c7bbe30010f70b3dc69542eb99fe14488cd31f45
[linux-2.6.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/delay.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/regulator/driver.h>
25 #include <linux/regulator/machine.h>
26
27 #include "dummy.h"
28
29 #define REGULATOR_VERSION "0.5"
30
31 static DEFINE_MUTEX(regulator_list_mutex);
32 static LIST_HEAD(regulator_list);
33 static LIST_HEAD(regulator_map_list);
34 static int has_full_constraints;
35
36 /*
37  * struct regulator_map
38  *
39  * Used to provide symbolic supply names to devices.
40  */
41 struct regulator_map {
42         struct list_head list;
43         const char *dev_name;   /* The dev_name() for the consumer */
44         const char *supply;
45         struct regulator_dev *regulator;
46 };
47
48 /*
49  * struct regulator
50  *
51  * One for each consumer device.
52  */
53 struct regulator {
54         struct device *dev;
55         struct list_head list;
56         int uA_load;
57         int min_uV;
58         int max_uV;
59         char *supply_name;
60         struct device_attribute dev_attr;
61         struct regulator_dev *rdev;
62 };
63
64 static int _regulator_is_enabled(struct regulator_dev *rdev);
65 static int _regulator_disable(struct regulator_dev *rdev);
66 static int _regulator_get_voltage(struct regulator_dev *rdev);
67 static int _regulator_get_current_limit(struct regulator_dev *rdev);
68 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
69 static void _notifier_call_chain(struct regulator_dev *rdev,
70                                   unsigned long event, void *data);
71
72 static const char *rdev_get_name(struct regulator_dev *rdev)
73 {
74         if (rdev->constraints && rdev->constraints->name)
75                 return rdev->constraints->name;
76         else if (rdev->desc->name)
77                 return rdev->desc->name;
78         else
79                 return "";
80 }
81
82 /* gets the regulator for a given consumer device */
83 static struct regulator *get_device_regulator(struct device *dev)
84 {
85         struct regulator *regulator = NULL;
86         struct regulator_dev *rdev;
87
88         mutex_lock(&regulator_list_mutex);
89         list_for_each_entry(rdev, &regulator_list, list) {
90                 mutex_lock(&rdev->mutex);
91                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
92                         if (regulator->dev == dev) {
93                                 mutex_unlock(&rdev->mutex);
94                                 mutex_unlock(&regulator_list_mutex);
95                                 return regulator;
96                         }
97                 }
98                 mutex_unlock(&rdev->mutex);
99         }
100         mutex_unlock(&regulator_list_mutex);
101         return NULL;
102 }
103
104 /* Platform voltage constraint check */
105 static int regulator_check_voltage(struct regulator_dev *rdev,
106                                    int *min_uV, int *max_uV)
107 {
108         BUG_ON(*min_uV > *max_uV);
109
110         if (!rdev->constraints) {
111                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
112                        rdev_get_name(rdev));
113                 return -ENODEV;
114         }
115         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
116                 printk(KERN_ERR "%s: operation not allowed for %s\n",
117                        __func__, rdev_get_name(rdev));
118                 return -EPERM;
119         }
120
121         if (*max_uV > rdev->constraints->max_uV)
122                 *max_uV = rdev->constraints->max_uV;
123         if (*min_uV < rdev->constraints->min_uV)
124                 *min_uV = rdev->constraints->min_uV;
125
126         if (*min_uV > *max_uV)
127                 return -EINVAL;
128
129         return 0;
130 }
131
132 /* current constraint check */
133 static int regulator_check_current_limit(struct regulator_dev *rdev,
134                                         int *min_uA, int *max_uA)
135 {
136         BUG_ON(*min_uA > *max_uA);
137
138         if (!rdev->constraints) {
139                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
140                        rdev_get_name(rdev));
141                 return -ENODEV;
142         }
143         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
144                 printk(KERN_ERR "%s: operation not allowed for %s\n",
145                        __func__, rdev_get_name(rdev));
146                 return -EPERM;
147         }
148
149         if (*max_uA > rdev->constraints->max_uA)
150                 *max_uA = rdev->constraints->max_uA;
151         if (*min_uA < rdev->constraints->min_uA)
152                 *min_uA = rdev->constraints->min_uA;
153
154         if (*min_uA > *max_uA)
155                 return -EINVAL;
156
157         return 0;
158 }
159
160 /* operating mode constraint check */
161 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
162 {
163         switch (mode) {
164         case REGULATOR_MODE_FAST:
165         case REGULATOR_MODE_NORMAL:
166         case REGULATOR_MODE_IDLE:
167         case REGULATOR_MODE_STANDBY:
168                 break;
169         default:
170                 return -EINVAL;
171         }
172
173         if (!rdev->constraints) {
174                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
175                        rdev_get_name(rdev));
176                 return -ENODEV;
177         }
178         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
179                 printk(KERN_ERR "%s: operation not allowed for %s\n",
180                        __func__, rdev_get_name(rdev));
181                 return -EPERM;
182         }
183         if (!(rdev->constraints->valid_modes_mask & mode)) {
184                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
185                        __func__, mode, rdev_get_name(rdev));
186                 return -EINVAL;
187         }
188         return 0;
189 }
190
191 /* dynamic regulator mode switching constraint check */
192 static int regulator_check_drms(struct regulator_dev *rdev)
193 {
194         if (!rdev->constraints) {
195                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
196                        rdev_get_name(rdev));
197                 return -ENODEV;
198         }
199         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
200                 printk(KERN_ERR "%s: operation not allowed for %s\n",
201                        __func__, rdev_get_name(rdev));
202                 return -EPERM;
203         }
204         return 0;
205 }
206
207 static ssize_t device_requested_uA_show(struct device *dev,
208                              struct device_attribute *attr, char *buf)
209 {
210         struct regulator *regulator;
211
212         regulator = get_device_regulator(dev);
213         if (regulator == NULL)
214                 return 0;
215
216         return sprintf(buf, "%d\n", regulator->uA_load);
217 }
218
219 static ssize_t regulator_uV_show(struct device *dev,
220                                 struct device_attribute *attr, char *buf)
221 {
222         struct regulator_dev *rdev = dev_get_drvdata(dev);
223         ssize_t ret;
224
225         mutex_lock(&rdev->mutex);
226         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
227         mutex_unlock(&rdev->mutex);
228
229         return ret;
230 }
231 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
232
233 static ssize_t regulator_uA_show(struct device *dev,
234                                 struct device_attribute *attr, char *buf)
235 {
236         struct regulator_dev *rdev = dev_get_drvdata(dev);
237
238         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
239 }
240 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
241
242 static ssize_t regulator_name_show(struct device *dev,
243                              struct device_attribute *attr, char *buf)
244 {
245         struct regulator_dev *rdev = dev_get_drvdata(dev);
246
247         return sprintf(buf, "%s\n", rdev_get_name(rdev));
248 }
249
250 static ssize_t regulator_print_opmode(char *buf, int mode)
251 {
252         switch (mode) {
253         case REGULATOR_MODE_FAST:
254                 return sprintf(buf, "fast\n");
255         case REGULATOR_MODE_NORMAL:
256                 return sprintf(buf, "normal\n");
257         case REGULATOR_MODE_IDLE:
258                 return sprintf(buf, "idle\n");
259         case REGULATOR_MODE_STANDBY:
260                 return sprintf(buf, "standby\n");
261         }
262         return sprintf(buf, "unknown\n");
263 }
264
265 static ssize_t regulator_opmode_show(struct device *dev,
266                                     struct device_attribute *attr, char *buf)
267 {
268         struct regulator_dev *rdev = dev_get_drvdata(dev);
269
270         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
271 }
272 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
273
274 static ssize_t regulator_print_state(char *buf, int state)
275 {
276         if (state > 0)
277                 return sprintf(buf, "enabled\n");
278         else if (state == 0)
279                 return sprintf(buf, "disabled\n");
280         else
281                 return sprintf(buf, "unknown\n");
282 }
283
284 static ssize_t regulator_state_show(struct device *dev,
285                                    struct device_attribute *attr, char *buf)
286 {
287         struct regulator_dev *rdev = dev_get_drvdata(dev);
288         ssize_t ret;
289
290         mutex_lock(&rdev->mutex);
291         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
292         mutex_unlock(&rdev->mutex);
293
294         return ret;
295 }
296 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
297
298 static ssize_t regulator_status_show(struct device *dev,
299                                    struct device_attribute *attr, char *buf)
300 {
301         struct regulator_dev *rdev = dev_get_drvdata(dev);
302         int status;
303         char *label;
304
305         status = rdev->desc->ops->get_status(rdev);
306         if (status < 0)
307                 return status;
308
309         switch (status) {
310         case REGULATOR_STATUS_OFF:
311                 label = "off";
312                 break;
313         case REGULATOR_STATUS_ON:
314                 label = "on";
315                 break;
316         case REGULATOR_STATUS_ERROR:
317                 label = "error";
318                 break;
319         case REGULATOR_STATUS_FAST:
320                 label = "fast";
321                 break;
322         case REGULATOR_STATUS_NORMAL:
323                 label = "normal";
324                 break;
325         case REGULATOR_STATUS_IDLE:
326                 label = "idle";
327                 break;
328         case REGULATOR_STATUS_STANDBY:
329                 label = "standby";
330                 break;
331         default:
332                 return -ERANGE;
333         }
334
335         return sprintf(buf, "%s\n", label);
336 }
337 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
338
339 static ssize_t regulator_min_uA_show(struct device *dev,
340                                     struct device_attribute *attr, char *buf)
341 {
342         struct regulator_dev *rdev = dev_get_drvdata(dev);
343
344         if (!rdev->constraints)
345                 return sprintf(buf, "constraint not defined\n");
346
347         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
348 }
349 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
350
351 static ssize_t regulator_max_uA_show(struct device *dev,
352                                     struct device_attribute *attr, char *buf)
353 {
354         struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356         if (!rdev->constraints)
357                 return sprintf(buf, "constraint not defined\n");
358
359         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
360 }
361 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
362
363 static ssize_t regulator_min_uV_show(struct device *dev,
364                                     struct device_attribute *attr, char *buf)
365 {
366         struct regulator_dev *rdev = dev_get_drvdata(dev);
367
368         if (!rdev->constraints)
369                 return sprintf(buf, "constraint not defined\n");
370
371         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
372 }
373 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
374
375 static ssize_t regulator_max_uV_show(struct device *dev,
376                                     struct device_attribute *attr, char *buf)
377 {
378         struct regulator_dev *rdev = dev_get_drvdata(dev);
379
380         if (!rdev->constraints)
381                 return sprintf(buf, "constraint not defined\n");
382
383         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
384 }
385 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
386
387 static ssize_t regulator_total_uA_show(struct device *dev,
388                                       struct device_attribute *attr, char *buf)
389 {
390         struct regulator_dev *rdev = dev_get_drvdata(dev);
391         struct regulator *regulator;
392         int uA = 0;
393
394         mutex_lock(&rdev->mutex);
395         list_for_each_entry(regulator, &rdev->consumer_list, list)
396                 uA += regulator->uA_load;
397         mutex_unlock(&rdev->mutex);
398         return sprintf(buf, "%d\n", uA);
399 }
400 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
