bus->busnum = -1;
869         bus->bandwidth_allocated = 0;
870         bus->bandwidth_int_reqs  = 0;
871         bus->bandwidth_isoc_reqs = 0;
872
873         INIT_LIST_HEAD (&bus->bus_list);
874 }
875
876 /*-------------------------------------------------------------------------*/
877
878 /**
879  * usb_register_bus - registers the USB host controller with the usb core
880  * @bus: pointer to the bus to register
881  * Context: !in_interrupt()
882  *
883  * Assigns a bus number, and links the controller into usbcore data
884  * structures so that it can be seen by scanning the bus list.
885  */
886 static int usb_register_bus(struct usb_bus *bus)
887 {
888         int result = -E2BIG;
889         int busnum;
890
891         mutex_lock(&usb_bus_list_lock);
892         busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
893         if (busnum >= USB_MAXBUS) {
894                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
895                 goto error_find_busnum;
896         }
897         set_bit (busnum, busmap.busmap);
898         bus->busnum = busnum;
899
900         /* Add it to the local list of buses */
901         list_add (&bus->bus_list, &usb_bus_list);
902         mutex_unlock(&usb_bus_list_lock);
903
904         usb_notify_add_bus(bus);
905
906         dev_info (bus->controller, "new USB bus registered, assigned bus "
907                   "number %d\n", bus->busnum);
908         return 0;
909
910 error_find_busnum:
911         mutex_unlock(&usb_bus_list_lock);
912         return result;
913 }
914
915 /**
916  * usb_deregister_bus - deregisters the USB host controller
917  * @bus: pointer to the bus to deregister
918  * Context: !in_interrupt()
919  *
920  * Recycles the bus number, and unlinks the controller from usbcore data
921  * structures so that it won't be seen by scanning the bus list.
922  */
923 static void usb_deregister_bus (struct usb_bus *bus)
924 {
925         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
926
927         /*
928          * NOTE: make sure that all the devices are removed by the
929          * controller code, as well as having it call this when cleaning
930          * itself up
931          */
932         mutex_lock(&usb_bus_list_lock);
933         list_del (&bus->bus_list);
934         mutex_unlock(&usb_bus_list_lock);
935
936         usb_notify_remove_bus(bus);
937
938         clear_bit (bus->busnum, busmap.busmap);
939 }
940
941 /**
942  * register_root_hub - called by usb_add_hcd() to register a root hub
943  * @hcd: host controller for this root hub
944  *
945  * This function registers the root hub with the USB subsystem.  It sets up
946  * the device properly in the device tree and then calls usb_new_device()
947  * to register the usb device.  It also assigns the root hub's USB address
948  * (always 1).
949  */
950 static int register_root_hub(struct usb_hcd *hcd)
951 {
952         struct device *parent_dev = hcd->self.controller;
953         struct usb_device *usb_dev = hcd->self.root_hub;
954         const int devnum = 1;
955         int retval;
956
957         usb_dev->devnum = devnum;
958         usb_dev->bus->devnum_next = devnum + 1;
959         memset (&usb_dev->bus->devmap.devicemap, 0,
960                         sizeof usb_dev->bus->devmap.devicemap);
961         set_bit (devnum, usb_dev->bus->devmap.devicemap);
962         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
963
964         mutex_lock(&usb_bus_list_lock);
965
966         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
967         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
968         if (retval != sizeof usb_dev->descriptor) {
969                 mutex_unlock(&usb_bus_list_lock);
970                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
971                                 dev_name(&usb_dev->dev), retval);
972                 return (retval < 0) ? retval : -EMSGSIZE;
973         }
974
975         retval = usb_new_device (usb_dev);
976         if (retval) {
977                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
978                                 dev_name(&usb_dev->dev), retval);
979         }
980         mutex_unlock(&usb_bus_list_lock);
981
982         if (retval == 0) {
983                 spin_lock_irq (&hcd_root_hub_lock);
984                 hcd->rh_registered = 1;
985                 spin_unlock_irq (&hcd_root_hub_lock);
986
987                 /* Did the HC die before the root hub was registered? */
988                 if (hcd->state == HC_STATE_HALT)
989                         usb_hc_died (hcd);      /* This time clean up */
990         }
991
992         return retval;
993 }
994
995
996 /*-------------------------------------------------------------------------*/
997
998 /**
999  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1000  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1001  * @is_input: true iff the transaction sends data to the host
1002  * @isoc: true for isochronous transactions, false for interrupt ones
1003  * @bytecount: how many bytes in the transaction.
1004  *
1005  * Returns approximate bus time in nanoseconds for a periodic transaction.
1006  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1007  * scheduled in software, this function is only used for such scheduling.
1008  */
1009 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1010 {
1011         unsigned long   tmp;
1012
1013         switch (speed) {
1014         case USB_SPEED_LOW:     /* INTR only */
1015                 if (is_input) {
1016                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1017                         return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1018                 } else {
1019                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1020                         return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1021                 }
1022         case USB_SPEED_FULL:    /* ISOC or INTR */
1023                 if (isoc) {
1024                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1025                         return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1026                 } else {
1027                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1028                         return (9107L + BW_HOST_DELAY + tmp);
1029                 }
1030         case USB_SPEED_HIGH:    /* ISOC or INTR */
1031                 // FIXME adjust for input vs output
1032                 if (isoc)
1033                         tmp = HS_NSECS_ISO (bytecount);
1034                 else
1035                         tmp = HS_NSECS (bytecount);
1036                 return tmp;
1037         default:
1038                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1039                 return -1;
1040         }
1041 }
1042 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1043
1044
1045 /*-------------------------------------------------------------------------*/
1046
1047 /*
1048  * Generic HC operations.
1049  */
1050
1051 /*-------------------------------------------------------------------------*/
1052
1053 /**
1054  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1055  * @hcd: host controller to which @urb was submitted
1056  * @urb: URB being submitted
1057  *
1058  * Host controller drivers should call this routine in their enqueue()
1059  * method.  The HCD's private spinlock must be held and interrupts must
1060  * be disabled.  The actions carried out here are required for URB
1061  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1062  *
1063  * Returns 0 for no error, otherwise a negative error code (in which case
1064  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1065  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1066  * the private spinlock and returning.
