[PATCH] bogus asm/delay.h includes
[linux-2.6.git] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_device.h>
44 #include <asm/semaphore.h>
45
46 #include "aacraid.h"
47
48 /**
49  *      fib_map_alloc           -       allocate the fib objects
50  *      @dev: Adapter to allocate for
51  *
52  *      Allocate and map the shared PCI space for the FIB blocks used to
53  *      talk to the Adaptec firmware.
54  */
55  
56 static int fib_map_alloc(struct aac_dev *dev)
57 {
58         dprintk((KERN_INFO
59           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
60           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
61           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
62         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
63           * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
64           &dev->hw_fib_pa))==NULL)
65                 return -ENOMEM;
66         return 0;
67 }
68
69 /**
70  *      fib_map_free            -       free the fib objects
71  *      @dev: Adapter to free
72  *
73  *      Free the PCI mappings and the memory allocated for FIB blocks
74  *      on this adapter.
75  */
76
77 void fib_map_free(struct aac_dev *dev)
78 {
79         pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
80 }
81
82 /**
83  *      fib_setup       -       setup the fibs
84  *      @dev: Adapter to set up
85  *
86  *      Allocate the PCI space for the fibs, map it and then intialise the
87  *      fib area, the unmapped fib data and also the free list
88  */
89
90 int fib_setup(struct aac_dev * dev)
91 {
92         struct fib *fibptr;
93         struct hw_fib *hw_fib_va;
94         dma_addr_t hw_fib_pa;
95         int i;
96
97         while (((i = fib_map_alloc(dev)) == -ENOMEM)
98          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
99                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
100                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
101         }
102         if (i<0)
103                 return -ENOMEM;
104                 
105         hw_fib_va = dev->hw_fib_va;
106         hw_fib_pa = dev->hw_fib_pa;
107         memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
108         /*
109          *      Initialise the fibs
110          */
111         for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 
112         {
113                 fibptr->dev = dev;
114                 fibptr->hw_fib = hw_fib_va;
115                 fibptr->data = (void *) fibptr->hw_fib->data;
116                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
117                 init_MUTEX_LOCKED(&fibptr->event_wait);
118                 spin_lock_init(&fibptr->event_lock);
119                 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
120                 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
121                 fibptr->hw_fib_pa = hw_fib_pa;
122                 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
123                 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
124         }
125         /*
126          *      Add the fib chain to the free list
127          */
128         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
129         /*
130          *      Enable this to debug out of queue space
131          */
132         dev->free_fib = &dev->fibs[0];
133         return 0;
134 }
135
136 /**
137  *      fib_alloc       -       allocate a fib
138  *      @dev: Adapter to allocate the fib for
139  *
140  *      Allocate a fib from the adapter fib pool. If the pool is empty we
141  *      return NULL.
142  */
143  
144 struct fib * fib_alloc(struct aac_dev *dev)
145 {
146         struct fib * fibptr;
147         unsigned long flags;
148         spin_lock_irqsave(&dev->fib_lock, flags);
149         fibptr = dev->free_fib; 
150         if(!fibptr){
151                 spin_unlock_irqrestore(&dev->fib_lock, flags);
152                 return fibptr;
153         }
154         dev->free_fib = fibptr->next;
155         spin_unlock_irqrestore(&dev->fib_lock, flags);
156         /*
157          *      Set the proper node type code and node byte size
158          */
159         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
160         fibptr->size = sizeof(struct fib);
161         /*
162          *      Null out fields that depend on being zero at the start of
163          *      each I/O
164          */
165         fibptr->hw_fib->header.XferState = 0;
166         fibptr->callback = NULL;
167         fibptr->callback_data = NULL;
168
169         return fibptr;
170 }
171
172 /**
173  *      fib_free        -       free a fib
174  *      @fibptr: fib to free up
175  *
176  *      Frees up a fib and places it on the appropriate queue
177  *      (either free or timed out)
178  */
179  
180 void fib_free(struct fib * fibptr)
181 {
182         unsigned long flags;
183
184         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
185         if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
186                 aac_config.fib_timeouts++;
187                 fibptr->next = fibptr->dev->timeout_fib;
188                 fibptr->dev->timeout_fib = fibptr;
189         } else {
190                 if (fibptr->hw_fib->header.XferState != 0) {
191                         printk(KERN_WARNING "fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 
192                                  (void*)fibptr, 
193                                  le32_to_cpu(fibptr->hw_fib->header.XferState));
194                 }
195                 fibptr->next = fibptr->dev->free_fib;
196                 fibptr->dev->free_fib = fibptr;
197         }       
198         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
199 }
200
201 /**
202  *      fib_init        -       initialise a fib
203  *      @fibptr: The fib to initialize
204  *      
205  *      Set up the generic fib fields ready for use
206  */
207  
208 void fib_init(struct fib *fibptr)
209 {
210         struct hw_fib *hw_fib = fibptr->hw_fib;
211
212         hw_fib->header.StructType = FIB_MAGIC;
213         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
214         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
215         hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
216         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
217         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
218 }
219
220 /**
221  *      fib_deallocate          -       deallocate a fib
222  *      @fibptr: fib to deallocate
223  *
224  *      Will deallocate and return to the free pool the FIB pointed to by the
225  *      caller.