401
402 static ssize_t regulator_num_users_show(struct device *dev,
403                                       struct device_attribute *attr, char *buf)
404 {
405         struct regulator_dev *rdev = dev_get_drvdata(dev);
406         return sprintf(buf, "%d\n", rdev->use_count);
407 }
408
409 static ssize_t regulator_type_show(struct device *dev,
410                                   struct device_attribute *attr, char *buf)
411 {
412         struct regulator_dev *rdev = dev_get_drvdata(dev);
413
414         switch (rdev->desc->type) {
415         case REGULATOR_VOLTAGE:
416                 return sprintf(buf, "voltage\n");
417         case REGULATOR_CURRENT:
418                 return sprintf(buf, "current\n");
419         }
420         return sprintf(buf, "unknown\n");
421 }
422
423 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
424                                 struct device_attribute *attr, char *buf)
425 {
426         struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
429 }
430 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
431                 regulator_suspend_mem_uV_show, NULL);
432
433 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
434                                 struct device_attribute *attr, char *buf)
435 {
436         struct regulator_dev *rdev = dev_get_drvdata(dev);
437
438         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
439 }
440 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
441                 regulator_suspend_disk_uV_show, NULL);
442
443 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
444                                 struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
449 }
450 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
451                 regulator_suspend_standby_uV_show, NULL);
452
453 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
454                                 struct device_attribute *attr, char *buf)
455 {
456         struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458         return regulator_print_opmode(buf,
459                 rdev->constraints->state_mem.mode);
460 }
461 static DEVICE_ATTR(suspend_mem_mode, 0444,
462                 regulator_suspend_mem_mode_show, NULL);
463
464 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
465                                 struct device_attribute *attr, char *buf)
466 {
467         struct regulator_dev *rdev = dev_get_drvdata(dev);
468
469         return regulator_print_opmode(buf,
470                 rdev->constraints->state_disk.mode);
471 }
472 static DEVICE_ATTR(suspend_disk_mode, 0444,
473                 regulator_suspend_disk_mode_show, NULL);
474
475 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
476                                 struct device_attribute *attr, char *buf)
477 {
478         struct regulator_dev *rdev = dev_get_drvdata(dev);
479
480         return regulator_print_opmode(buf,
481                 rdev->constraints->state_standby.mode);
482 }
483 static DEVICE_ATTR(suspend_standby_mode, 0444,
484                 regulator_suspend_standby_mode_show, NULL);
485
486 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
487                                    struct device_attribute *attr, char *buf)
488 {
489         struct regulator_dev *rdev = dev_get_drvdata(dev);
490
491         return regulator_print_state(buf,
492                         rdev->constraints->state_mem.enabled);
493 }
494 static DEVICE_ATTR(suspend_mem_state, 0444,
495                 regulator_suspend_mem_state_show, NULL);
496
497 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
498                                    struct device_attribute *attr, char *buf)
499 {
500         struct regulator_dev *rdev = dev_get_drvdata(dev);
501
502         return regulator_print_state(buf,
503                         rdev->constraints->state_disk.enabled);
504 }
505 static DEVICE_ATTR(suspend_disk_state, 0444,
506                 regulator_suspend_disk_state_show, NULL);
507
508 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
509                                    struct device_attribute *attr, char *buf)
510 {
511         struct regulator_dev *rdev = dev_get_drvdata(dev);
512
513         return regulator_print_state(buf,
514                         rdev->constraints->state_standby.enabled);
515 }
516 static DEVICE_ATTR(suspend_standby_state, 0444,
517                 regulator_suspend_standby_state_show, NULL);
518
519
520 /*
521  * These are the only attributes are present for all regulators.
522  * Other attributes are a function of regulator functionality.
523  */
524 static struct device_attribute regulator_dev_attrs[] = {
525         __ATTR(name, 0444, regulator_name_show, NULL),
526         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
527         __ATTR(type, 0444, regulator_type_show, NULL),
528         __ATTR_NULL,
529 };
530
531 static void regulator_dev_release(struct device *dev)
532 {
533         struct regulator_dev *rdev = dev_get_drvdata(dev);
534         kfree(rdev);
535 }
536
537 static struct class regulator_class = {
538         .name = "regulator",
539         .dev_release = regulator_dev_release,
540         .dev_attrs = regulator_dev_attrs,
541 };
542
543 /* Calculate the new optimum regulator operating mode based on the new total
544  * consumer load. All locks held by caller */
545 static void drms_uA_update(struct regulator_dev *rdev)
546 {
547         struct regulator *sibling;
548         int current_uA = 0, output_uV, input_uV, err;
549         unsigned int mode;
550
551         err = regulator_check_drms(rdev);
552         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
553             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
554                 return;
555
556         /* get output voltage */
557         output_uV = rdev->desc->ops->get_voltage(rdev);
558         if (output_uV <= 0)
559                 return;
560
561         /* get input voltage */
562         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
563                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
564         else
565                 input_uV = rdev->constraints->input_uV;
566         if (input_uV <= 0)
567                 return;
568
569         /* calc total requested load */
570         list_for_each_entry(sibling, &rdev->consumer_list, list)
571                 current_uA += sibling->uA_load;
572
573         /* now get the optimum mode for our new total regulator load */
574         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
575                                                   output_uV, current_uA);
576
577         /* check the new mode is allowed */
578         err = regulator_check_mode(rdev, mode);
579         if (err == 0)
580                 rdev->desc->ops->set_mode(rdev, mode);
581 }
582
583 static int suspend_set_state(struct regulator_dev *rdev,
584         struct regulator_state *rstate)
585 {
586         int ret = 0;
587         bool can_set_state;
588
589         can_set_state = rdev->desc->ops->set_suspend_enable &&
590                 rdev->desc->ops->set_suspend_disable;
591
592         /* If we have no suspend mode configration don't set anything;
593          * only warn if the driver actually makes the suspend mode
594          * configurable.
595          */
596         if (!rstate->enabled && !rstate->disabled) {
597                 if (can_set_state)
598                         printk(KERN_WARNING "%s: No configuration for %s\n",
599                                __func__, rdev_get_name(rdev));
600                 return 0;
601         }
602
603         if (rstate->enabled && rstate->disabled) {
604                 printk(KERN_ERR "%s: invalid configuration for %s\n",
605                        __func__, rdev_get_name(rdev));
606                 return -EINVAL;
607         }
608
609         if (!can_set_state) {
610                 printk(KERN_ERR "%s: no way to set suspend state\n",
611                         __func__);
612                 return -EINVAL;
613         }
614
615         if (rstate->enabled)
616                 ret = rdev->desc->ops->set_suspend_enable(rdev);
617         else
618                 ret = rdev->desc->ops->set_suspend_disable(rdev);
619         if (ret < 0) {
620                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
621                 return ret;
622         }
623
624         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
625                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
626                 if (ret < 0) {
627                         printk(KERN_ERR "%s: failed to set voltage\n",
628                                 __func__);
629                         return ret;
630                 }
631         }
632
633         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
634                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
635                 if (ret < 0) {
636                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
637                         return ret;
638                 }
639         }
640         return ret;
641 }
642
643 /* locks held by caller */
644 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
645 {
646         if (!rdev->constraints)
647                 return -EINVAL;
648
649         switch (state) {
650         case PM_SUSPEND_STANDBY:
651                 return suspend_set_state(rdev,
652                         &rdev->constraints->state_standby);
653         case PM_SUSPEND_MEM:
654                 return suspend_set_state(rdev,
655                         &rdev->constraints->state_mem);
656         case PM_SUSPEND_MAX:
657                 return suspend_set_state(rdev,
658                         &rdev->constraints->state_disk);
659         default:
660                 return -EINVAL;
661         }
662 }
663
664 static void print_constraints(struct regulator_dev *rdev)
665 {
666         struct regulation_constraints *constraints = rdev->constraints;
667         char buf[80] = "";
668         int count = 0;
669         int ret;
670
671         if (constraints->min_uV && constraints->max_uV) {
672                 if (constraints->min_uV == constraints->max_uV)
673                         count += sprintf(buf + count, "%d mV ",
674                                          constraints->min_uV / 1000);
675                 else
676                         count += sprintf(buf + count, "%d <--> %d mV ",
677                                          constraints->min_uV / 1000,
678                                          constraints->max_uV / 1000);
679         }
680
681         if (!constraints->min_uV ||
682             constraints->min_uV != constraints->max_uV) {
683                 ret = _regulator_get_voltage(rdev);
684                 if (ret > 0)
685                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
686         }
687
688         if (constraints->min_uA && constraints->max_uA) {
689                 if (constraints->min_uA == constraints->max_uA)
690                         count += sprintf(buf + count, "%d mA ",
691                                          constraints->min_uA / 1000);
692                 else
693                         count += sprintf(buf + count, "%d <--> %d mA ",
694                                          constraints->min_uA / 1000,
695                                          constraints->max_uA / 1000);
696         }
697
698         if (!constraints->min_uA ||
699             constraints->min_uA != constraints->max_uA) {
700                 ret = _regulator_get_current_limit(rdev);
701                 if (ret > 0)
702                         count += sprintf(buf + count, "at %d uA ", ret / 1000);
703         }
704
705         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
706                 count += sprintf(buf + count, "fast ");
707         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
708                 count += sprintf(buf + count, "normal ");
709         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
710                 count += sprintf(buf + count, "idle ");
711         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
712                 count += sprintf(buf + count, "standby");
713
714         printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
715 }
716
717 static int machine_constraints_voltage(struct regulator_dev *rdev,
718         struct regulation_constraints *constraints)
719 {
720         struct regulator_ops *ops = rdev->desc->ops;
721         const char *name = rdev_get_name(rdev);
722         int ret;
723
724         /* do we need to apply the constraint voltage */
725         if (rdev->constraints->apply_uV &&
726                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
727                 ops->set_voltage) {
728                 ret = ops->set_voltage(rdev,
729                         rdev->constraints->min_uV, rdev->constraints->max_uV);
730                         if (ret < 0) {
731                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
732                                        __func__,
733                                        rdev->constraints->min_uV, name);
734                                 rdev->constraints = NULL;
735                                 return ret;
736                         }
737         }
738
739         /* constrain machine-level voltage specs to fit
740          * the actual range supported by this regulator.