1067  */
1068 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1069 {
1070         int             rc = 0;
1071
1072         spin_lock(&hcd_urb_list_lock);
1073
1074         /* Check that the URB isn't being killed */
1075         if (unlikely(atomic_read(&urb->reject))) {
1076                 rc = -EPERM;
1077                 goto done;
1078         }
1079
1080         if (unlikely(!urb->ep->enabled)) {
1081                 rc = -ENOENT;
1082                 goto done;
1083         }
1084
1085         if (unlikely(!urb->dev->can_submit)) {
1086                 rc = -EHOSTUNREACH;
1087                 goto done;
1088         }
1089
1090         /*
1091          * Check the host controller's state and add the URB to the
1092          * endpoint's queue.
1093          */
1094         switch (hcd->state) {
1095         case HC_STATE_RUNNING:
1096         case HC_STATE_RESUMING:
1097                 urb->unlinked = 0;
1098                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1099                 break;
1100         default:
1101                 rc = -ESHUTDOWN;
1102                 goto done;
1103         }
1104  done:
1105         spin_unlock(&hcd_urb_list_lock);
1106         return rc;
1107 }
1108 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1109
1110 /**
1111  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1112  * @hcd: host controller to which @urb was submitted
1113  * @urb: URB being checked for unlinkability
1114  * @status: error code to store in @urb if the unlink succeeds
1115  *
1116  * Host controller drivers should call this routine in their dequeue()
1117  * method.  The HCD's private spinlock must be held and interrupts must
1118  * be disabled.  The actions carried out here are required for making
1119  * sure than an unlink is valid.
1120  *
1121  * Returns 0 for no error, otherwise a negative error code (in which case
1122  * the dequeue() method must fail).  The possible error codes are:
1123  *
1124  *      -EIDRM: @urb was not submitted or has already completed.
1125  *              The completion function may not have been called yet.
1126  *
1127  *      -EBUSY: @urb has already been unlinked.
1128  */
1129 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1130                 int status)
1131 {
1132         struct list_head        *tmp;
1133
1134         /* insist the urb is still queued */
1135         list_for_each(tmp, &urb->ep->urb_list) {
1136                 if (tmp == &urb->urb_list)
1137                         break;
1138         }
1139         if (tmp != &urb->urb_list)
1140                 return -EIDRM;
1141
1142         /* Any status except -EINPROGRESS means something already started to
1143          * unlink this URB from the hardware.  So there's no more work to do.
1144          */
1145         if (urb->unlinked)
1146                 return -EBUSY;
1147         urb->unlinked = status;
1148
1149         /* IRQ setup can easily be broken so that USB controllers
1150          * never get completion IRQs ... maybe even the ones we need to
1151          * finish unlinking the initial failed usb_set_address()
1152          * or device descriptor fetch.
1153          */
1154         if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1155                         !is_root_hub(urb->dev)) {
1156                 dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1157                         "Controller is probably using the wrong IRQ.\n");
1158                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1159         }
1160
1161         return 0;
1162 }
1163 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1164
1165 /**
1166  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1167  * @hcd: host controller to which @urb was submitted
1168  * @urb: URB being unlinked
1169  *
1170  * Host controller drivers should call this routine before calling
1171  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1172  * interrupts must be disabled.  The actions carried out here are required
1173  * for URB completion.
1174  */
1175 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1176 {
1177         /* clear all state linking urb to this dev (and hcd) */
1178         spin_lock(&hcd_urb_list_lock);
1179         list_del_init(&urb->urb_list);
1180         spin_unlock(&hcd_urb_list_lock);
1181 }
1182 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1183
1184 /*
1185  * Some usb host controllers can only perform dma using a small SRAM area.
1186  * The usb core itself is however optimized for host controllers that can dma
1187  * using regular system memory - like pci devices doing bus mastering.
1188  *
1189  * To support host controllers with limited dma capabilites we provide dma
1190  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1191  * For this to work properly the host controller code must first use the
1192  * function dma_declare_coherent_memory() to point out which memory area
1193  * that should be used for dma allocations.
1194  *
1195  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1196  * dma using dma_alloc_coherent() which in turn allocates from the memory
1197  * area pointed out with dma_declare_coherent_memory().
1198  *
1199  * So, to summarize...
1200  *
1201  * - We need "local" memory, canonical example being
1202  *   a small SRAM on a discrete controller being the
1203  *   only memory that the controller can read ...
1204  *   (a) "normal" kernel memory is no good, and
1205  *   (b) there's not enough to share
1206  *
1207  * - The only *portable* hook for such stuff in the
1208  *   DMA framework is dma_declare_coherent_memory()
1209  *
1210  * - So we use that, even though the primary requirement
1211  *   is that the memory be "local" (hence addressible
1212  *   by that device), not "coherent".
1213  *
1214  */
1215
1216 static int hcd_alloc_coherent(struct usb_bus *bus,
1217                               gfp_t mem_flags, dma_addr_t *dma_handle,
1218                               void **vaddr_handle, size_t size,
1219                               enum dma_data_direction dir)
1220 {
1221         unsigned char *vaddr;
1222
1223         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1224                                  mem_flags, dma_handle);
1225         if (!vaddr)
1226                 return -ENOMEM;
1227
1228         /*
1229          * Store the virtual address of the buffer at the end
1230          * of the allocated dma buffer. The size of the buffer
1231          * may be uneven so use unaligned functions instead
1232          * of just rounding up. It makes sense to optimize for
1233          * memory footprint over access speed since the amount
1234          * of memory available for dma may be limited.