226  */
227  
228 static void fib_dealloc(struct fib * fibptr)
229 {
230         struct hw_fib *hw_fib = fibptr->hw_fib;
231         if(hw_fib->header.StructType != FIB_MAGIC) 
232                 BUG();
233         hw_fib->header.XferState = 0;        
234 }
235
236 /*
237  *      Commuication primitives define and support the queuing method we use to
238  *      support host to adapter commuication. All queue accesses happen through
239  *      these routines and are the only routines which have a knowledge of the
240  *       how these queues are implemented.
241  */
242  
243 /**
244  *      aac_get_entry           -       get a queue entry
245  *      @dev: Adapter
246  *      @qid: Queue Number
247  *      @entry: Entry return
248  *      @index: Index return
249  *      @nonotify: notification control
250  *
251  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
252  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
253  *      returned.
254  */
255  
256 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
257 {
258         struct aac_queue * q;
259         unsigned long idx;
260
261         /*
262          *      All of the queues wrap when they reach the end, so we check
263          *      to see if they have reached the end and if they have we just
264          *      set the index back to zero. This is a wrap. You could or off
265          *      the high bits in all updates but this is a bit faster I think.
266          */
267
268         q = &dev->queues->queue[qid];
269
270         idx = *index = le32_to_cpu(*(q->headers.producer));
271         /* Interrupt Moderation, only interrupt for first two entries */
272         if (idx != le32_to_cpu(*(q->headers.consumer))) {
273                 if (--idx == 0) {
274                         if (qid == AdapNormCmdQueue)
275                                 idx = ADAP_NORM_CMD_ENTRIES;
276                         else
277                                 idx = ADAP_NORM_RESP_ENTRIES;
278                 }
279                 if (idx != le32_to_cpu(*(q->headers.consumer)))
280                         *nonotify = 1; 
281         }
282
283         if (qid == AdapNormCmdQueue) {
284                 if (*index >= ADAP_NORM_CMD_ENTRIES) 
285                         *index = 0; /* Wrap to front of the Producer Queue. */
286         } else {
287                 if (*index >= ADAP_NORM_RESP_ENTRIES) 
288                         *index = 0; /* Wrap to front of the Producer Queue. */
289         }
290
291         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
292                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
293                                 qid, q->numpending);
294                 return 0;
295         } else {
296                 *entry = q->base + *index;
297                 return 1;
298         }
299 }   
300
301 /**
302  *      aac_queue_get           -       get the next free QE
303  *      @dev: Adapter
304  *      @index: Returned index
305  *      @priority: Priority of fib
306  *      @fib: Fib to associate with the queue entry
307  *      @wait: Wait if queue full
308  *      @fibptr: Driver fib object to go with fib
309  *      @nonotify: Don't notify the adapter
310  *
311  *      Gets the next free QE off the requested priorty adapter command
312  *      queue and associates the Fib with the QE. The QE represented by
313  *      index is ready to insert on the queue when this routine returns
314  *      success.
315  */
316
317 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
318 {
319         struct aac_entry * entry = NULL;
320         int map = 0;
321             
322         if (qid == AdapNormCmdQueue) {
323                 /*  if no entries wait for some if caller wants to */
324                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 
325                 {
326                         printk(KERN_ERR "GetEntries failed\n");
327                 }
328                 /*
329                  *      Setup queue entry with a command, status and fib mapped
330                  */
331                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
332                 map = 1;
333         } else {
334                 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 
335                 {
336                         /* if no entries wait for some if caller wants to */
337                 }
338                 /*
339                  *      Setup queue entry with command, status and fib mapped
340                  */
341                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
342                 entry->addr = hw_fib->header.SenderFibAddress;
343                         /* Restore adapters pointer to the FIB */
344                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
345                 map = 0;
346         }
347         /*
348          *      If MapFib is true than we need to map the Fib and put pointers
349          *      in the queue entry.
350          */
351         if (map)
352                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
353         return 0;
354 }
355
356 /*
357  *      Define the highest level of host to adapter communication routines. 
358  *      These routines will support host to adapter FS commuication. These 
359  *      routines have no knowledge of the commuication method used. This level
360  *      sends and receives FIBs. This level has no knowledge of how these FIBs
361  *      get passed back and forth.