741          */
742         if (ops->list_voltage && rdev->desc->n_voltages) {
743                 int     count = rdev->desc->n_voltages;
744                 int     i;
745                 int     min_uV = INT_MAX;
746                 int     max_uV = INT_MIN;
747                 int     cmin = constraints->min_uV;
748                 int     cmax = constraints->max_uV;
749
750                 /* it's safe to autoconfigure fixed-voltage supplies
751                    and the constraints are used by list_voltage. */
752                 if (count == 1 && !cmin) {
753                         cmin = 1;
754                         cmax = INT_MAX;
755                         constraints->min_uV = cmin;
756                         constraints->max_uV = cmax;
757                 }
758
759                 /* voltage constraints are optional */
760                 if ((cmin == 0) && (cmax == 0))
761                         return 0;
762
763                 /* else require explicit machine-level constraints */
764                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
765                         pr_err("%s: %s '%s' voltage constraints\n",
766                                        __func__, "invalid", name);
767                         return -EINVAL;
768                 }
769
770                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
771                 for (i = 0; i < count; i++) {
772                         int     value;
773
774                         value = ops->list_voltage(rdev, i);
775                         if (value <= 0)
776                                 continue;
777
778                         /* maybe adjust [min_uV..max_uV] */
779                         if (value >= cmin && value < min_uV)
780                                 min_uV = value;
781                         if (value <= cmax && value > max_uV)
782                                 max_uV = value;
783                 }
784
785                 /* final: [min_uV..max_uV] valid iff constraints valid */
786                 if (max_uV < min_uV) {
787                         pr_err("%s: %s '%s' voltage constraints\n",
788                                        __func__, "unsupportable", name);
789                         return -EINVAL;
790                 }
791
792                 /* use regulator's subset of machine constraints */
793                 if (constraints->min_uV < min_uV) {
794                         pr_debug("%s: override '%s' %s, %d -> %d\n",
795                                        __func__, name, "min_uV",
796                                         constraints->min_uV, min_uV);
797                         constraints->min_uV = min_uV;
798                 }
799                 if (constraints->max_uV > max_uV) {
800                         pr_debug("%s: override '%s' %s, %d -> %d\n",
801                                        __func__, name, "max_uV",
802                                         constraints->max_uV, max_uV);
803                         constraints->max_uV = max_uV;
804                 }
805         }
806
807         return 0;
808 }
809
810 /**
811  * set_machine_constraints - sets regulator constraints
812  * @rdev: regulator source
813  * @constraints: constraints to apply
814  *
815  * Allows platform initialisation code to define and constrain
816  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
817  * Constraints *must* be set by platform code in order for some
818  * regulator operations to proceed i.e. set_voltage, set_current_limit,
819  * set_mode.
820  */
821 static int set_machine_constraints(struct regulator_dev *rdev,
822         struct regulation_constraints *constraints)
823 {
824         int ret = 0;
825         const char *name;
826         struct regulator_ops *ops = rdev->desc->ops;
827
828         rdev->constraints = constraints;
829
830         name = rdev_get_name(rdev);
831
832         ret = machine_constraints_voltage(rdev, constraints);
833         if (ret != 0)
834                 goto out;
835
836         /* do we need to setup our suspend state */
837         if (constraints->initial_state) {
838                 ret = suspend_prepare(rdev, constraints->initial_state);
839                 if (ret < 0) {
840                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
841                                __func__, name);
842                         rdev->constraints = NULL;
843                         goto out;
844                 }
845         }
846
847         if (constraints->initial_mode) {
848                 if (!ops->set_mode) {
849                         printk(KERN_ERR "%s: no set_mode operation for %s\n",
850                                __func__, name);
851                         ret = -EINVAL;
852                         goto out;
853                 }
854
855                 ret = ops->set_mode(rdev, constraints->initial_mode);
856                 if (ret < 0) {
857                         printk(KERN_ERR
858                                "%s: failed to set initial mode for %s: %d\n",
859                                __func__, name, ret);
860                         goto out;
861                 }
862         }
863
864         /* If the constraints say the regulator should be on at this point
865          * and we have control then make sure it is enabled.
866          */
867         if ((constraints->always_on || constraints->boot_on) && ops->enable) {
868                 ret = ops->enable(rdev);
869                 if (ret < 0) {
870                         printk(KERN_ERR "%s: failed to enable %s\n",
871                                __func__, name);
872                         rdev->constraints = NULL;
873                         goto out;
874                 }
875         }
876
877         print_constraints(rdev);
878 out:
879         return ret;
880 }
881
882 /**
883  * set_supply - set regulator supply regulator
884  * @rdev: regulator name
885  * @supply_rdev: supply regulator name
886  *
887  * Called by platform initialisation code to set the supply regulator for this
888  * regulator. This ensures that a regulators supply will also be enabled by the
889  * core if it's child is enabled.
890  */
891 static int set_supply(struct regulator_dev *rdev,
892         struct regulator_dev *supply_rdev)
893 {
894         int err;
895
896         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
897                                 "supply");
898         if (err) {
899                 printk(KERN_ERR
900                        "%s: could not add device link %s err %d\n",
901                        __func__, supply_rdev->dev.kobj.name, err);
902                        goto out;
903         }
904         rdev->supply = supply_rdev;
905         list_add(&rdev->slist, &supply_rdev->supply_list);
906 out:
907         return err;
908 }
909
910 /**
911  * set_consumer_device_supply: Bind a regulator to a symbolic supply
912  * @rdev:         regulator source
913  * @consumer_dev: device the supply applies to
914  * @consumer_dev_name: dev_name() string for device supply applies to
915  * @supply:       symbolic name for supply
916  *
917  * Allows platform initialisation code to map physical regulator
918  * sources to symbolic names for supplies for use by devices.  Devices
919  * should use these symbolic names to request regulators, avoiding the
920  * need to provide board-specific regulator names as platform data.
921  *
922  * Only one of consumer_dev and consumer_dev_name may be specified.