1235          */
1236         put_unaligned((unsigned long)*vaddr_handle,
1237                       (unsigned long *)(vaddr + size));
1238
1239         if (dir == DMA_TO_DEVICE)
1240                 memcpy(vaddr, *vaddr_handle, size);
1241
1242         *vaddr_handle = vaddr;
1243         return 0;
1244 }
1245
1246 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1247                               void **vaddr_handle, size_t size,
1248                               enum dma_data_direction dir)
1249 {
1250         unsigned char *vaddr = *vaddr_handle;
1251
1252         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1253
1254         if (dir == DMA_FROM_DEVICE)
1255                 memcpy(vaddr, *vaddr_handle, size);
1256
1257         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1258
1259         *vaddr_handle = vaddr;
1260         *dma_handle = 0;
1261 }
1262
1263 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1264                            gfp_t mem_flags)
1265 {
1266         enum dma_data_direction dir;
1267         int ret = 0;
1268
1269         /* Map the URB's buffers for DMA access.
1270          * Lower level HCD code should use *_dma exclusively,
1271          * unless it uses pio or talks to another transport,
1272          * or uses the provided scatter gather list for bulk.
1273          */
1274         if (is_root_hub(urb->dev))
1275                 return 0;
1276
1277         if (usb_endpoint_xfer_control(&urb->ep->desc)
1278             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1279                 if (hcd->self.uses_dma) {
1280                         urb->setup_dma = dma_map_single(
1281                                         hcd->self.controller,
1282                                         urb->setup_packet,
1283                                         sizeof(struct usb_ctrlrequest),
1284                                         DMA_TO_DEVICE);
1285                         if (dma_mapping_error(hcd->self.controller,
1286                                                 urb->setup_dma))
1287                                 return -EAGAIN;
1288                 } else if (hcd->driver->flags & HCD_LOCAL_MEM)
1289                         ret = hcd_alloc_coherent(
1290                                         urb->dev->bus, mem_flags,
1291                                         &urb->setup_dma,
1292                                         (void **)&urb->setup_packet,
1293                                         sizeof(struct usb_ctrlrequest),
1294                                         DMA_TO_DEVICE);
1295         }
1296
1297         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1298         if (ret == 0 && urb->transfer_buffer_length != 0
1299             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1300                 if (hcd->self.uses_dma) {
1301                         urb->transfer_dma = dma_map_single (
1302                                         hcd->self.controller,
1303                                         urb->transfer_buffer,
1304                                         urb->transfer_buffer_length,
1305                                         dir);
1306                         if (dma_mapping_error(hcd->self.controller,
1307                                                 urb->transfer_dma))
1308                                 return -EAGAIN;
1309                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1310                         ret = hcd_alloc_coherent(
1311                                         urb->dev->bus, mem_flags,
1312                                         &urb->transfer_dma,
1313                                         &urb->transfer_buffer,
1314                                         urb->transfer_buffer_length,
1315                                         dir);
1316
1317                         if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1318                             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1319                                 hcd_free_coherent(urb->dev->bus,
1320                                         &urb->setup_dma,
1321                                         (void **)&urb->setup_packet,
1322                                         sizeof(struct usb_ctrlrequest),
1323                                         DMA_TO_DEVICE);
1324                 }
1325         }
1326         return ret;
1327 }
1328
1329 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1330 {
1331         enum dma_data_direction dir;
1332
1333         if (is_root_hub(urb->dev))
1334                 return;
1335
1336         if (usb_endpoint_xfer_control(&urb->ep->desc)
1337             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1338                 if (hcd->self.uses_dma)
1339                         dma_unmap_single(hcd->self.controller, urb->setup_dma,
1340                                         sizeof(struct usb_ctrlrequest),
1341                                         DMA_TO_DEVICE);
1342                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1343                         hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1344                                         (void **)&urb->setup_packet,
1345                                         sizeof(struct usb_ctrlrequest),
1346                                         DMA_TO_DEVICE);
1347         }
1348
1349         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1350         if (urb->transfer_buffer_length != 0
1351             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1352                 if (hcd->self.uses_dma)
1353                         dma_unmap_single(hcd->self.controller,
1354                                         urb->transfer_dma,
1355                                         urb->transfer_buffer_length,
1356                                         dir);
1357                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1358                         hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1359                                         &urb->transfer_buffer,
1360                                         urb->transfer_buffer_length,
1361                                         dir);
1362         }
1363 }
1364
1365 /*-------------------------------------------------------------------------*/
1366
1367 /* may be called in any context with a valid urb->dev usecount
1368  * caller surrenders "ownership" of urb
1369  * expects usb_submit_urb() to have sanity checked and conditioned all
1370  * inputs in the urb
1371  */
1372 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1373 {
1374         int                     status;
1375         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1376
1377         /* increment urb's reference count as part of giving it to the HCD
1378          * (which will control it).  HCD guarantees that it either returns
1379          * an error or calls giveback(), but not both.
1380          */
1381         usb_get_urb(urb);
1382         atomic_inc(&urb->use_count);
1383         atomic_inc(&urb->dev->urbnum);
1384         usbmon_urb_submit(&hcd->self, urb);
1385
1386         /* NOTE requirements on root-hub callers (usbfs and the hub
1387          * driver, for now):  URBs' urb->transfer_buffer must be
1388          * valid and usb_buffer_{sync,unmap}() not be needed, since
1389          * they could clobber root hub response data.  Also, control
1390          * URBs must be submitted in process context with interrupts
1391          * enabled.
1392          */
1393         status = map_urb_for_dma(hcd, urb, mem_flags);
1394         if (unlikely(status)) {
1395                 usbmon_urb_submit_error(&hcd->self, urb, status);
1396                 goto error;
1397         }
1398
1399         if (is_root_hub(urb->dev))
1400                 status = rh_urb_enqueue(hcd, urb);
1401         else
1402                 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1403
1404         if (unlikely(status)) {
1405                 usbmon_urb_submit_error(&hcd->self, urb, status);
1406                 unmap_urb_for_dma(hcd, urb);
1407  error:
1408                 urb->hcpriv = NULL;
1409                 INIT_LIST_HEAD(&urb->urb_list);
1410                 atomic_dec(&urb->use_count);
1411                 atomic_dec(&urb->dev->urbnum);
1412                 if (atomic_read(&urb->reject))
1413                         wake_up(&usb_kill_urb_queue);
1414                 usb_put_urb(urb);
1415         }
1416         return status;
1417 }
1418
1419 /*-------------------------------------------------------------------------*/
1420
1421 /* this makes the hcd giveback() the urb more quickly, by kicking it
1422  * off hardware queues (which may take a while) and returning it as
1423  * soon as practical.  we've already set up the urb's return status,
1424  * but we can't know if the callback completed already.