362  */
363
364 /**
365  *      fib_send        -       send a fib to the adapter
366  *      @command: Command to send
367  *      @fibptr: The fib
368  *      @size: Size of fib data area
369  *      @priority: Priority of Fib
370  *      @wait: Async/sync select
371  *      @reply: True if a reply is wanted
372  *      @callback: Called with reply
373  *      @callback_data: Passed to callback
374  *
375  *      Sends the requested FIB to the adapter and optionally will wait for a
376  *      response FIB. If the caller does not wish to wait for a response than
377  *      an event to wait on must be supplied. This event will be set when a
378  *      response FIB is received from the adapter.
379  */
380  
381 int fib_send(u16 command, struct fib * fibptr, unsigned long size,  int priority, int wait, int reply, fib_callback callback, void * callback_data)
382 {
383         struct aac_dev * dev = fibptr->dev;
384         struct hw_fib * hw_fib = fibptr->hw_fib;
385         struct aac_queue * q;
386         unsigned long flags = 0;
387         unsigned long qflags;
388
389         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
390                 return -EBUSY;
391         /*
392          *      There are 5 cases with the wait and reponse requested flags. 
393          *      The only invalid cases are if the caller requests to wait and
394          *      does not request a response and if the caller does not want a
395          *      response and the Fib is not allocated from pool. If a response
396          *      is not requesed the Fib will just be deallocaed by the DPC
397          *      routine when the response comes back from the adapter. No
398          *      further processing will be done besides deleting the Fib. We 
399          *      will have a debug mode where the adapter can notify the host
400          *      it had a problem and the host can log that fact.
401          */
402         if (wait && !reply) {
403                 return -EINVAL;
404         } else if (!wait && reply) {
405                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
406                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
407         } else if (!wait && !reply) {
408                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
409                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
410         } else if (wait && reply) {
411                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
412                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
413         } 
414         /*
415          *      Map the fib into 32bits by using the fib number
416          */
417
418         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
419         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
420         /*
421          *      Set FIB state to indicate where it came from and if we want a
422          *      response from the adapter. Also load the command from the
423          *      caller.
424          *
425          *      Map the hw fib pointer as a 32bit value
426          */
427         hw_fib->header.Command = cpu_to_le16(command);
428         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
429         fibptr->hw_fib->header.Flags = 0;       /* 0 the flags field - internal only*/
430         /*
431          *      Set the size of the Fib we want to send to the adapter
432          */
433         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
434         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
435                 return -EMSGSIZE;
436         }                
437         /*
438          *      Get a queue entry connect the FIB to it and send an notify
439          *      the adapter a command is ready.
440          */
441         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
442
443         /*
444          *      Fill in the Callback and CallbackContext if we are not
445          *      going to wait.
446          */
447         if (!wait) {
448                 fibptr->callback = callback;
449                 fibptr->callback_data = callback_data;
450         }
451
452         fibptr->done = 0;
453         fibptr->flags = 0;
454
455         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
456
457         dprintk((KERN_DEBUG "Fib contents:.\n"));
458         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
459         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
460         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
461         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
462         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
463         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
464
465         q = &dev->queues->queue[AdapNormCmdQueue];
466
467         if(wait)
468                 spin_lock_irqsave(&fibptr->event_lock, flags);
469         spin_lock_irqsave(q->lock, qflags);
470         if (dev->new_comm_interface) {
471                 unsigned long count = 10000000L; /* 50 seconds */
472                 list_add_tail(&fibptr->queue, &q->pendingq);
473                 q->numpending++;
474                 spin_unlock_irqrestore(q->lock, qflags);
475                 while (aac_adapter_send(fibptr) != 0) {
476                         if (--count == 0) {
477                                 if (wait)
478                                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
479                                 spin_lock_irqsave(q->lock, qflags);
480                                 q->numpending--;
481                                 list_del(&fibptr->queue);
482                                 spin_unlock_irqrestore(q->lock, qflags);
483                                 return -ETIMEDOUT;
484                         }
485                         udelay(5);
486                 }
487         } else {
488                 u32 index;
489                 unsigned long nointr = 0;
490                 aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
491
492                 list_add_tail(&fibptr->queue, &q->pendingq);
493                 q->numpending++;
494                 *(q->headers.producer) = cpu_to_le32(index + 1);
495                 spin_unlock_irqrestore(q->lock, qflags);
496                 dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
497                 if (!(nointr & aac_config.irq_mod))
498                         aac_adapter_notify(dev, AdapNormCmdQueue);
499         }
500
501         /*
502          *      If the caller wanted us to wait for response wait now. 
503          */
504     
505         if (wait) {
506                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
507                 /* Only set for first known interruptable command */
508                 if (wait < 0) {
509                         /*
510                          * *VERY* Dangerous to time out a command, the
511                          * assumption is made that we have no hope of
512                          * functioning because an interrupt routing or other
513                          * hardware failure has occurred.