923  */
924 static int set_consumer_device_supply(struct regulator_dev *rdev,
925         struct device *consumer_dev, const char *consumer_dev_name,
926         const char *supply)
927 {
928         struct regulator_map *node;
929         int has_dev;
930
931         if (consumer_dev && consumer_dev_name)
932                 return -EINVAL;
933
934         if (!consumer_dev_name && consumer_dev)
935                 consumer_dev_name = dev_name(consumer_dev);
936
937         if (supply == NULL)
938                 return -EINVAL;
939
940         if (consumer_dev_name != NULL)
941                 has_dev = 1;
942         else
943                 has_dev = 0;
944
945         list_for_each_entry(node, &regulator_map_list, list) {
946                 if (consumer_dev_name != node->dev_name)
947                         continue;
948                 if (strcmp(node->supply, supply) != 0)
949                         continue;
950
951                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
952                                 dev_name(&node->regulator->dev),
953                                 node->regulator->desc->name,
954                                 supply,
955                                 dev_name(&rdev->dev), rdev_get_name(rdev));
956                 return -EBUSY;
957         }
958
959         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
960         if (node == NULL)
961                 return -ENOMEM;
962
963         node->regulator = rdev;
964         node->supply = supply;
965
966         if (has_dev) {
967                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
968                 if (node->dev_name == NULL) {
969                         kfree(node);
970                         return -ENOMEM;
971                 }
972         }
973
974         list_add(&node->list, &regulator_map_list);
975         return 0;
976 }
977
978 static void unset_consumer_device_supply(struct regulator_dev *rdev,
979         const char *consumer_dev_name, struct device *consumer_dev)
980 {
981         struct regulator_map *node, *n;
982
983         if (consumer_dev && !consumer_dev_name)
984                 consumer_dev_name = dev_name(consumer_dev);
985
986         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
987                 if (rdev != node->regulator)
988                         continue;
989
990                 if (consumer_dev_name && node->dev_name &&
991                     strcmp(consumer_dev_name, node->dev_name))
992                         continue;
993
994                 list_del(&node->list);
995                 kfree(node->dev_name);
996                 kfree(node);
997                 return;
998         }
999 }
1000
1001 static void unset_regulator_supplies(struct regulator_dev *rdev)
1002 {
1003         struct regulator_map *node, *n;
1004
1005         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1006                 if (rdev == node->regulator) {
1007                         list_del(&node->list);
1008                         kfree(node->dev_name);
1009                         kfree(node);
1010                         return;
1011                 }
1012         }
1013 }
1014
1015 #define REG_STR_SIZE    32
1016
1017 static struct regulator *create_regulator(struct regulator_dev *rdev,
1018                                           struct device *dev,
1019                                           const char *supply_name)
1020 {
1021         struct regulator *regulator;
1022         char buf[REG_STR_SIZE];
1023         int err, size;
1024
1025         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1026         if (regulator == NULL)
1027                 return NULL;
1028
1029         mutex_lock(&rdev->mutex);
1030         regulator->rdev = rdev;
1031         list_add(&regulator->list, &rdev->consumer_list);
1032
1033         if (dev) {
1034                 /* create a 'requested_microamps_name' sysfs entry */
1035                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1036                         supply_name);
1037                 if (size >= REG_STR_SIZE)
1038                         goto overflow_err;
1039
1040                 regulator->dev = dev;
1041                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1042                 if (regulator->dev_attr.attr.name == NULL)
1043                         goto attr_name_err;
1044
1045                 regulator->dev_attr.attr.owner = THIS_MODULE;
1046                 regulator->dev_attr.attr.mode = 0444;
1047                 regulator->dev_attr.show = device_requested_uA_show;
1048                 err = device_create_file(dev, &regulator->dev_attr);
1049                 if (err < 0) {
1050                         printk(KERN_WARNING "%s: could not add regulator_dev"
1051                                 " load sysfs\n", __func__);
1052                         goto attr_name_err;
1053                 }
1054
1055                 /* also add a link to the device sysfs entry */
1056                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1057                                  dev->kobj.name, supply_name);
1058                 if (size >= REG_STR_SIZE)
1059                         goto attr_err;
1060
1061                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1062                 if (regulator->supply_name == NULL)
1063                         goto attr_err;
1064
1065                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1066                                         buf);
1067                 if (err) {
1068                         printk(KERN_WARNING
1069                                "%s: could not add device link %s err %d\n",
1070                                __func__, dev->kobj.name, err);
1071                         device_remove_file(dev, &regulator->dev_attr);
1072                         goto link_name_err;
1073                 }
1074         }
1075         mutex_unlock(&rdev->mutex);
1076         return regulator;
1077 link_name_err:
1078         kfree(regulator->supply_name);
1079 attr_err:
1080         device_remove_file(regulator->dev, &regulator->dev_attr);
1081 attr_name_err:
1082         kfree(regulator->dev_attr.attr.name);
1083 overflow_err:
1084         list_del(&regulator->list);
1085         kfree(regulator);
1086         mutex_unlock(&rdev->mutex);
1087         return NULL;
1088 }
1089
1090 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1091 {
1092         if (!rdev->desc->ops->enable_time)
1093                 return 0;
1094         return rdev->desc->ops->enable_time(rdev);
1095 }
1096
1097 /* Internal regulator request function */
1098 static struct regulator *_regulator_get(struct device *dev, const char *id,
1099                                         int exclusive)
1100 {
1101         struct regulator_dev *rdev;
1102         struct regulator_map *map;
1103         struct regulator *regulator = ERR_PTR(-ENODEV);
1104         const char *devname = NULL;
1105         int ret;
1106
1107         if (id == NULL) {
1108                 printk(KERN_ERR "regulator: get() with no identifier\n");
1109                 return regulator;
1110         }
1111
1112         if (dev)
1113                 devname = dev_name(dev);
1114
1115         mutex_lock(&regulator_list_mutex);
1116
1117         list_for_each_entry(map, &regulator_map_list, list) {
1118                 /* If the mapping has a device set up it must match */
1119                 if (map->dev_name &&
1120                     (!devname || strcmp(map->dev_name, devname)))
1121                         continue;
1122
1123                 if (strcmp(map->supply, id) == 0) {
1124                         rdev = map->regulator;
1125                         goto found;
1126                 }
1127         }
1128
1129 #ifdef CONFIG_REGULATOR_DUMMY
1130         if (!devname)
1131                 devname = "deviceless";
1132
1133         /* If the board didn't flag that it was fully constrained then
1134          * substitute in a dummy regulator so consumers can continue.
1135          */
1136         if (!has_full_constraints) {
1137                 pr_warning("%s supply %s not found, using dummy regulator\n",
1138                            devname, id);
1139                 rdev = dummy_regulator_rdev;
1140                 goto found;
1141         }
1142 #endif
1143
1144         mutex_unlock(&regulator_list_mutex);
1145         return regulator;
1146
1147 found:
1148         if (rdev->exclusive) {
1149                 regulator = ERR_PTR(-EPERM);
1150                 goto out;
1151         }
1152
1153         if (exclusive && rdev->open_count) {
1154                 regulator = ERR_PTR(-EBUSY);
1155                 goto out;
1156         }
1157
1158         if (!try_module_get(rdev->owner))
1159                 goto out;
1160
1161         regulator = create_regulator(rdev, dev, id);
1162         if (regulator == NULL) {
1163                 regulator = ERR_PTR(-ENOMEM);
1164                 module_put(rdev->owner);
1165         }
1166
1167         rdev->open_count++;
1168         if (exclusive) {
1169                 rdev->exclusive = 1;
1170
1171                 ret = _regulator_is_enabled(rdev);
1172                 if (ret > 0)
1173                         rdev->use_count = 1;
1174                 else
1175                         rdev->use_count = 0;
1176         }
1177
1178 out:
1179         mutex_unlock(&regulator_list_mutex);
1180
1181         return regulator;
1182 }
1183
1184 /**
1185  * regulator_get - lookup and obtain a reference to a regulator.
1186  * @dev: device for regulator "consumer"
1187  * @id: Supply name or regulator ID.
1188  *
1189  * Returns a struct regulator corresponding to the regulator producer,
1190  * or IS_ERR() condition containing errno.
1191  *
1192  * Use of supply names configured via regulator_set_device_supply() is
1193  * strongly encouraged.  It is recommended that the supply name used
1194  * should match the name used for the supply and/or the relevant
1195  * device pins in the datasheet.
1196  */
1197 struct regulator *regulator_get(struct device *dev, const char *id)
1198 {
1199         return _regulator_get(dev, id, 0);
1200 }
1201 EXPORT_SYMBOL_GPL(regulator_get);
1202
1203 /**
1204  * regulator_get_exclusive - obtain exclusive access to a regulator.
1205  * @dev: device for regulator "consumer"
1206  * @id: Supply name or regulator ID.
1207  *
1208  * Returns a struct regulator corresponding to the regulator producer,
1209  * or IS_ERR() condition containing errno.  Other consumers will be
1210  * unable to obtain this reference is held and the use count for the
1211  * regulator will be initialised to reflect the current state of the
1212  * regulator.
1213  *
1214  * This is intended for use by consumers which cannot tolerate shared
1215  * use of the regulator such as those which need to force the
1216  * regulator off for correct operation of the hardware they are
1217  * controlling.
1218  *
1219  * Use of supply names configured via regulator_set_device_supply() is
1220  * strongly encouraged.  It is recommended that the supply name used
1221  * should match the name used for the supply and/or the relevant
1222  * device pins in the datasheet.
1223  */
1224 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1225 {
1226         return _regulator_get(dev, id, 1);
1227 }
1228 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1229
1230 /**
1231  * regulator_put - "free" the regulator source
1232  * @regulator: regulator source
1233  *
1234  * Note: drivers must ensure that all regulator_enable calls made on this
1235  * regulator source are balanced by regulator_disable calls prior to calling
1236  * this function.
1237  */
1238 void regulator_put(struct regulator *regulator)
1239 {
1240         struct regulator_dev *rdev;
1241
1242         if (regulator == NULL || IS_ERR(regulator))
1243                 return;
1244
1245         mutex_lock(&regulator_list_mutex);
1246         rdev = regulator->rdev;
1247
1248         /* remove any sysfs entries */
1249         if (regulator->dev) {
1250                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1251                 kfree(regulator->supply_name);
1252                 device_remove_file(regulator->dev, &regulator->dev_attr);
1253                 kfree(regulator->dev_attr.attr.name);
1254         }
1255         list_del(&regulator->list);
1256         kfree(regulator);
1257
1258         rdev->open_count--;
1259         rdev->exclusive = 0;
1260
1261         module_put(rdev->owner);
1262         mutex_unlock(&regulator_list_mutex);
1263 }
1264 EXPORT_SYMBOL_GPL(regulator_put);
1265
1266 static int _regulator_can_change_status(struct regulator_dev *rdev)
1267 {
1268         if (!rdev->constraints)
1269                 return 0;
1270
1271         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1272                 return 1;
1273         else
1274                 return 0;
1275 }
1276
1277 /* locks held by regulator_enable() */
1278 static int _regulator_enable(struct regulator_dev *rdev)
1279 {
1280         int ret, delay;
1281
1282         /* do we need to enable the supply regulator first */
1283         if (rdev->supply) {
1284                 ret = _regulator_enable(rdev->supply);
1285                 if (ret < 0) {
1286                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1287                                __func__, rdev_get_name(rdev), ret);
1288                         return ret;
1289                 }
1290         }
1291
1292         /* check voltage and requested load before enabling */
1293         if (rdev->constraints &&
1294             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1295                 drms_uA_update(rdev);
1296
1297         if (rdev->use_count == 0) {
1298                 /* The regulator may on if it's not switchable or left on */
1299                 ret = _regulator_is_enabled(rdev);
1300                 if (ret == -EINVAL || ret == 0) {
1301                         if (!_regulator_can_change_status(rdev))
1302                                 return -EPERM;
1303
1304                         if (!rdev->desc->ops->enable)
1305                                 return -EINVAL;
1306
1307                         /* Query before enabling in case configuration
1308                          * dependant.  */
1309                         ret = _regulator_get_enable_time(rdev);
1310                         if (ret >= 0) {
1311                                 delay = ret;
1312                         } else {
1313                                 printk(KERN_WARNING
1314                                         "%s: enable_time() failed for %s: %d\n",
1315                                         __func__, rdev_get_name(rdev),
1316                                         ret);
1317                                 delay = 0;
1318                         }
1319
1320                         /* Allow the regulator to ramp; it would be useful
1321                          * to extend this for bulk operations so that the
1322                          * regulators can ramp together.  */
1323                         ret = rdev->desc->ops->enable(rdev);
1324                         if (ret < 0)
1325                                 return ret;
1326
1327                         if (delay >= 1000)
1328                                 mdelay(delay / 1000);
1329                         else if (delay)
1330                                 udelay(delay);
1331
1332                 } else if (ret < 0) {
1333                         printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1334                                __func__, rdev_get_name(rdev), ret);
1335                         return ret;
1336                 }
1337                 /* Fallthrough on positive return values - already enabled */
1338         }
1339
1340         rdev->use_count++;
1341
1342         return 0;
1343 }
1344
1345 /**
1346  * regulator_enable - enable regulator output
1347  * @regulator: regulator source
1348  *
1349  * Request that the regulator be enabled with the regulator output at
1350  * the predefined voltage or current value.  Calls to regulator_enable()
1351  * must be balanced with calls to regulator_disable().