1425  */
1426 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1427 {
1428         int             value;
1429
1430         if (is_root_hub(urb->dev))
1431                 value = usb_rh_urb_dequeue(hcd, urb, status);
1432         else {
1433
1434                 /* The only reason an HCD might fail this call is if
1435                  * it has not yet fully queued the urb to begin with.
1436                  * Such failures should be harmless. */
1437                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1438         }
1439         return value;
1440 }
1441
1442 /*
1443  * called in any context
1444  *
1445  * caller guarantees urb won't be recycled till both unlink()
1446  * and the urb's completion function return
1447  */
1448 int usb_hcd_unlink_urb (struct urb *urb, int status)
1449 {
1450         struct usb_hcd          *hcd;
1451         int                     retval = -EIDRM;
1452         unsigned long           flags;
1453
1454         /* Prevent the device and bus from going away while
1455          * the unlink is carried out.  If they are already gone
1456          * then urb->use_count must be 0, since disconnected
1457          * devices can't have any active URBs.
1458          */
1459         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1460         if (atomic_read(&urb->use_count) > 0) {
1461                 retval = 0;
1462                 usb_get_dev(urb->dev);
1463         }
1464         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1465         if (retval == 0) {
1466                 hcd = bus_to_hcd(urb->dev->bus);
1467                 retval = unlink1(hcd, urb, status);
1468                 usb_put_dev(urb->dev);
1469         }
1470
1471         if (retval == 0)
1472                 retval = -EINPROGRESS;
1473         else if (retval != -EIDRM && retval != -EBUSY)
1474                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1475                                 urb, retval);
1476         return retval;
1477 }
1478
1479 /*-------------------------------------------------------------------------*/
1480
1481 /**
1482  * usb_hcd_giveback_urb - return URB from HCD to device driver
1483  * @hcd: host controller returning the URB
1484  * @urb: urb being returned to the USB device driver.
1485  * @status: completion status code for the URB.
1486  * Context: in_interrupt()
1487  *
1488  * This hands the URB from HCD to its USB device driver, using its
1489  * completion function.  The HCD has freed all per-urb resources
1490  * (and is done using urb->hcpriv).  It also released all HCD locks;
1491  * the device driver won't cause problems if it frees, modifies,
1492  * or resubmits this URB.
1493  *
1494  * If @urb was unlinked, the value of @status will be overridden by
1495  * @urb->unlinked.  Erroneous short transfers are detected in case
1496  * the HCD hasn't checked for them.
1497  */
1498 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1499 {
1500         urb->hcpriv = NULL;
1501         if (unlikely(urb->unlinked))
1502                 status = urb->unlinked;
1503         else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1504                         urb->actual_length < urb->transfer_buffer_length &&
1505                         !status))
1506                 status = -EREMOTEIO;
1507
1508         unmap_urb_for_dma(hcd, urb);
1509         usbmon_urb_complete(&hcd->self, urb, status);
1510         usb_unanchor_urb(urb);
1511
1512         /* pass ownership to the completion handler */
1513         urb->status = status;
1514         urb->complete (urb);
1515         atomic_dec (&urb->use_count);
1516         if (unlikely(atomic_read(&urb->reject)))
1517                 wake_up (&usb_kill_urb_queue);
1518         usb_put_urb (urb);
1519 }
1520 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1521
1522 /*-------------------------------------------------------------------------*/
1523
1524 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1525  * queue to drain completely.  The caller must first insure that no more
1526  * URBs can be submitted for this endpoint.
1527  */
1528 void usb_hcd_flush_endpoint(struct usb_device *udev,
1529                 struct usb_host_endpoint *ep)
1530 {
1531         struct usb_hcd          *hcd;
1532         struct urb              *urb;
1533
1534         if (!ep)
1535                 return;
1536         might_sleep();
1537         hcd = bus_to_hcd(udev->bus);
1538
1539         /* No more submits can occur */
1540         spin_lock_irq(&hcd_urb_list_lock);
1541 rescan:
1542         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1543                 int     is_in;
1544
1545                 if (urb->unlinked)
1546                         continue;
1547                 usb_get_urb (urb);
1548                 is_in = usb_urb_dir_in(urb);
1549                 spin_unlock(&hcd_urb_list_lock);
1550
1551                 /* kick hcd */
1552                 unlink1(hcd, urb, -ESHUTDOWN);
1553                 dev_dbg (hcd->self.controller,
1554                         "shutdown urb %p ep%d%s%s\n",
1555                         urb, usb_endpoint_num(&ep->desc),
1556                         is_in ? "in" : "out",
1557                         ({      char *s;
1558
1559                                  switch (usb_endpoint_type(&ep->desc)) {
1560                                  case USB_ENDPOINT_XFER_CONTROL:
1561                                         s = ""; break;
1562                                  case USB_ENDPOINT_XFER_BULK:
1563                                         s = "-bulk"; break;
1564                                  case USB_ENDPOINT_XFER_INT:
1565                                         s = "-intr"; break;
1566                                  default:
1567                                         s = "-iso"; break;
1568                                 };
1569                                 s;
1570                         }));
1571                 usb_put_urb (urb);
1572
1573                 /* list contents may have changed */
1574                 spin_lock(&hcd_urb_list_lock);
1575                 goto rescan;
1576         }
1577         spin_unlock_irq(&hcd_urb_list_lock);
1578
1579         /* Wait until the endpoint queue is completely empty */
1580         while (!list_empty (&ep->urb_list)) {
1581                 spin_lock_irq(&hcd_urb_list_lock);
1582
1583                 /* The list may have changed while we acquired the spinlock */
1584                 urb = NULL;
1585                 if (!list_empty (&ep->urb_list)) {
1586                         urb = list_entry (ep->urb_list.prev, struct urb,
1587                                         urb_list);
1588                         usb_get_urb (urb);
1589                 }
1590                 spin_unlock_irq(&hcd_urb_list_lock);
1591
1592                 if (urb) {
1593                         usb_kill_urb (urb);
1594                         usb_put_urb (urb);
1595                 }
1596         }
1597 }
1598
1599 /**
1600  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1601  *                              the bus bandwidth
1602  * @udev: target &usb_device
1603  * @new_config: new configuration to install
1604  * @cur_alt: the current alternate interface setting
1605  * @new_alt: alternate interface setting that is being installed
1606  *
1607  * To change configurations, pass in the new configuration in new_config,
1608  * and pass NULL for cur_alt and new_alt.