514                          */
515                         unsigned long count = 36000000L; /* 3 minutes */
516                         while (down_trylock(&fibptr->event_wait)) {
517                                 if (--count == 0) {
518                                         spin_lock_irqsave(q->lock, qflags);
519                                         q->numpending--;
520                                         list_del(&fibptr->queue);
521                                         spin_unlock_irqrestore(q->lock, qflags);
522                                         if (wait == -1) {
523                                                 printk(KERN_ERR "aacraid: fib_send: first asynchronous command timed out.\n"
524                                                   "Usually a result of a PCI interrupt routing problem;\n"
525                                                   "update mother board BIOS or consider utilizing one of\n"
526                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
527                                         }
528                                         return -ETIMEDOUT;
529                                 }
530                                 udelay(5);
531                         }
532                 } else
533                         down(&fibptr->event_wait);
534                 if(fibptr->done == 0)
535                         BUG();
536                         
537                 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
538                         return -ETIMEDOUT;
539                 } else {
540                         return 0;
541                 }
542         }
543         /*
544          *      If the user does not want a response than return success otherwise
545          *      return pending
546          */
547         if (reply)
548                 return -EINPROGRESS;
549         else
550                 return 0;
551 }
552
553 /** 
554  *      aac_consumer_get        -       get the top of the queue
555  *      @dev: Adapter
556  *      @q: Queue
557  *      @entry: Return entry
558  *
559  *      Will return a pointer to the entry on the top of the queue requested that
560  *      we are a consumer of, and return the address of the queue entry. It does
561  *      not change the state of the queue. 
562  */
563
564 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
565 {
566         u32 index;
567         int status;
568         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
569                 status = 0;
570         } else {
571                 /*
572                  *      The consumer index must be wrapped if we have reached
573                  *      the end of the queue, else we just use the entry
574                  *      pointed to by the header index
575                  */
576                 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 
577                         index = 0;              
578                 else
579                         index = le32_to_cpu(*q->headers.consumer);
580                 *entry = q->base + index;
581                 status = 1;
582         }
583         return(status);
584 }
585
586 /**
587  *      aac_consumer_free       -       free consumer entry
588  *      @dev: Adapter
589  *      @q: Queue
590  *      @qid: Queue ident
591  *
592  *      Frees up the current top of the queue we are a consumer of. If the
593  *      queue was full notify the producer that the queue is no longer full.
594  */
595
596 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
597 {
598         int wasfull = 0;
599         u32 notify;
600
601         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
602                 wasfull = 1;
603         
604         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
605                 *q->headers.consumer = cpu_to_le32(1);
606         else
607                 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
608         
609         if (wasfull) {
610                 switch (qid) {
611
612                 case HostNormCmdQueue:
613                         notify = HostNormCmdNotFull;
614                         break;
615                 case HostNormRespQueue:
616                         notify = HostNormRespNotFull;
617                         break;
618                 default:
619                         BUG();
620                         return;
621                 }
622                 aac_adapter_notify(dev, notify);
623         }
624 }        
625
626 /**
627  *      fib_adapter_complete    -       complete adapter issued fib
628  *      @fibptr: fib to complete
629  *      @size: size of fib
630  *
631  *      Will do all necessary work to complete a FIB that was sent from
632  *      the adapter.
633  */
634
635 int fib_adapter_complete(struct fib * fibptr, unsigned short size)
636 {
637         struct hw_fib * hw_fib = fibptr->hw_fib;
638         struct aac_dev * dev = fibptr->dev;
639         struct aac_queue * q;
640         unsigned long nointr = 0;
641         unsigned long qflags;
642
643         if (hw_fib->header.XferState == 0) {
644                 if (dev->new_comm_interface)
645                         kfree (hw_fib);
646                 return 0;
647         }
648         /*
649          *      If we plan to do anything check the structure type first.
650          */ 
651         if ( hw_fib->header.StructType != FIB_MAGIC ) {
652                 if (dev->new_comm_interface)
653                         kfree (hw_fib);
654                 return -EINVAL;
655         }
656         /*
657          *      This block handles the case where the adapter had sent us a
658          *      command and we have finished processing the command. We
659          *      call completeFib when we are done processing the command 
660          *      and want to send a response back to the adapter. This will 
661          *      send the completed cdb to the adapter.
662          */
663         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
664                 if (dev->new_comm_interface) {
665                         kfree (hw_fib);
666                 } else {
667                         u32 index;
668                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
669                         if (size) {
670                                 size += sizeof(struct aac_fibhdr);
671                                 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 
672                                         return -EMSGSIZE;
673                                 hw_fib->header.Size = cpu_to_le16(size);
674                         }
675                         q = &dev->queues->queue[AdapNormRespQueue];
676                         spin_lock_irqsave(q->lock, qflags);
677                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
678                         *(q->headers.producer) = cpu_to_le32(index + 1);
679                         spin_unlock_irqrestore(q->lock, qflags);
680                         if (!(nointr & (int)aac_config.irq_mod))
681                                 aac_adapter_notify(dev, AdapNormRespQueue);
682                 }
683         }
684         else 
685         {
686                 printk(KERN_WARNING "fib_adapter_complete: Unknown xferstate detected.\n");
687                 BUG();
688         }   
689         return 0;
690 }
691
692 /**
693  *      fib_complete    -       fib completion handler
694  *      @fib: FIB to complete
695  *
696  *      Will do all necessary work to complete a FIB.