1352  *
1353  * NOTE: the output value can be set by other drivers, boot loader or may be
1354  * hardwired in the regulator.
1355  */
1356 int regulator_enable(struct regulator *regulator)
1357 {
1358         struct regulator_dev *rdev = regulator->rdev;
1359         int ret = 0;
1360
1361         mutex_lock(&rdev->mutex);
1362         ret = _regulator_enable(rdev);
1363         mutex_unlock(&rdev->mutex);
1364         return ret;
1365 }
1366 EXPORT_SYMBOL_GPL(regulator_enable);
1367
1368 /* locks held by regulator_disable() */
1369 static int _regulator_disable(struct regulator_dev *rdev)
1370 {
1371         int ret = 0;
1372
1373         if (WARN(rdev->use_count <= 0,
1374                         "unbalanced disables for %s\n",
1375                         rdev_get_name(rdev)))
1376                 return -EIO;
1377
1378         /* are we the last user and permitted to disable ? */
1379         if (rdev->use_count == 1 &&
1380             (rdev->constraints && !rdev->constraints->always_on)) {
1381
1382                 /* we are last user */
1383                 if (_regulator_can_change_status(rdev) &&
1384                     rdev->desc->ops->disable) {
1385                         ret = rdev->desc->ops->disable(rdev);
1386                         if (ret < 0) {
1387                                 printk(KERN_ERR "%s: failed to disable %s\n",
1388                                        __func__, rdev_get_name(rdev));
1389                                 return ret;
1390                         }
1391
1392                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1393                                              NULL);
1394                 }
1395
1396                 /* decrease our supplies ref count and disable if required */
1397                 if (rdev->supply)
1398                         _regulator_disable(rdev->supply);
1399
1400                 rdev->use_count = 0;
1401         } else if (rdev->use_count > 1) {
1402
1403                 if (rdev->constraints &&
1404                         (rdev->constraints->valid_ops_mask &
1405                         REGULATOR_CHANGE_DRMS))
1406                         drms_uA_update(rdev);
1407
1408                 rdev->use_count--;
1409         }
1410         return ret;
1411 }
1412
1413 /**
1414  * regulator_disable - disable regulator output
1415  * @regulator: regulator source
1416  *
1417  * Disable the regulator output voltage or current.  Calls to
1418  * regulator_enable() must be balanced with calls to
1419  * regulator_disable().
1420  *
1421  * NOTE: this will only disable the regulator output if no other consumer
1422  * devices have it enabled, the regulator device supports disabling and
1423  * machine constraints permit this operation.
1424  */
1425 int regulator_disable(struct regulator *regulator)
1426 {
1427         struct regulator_dev *rdev = regulator->rdev;
1428         int ret = 0;
1429
1430         mutex_lock(&rdev->mutex);
1431         ret = _regulator_disable(rdev);
1432         mutex_unlock(&rdev->mutex);
1433         return ret;
1434 }
1435 EXPORT_SYMBOL_GPL(regulator_disable);
1436
1437 /* locks held by regulator_force_disable() */
1438 static int _regulator_force_disable(struct regulator_dev *rdev)
1439 {
1440         int ret = 0;
1441
1442         /* force disable */
1443         if (rdev->desc->ops->disable) {
1444                 /* ah well, who wants to live forever... */
1445                 ret = rdev->desc->ops->disable(rdev);
1446                 if (ret < 0) {
1447                         printk(KERN_ERR "%s: failed to force disable %s\n",
1448                                __func__, rdev_get_name(rdev));
1449                         return ret;
1450                 }
1451                 /* notify other consumers that power has been forced off */
1452                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1453                         REGULATOR_EVENT_DISABLE, NULL);
1454         }
1455
1456         /* decrease our supplies ref count and disable if required */
1457         if (rdev->supply)
1458                 _regulator_disable(rdev->supply);
1459
1460         rdev->use_count = 0;
1461         return ret;
1462 }
1463
1464 /**
1465  * regulator_force_disable - force disable regulator output
1466  * @regulator: regulator source
1467  *
1468  * Forcibly disable the regulator output voltage or current.
1469  * NOTE: this *will* disable the regulator output even if other consumer
1470  * devices have it enabled. This should be used for situations when device
1471  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1472  */
1473 int regulator_force_disable(struct regulator *regulator)
1474 {
1475         int ret;
1476
1477         mutex_lock(&regulator->rdev->mutex);
1478         regulator->uA_load = 0;
1479         ret = _regulator_force_disable(regulator->rdev);
1480         mutex_unlock(&regulator->rdev->mutex);
1481         return ret;
1482 }
1483 EXPORT_SYMBOL_GPL(regulator_force_disable);
1484
1485 static int _regulator_is_enabled(struct regulator_dev *rdev)
1486 {
1487         /* If we don't know then assume that the regulator is always on */
1488         if (!rdev->desc->ops->is_enabled)
1489                 return 1;
1490
1491         return rdev->desc->ops->is_enabled(rdev);
1492 }
1493
1494 /**
1495  * regulator_is_enabled - is the regulator output enabled
1496  * @regulator: regulator source
1497  *
1498  * Returns positive if the regulator driver backing the source/client
1499  * has requested that the device be enabled, zero if it hasn't, else a
1500  * negative errno code.
1501  *
1502  * Note that the device backing this regulator handle can have multiple
1503  * users, so it might be enabled even if regulator_enable() was never
1504  * called for this particular source.
1505  */
1506 int regulator_is_enabled(struct regulator *regulator)
1507 {
1508         int ret;
1509
1510         mutex_lock(&regulator->rdev->mutex);
1511         ret = _regulator_is_enabled(regulator->rdev);
1512         mutex_unlock(&regulator->rdev->mutex);
1513
1514         return ret;
1515 }
1516 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1517
1518 /**
1519  * regulator_count_voltages - count regulator_list_voltage() selectors
1520  * @regulator: regulator source
1521  *
1522  * Returns number of selectors, or negative errno.  Selectors are
1523  * numbered starting at zero, and typically correspond to bitfields
1524  * in hardware registers.
1525  */
1526 int regulator_count_voltages(struct regulator *regulator)
1527 {
1528         struct regulator_dev    *rdev = regulator->rdev;
1529
1530         return rdev->desc->n_voltages ? : -EINVAL;
1531 }
1532 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1533
1534 /**
1535  * regulator_list_voltage - enumerate supported voltages
1536  * @regulator: regulator source
1537  * @selector: identify voltage to list
1538  * Context: can sleep
1539  *
1540  * Returns a voltage that can be passed to @regulator_set_voltage(),
1541  * zero if this selector code can't be used on this sytem, or a
1542  * negative errno.
1543  */
1544 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1545 {
1546         struct regulator_dev    *rdev = regulator->rdev;
1547         struct regulator_ops    *ops = rdev->desc->ops;
1548         int                     ret;
1549
1550         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1551                 return -EINVAL;
1552
1553         mutex_lock(&rdev->mutex);
1554         ret = ops->list_voltage(rdev, selector);
1555         mutex_unlock(&rdev->mutex);
1556
1557         if (ret > 0) {
1558                 if (ret < rdev->constraints->min_uV)
1559                         ret = 0;
1560                 else if (ret > rdev->constraints->max_uV)
1561                         ret = 0;
1562         }
1563
1564         return ret;
1565 }
1566 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1567
1568 /**
1569  * regulator_is_supported_voltage - check if a voltage range can be supported
1570  *
1571  * @regulator: Regulator to check.
1572  * @min_uV: Minimum required voltage in uV.
1573  * @max_uV: Maximum required voltage in uV.
1574  *
1575  * Returns a boolean or a negative error code.
1576  */
1577 int regulator_is_supported_voltage(struct regulator *regulator,
1578                                    int min_uV, int max_uV)
1579 {
1580         int i, voltages, ret;
1581
1582         ret = regulator_count_voltages(regulator);
1583         if (ret < 0)
1584                 return ret;
1585         voltages = ret;
1586
1587         for (i = 0; i < voltages; i++) {
1588                 ret = regulator_list_voltage(regulator, i);
1589
1590                 if (ret >= min_uV && ret <= max_uV)
1591                         return 1;
1592         }
1593
1594         return 0;
1595 }
1596
1597 /**
1598  * regulator_set_voltage - set regulator output voltage
1599  * @regulator: regulator source
1600  * @min_uV: Minimum required voltage in uV
1601  * @max_uV: Maximum acceptable voltage in uV
1602  *
1603  * Sets a voltage regulator to the desired output voltage. This can be set
1604  * during any regulator state. IOW, regulator can be disabled or enabled.
1605  *
1606  * If the regulator is enabled then the voltage will change to the new value
1607  * immediately otherwise if the regulator is disabled the regulator will
1608  * output at the new voltage when enabled.
1609  *
1610  * NOTE: If the regulator is shared between several devices then the lowest
1611  * request voltage that meets the system constraints will be used.
1612  * Regulator system constraints must be set for this regulator before
1613  * calling this function otherwise this call will fail.