1609  *
1610  * To reset a device's configuration (put the device in the ADDRESSED state),
1611  * pass in NULL for new_config, cur_alt, and new_alt.
1612  *
1613  * To change alternate interface settings, pass in NULL for new_config,
1614  * pass in the current alternate interface setting in cur_alt,
1615  * and pass in the new alternate interface setting in new_alt.
1616  *
1617  * Returns an error if the requested bandwidth change exceeds the
1618  * bus bandwidth or host controller internal resources.
1619  */
1620 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1621                 struct usb_host_config *new_config,
1622                 struct usb_host_interface *cur_alt,
1623                 struct usb_host_interface *new_alt)
1624 {
1625         int num_intfs, i, j;
1626         struct usb_host_interface *alt = NULL;
1627         int ret = 0;
1628         struct usb_hcd *hcd;
1629         struct usb_host_endpoint *ep;
1630
1631         hcd = bus_to_hcd(udev->bus);
1632         if (!hcd->driver->check_bandwidth)
1633                 return 0;
1634
1635         /* Configuration is being removed - set configuration 0 */
1636         if (!new_config && !cur_alt) {
1637                 for (i = 1; i < 16; ++i) {
1638                         ep = udev->ep_out[i];
1639                         if (ep)
1640                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1641                         ep = udev->ep_in[i];
1642                         if (ep)
1643                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1644                 }
1645                 hcd->driver->check_bandwidth(hcd, udev);
1646                 return 0;
1647         }
1648         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1649          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1650          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1651          * ok to exclude it.
1652          */
1653         if (new_config) {
1654                 num_intfs = new_config->desc.bNumInterfaces;
1655                 /* Remove endpoints (except endpoint 0, which is always on the
1656                  * schedule) from the old config from the schedule
1657                  */
1658                 for (i = 1; i < 16; ++i) {
1659                         ep = udev->ep_out[i];
1660                         if (ep) {
1661                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1662                                 if (ret < 0)
1663                                         goto reset;
1664                         }
1665                         ep = udev->ep_in[i];
1666                         if (ep) {
1667                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1668                                 if (ret < 0)
1669                                         goto reset;
1670                         }
1671                 }
1672                 for (i = 0; i < num_intfs; ++i) {
1673                         struct usb_host_interface *first_alt;
1674                         int iface_num;
1675
1676                         first_alt = &new_config->intf_cache[i]->altsetting[0];
1677                         iface_num = first_alt->desc.bInterfaceNumber;
1678                         /* Set up endpoints for alternate interface setting 0 */
1679                         alt = usb_find_alt_setting(new_config, iface_num, 0);
1680                         if (!alt)
1681                                 /* No alt setting 0? Pick the first setting. */
1682                                 alt = first_alt;
1683
1684                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1685                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1686                                 if (ret < 0)
1687                                         goto reset;
1688                         }
1689                 }
1690         }
1691         if (cur_alt && new_alt) {
1692                 struct usb_interface *iface = usb_ifnum_to_if(udev,
1693                                 cur_alt->desc.bInterfaceNumber);
1694
1695                 if (iface->resetting_device) {
1696                         /*
1697                          * The USB core just reset the device, so the xHCI host
1698                          * and the device will think alt setting 0 is installed.
1699                          * However, the USB core will pass in the alternate
1700                          * setting installed before the reset as cur_alt.  Dig
1701                          * out the alternate setting 0 structure, or the first
1702                          * alternate setting if a broken device doesn't have alt
1703                          * setting 0.
1704                          */
1705                         cur_alt = usb_altnum_to_altsetting(iface, 0);
1706                         if (!cur_alt)
1707                                 cur_alt = &iface->altsetting[0];
1708                 }
1709
1710                 /* Drop all the endpoints in the current alt setting */
1711                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1712                         ret = hcd->driver->drop_endpoint(hcd, udev,
1713                                         &cur_alt->endpoint[i]);
1714                         if (ret < 0)
1715                                 goto reset;
1716                 }
1717                 /* Add all the endpoints in the new alt setting */
1718                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1719                         ret = hcd->driver->add_endpoint(hcd, udev,
1720                                         &new_alt->endpoint[i]);
1721                         if (ret < 0)
1722                                 goto reset;
1723                 }
1724         }
1725         ret = hcd->driver->check_bandwidth(hcd, udev);
1726 reset:
1727         if (ret < 0)
1728                 hcd->driver->reset_bandwidth(hcd, udev);
1729         return ret;
1730 }
1731
1732 /* Disables the endpoint: synchronizes with the hcd to make sure all
1733  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1734  * have been called previously.  Use for set_configuration, set_interface,
1735  * driver removal, physical disconnect.
1736  *
1737  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1738  * type, maxpacket size, toggle, halt status, and scheduling.
1739  */
1740 void usb_hcd_disable_endpoint(struct usb_device *udev,
1741                 struct usb_host_endpoint *ep)
1742 {
1743         struct usb_hcd          *hcd;
1744
1745         might_sleep();
1746         hcd = bus_to_hcd(udev->bus);
1747         if (hcd->driver->endpoint_disable)
1748                 hcd->driver->endpoint_disable(hcd, ep);
1749 }
1750
1751 /**
1752  * usb_hcd_reset_endpoint - reset host endpoint state
1753  * @udev: USB device.
1754  * @ep:   the endpoint to reset.
1755  *
1756  * Resets any host endpoint state such as the toggle bit, sequence
1757  * number and current window.