697  */
698  
699 int fib_complete(struct fib * fibptr)
700 {
701         struct hw_fib * hw_fib = fibptr->hw_fib;
702
703         /*
704          *      Check for a fib which has already been completed
705          */
706
707         if (hw_fib->header.XferState == 0)
708                 return 0;
709         /*
710          *      If we plan to do anything check the structure type first.
711          */ 
712
713         if (hw_fib->header.StructType != FIB_MAGIC)
714                 return -EINVAL;
715         /*
716          *      This block completes a cdb which orginated on the host and we 
717          *      just need to deallocate the cdb or reinit it. At this point the
718          *      command is complete that we had sent to the adapter and this
719          *      cdb could be reused.
720          */
721         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
722                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
723         {
724                 fib_dealloc(fibptr);
725         }
726         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
727         {
728                 /*
729                  *      This handles the case when the host has aborted the I/O
730                  *      to the adapter because the adapter is not responding
731                  */
732                 fib_dealloc(fibptr);
733         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
734                 fib_dealloc(fibptr);
735         } else {
736                 BUG();
737         }   
738         return 0;
739 }
740
741 /**
742  *      aac_printf      -       handle printf from firmware
743  *      @dev: Adapter
744  *      @val: Message info
745  *
746  *      Print a message passed to us by the controller firmware on the
747  *      Adaptec board
748  */
749
750 void aac_printf(struct aac_dev *dev, u32 val)
751 {
752         char *cp = dev->printfbuf;
753         if (dev->printf_enabled)
754         {
755                 int length = val & 0xffff;
756                 int level = (val >> 16) & 0xffff;
757                 
758                 /*
759                  *      The size of the printfbuf is set in port.c
760                  *      There is no variable or define for it
761                  */
762                 if (length > 255)
763                         length = 255;
764                 if (cp[length] != 0)
765                         cp[length] = 0;
766                 if (level == LOG_AAC_HIGH_ERROR)
767                         printk(KERN_WARNING "aacraid:%s", cp);
768                 else
769                         printk(KERN_INFO "aacraid:%s", cp);
770         }
771         memset(cp, 0,  256);
772 }
773
774
775 /**
776  *      aac_handle_aif          -       Handle a message from the firmware
777  *      @dev: Which adapter this fib is from
778  *      @fibptr: Pointer to fibptr from adapter
779  *
780  *      This routine handles a driver notify fib from the adapter and
781  *      dispatches it to the appropriate routine for handling.
782  */
783
784 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
785 {
786         struct hw_fib * hw_fib = fibptr->hw_fib;
787         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
788         int busy;
789         u32 container;
790         struct scsi_device *device;
791         enum {
792                 NOTHING,
793                 DELETE,
794                 ADD,
795                 CHANGE
796         } device_config_needed;
797
798         /* Sniff for container changes */
799
800         if (!dev)
801                 return;
802         container = (u32)-1;
803
804         /*
805          *      We have set this up to try and minimize the number of
806          * re-configures that take place. As a result of this when
807          * certain AIF's come in we will set a flag waiting for another
808          * type of AIF before setting the re-config flag.
809          */
810         switch (le32_to_cpu(aifcmd->command)) {
811         case AifCmdDriverNotify:
812                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
813                 /*
814                  *      Morph or Expand complete
815                  */
816                 case AifDenMorphComplete:
817                 case AifDenVolumeExtendComplete:
818                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
819                         if (container >= dev->maximum_num_containers)
820                                 break;
821
822                         /*
823                          *      Find the scsi_device associated with the SCSI
824                          * address. Make sure we have the right array, and if
825                          * so set the flag to initiate a new re-config once we
826                          * see an AifEnConfigChange AIF come through.
827                          */
828
829                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
830                                 device = scsi_device_lookup(dev->scsi_host_ptr, 
831                                         CONTAINER_TO_CHANNEL(container), 
832                                         CONTAINER_TO_ID(container), 
833                                         CONTAINER_TO_LUN(container));
834                                 if (device) {
835                                         dev->fsa_dev[container].config_needed = CHANGE;
836                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
837                                         scsi_device_put(device);
838                                 }
839                         }
840                 }
841
842                 /*
843                  *      If we are waiting on something and this happens to be
844                  * that thing then set the re-configure flag.