1614  */
1615 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1616 {
1617         struct regulator_dev *rdev = regulator->rdev;
1618         int ret;
1619
1620         mutex_lock(&rdev->mutex);
1621
1622         /* sanity check */
1623         if (!rdev->desc->ops->set_voltage) {
1624                 ret = -EINVAL;
1625                 goto out;
1626         }
1627
1628         /* constraints check */
1629         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1630         if (ret < 0)
1631                 goto out;
1632         regulator->min_uV = min_uV;
1633         regulator->max_uV = max_uV;
1634         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1635
1636 out:
1637         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1638         mutex_unlock(&rdev->mutex);
1639         return ret;
1640 }
1641 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1642
1643 static int _regulator_get_voltage(struct regulator_dev *rdev)
1644 {
1645         /* sanity check */
1646         if (rdev->desc->ops->get_voltage)
1647                 return rdev->desc->ops->get_voltage(rdev);
1648         else
1649                 return -EINVAL;
1650 }
1651
1652 /**
1653  * regulator_get_voltage - get regulator output voltage
1654  * @regulator: regulator source
1655  *
1656  * This returns the current regulator voltage in uV.
1657  *
1658  * NOTE: If the regulator is disabled it will return the voltage value. This
1659  * function should not be used to determine regulator state.
1660  */
1661 int regulator_get_voltage(struct regulator *regulator)
1662 {
1663         int ret;
1664
1665         mutex_lock(&regulator->rdev->mutex);
1666
1667         ret = _regulator_get_voltage(regulator->rdev);
1668
1669         mutex_unlock(&regulator->rdev->mutex);
1670
1671         return ret;
1672 }
1673 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1674
1675 /**
1676  * regulator_set_current_limit - set regulator output current limit
1677  * @regulator: regulator source
1678  * @min_uA: Minimuum supported current in uA
1679  * @max_uA: Maximum supported current in uA
1680  *
1681  * Sets current sink to the desired output current. This can be set during
1682  * any regulator state. IOW, regulator can be disabled or enabled.
1683  *
1684  * If the regulator is enabled then the current will change to the new value
1685  * immediately otherwise if the regulator is disabled the regulator will
1686  * output at the new current when enabled.
1687  *
1688  * NOTE: Regulator system constraints must be set for this regulator before
1689  * calling this function otherwise this call will fail.
1690  */
1691 int regulator_set_current_limit(struct regulator *regulator,
1692                                int min_uA, int max_uA)
1693 {
1694         struct regulator_dev *rdev = regulator->rdev;
1695         int ret;
1696
1697         mutex_lock(&rdev->mutex);
1698
1699         /* sanity check */
1700         if (!rdev->desc->ops->set_current_limit) {
1701                 ret = -EINVAL;
1702                 goto out;
1703         }
1704
1705         /* constraints check */
1706         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1707         if (ret < 0)
1708                 goto out;
1709
1710         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1711 out:
1712         mutex_unlock(&rdev->mutex);
1713         return ret;
1714 }
1715 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1716
1717 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1718 {
1719         int ret;
1720
1721         mutex_lock(&rdev->mutex);
1722
1723         /* sanity check */
1724         if (!rdev->desc->ops->get_current_limit) {
1725                 ret = -EINVAL;
1726                 goto out;
1727         }
1728
1729         ret = rdev->desc->ops->get_current_limit(rdev);
1730 out:
1731         mutex_unlock(&rdev->mutex);
1732         return ret;
1733 }
1734
1735 /**
1736  * regulator_get_current_limit - get regulator output current
1737  * @regulator: regulator source
1738  *
1739  * This returns the current supplied by the specified current sink in uA.
1740  *
1741  * NOTE: If the regulator is disabled it will return the current value. This
1742  * function should not be used to determine regulator state.
1743  */
1744 int regulator_get_current_limit(struct regulator *regulator)
1745 {
1746         return _regulator_get_current_limit(regulator->rdev);
1747 }
1748 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1749
1750 /**
1751  * regulator_set_mode - set regulator operating mode
1752  * @regulator: regulator source
1753  * @mode: operating mode - one of the REGULATOR_MODE constants
1754  *
1755  * Set regulator operating mode to increase regulator efficiency or improve
1756  * regulation performance.
1757  *
1758  * NOTE: Regulator system constraints must be set for this regulator before
1759  * calling this function otherwise this call will fail.
1760  */
1761 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1762 {
1763         struct regulator_dev *rdev = regulator->rdev;
1764         int ret;
1765
1766         mutex_lock(&rdev->mutex);
1767
1768         /* sanity check */
1769         if (!rdev->desc->ops->set_mode) {
1770                 ret = -EINVAL;
1771                 goto out;
1772         }
1773
1774         /* constraints check */
1775         ret = regulator_check_mode(rdev, mode);
1776         if (ret < 0)
1777                 goto out;
1778
1779         ret = rdev->desc->ops->set_mode(rdev, mode);
1780 out:
1781         mutex_unlock(&rdev->mutex);
1782         return ret;
1783 }
1784 EXPORT_SYMBOL_GPL(regulator_set_mode);
1785
1786 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1787 {
1788         int ret;
1789
1790         mutex_lock(&rdev->mutex);
1791
1792         /* sanity check */
1793         if (!rdev->desc->ops->get_mode) {
1794                 ret = -EINVAL;
1795                 goto out;
1796         }
1797
1798         ret = rdev->desc->ops->get_mode(rdev);
1799 out:
1800         mutex_unlock(&rdev->mutex);
1801         return ret;
1802 }
1803
1804 /**
1805  * regulator_get_mode - get regulator operating mode
1806  * @regulator: regulator source
1807  *
1808  * Get the current regulator operating mode.
1809  */
1810 unsigned int regulator_get_mode(struct regulator *regulator)
1811 {
1812         return _regulator_get_mode(regulator->rdev);
1813 }
1814 EXPORT_SYMBOL_GPL(regulator_get_mode);
1815
1816 /**
1817  * regulator_set_optimum_mode - set regulator optimum operating mode
1818  * @regulator: regulator source
1819  * @uA_load: load current
1820  *
1821  * Notifies the regulator core of a new device load. This is then used by
1822  * DRMS (if enabled by constraints) to set the most efficient regulator
1823  * operating mode for the new regulator loading.
1824  *
1825  * Consumer devices notify their supply regulator of the maximum power
1826  * they will require (can be taken from device datasheet in the power
1827  * consumption tables) when they change operational status and hence power
1828  * state. Examples of operational state changes that can affect power
1829  * consumption are :-
1830  *
1831  *    o Device is opened / closed.
1832  *    o Device I/O is about to begin or has just finished.
1833  *    o Device is idling in between work.
1834  *
1835  * This information is also exported via sysfs to userspace.
1836  *
1837  * DRMS will sum the total requested load on the regulator and change
1838  * to the most efficient operating mode if platform constraints allow.
1839  *
1840  * Returns the new regulator mode or error.
1841  */
1842 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1843 {
1844         struct regulator_dev *rdev = regulator->rdev;
1845         struct regulator *consumer;
1846         int ret, output_uV, input_uV, total_uA_load = 0;
1847         unsigned int mode;
1848
1849         mutex_lock(&rdev->mutex);
1850
1851         regulator->uA_load = uA_load;
1852         ret = regulator_check_drms(rdev);
1853         if (ret < 0)
1854                 goto out;
1855         ret = -EINVAL;
1856
1857         /* sanity check */
1858         if (!rdev->desc->ops->get_optimum_mode)
1859                 goto out;
1860
1861         /* get output voltage */
1862         output_uV = rdev->desc->ops->get_voltage(rdev);
1863         if (output_uV <= 0) {
1864                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1865                         __func__, rdev_get_name(rdev));
1866                 goto out;
1867         }
1868
1869         /* get input voltage */
1870         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1871                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1872         else
1873                 input_uV = rdev->constraints->input_uV;
1874         if (input_uV <= 0) {
1875                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1876                         __func__, rdev_get_name(rdev));
1877                 goto out;
1878         }
1879
1880         /* calc total requested load for this regulator */
1881         list_for_each_entry(consumer, &rdev->consumer_list, list)
1882                 total_uA_load += consumer->uA_load;
1883
1884         mode = rdev->desc->ops->get_optimum_mode(rdev,
1885                                                  input_uV, output_uV,
1886                                                  total_uA_load);
1887         ret = regulator_check_mode(rdev, mode);
1888         if (ret < 0) {
1889                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1890                         " %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1891                         total_uA_load, input_uV, output_uV);
1892                 goto out;
1893         }
1894
1895         ret = rdev->desc->ops->set_mode(rdev, mode);
1896         if (ret < 0) {
1897                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1898                         __func__, mode, rdev_get_name(rdev));
1899                 goto out;
1900         }
1901         ret = mode;
1902 out:
1903         mutex_unlock(&rdev->mutex);
1904         return ret;
1905 }
1906 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1907
1908 /**
1909  * regulator_register_notifier - register regulator event notifier
1910  * @regulator: regulator source
1911  * @nb: notifier block
1912  *
1913  * Register notifier block to receive regulator events.
1914  */
1915 int regulator_register_notifier(struct regulator *regulator,
1916                               struct notifier_block *nb)
1917 {
1918         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1919                                                 nb);
1920 }
1921 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1922
1923 /**
1924  * regulator_unregister_notifier - unregister regulator event notifier
1925  * @regulator: regulator source
1926  * @nb: notifier block
1927  *
1928  * Unregister regulator event notifier block.
1929  */
1930 int regulator_unregister_notifier(struct regulator *regulator,
1931                                 struct notifier_block *nb)
1932 {
1933         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1934                                                   nb);
1935 }
1936 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1937
1938 /* notify regulator consumers and downstream regulator consumers.
1939  * Note mutex must be held by caller.
1940  */
1941 static void _notifier_call_chain(struct regulator_dev *rdev,
1942                                   unsigned long event, void *data)
1943 {
1944         struct regulator_dev *_rdev;
1945
1946         /* call rdev chain first */
1947         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1948
1949         /* now notify regulator we supply */
1950         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1951                 mutex_lock(&_rdev->mutex);
1952                 _notifier_call_chain(_rdev, event, data);
1953                 mutex_unlock(&_rdev->mutex);
1954         }
1955 }
1956
1957 /**
1958  * regulator_bulk_get - get multiple regulator consumers
1959  *
1960  * @dev:           Device to supply
1961  * @num_consumers: Number of consumers to register
1962  * @consumers:     Configuration of consumers; clients are stored here.