1758  */
1759 void usb_hcd_reset_endpoint(struct usb_device *udev,
1760                             struct usb_host_endpoint *ep)
1761 {
1762         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1763
1764         if (hcd->driver->endpoint_reset)
1765                 hcd->driver->endpoint_reset(hcd, ep);
1766         else {
1767                 int epnum = usb_endpoint_num(&ep->desc);
1768                 int is_out = usb_endpoint_dir_out(&ep->desc);
1769                 int is_control = usb_endpoint_xfer_control(&ep->desc);
1770
1771                 usb_settoggle(udev, epnum, is_out, 0);
1772                 if (is_control)
1773                         usb_settoggle(udev, epnum, !is_out, 0);
1774         }
1775 }
1776
1777 /* Protect against drivers that try to unlink URBs after the device
1778  * is gone, by waiting until all unlinks for @udev are finished.
1779  * Since we don't currently track URBs by device, simply wait until
1780  * nothing is running in the locked region of usb_hcd_unlink_urb().
1781  */
1782 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1783 {
1784         spin_lock_irq(&hcd_urb_unlink_lock);
1785         spin_unlock_irq(&hcd_urb_unlink_lock);
1786 }
1787
1788 /*-------------------------------------------------------------------------*/
1789
1790 /* called in any context */
1791 int usb_hcd_get_frame_number (struct usb_device *udev)
1792 {
1793         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
1794
1795         if (!HC_IS_RUNNING (hcd->state))
1796                 return -ESHUTDOWN;
1797         return hcd->driver->get_frame_number (hcd);
1798 }
1799
1800 /*-------------------------------------------------------------------------*/
1801
1802 #ifdef  CONFIG_PM
1803
1804 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1805 {
1806         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1807         int             status;
1808         int             old_state = hcd->state;
1809
1810         dev_dbg(&rhdev->dev, "bus %s%s\n",
1811                         (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1812         if (!hcd->driver->bus_suspend) {
1813                 status = -ENOENT;
1814         } else {
1815                 hcd->state = HC_STATE_QUIESCING;
1816                 status = hcd->driver->bus_suspend(hcd);
1817         }
1818         if (status == 0) {
1819                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1820                 hcd->state = HC_STATE_SUSPENDED;
1821         } else {
1822                 hcd->state = old_state;
1823                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1824                                 "suspend", status);
1825         }
1826         return status;
1827 }
1828
1829 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1830 {
1831         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1832         int             status;
1833         int             old_state = hcd->state;
1834
1835         dev_dbg(&rhdev->dev, "usb %s%s\n",
1836                         (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1837         if (!hcd->driver->bus_resume)
1838                 return -ENOENT;
1839         if (hcd->state == HC_STATE_RUNNING)
1840                 return 0;
1841
1842         hcd->state = HC_STATE_RESUMING;
1843         status = hcd->driver->bus_resume(hcd);
1844         if (status == 0) {
1845                 /* TRSMRCY = 10 msec */
1846                 msleep(10);
1847                 usb_set_device_state(rhdev, rhdev->actconfig
1848                                 ? USB_STATE_CONFIGURED
1849                                 : USB_STATE_ADDRESS);
1850                 hcd->state = HC_STATE_RUNNING;
1851         } else {
1852                 hcd->state = old_state;
1853                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1854                                 "resume", status);
1855                 if (status != -ESHUTDOWN)
1856                         usb_hc_died(hcd);
1857         }
1858         return status;
1859 }
1860
1861 /* Workqueue routine for root-hub remote wakeup */
1862 static void hcd_resume_work(struct work_struct *work)
1863 {
1864         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1865         struct usb_device *udev = hcd->self.root_hub;
1866
1867         usb_lock_device(udev);
1868         usb_remote_wakeup(udev);
1869         usb_unlock_device(udev);
1870 }
1871
1872 /**
1873  * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
1874  * @hcd: host controller for this root hub
1875  *
1876  * The USB host controller calls this function when its root hub is
1877  * suspended (with the remote wakeup feature enabled) and a remote
1878  * wakeup request is received.  The routine submits a workqueue request
1879  * to resume the root hub (that is, manage its downstream ports again).
1880  */
1881 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1882 {
1883         unsigned long flags;
1884
1885         spin_lock_irqsave (&hcd_root_hub_lock, flags);
1886         if (hcd->rh_registered)
1887                 queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1888         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1889 }
1890 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1891
1892 #endif
1893
1894 /*-------------------------------------------------------------------------*/
1895
1896 #ifdef  CONFIG_USB_OTG
1897
1898 /**
1899  * usb_bus_start_enum - start immediate enumeration (for OTG)
1900  * @bus: the bus (must use hcd framework)
1901  * @port_num: 1-based number of port; usually bus->otg_port
1902  * Context: in_interrupt()
1903  *
1904  * Starts enumeration, with an immediate reset followed later by
1905  * khubd identifying and possibly configuring the device.
1906  * This is needed by OTG controller drivers, where it helps meet
1907  * HNP protocol timing requirements for starting a port reset.
1908  */
1909 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1910 {
1911         struct usb_hcd          *hcd;
1912         int                     status = -EOPNOTSUPP;
1913
1914         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1915          * boards with root hubs hooked up to internal devices (instead of
1916          * just the OTG port) may need more attention to resetting...
1917          */
1918         hcd = container_of (bus, struct usb_hcd, self);
1919         if (port_num && hcd->driver->start_port_reset)
1920                 status = hcd->driver->start_port_reset(hcd, port_num);
1921
1922         /* run khubd shortly after (first) root port reset finishes;
1923          * it may issue others, until at least 50 msecs have passed.
1924          */
1925         if (status == 0)
1926                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1927         return status;
1928 }
1929 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1930
1931 #endif
1932
1933 /*-------------------------------------------------------------------------*/
1934
1935 /**
1936  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1937  * @irq: the IRQ being raised
1938  * @__hcd: pointer to the HCD whose IRQ is being signaled
1939  *
1940  * If the controller isn't HALTed, calls the driver's irq handler.
1941  * Checks whether the controller is now dead.
1942  */
1943 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1944 {
1945         struct usb_hcd          *hcd = __hcd;
1946         unsigned long           flags;
1947         irqreturn_t             rc;
1948
1949         /* IRQF_DISABLED doesn't work correctly with shared IRQs
1950          * when the first handler doesn't use it.  So let's just
1951          * assume it's never used.