845                  */
846                 if (container != (u32)-1) {
847                         if (container >= dev->maximum_num_containers)
848                                 break;
849                         if (dev->fsa_dev[container].config_waiting_on ==
850                             le32_to_cpu(*(u32 *)aifcmd->data))
851                                 dev->fsa_dev[container].config_waiting_on = 0;
852                 } else for (container = 0;
853                     container < dev->maximum_num_containers; ++container) {
854                         if (dev->fsa_dev[container].config_waiting_on ==
855                             le32_to_cpu(*(u32 *)aifcmd->data))
856                                 dev->fsa_dev[container].config_waiting_on = 0;
857                 }
858                 break;
859
860         case AifCmdEventNotify:
861                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
862                 /*
863                  *      Add an Array.
864                  */
865                 case AifEnAddContainer:
866                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
867                         if (container >= dev->maximum_num_containers)
868                                 break;
869                         dev->fsa_dev[container].config_needed = ADD;
870                         dev->fsa_dev[container].config_waiting_on =
871                                 AifEnConfigChange;
872                         break;
873
874                 /*
875                  *      Delete an Array.
876                  */
877                 case AifEnDeleteContainer:
878                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
879                         if (container >= dev->maximum_num_containers)
880                                 break;
881                         dev->fsa_dev[container].config_needed = DELETE;
882                         dev->fsa_dev[container].config_waiting_on =
883                                 AifEnConfigChange;
884                         break;
885
886                 /*
887                  *      Container change detected. If we currently are not
888                  * waiting on something else, setup to wait on a Config Change.
889                  */
890                 case AifEnContainerChange:
891                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
892                         if (container >= dev->maximum_num_containers)
893                                 break;
894                         if (dev->fsa_dev[container].config_waiting_on)
895                                 break;
896                         dev->fsa_dev[container].config_needed = CHANGE;
897                         dev->fsa_dev[container].config_waiting_on =
898                                 AifEnConfigChange;
899                         break;
900
901                 case AifEnConfigChange:
902                         break;
903
904                 }
905
906                 /*
907                  *      If we are waiting on something and this happens to be
908                  * that thing then set the re-configure flag.
909                  */
910                 if (container != (u32)-1) {
911                         if (container >= dev->maximum_num_containers)
912                                 break;
913                         if (dev->fsa_dev[container].config_waiting_on ==
914                             le32_to_cpu(*(u32 *)aifcmd->data))
915                                 dev->fsa_dev[container].config_waiting_on = 0;
916                 } else for (container = 0;
917                     container < dev->maximum_num_containers; ++container) {
918                         if (dev->fsa_dev[container].config_waiting_on ==
919                             le32_to_cpu(*(u32 *)aifcmd->data))
920                                 dev->fsa_dev[container].config_waiting_on = 0;
921                 }
922                 break;
923
924         case AifCmdJobProgress:
925                 /*
926                  *      These are job progress AIF's. When a Clear is being
927                  * done on a container it is initially created then hidden from
928                  * the OS. When the clear completes we don't get a config
929                  * change so we monitor the job status complete on a clear then
930                  * wait for a container change.
931                  */
932
933                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
934                  && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
935                   || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
936                         for (container = 0;
937                             container < dev->maximum_num_containers;
938                             ++container) {
939                                 /*
940                                  * Stomp on all config sequencing for all
941                                  * containers?
942                                  */
943                                 dev->fsa_dev[container].config_waiting_on =
944                                         AifEnContainerChange;
945                                 dev->fsa_dev[container].config_needed = ADD;
946                         }
947                 }
948                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
949                  && (((u32 *)aifcmd->data)[6] == 0)
950                  && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
951                         for (container = 0;
952                             container < dev->maximum_num_containers;
953                             ++container) {
954                                 /*
955                                  * Stomp on all config sequencing for all
956                                  * containers?
957                                  */
958                                 dev->fsa_dev[container].config_waiting_on =
959                                         AifEnContainerChange;
960                                 dev->fsa_dev[container].config_needed = DELETE;
961                         }
962                 }
963                 break;
964         }
965
966         device_config_needed = NOTHING;
967         for (container = 0; container < dev->maximum_num_containers;
968             ++container) {
969                 if ((dev->fsa_dev[container].config_waiting_on == 0)
970                  && (dev->fsa_dev[container].config_needed != NOTHING)) {
971                         device_config_needed =
972                                 dev->fsa_dev[container].config_needed;
973                         dev->fsa_dev[container].config_needed = NOTHING;
974                         break;
975                 }
976         }
977         if (device_config_needed == NOTHING)
978                 return;
979
980         /*
981          *      If we decided that a re-configuration needs to be done,
982          * schedule it here on the way out the door, please close the door
983          * behind you.
984          */
985
986         busy = 0;
987
988
989         /*
990          *      Find the scsi_device associated with the SCSI address,
991          * and mark it as changed, invalidating the cache. This deals
992          * with changes to existing device IDs.