1963  *
1964  * @return 0 on success, an errno on failure.
1965  *
1966  * This helper function allows drivers to get several regulator
1967  * consumers in one operation.  If any of the regulators cannot be
1968  * acquired then any regulators that were allocated will be freed
1969  * before returning to the caller.
1970  */
1971 int regulator_bulk_get(struct device *dev, int num_consumers,
1972                        struct regulator_bulk_data *consumers)
1973 {
1974         int i;
1975         int ret;
1976
1977         for (i = 0; i < num_consumers; i++)
1978                 consumers[i].consumer = NULL;
1979
1980         for (i = 0; i < num_consumers; i++) {
1981                 consumers[i].consumer = regulator_get(dev,
1982                                                       consumers[i].supply);
1983                 if (IS_ERR(consumers[i].consumer)) {
1984                         ret = PTR_ERR(consumers[i].consumer);
1985                         dev_err(dev, "Failed to get supply '%s': %d\n",
1986                                 consumers[i].supply, ret);
1987                         consumers[i].consumer = NULL;
1988                         goto err;
1989                 }
1990         }
1991
1992         return 0;
1993
1994 err:
1995         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1996                 regulator_put(consumers[i].consumer);
1997
1998         return ret;
1999 }
2000 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2001
2002 /**
2003  * regulator_bulk_enable - enable multiple regulator consumers
2004  *
2005  * @num_consumers: Number of consumers
2006  * @consumers:     Consumer data; clients are stored here.
2007  * @return         0 on success, an errno on failure
2008  *
2009  * This convenience API allows consumers to enable multiple regulator
2010  * clients in a single API call.  If any consumers cannot be enabled
2011  * then any others that were enabled will be disabled again prior to
2012  * return.
2013  */
2014 int regulator_bulk_enable(int num_consumers,
2015                           struct regulator_bulk_data *consumers)
2016 {
2017         int i;
2018         int ret;
2019
2020         for (i = 0; i < num_consumers; i++) {
2021                 ret = regulator_enable(consumers[i].consumer);
2022                 if (ret != 0)
2023                         goto err;
2024         }
2025
2026         return 0;
2027
2028 err:
2029         printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2030         for (--i; i >= 0; --i)
2031                 regulator_disable(consumers[i].consumer);
2032
2033         return ret;
2034 }
2035 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2036
2037 /**
2038  * regulator_bulk_disable - disable multiple regulator consumers
2039  *
2040  * @num_consumers: Number of consumers
2041  * @consumers:     Consumer data; clients are stored here.
2042  * @return         0 on success, an errno on failure
2043  *
2044  * This convenience API allows consumers to disable multiple regulator
2045  * clients in a single API call.  If any consumers cannot be enabled
2046  * then any others that were disabled will be disabled again prior to
2047  * return.
2048  */
2049 int regulator_bulk_disable(int num_consumers,
2050                            struct regulator_bulk_data *consumers)
2051 {
2052         int i;
2053         int ret;
2054
2055         for (i = 0; i < num_consumers; i++) {
2056                 ret = regulator_disable(consumers[i].consumer);
2057                 if (ret != 0)
2058                         goto err;
2059         }
2060
2061         return 0;
2062
2063 err:
2064         printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2065                ret);
2066         for (--i; i >= 0; --i)
2067                 regulator_enable(consumers[i].consumer);
2068
2069         return ret;
2070 }
2071 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2072
2073 /**
2074  * regulator_bulk_free - free multiple regulator consumers
2075  *
2076  * @num_consumers: Number of consumers
2077  * @consumers:     Consumer data; clients are stored here.
2078  *
2079  * This convenience API allows consumers to free multiple regulator
2080  * clients in a single API call.
2081  */
2082 void regulator_bulk_free(int num_consumers,
2083                          struct regulator_bulk_data *consumers)
2084 {
2085         int i;
2086
2087         for (i = 0; i < num_consumers; i++) {
2088                 regulator_put(consumers[i].consumer);
2089                 consumers[i].consumer = NULL;
2090         }
2091 }
2092 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2093
2094 /**
2095  * regulator_notifier_call_chain - call regulator event notifier
2096  * @rdev: regulator source
2097  * @event: notifier block
2098  * @data: callback-specific data.
2099  *
2100  * Called by regulator drivers to notify clients a regulator event has
2101  * occurred. We also notify regulator clients downstream.
2102  * Note lock must be held by caller.
2103  */
2104 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2105                                   unsigned long event, void *data)
2106 {
2107         _notifier_call_chain(rdev, event, data);
2108         return NOTIFY_DONE;
2109
2110 }
2111 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2112
2113 /**
2114  * regulator_mode_to_status - convert a regulator mode into a status
2115  *
2116  * @mode: Mode to convert
2117  *
2118  * Convert a regulator mode into a status.
2119  */
2120 int regulator_mode_to_status(unsigned int mode)
2121 {
2122         switch (mode) {
2123         case REGULATOR_MODE_FAST:
2124                 return REGULATOR_STATUS_FAST;
2125         case REGULATOR_MODE_NORMAL:
2126                 return REGULATOR_STATUS_NORMAL;
2127         case REGULATOR_MODE_IDLE:
2128                 return REGULATOR_STATUS_IDLE;
2129         case REGULATOR_STATUS_STANDBY:
2130                 return REGULATOR_STATUS_STANDBY;
2131         default:
2132                 return 0;
2133         }
2134 }
2135 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2136
2137 /*
2138  * To avoid cluttering sysfs (and memory) with useless state, only
2139  * create attributes that can be meaningfully displayed.
2140  */
2141 static int add_regulator_attributes(struct regulator_dev *rdev)
2142 {
2143         struct device           *dev = &rdev->dev;
2144         struct regulator_ops    *ops = rdev->desc->ops;
2145         int                     status = 0;
2146
2147         /* some attributes need specific methods to be displayed */
2148         if (ops->get_voltage) {
2149                 status = device_create_file(dev, &dev_attr_microvolts);
2150                 if (status < 0)
2151                         return status;
2152         }
2153         if (ops->get_current_limit) {
2154                 status = device_create_file(dev, &dev_attr_microamps);
2155                 if (status < 0)
2156                         return status;
2157         }
2158         if (ops->get_mode) {
2159                 status = device_create_file(dev, &dev_attr_opmode);
2160                 if (status < 0)
2161                         return status;
2162         }
2163         if (ops->is_enabled) {
2164                 status = device_create_file(dev, &dev_attr_state);
2165                 if (status < 0)
2166                         return status;
2167         }
2168         if (ops->get_status) {
2169                 status = device_create_file(dev, &dev_attr_status);
2170                 if (status < 0)
2171                         return status;
2172         }
2173
2174         /* some attributes are type-specific */
2175         if (rdev->desc->type == REGULATOR_CURRENT) {
2176                 status = device_create_file(dev, &dev_attr_requested_microamps);
2177                 if (status < 0)
2178                         return status;
2179         }
2180
2181         /* all the other attributes exist to support constraints;
2182          * don't show them if there are no constraints, or if the
2183          * relevant supporting methods are missing.
2184          */
2185         if (!rdev->constraints)
2186                 return status;
2187
2188         /* constraints need specific supporting methods */
2189         if (ops->set_voltage) {
2190                 status = device_create_file(dev, &dev_attr_min_microvolts);
2191                 if (status < 0)
2192                         return status;
2193                 status = device_create_file(dev, &dev_attr_max_microvolts);
2194                 if (status < 0)
2195                         return status;
2196         }
2197         if (ops->set_current_limit) {
2198                 status = device_create_file(dev, &dev_attr_min_microamps);
2199                 if (status < 0)
2200                         return status;
2201                 status = device_create_file(dev, &dev_attr_max_microamps);
2202                 if (status < 0)
2203                         return status;
2204         }
2205
2206         /* suspend mode constraints need multiple supporting methods */
2207         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2208                 return status;
2209
2210         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2211         if (status < 0)
2212                 return status;
2213         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2214         if (status < 0)
2215                 return status;
2216         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2217         if (status < 0)
2218                 return status;
2219
2220         if (ops->set_suspend_voltage) {
2221                 status = device_create_file(dev,
2222                                 &dev_attr_suspend_standby_microvolts);
2223                 if (status < 0)
2224                         return status;
2225                 status = device_create_file(dev,
2226                                 &dev_attr_suspend_mem_microvolts);
2227                 if (status < 0)
2228                         return status;
2229                 status = device_create_file(dev,
2230                                 &dev_attr_suspend_disk_microvolts);
2231                 if (status < 0)
2232                         return status;
2233         }
2234
2235         if (ops->set_suspend_mode) {
2236                 status = device_create_file(dev,
2237                                 &dev_attr_suspend_standby_mode);
2238                 if (status < 0)
2239                         return status;
2240                 status = device_create_file(dev,
2241                                 &dev_attr_suspend_mem_mode);
2242                 if (status < 0)
2243                         return status;
2244                 status = device_create_file(dev,
2245                                 &dev_attr_suspend_disk_mode);
2246                 if (status < 0)
2247                         return status;
2248         }
2249
2250         return status;
2251 }
2252
2253 /**
2254  * regulator_register - register regulator
2255  * @regulator_desc: regulator to register
2256  * @dev: struct device for the regulator
2257  * @init_data: platform provided init data, passed through by driver
2258  * @driver_data: private regulator data
2259  *
2260  * Called by regulator drivers to register a regulator.
2261  * Returns 0 on success.
2262  */
2263 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2264         struct device *dev, struct regulator_init_data *init_data,
2265         void *driver_data)
2266 {
2267         static atomic_t regulator_no = ATOMIC_INIT(0);
2268         struct regulator_dev *rdev;
2269         int ret, i;
2270
2271         if (regulator_desc == NULL)
2272                 return ERR_PTR(-EINVAL);
2273
2274         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2275                 return ERR_PTR(-EINVAL);
2276
2277         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2278             regulator_desc->type != REGULATOR_CURRENT)
2279                 return ERR_PTR(-EINVAL);
2280
2281         if (!init_data)
2282                 return ERR_PTR(-EINVAL);
2283
2284         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2285         if (rdev == NULL)
2286                 return ERR_PTR(-ENOMEM);
2287
2288         mutex_lock(&regulator_list_mutex);
2289
2290         mutex_init(&rdev->mutex);
2291         rdev->reg_data = driver_data;
2292         rdev->owner = regulator_desc->owner;
2293         rdev->desc = regulator_desc;
2294         INIT_LIST_HEAD(&rdev->consumer_list);
2295         INIT_LIST_HEAD(&rdev->supply_list);
2296         INIT_LIST_HEAD(&rdev->list);
2297         INIT_LIST_HEAD(&rdev->slist);
2298         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2299
2300         /* preform any regulator specific init */
2301         if (init_data->regulator_init) {
2302                 ret = init_data->regulator_init(rdev->reg_data);
2303                 if (ret < 0)
2304                         goto clean;
2305         }
2306
2307         /* register with sysfs */
2308         rdev->dev.class = &regulator_class;
2309         rdev->dev.parent = dev;
2310         dev_set_name(&rdev->dev, "regulator.%d",
2311                      atomic_inc_return(&regulator_no) - 1);
2312         ret = device_register(&rdev->dev);
2313         if (ret != 0)
2314                 goto clean;
2315
2316         dev_set_drvdata(&rdev->dev, rdev);
2317
2318         /* set regulator constraints */
2319         ret = set_machine_constraints(rdev, &init_data->constraints);
2320         if (ret < 0)
2321                 goto scrub;
2322
2323         /* add attributes supported by this regulator */
2324         ret = add_regulator_attributes(rdev);
2325         if (ret < 0)
2326                 goto scrub;
2327
2328         /* set supply regulator if it exists */
2329         if (init_data->supply_regulator_dev) {
2330                 ret = set_supply(rdev,
2331                         dev_get_drvdata(init_data->supply_regulator_dev));
2332                 if (ret < 0)
2333                         goto scrub;
2334         }
2335
2336         /* add consumers devices */
2337         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2338                 ret = set_consumer_device_supply(rdev,
2339                         init_data->consumer_supplies[i].dev,
2340                         init_data->consumer_supplies[i].dev_name,
2341                         init_data->consumer_supplies[i].supply);
2342                 if (ret < 0) {
2343                         for (--i; i >= 0; i--)
2344                                 unset_consumer_device_supply(rdev,
2345                                     init_data->consumer_supplies[i].dev_name,
2346                                     init_data->consumer_supplies[i].dev);
2347                         goto scrub;
2348                 }
2349         }
2350
2351         list_add(&rdev->list, &regulator_list);
2352 out:
2353         mutex_unlock(&regulator_list_mutex);
2354         return rdev;
2355
2356 scrub:
2357         device_unregister(&rdev->dev);
2358         /* device core frees rdev */
2359         rdev = ERR_PTR(ret);
2360         goto out;
2361
2362 clean:
2363         kfree(rdev);
2364         rdev = ERR_PTR(ret);
2365         goto out;
2366 }
2367 EXPORT_SYMBOL_GPL(regulator_register);
2368
2369 /**
2370  * regulator_unregister - unregister regulator
2371  * @rdev: regulator to unregister
2372  *
2373  * Called by regulator drivers to unregister a regulator.
2374  */
2375 void regulator_unregister(struct regulator_dev *rdev)
2376 {
2377         if (rdev == NULL)
2378                 return;
2379
2380         mutex_lock(&regulator_list_mutex);
2381         WARN_ON(rdev->open_count);
2382         unset_regulator_supplies(rdev);
2383         list_del(&rdev->list);
2384         if (rdev->supply)
2385                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2386         device_unregister(&rdev->dev);
2387         mutex_unlock(&regulator_list_mutex);
2388 }
2389 EXPORT_SYMBOL_GPL(regulator_unregister);
2390
2391 /**
2392  * regulator_suspend_prepare - prepare regulators for system wide suspend
2393  * @state: system suspend state
2394  *
2395  * Configure each regulator with it's suspend operating parameters for state.
2396  * This will usually be called by machine suspend code prior to supending.
2397  */
2398 int regulator_suspend_prepare(suspend_state_t state)
2399 {
2400         struct regulator_dev *rdev;
2401         int ret = 0;
2402
2403         /* ON is handled by regulator active state */
2404         if (state == PM_SUSPEND_ON)
2405                 return -EINVAL;
2406
2407         mutex_lock(&regulator_list_mutex);
2408         list_for_each_entry(rdev, &regulator_list, list) {
2409
2410                 mutex_lock(&rdev->mutex);
2411                 ret = suspend_prepare(rdev, state);
2412                 mutex_unlock(&rdev->mutex);
2413
2414                 if (ret < 0) {
2415                         printk(KERN_ERR "%s: failed to prepare %s\n",
2416                                 __func__, rdev_get_name(rdev));
2417                         goto out;
2418                 }
2419         }
2420 out:
2421         mutex_unlock(&regulator_list_mutex);
2422         return ret;
2423 }
2424 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2425
2426 /**
2427  * regulator_has_full_constraints - the system has fully specified constraints
2428  *
2429  * Calling this function will cause the regulator API to disable all
2430  * regulators which have a zero use count and don't have an always_on
2431  * constraint in a late_initcall.
2432  *
2433  * The intention is that this will become the default behaviour in a
2434  * future kernel release so users are encouraged to use this facility
2435  * now.
2436  */
2437 void regulator_has_full_constraints(void)
2438 {
2439         has_full_constraints = 1;
2440 }
2441 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2442
2443 /**
2444  * rdev_get_drvdata - get rdev regulator driver data
2445  * @rdev: regulator
2446  *
2447  * Get rdev regulator driver private data. This call can be used in the
2448  * regulator driver context.
2449  */
2450 void *rdev_get_drvdata(struct regulator_dev *rdev)
2451 {
2452         return rdev->reg_data;
2453 }
2454 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2455
2456 /**
2457  * regulator_get_drvdata - get regulator driver data
2458  * @regulator: regulator
2459  *
2460  * Get regulator driver private data. This call can be used in the consumer
2461  * driver context when non API regulator specific functions need to be called.
2462  */
2463 void *regulator_get_drvdata(struct regulator *regulator)
2464 {
2465         return regulator->rdev->reg_data;
2466 }
2467 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2468
2469 /**
2470  * regulator_set_drvdata - set regulator driver data
2471  * @regulator: regulator
2472  * @data: data
2473  */
2474 void regulator_set_drvdata(struct regulator *regulator, void *data)
2475 {
2476         regulator->rdev->reg_data = data;
2477 }
2478 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2479
2480 /**
2481  * regulator_get_id - get regulator ID
2482  * @rdev: regulator
2483  */
2484 int rdev_get_id(struct regulator_dev *rdev)
2485 {
2486         return rdev->desc->id;
2487 }
2488 EXPORT_SYMBOL_GPL(rdev_get_id);
2489
2490 struct device *rdev_get_dev(struct regulator_dev *rdev)
2491 {
2492         return &rdev->dev;
2493 }
2494 EXPORT_SYMBOL_GPL(rdev_get_dev);
2495
2496 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2497 {
2498         return reg_init_data->driver_data;
2499 }
2500 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2501
2502 static int __init regulator_init(void)
2503 {
2504         int ret;
2505
2506         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2507
2508         ret = class_register(&regulator_class);
2509
2510         regulator_dummy_init();
2511
2512         return ret;
2513 }
2514
2515 /* init early to allow our consumers to complete system booting */
2516 core_initcall(regulator_init);
2517
2518 static int __init regulator_init_complete(void)
2519 {
2520         struct regulator_dev *rdev;
2521         struct regulator_ops *ops;
2522         struct regulation_constraints *c;
2523         int enabled, ret;
2524         const char *name;
2525
2526         mutex_lock(&regulator_list_mutex);
2527
2528         /* If we have a full configuration then disable any regulators
2529          * which are not in use or always_on.  This will become the
2530          * default behaviour in the future.
2531          */
2532         list_for_each_entry(rdev, &regulator_list, list) {
2533                 ops = rdev->desc->ops;
2534                 c = rdev->constraints;
2535
2536                 name = rdev_get_name(rdev);
2537
2538                 if (!ops->disable || (c && c->always_on))
2539                         continue;
2540
2541                 mutex_lock(&rdev->mutex);
2542
2543                 if (rdev->use_count)
2544                         goto unlock;
2545
2546                 /* If we can't read the status assume it's on. */
2547                 if (ops->is_enabled)
2548                         enabled = ops->is_enabled(rdev);
2549                 else
2550                         enabled = 1;
2551
2552                 if (!enabled)
2553                         goto unlock;
2554
2555                 if (has_full_constraints) {
2556                         /* We log since this may kill the system if it
2557                          * goes wrong. */
2558                         printk(KERN_INFO "%s: disabling %s\n",
2559                                __func__, name);
2560                         ret = ops->disable(rdev);
2561                         if (ret != 0) {
2562                                 printk(KERN_ERR
2563                                        "%s: couldn't disable %s: %d\n",
2564                                        __func__, name, ret);
2565                         }
2566                 } else {
2567                         /* The intention is that in future we will
2568                          * assume that full constraints are provided
2569                          * so warn even if we aren't going to do
2570                          * anything here.
2571                          */
2572                         printk(KERN_WARNING
2573                                "%s: incomplete constraints, leaving %s on\n",
2574                                __func__, name);
2575                 }
2576
2577 unlock:
2578                 mutex_unlock(&rdev->mutex);
2579         }
2580
2581         mutex_unlock(&regulator_list_mutex);
2582
2583         return 0;
2584 }
2585 late_initcall(regulator_init_complete);