1952          */
1953         local_irq_save(flags);
1954
1955         if (unlikely(hcd->state == HC_STATE_HALT ||
1956                      !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1957                 rc = IRQ_NONE;
1958         } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1959                 rc = IRQ_NONE;
1960         } else {
1961                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1962
1963                 if (unlikely(hcd->state == HC_STATE_HALT))
1964                         usb_hc_died(hcd);
1965                 rc = IRQ_HANDLED;
1966         }
1967
1968         local_irq_restore(flags);
1969         return rc;
1970 }
1971
1972 /*-------------------------------------------------------------------------*/
1973
1974 /**
1975  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1976  * @hcd: pointer to the HCD representing the controller
1977  *
1978  * This is called by bus glue to report a USB host controller that died
1979  * while operations may still have been pending.  It's called automatically
1980  * by the PCI glue, so only glue for non-PCI busses should need to call it. 
1981  */
1982 void usb_hc_died (struct usb_hcd *hcd)
1983 {
1984         unsigned long flags;
1985
1986         dev_err (hcd->self.controller, "HC died; cleaning up\n");
1987
1988         spin_lock_irqsave (&hcd_root_hub_lock, flags);
1989         if (hcd->rh_registered) {
1990                 hcd->poll_rh = 0;
1991
1992                 /* make khubd clean up old urbs and devices */
1993                 usb_set_device_state (hcd->self.root_hub,
1994                                 USB_STATE_NOTATTACHED);
1995                 usb_kick_khubd (hcd->self.root_hub);
1996         }
1997         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1998 }
1999 EXPORT_SYMBOL_GPL (usb_hc_died);
2000
2001 /*-------------------------------------------------------------------------*/
2002
2003 /**
2004  * usb_create_hcd - create and initialize an HCD structure
2005  * @driver: HC driver that will use this hcd
2006  * @dev: device for this HC, stored in hcd->self.controller
2007  * @bus_name: value to store in hcd->self.bus_name
2008  * Context: !in_interrupt()
2009  *
2010  * Allocate a struct usb_hcd, with extra space at the end for the
2011  * HC driver's private data.  Initialize the generic members of the
2012  * hcd structure.
2013  *
2014  * If memory is unavailable, returns NULL.
2015  */
2016 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
2017                 struct device *dev, const char *bus_name)
2018 {
2019         struct usb_hcd *hcd;
2020
2021         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2022         if (!hcd) {
2023                 dev_dbg (dev, "hcd alloc failed\n");
2024                 return NULL;
2025         }
2026         dev_set_drvdata(dev, hcd);
2027         kref_init(&hcd->kref);
2028
2029         usb_bus_init(&hcd->self);
2030         hcd->self.controller = dev;
2031         hcd->self.bus_name = bus_name;
2032         hcd->self.uses_dma = (dev->dma_mask != NULL);
2033
2034         init_timer(&hcd->rh_timer);
2035         hcd->rh_timer.function = rh_timer_func;
2036         hcd->rh_timer.data = (unsigned long) hcd;
2037 #ifdef CONFIG_PM
2038         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2039 #endif
2040         mutex_init(&hcd->bandwidth_mutex);
2041
2042         hcd->driver = driver;
2043         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2044                         "USB Host Controller";
2045         return hcd;
2046 }
2047 EXPORT_SYMBOL_GPL(usb_create_hcd);
2048
2049 static void hcd_release (struct kref *kref)
2050 {
2051         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2052
2053         kfree(hcd);
2054 }
2055
2056 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2057 {
2058         if (hcd)
2059                 kref_get (&hcd->kref);
2060         return hcd;
2061 }
2062 EXPORT_SYMBOL_GPL(usb_get_hcd);
2063
2064 void usb_put_hcd (struct usb_hcd *hcd)
2065 {
2066         if (hcd)
2067                 kref_put (&hcd->kref, hcd_release);
2068 }
2069 EXPORT_SYMBOL_GPL(usb_put_hcd);
2070
2071 /**
2072  * usb_add_hcd - finish generic HCD structure initialization and register
2073  * @hcd: the usb_hcd structure to initialize
2074  * @irqnum: Interrupt line to allocate
2075  * @irqflags: Interrupt type flags
2076  *
2077  * Finish the remaining parts of generic HCD initialization: allocate the
2078  * buffers of consistent memory, register the bus, request the IRQ line,
2079  * and call the driver's reset() and start() routines.
2080  */
2081 int usb_add_hcd(struct usb_hcd *hcd,
2082                 unsigned int irqnum, unsigned long irqflags)
2083 {
2084         int retval;
2085         struct usb_device *rhdev;
2086
2087         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2088
2089         hcd->authorized_default = hcd->wireless? 0 : 1;
2090         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2091
2092         /* HC is in reset state, but accessible.  Now do the one-time init,
2093          * bottom up so that hcds can customize the root hubs before khubd
2094          * starts talking to them.  (Note, bus id is assigned early too.)
2095          */
2096         if ((retval = hcd_buffer_create(hcd)) != 0) {
2097                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2098                 return retval;
2099         }
2100
2101         if ((retval = usb_register_bus(&hcd->self)) < 0)
2102                 goto err_register_bus;
2103
2104         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2105                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2106                 retval = -ENOMEM;
2107                 goto err_allocate_root_hub;
2108         }
2109
2110         switch (hcd->driver->flags & HCD_MASK) {
2111         case HCD_USB11:
2112                 rhdev->speed = USB_SPEED_FULL;
2113                 break;
2114         case HCD_USB2:
2115                 rhdev->speed = USB_SPEED_HIGH;
2116                 break;
2117         case HCD_USB3:
2118                 rhdev->speed = USB_SPEED_SUPER;
2119                 break;
2120         default:
2121                 goto err_allocate_root_hub;
2122         }
2123         hcd->self.root_hub = rhdev;
2124
2125         /* wakeup flag init defaults to "everything works" for root hubs,
2126          * but drivers can override it in reset() if needed, along with
2127          * recording the overall controller's system wakeup capability.