993          */
994
995         if (!dev || !dev->scsi_host_ptr)
996                 return;
997         /*
998          * force reload of disk info via probe_container
999          */
1000         if ((device_config_needed == CHANGE)
1001          && (dev->fsa_dev[container].valid == 1))
1002                 dev->fsa_dev[container].valid = 2;
1003         if ((device_config_needed == CHANGE) ||
1004                         (device_config_needed == ADD))
1005                 probe_container(dev, container);
1006         device = scsi_device_lookup(dev->scsi_host_ptr, 
1007                 CONTAINER_TO_CHANNEL(container), 
1008                 CONTAINER_TO_ID(container), 
1009                 CONTAINER_TO_LUN(container));
1010         if (device) {
1011                 switch (device_config_needed) {
1012                 case DELETE:
1013                         scsi_remove_device(device);
1014                         break;
1015                 case CHANGE:
1016                         if (!dev->fsa_dev[container].valid) {
1017                                 scsi_remove_device(device);
1018                                 break;
1019                         }
1020                         scsi_rescan_device(&device->sdev_gendev);
1021
1022                 default:
1023                         break;
1024                 }
1025                 scsi_device_put(device);
1026         }
1027         if (device_config_needed == ADD) {
1028                 scsi_add_device(dev->scsi_host_ptr,
1029                   CONTAINER_TO_CHANNEL(container),
1030                   CONTAINER_TO_ID(container),
1031                   CONTAINER_TO_LUN(container));
1032         }
1033
1034 }
1035
1036 /**
1037  *      aac_command_thread      -       command processing thread
1038  *      @dev: Adapter to monitor
1039  *
1040  *      Waits on the commandready event in it's queue. When the event gets set
1041  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
1042  *      until the queue is empty. When the queue is empty it will wait for
1043  *      more FIBs.
1044  */
1045  
1046 int aac_command_thread(struct aac_dev * dev)
1047 {
1048         struct hw_fib *hw_fib, *hw_newfib;
1049         struct fib *fib, *newfib;
1050         struct aac_fib_context *fibctx;
1051         unsigned long flags;
1052         DECLARE_WAITQUEUE(wait, current);
1053
1054         /*
1055          *      We can only have one thread per adapter for AIF's.
1056          */
1057         if (dev->aif_thread)
1058                 return -EINVAL;
1059         /*
1060          *      Set up the name that will appear in 'ps'
1061          *      stored in  task_struct.comm[16].
1062          */
1063         daemonize("aacraid");
1064         allow_signal(SIGKILL);
1065         /*
1066          *      Let the DPC know it has a place to send the AIF's to.
1067          */
1068         dev->aif_thread = 1;
1069         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1070         set_current_state(TASK_INTERRUPTIBLE);
1071         dprintk ((KERN_INFO "aac_command_thread start\n"));
1072         while(1) 
1073         {
1074                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1075                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1076                         struct list_head *entry;
1077                         struct aac_aifcmd * aifcmd;
1078
1079                         set_current_state(TASK_RUNNING);
1080         
1081                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1082                         list_del(entry);
1083                 
1084                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1085                         fib = list_entry(entry, struct fib, fiblink);
1086                         /*
1087                          *      We will process the FIB here or pass it to a 
1088                          *      worker thread that is TBD. We Really can't 
1089                          *      do anything at this point since we don't have
1090                          *      anything defined for this thread to do.
1091                          */
1092                         hw_fib = fib->hw_fib;
1093                         memset(fib, 0, sizeof(struct fib));
1094                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1095                         fib->size = sizeof( struct fib );
1096                         fib->hw_fib = hw_fib;
1097                         fib->data = hw_fib->data;
1098                         fib->dev = dev;
1099                         /*
1100                          *      We only handle AifRequest fibs from the adapter.
1101                          */
1102                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
1103                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1104                                 /* Handle Driver Notify Events */
1105                                 aac_handle_aif(dev, fib);
1106                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1107                                 fib_adapter_complete(fib, (u16)sizeof(u32));
1108                         } else {
1109                                 struct list_head *entry;
1110                                 /* The u32 here is important and intended. We are using
1111                                    32bit wrapping time to fit the adapter field */
1112                                    
1113                                 u32 time_now, time_last;
1114                                 unsigned long flagv;
1115                                 unsigned num;
1116                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1117                                 struct fib ** fib_pool, ** fib_p;
1118                         
1119                                 /* Sniff events */
1120                                 if ((aifcmd->command == 
1121                                      cpu_to_le32(AifCmdEventNotify)) ||
1122                                     (aifcmd->command == 
1123                                      cpu_to_le32(AifCmdJobProgress))) {
1124                                         aac_handle_aif(dev, fib);
1125                                 }
1126                                 
1127                                 time_now = jiffies/HZ;
1128
1129                                 /*
1130                                  * Warning: no sleep allowed while
1131                                  * holding spinlock. We take the estimate
1132                                  * and pre-allocate a set of fibs outside the
1133                                  * lock.
1134                                  */
1135                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
1136                                     / sizeof(struct hw_fib); /* some extra */
1137                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1138                                 entry = dev->fib_list.next;
1139                                 while (entry != &dev->fib_list) {
1140                                         entry = entry->next;
1141                                         ++num;
1142                                 }
1143                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1144                                 hw_fib_pool = NULL;
1145                                 fib_pool = NULL;
1146                                 if (num
1147                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1148                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1149                                         hw_fib_p = hw_fib_pool;
1150                                         fib_p = fib_pool;
1151                                         while (hw_fib_p < &hw_fib_pool[num]) {
1152                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1153                                                         --hw_fib_p;
1154                                                         break;
1155                                                 }
1156                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1157                                                         kfree(*(--hw_fib_p));
1158                                                         break;
1159                                                 }
1160                                         }
1161                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
1162                                                 kfree(fib_pool);
1163                                                 fib_pool = NULL;
1164                                                 kfree(hw_fib_pool);
1165                                                 hw_fib_pool = NULL;
1166                                         }
1167                                 } else {
1168                                         kfree(hw_fib_pool);
1169                                         hw_fib_pool = NULL;
1170                                 }
1171                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1172                                 entry = dev->fib_list.next;
1173                                 /*
1174                                  * For each Context that is on the 
1175                                  * fibctxList, make a copy of the
1176                                  * fib, and then set the event to wake up the
1177                                  * thread that is waiting for it.
1178                                  */
1179                                 hw_fib_p = hw_fib_pool;
1180                                 fib_p = fib_pool;
1181                                 while (entry != &dev->fib_list) {
1182                                         /*
1183                                          * Extract the fibctx
1184                                          */
1185                                         fibctx = list_entry(entry, struct aac_fib_context, next);
1186                                         /*
1187                                          * Check if the queue is getting
1188                                          * backlogged
1189                                          */
1190                                         if (fibctx->count > 20)
1191                                         {
1192                                                 /*
1193                                                  * It's *not* jiffies folks,
1194                                                  * but jiffies / HZ so do not
1195                                                  * panic ...
1196                                                  */
1197                                                 time_last = fibctx->jiffies;
1198                                                 /*
1199                                                  * Has it been > 2 minutes 
1200                                                  * since the last read off
1201                                                  * the queue?
1202                                                  */
1203                                                 if ((time_now - time_last) > 120) {
1204                                                         entry = entry->next;
1205                                                         aac_close_fib_context(dev, fibctx);
1206                                                         continue;
1207                                                 }
1208                                         }
1209                                         /*
1210                                          * Warning: no sleep allowed while
1211                                          * holding spinlock
1212                                          */
1213                                         if (hw_fib_p < &hw_fib_pool[num]) {
1214                                                 hw_newfib = *hw_fib_p;
1215                                                 *(hw_fib_p++) = NULL;
1216                                                 newfib = *fib_p;
1217                                                 *(fib_p++) = NULL;
1218                                                 /*
1219                                                  * Make the copy of the FIB
1220                                                  */
1221                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1222                                                 memcpy(newfib, fib, sizeof(struct fib));
1223                                                 newfib->hw_fib = hw_newfib;
1224                                                 /*
1225                                                  * Put the FIB onto the
1226                                                  * fibctx's fibs
1227                                                  */
1228                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1229                                                 fibctx->count++;
1230                                                 /* 
1231                                                  * Set the event to wake up the
1232                                                  * thread that is waiting.
1233                                                  */
1234                                                 up(&fibctx->wait_sem);
1235                                         } else {
1236                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1237                                         }
1238                                         entry = entry->next;
1239                                 }
1240                                 /*
1241                                  *      Set the status of this FIB
1242                                  */
1243                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1244                                 fib_adapter_complete(fib, sizeof(u32));
1245                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1246                                 /* Free up the remaining resources */
1247                                 hw_fib_p = hw_fib_pool;
1248                                 fib_p = fib_pool;
1249                                 while (hw_fib_p < &hw_fib_pool[num]) {
1250                                         kfree(*hw_fib_p);
1251                                         kfree(*fib_p);
1252                                         ++fib_p;
1253                                         ++hw_fib_p;
1254                                 }
1255                                 kfree(hw_fib_pool);
1256                                 kfree(fib_pool);
1257                         }
1258                         kfree(fib);
1259                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1260                 }
1261                 /*
1262                  *      There are no more AIF's
1263                  */
1264                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1265                 schedule();
1266
1267                 if(signal_pending(current))
1268                         break;
1269                 set_current_state(TASK_INTERRUPTIBLE);
1270         }
1271         if (dev->queues)
1272                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1273         dev->aif_thread = 0;
1274         complete_and_exit(&dev->aif_completion, 0);
1275         return 0;
1276 }