2128          */
2129         device_init_wakeup(&rhdev->dev, 1);
2130
2131         /* "reset" is misnamed; its role is now one-time init. the controller
2132          * should already have been reset (and boot firmware kicked off etc).
2133          */
2134         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2135                 dev_err(hcd->self.controller, "can't setup\n");
2136                 goto err_hcd_driver_setup;
2137         }
2138
2139         /* NOTE: root hub and controller capabilities may not be the same */
2140         if (device_can_wakeup(hcd->self.controller)
2141                         && device_can_wakeup(&hcd->self.root_hub->dev))
2142                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2143
2144         /* enable irqs just before we start the controller */
2145         if (hcd->driver->irq) {
2146
2147                 /* IRQF_DISABLED doesn't work as advertised when used together
2148                  * with IRQF_SHARED. As usb_hcd_irq() will always disable
2149                  * interrupts we can remove it here.
2150                  */
2151                 if (irqflags & IRQF_SHARED)
2152                         irqflags &= ~IRQF_DISABLED;
2153
2154                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2155                                 hcd->driver->description, hcd->self.busnum);
2156                 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2157                                 hcd->irq_descr, hcd)) != 0) {
2158                         dev_err(hcd->self.controller,
2159                                         "request interrupt %d failed\n", irqnum);
2160                         goto err_request_irq;
2161                 }
2162                 hcd->irq = irqnum;
2163                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2164                                 (hcd->driver->flags & HCD_MEMORY) ?
2165                                         "io mem" : "io base",
2166                                         (unsigned long long)hcd->rsrc_start);
2167         } else {
2168                 hcd->irq = -1;
2169                 if (hcd->rsrc_start)
2170                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2171                                         (hcd->driver->flags & HCD_MEMORY) ?
2172                                         "io mem" : "io base",
2173                                         (unsigned long long)hcd->rsrc_start);
2174         }
2175
2176         if ((retval = hcd->driver->start(hcd)) < 0) {
2177                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2178                 goto err_hcd_driver_start;
2179         }
2180
2181         /* starting here, usbcore will pay attention to this root hub */
2182         rhdev->bus_mA = min(500u, hcd->power_budget);
2183         if ((retval = register_root_hub(hcd)) != 0)
2184                 goto err_register_root_hub;
2185
2186         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2187         if (retval < 0) {
2188                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2189                        retval);
2190                 goto error_create_attr_group;
2191         }
2192         if (hcd->uses_new_polling && hcd->poll_rh)
2193                 usb_hcd_poll_rh_status(hcd);
2194         return retval;
2195
2196 error_create_attr_group:
2197         mutex_lock(&usb_bus_list_lock);
2198         usb_disconnect(&hcd->self.root_hub);
2199         mutex_unlock(&usb_bus_list_lock);
2200 err_register_root_hub:
2201         hcd->driver->stop(hcd);
2202 err_hcd_driver_start:
2203         if (hcd->irq >= 0)
2204                 free_irq(irqnum, hcd);
2205 err_request_irq:
2206 err_hcd_driver_setup:
2207         hcd->self.root_hub = NULL;
2208         usb_put_dev(rhdev);
2209 err_allocate_root_hub:
2210         usb_deregister_bus(&hcd->self);
2211 err_register_bus:
2212         hcd_buffer_destroy(hcd);
2213         return retval;
2214
2215 EXPORT_SYMBOL_GPL(usb_add_hcd);
2216
2217 /**
2218  * usb_remove_hcd - shutdown processing for generic HCDs
2219  * @hcd: the usb_hcd structure to remove
2220  * Context: !in_interrupt()
2221  *
2222  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2223  * invoking the HCD's stop() method.
2224  */
2225 void usb_remove_hcd(struct usb_hcd *hcd)
2226 {
2227         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2228
2229         if (HC_IS_RUNNING (hcd->state))
2230                 hcd->state = HC_STATE_QUIESCING;
2231
2232         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2233         spin_lock_irq (&hcd_root_hub_lock);
2234         hcd->rh_registered = 0;
2235         spin_unlock_irq (&hcd_root_hub_lock);
2236
2237 #ifdef CONFIG_PM
2238         cancel_work_sync(&hcd->wakeup_work);
2239 #endif
2240
2241         sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
2242         mutex_lock(&usb_bus_list_lock);
2243         usb_disconnect(&hcd->self.root_hub);
2244         mutex_unlock(&usb_bus_list_lock);
2245
2246         hcd->driver->stop(hcd);
2247         hcd->state = HC_STATE_HALT;
2248
2249         hcd->poll_rh = 0;
2250         del_timer_sync(&hcd->rh_timer);
2251
2252         if (hcd->irq >= 0)
2253                 free_irq(hcd->irq, hcd);
2254         usb_deregister_bus(&hcd->self);
2255         hcd_buffer_destroy(hcd);
2256 }
2257 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2258
2259 void
2260 usb_hcd_platform_shutdown(struct platform_device* dev)
2261 {
2262         struct usb_hcd *hcd = platform_get_drvdata(dev);
2263
2264         if (hcd->driver->shutdown)
2265                 hcd->driver->shutdown(hcd);
2266 }
2267 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2268
2269 /*-------------------------------------------------------------------------*/
2270
2271 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2272
2273 struct usb_mon_operations *mon_ops;
2274
2275 /*
2276  * The registration is unlocked.
2277  * We do it this way because we do not want to lock in hot paths.
2278  *
2279  * Notice that the code is minimally error-proof. Because usbmon needs
2280  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2281  */
2282  
2283 int usb_mon_register (struct usb_mon_operations *ops)
2284 {
2285
2286         if (mon_ops)
2287                 return -EBUSY;
2288
2289         mon_ops = ops;
2290         mb();
2291         return 0;
2292 }
2293 EXPORT_SYMBOL_GPL (usb_mon_register);
2294
2295 void usb_mon_deregister (void)
2296 {
2297
2298         if (mon_ops == NULL) {
2299                 printk(KERN_ERR "USB: monitor was not registered\n");
2300                 return;
2301         }
2302         mon_ops = NULL;
2303         mb();
2304 }
2305 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2306
2307 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */