]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - drivers/net/s2io.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[linux-2.6.git] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  * multiq: This parameter used to enable/disable MULTIQUEUE support.
54  *      Possible values '1' for enable and '0' for disable. Default is '0'
55  ************************************************************************/
56
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58
59 #include <linux/module.h>
60 #include <linux/types.h>
61 #include <linux/errno.h>
62 #include <linux/ioport.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/kernel.h>
66 #include <linux/netdevice.h>
67 #include <linux/etherdevice.h>
68 #include <linux/mdio.h>
69 #include <linux/skbuff.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/stddef.h>
73 #include <linux/ioctl.h>
74 #include <linux/timex.h>
75 #include <linux/ethtool.h>
76 #include <linux/workqueue.h>
77 #include <linux/if_vlan.h>
78 #include <linux/ip.h>
79 #include <linux/tcp.h>
80 #include <linux/uaccess.h>
81 #include <linux/io.h>
82 #include <net/tcp.h>
83
84 #include <asm/system.h>
85 #include <asm/div64.h>
86 #include <asm/irq.h>
87
88 /* local include */
89 #include "s2io.h"
90 #include "s2io-regs.h"
91
92 #define DRV_VERSION "2.0.26.25"
93
94 /* S2io Driver name & version. */
95 static char s2io_driver_name[] = "Neterion";
96 static char s2io_driver_version[] = DRV_VERSION;
97
98 static int rxd_size[2] = {32, 48};
99 static int rxd_count[2] = {127, 85};
100
101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
102 {
103         int ret;
104
105         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
106                (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
107
108         return ret;
109 }
110
111 /*
112  * Cards with following subsystem_id have a link state indication
113  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114  * macro below identifies these cards given the subsystem_id.
115  */
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)              \
117         (dev_type == XFRAME_I_DEVICE) ?                                 \
118         ((((subid >= 0x600B) && (subid <= 0x600D)) ||                   \
119           ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
120
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
123
124 static inline int is_s2io_card_up(const struct s2io_nic *sp)
125 {
126         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127 }
128
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
131         "Register test\t(offline)",
132         "Eeprom test\t(offline)",
133         "Link test\t(online)",
134         "RLDRAM test\t(offline)",
135         "BIST Test\t(offline)"
136 };
137
138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
139         {"tmac_frms"},
140         {"tmac_data_octets"},
141         {"tmac_drop_frms"},
142         {"tmac_mcst_frms"},
143         {"tmac_bcst_frms"},
144         {"tmac_pause_ctrl_frms"},
145         {"tmac_ttl_octets"},
146         {"tmac_ucst_frms"},
147         {"tmac_nucst_frms"},
148         {"tmac_any_err_frms"},
149         {"tmac_ttl_less_fb_octets"},
150         {"tmac_vld_ip_octets"},
151         {"tmac_vld_ip"},
152         {"tmac_drop_ip"},
153         {"tmac_icmp"},
154         {"tmac_rst_tcp"},
155         {"tmac_tcp"},
156         {"tmac_udp"},
157         {"rmac_vld_frms"},
158         {"rmac_data_octets"},
159         {"rmac_fcs_err_frms"},
160         {"rmac_drop_frms"},
161         {"rmac_vld_mcst_frms"},
162         {"rmac_vld_bcst_frms"},
163         {"rmac_in_rng_len_err_frms"},
164         {"rmac_out_rng_len_err_frms"},
165         {"rmac_long_frms"},
166         {"rmac_pause_ctrl_frms"},
167         {"rmac_unsup_ctrl_frms"},
168         {"rmac_ttl_octets"},
169         {"rmac_accepted_ucst_frms"},
170         {"rmac_accepted_nucst_frms"},
171         {"rmac_discarded_frms"},
172         {"rmac_drop_events"},
173         {"rmac_ttl_less_fb_octets"},
174         {"rmac_ttl_frms"},
175         {"rmac_usized_frms"},
176         {"rmac_osized_frms"},
177         {"rmac_frag_frms"},
178         {"rmac_jabber_frms"},
179         {"rmac_ttl_64_frms"},
180         {"rmac_ttl_65_127_frms"},
181         {"rmac_ttl_128_255_frms"},
182         {"rmac_ttl_256_511_frms"},
183         {"rmac_ttl_512_1023_frms"},
184         {"rmac_ttl_1024_1518_frms"},
185         {"rmac_ip"},
186         {"rmac_ip_octets"},
187         {"rmac_hdr_err_ip"},
188         {"rmac_drop_ip"},
189         {"rmac_icmp"},
190         {"rmac_tcp"},
191         {"rmac_udp"},
192         {"rmac_err_drp_udp"},
193         {"rmac_xgmii_err_sym"},
194         {"rmac_frms_q0"},
195         {"rmac_frms_q1"},
196         {"rmac_frms_q2"},
197         {"rmac_frms_q3"},
198         {"rmac_frms_q4"},
199         {"rmac_frms_q5"},
200         {"rmac_frms_q6"},
201         {"rmac_frms_q7"},
202         {"rmac_full_q0"},
203         {"rmac_full_q1"},
204         {"rmac_full_q2"},
205         {"rmac_full_q3"},
206         {"rmac_full_q4"},
207         {"rmac_full_q5"},
208         {"rmac_full_q6"},
209         {"rmac_full_q7"},
210         {"rmac_pause_cnt"},
211         {"rmac_xgmii_data_err_cnt"},
212         {"rmac_xgmii_ctrl_err_cnt"},
213         {"rmac_accepted_ip"},
214         {"rmac_err_tcp"},
215         {"rd_req_cnt"},
216         {"new_rd_req_cnt"},
217         {"new_rd_req_rtry_cnt"},
218         {"rd_rtry_cnt"},
219         {"wr_rtry_rd_ack_cnt"},
220         {"wr_req_cnt"},
221         {"new_wr_req_cnt"},
222         {"new_wr_req_rtry_cnt"},
223         {"wr_rtry_cnt"},
224         {"wr_disc_cnt"},
225         {"rd_rtry_wr_ack_cnt"},
226         {"txp_wr_cnt"},
227         {"txd_rd_cnt"},
228         {"txd_wr_cnt"},
229         {"rxd_rd_cnt"},
230         {"rxd_wr_cnt"},
231         {"txf_rd_cnt"},
232         {"rxf_wr_cnt"}
233 };
234
235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
236         {"rmac_ttl_1519_4095_frms"},
237         {"rmac_ttl_4096_8191_frms"},
238         {"rmac_ttl_8192_max_frms"},
239         {"rmac_ttl_gt_max_frms"},
240         {"rmac_osized_alt_frms"},
241         {"rmac_jabber_alt_frms"},
242         {"rmac_gt_max_alt_frms"},
243         {"rmac_vlan_frms"},
244         {"rmac_len_discard"},
245         {"rmac_fcs_discard"},
246         {"rmac_pf_discard"},
247         {"rmac_da_discard"},
248         {"rmac_red_discard"},
249         {"rmac_rts_discard"},
250         {"rmac_ingm_full_discard"},
251         {"link_fault_cnt"}
252 };
253
254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
255         {"\n DRIVER STATISTICS"},
256         {"single_bit_ecc_errs"},
257         {"double_bit_ecc_errs"},
258         {"parity_err_cnt"},
259         {"serious_err_cnt"},
260         {"soft_reset_cnt"},
261         {"fifo_full_cnt"},
262         {"ring_0_full_cnt"},
263         {"ring_1_full_cnt"},
264         {"ring_2_full_cnt"},
265         {"ring_3_full_cnt"},
266         {"ring_4_full_cnt"},
267         {"ring_5_full_cnt"},
268         {"ring_6_full_cnt"},
269         {"ring_7_full_cnt"},
270         {"alarm_transceiver_temp_high"},
271         {"alarm_transceiver_temp_low"},
272         {"alarm_laser_bias_current_high"},
273         {"alarm_laser_bias_current_low"},
274         {"alarm_laser_output_power_high"},
275         {"alarm_laser_output_power_low"},
276         {"warn_transceiver_temp_high"},
277         {"warn_transceiver_temp_low"},
278         {"warn_laser_bias_current_high"},
279         {"warn_laser_bias_current_low"},
280         {"warn_laser_output_power_high"},
281         {"warn_laser_output_power_low"},
282         {"lro_aggregated_pkts"},
283         {"lro_flush_both_count"},
284         {"lro_out_of_sequence_pkts"},
285         {"lro_flush_due_to_max_pkts"},
286         {"lro_avg_aggr_pkts"},
287         {"mem_alloc_fail_cnt"},
288         {"pci_map_fail_cnt"},
289         {"watchdog_timer_cnt"},
290         {"mem_allocated"},
291         {"mem_freed"},
292         {"link_up_cnt"},
293         {"link_down_cnt"},
294         {"link_up_time"},
295         {"link_down_time"},
296         {"tx_tcode_buf_abort_cnt"},
297         {"tx_tcode_desc_abort_cnt"},
298         {"tx_tcode_parity_err_cnt"},
299         {"tx_tcode_link_loss_cnt"},
300         {"tx_tcode_list_proc_err_cnt"},
301         {"rx_tcode_parity_err_cnt"},
302         {"rx_tcode_abort_cnt"},
303         {"rx_tcode_parity_abort_cnt"},
304         {"rx_tcode_rda_fail_cnt"},
305         {"rx_tcode_unkn_prot_cnt"},
306         {"rx_tcode_fcs_err_cnt"},
307         {"rx_tcode_buf_size_err_cnt"},
308         {"rx_tcode_rxd_corrupt_cnt"},
309         {"rx_tcode_unkn_err_cnt"},
310         {"tda_err_cnt"},
311         {"pfc_err_cnt"},
312         {"pcc_err_cnt"},
313         {"tti_err_cnt"},
314         {"tpa_err_cnt"},
315         {"sm_err_cnt"},
316         {"lso_err_cnt"},
317         {"mac_tmac_err_cnt"},
318         {"mac_rmac_err_cnt"},
319         {"xgxs_txgxs_err_cnt"},
320         {"xgxs_rxgxs_err_cnt"},
321         {"rc_err_cnt"},
322         {"prc_pcix_err_cnt"},
323         {"rpa_err_cnt"},
324         {"rda_err_cnt"},
325         {"rti_err_cnt"},
326         {"mc_err_cnt"}
327 };
328
329 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
332
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
335
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
338
339 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN        (S2IO_TEST_LEN * ETH_GSTRING_LEN)
341
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp)        \
343         init_timer(&timer);                             \
344         timer.function = handle;                        \
345         timer.data = (unsigned long)arg;                \
346         mod_timer(&timer, (jiffies + exp))              \
347
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
350 {
351         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
357 }
358
359 /* Add the vlan */
360 static void s2io_vlan_rx_register(struct net_device *dev,
361                                   struct vlan_group *grp)
362 {
363         int i;
364         struct s2io_nic *nic = netdev_priv(dev);
365         unsigned long flags[MAX_TX_FIFOS];
366         struct config_param *config = &nic->config;
367         struct mac_info *mac_control = &nic->mac_control;
368
369         for (i = 0; i < config->tx_fifo_num; i++) {
370                 struct fifo_info *fifo = &mac_control->fifos[i];
371
372                 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
373         }
374
375         nic->vlgrp = grp;
376
377         for (i = config->tx_fifo_num - 1; i >= 0; i--) {
378                 struct fifo_info *fifo = &mac_control->fifos[i];
379
380                 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
381         }
382 }
383
384 /* Unregister the vlan */
385 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
386 {
387         int i;
388         struct s2io_nic *nic = netdev_priv(dev);
389         unsigned long flags[MAX_TX_FIFOS];
390         struct config_param *config = &nic->config;
391         struct mac_info *mac_control = &nic->mac_control;
392
393         for (i = 0; i < config->tx_fifo_num; i++) {
394                 struct fifo_info *fifo = &mac_control->fifos[i];
395
396                 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
397         }
398
399         if (nic->vlgrp)
400                 vlan_group_set_device(nic->vlgrp, vid, NULL);
401
402         for (i = config->tx_fifo_num - 1; i >= 0; i--) {
403                 struct fifo_info *fifo = &mac_control->fifos[i];
404
405                 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
406         }
407 }
408
409 /*
410  * Constants to be programmed into the Xena's registers, to configure
411  * the XAUI.
412  */
413
414 #define END_SIGN        0x0
415 static const u64 herc_act_dtx_cfg[] = {
416         /* Set address */
417         0x8000051536750000ULL, 0x80000515367500E0ULL,
418         /* Write data */
419         0x8000051536750004ULL, 0x80000515367500E4ULL,
420         /* Set address */
421         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
422         /* Write data */
423         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
424         /* Set address */
425         0x801205150D440000ULL, 0x801205150D4400E0ULL,
426         /* Write data */
427         0x801205150D440004ULL, 0x801205150D4400E4ULL,
428         /* Set address */
429         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
430         /* Write data */
431         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
432         /* Done */
433         END_SIGN
434 };
435
436 static const u64 xena_dtx_cfg[] = {
437         /* Set address */
438         0x8000051500000000ULL, 0x80000515000000E0ULL,
439         /* Write data */
440         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
441         /* Set address */
442         0x8001051500000000ULL, 0x80010515000000E0ULL,
443         /* Write data */
444         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
445         /* Set address */
446         0x8002051500000000ULL, 0x80020515000000E0ULL,
447         /* Write data */
448         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
449         END_SIGN
450 };
451
452 /*
453  * Constants for Fixing the MacAddress problem seen mostly on
454  * Alpha machines.
455  */
456 static const u64 fix_mac[] = {
457         0x0060000000000000ULL, 0x0060600000000000ULL,
458         0x0040600000000000ULL, 0x0000600000000000ULL,
459         0x0020600000000000ULL, 0x0060600000000000ULL,
460         0x0020600000000000ULL, 0x0060600000000000ULL,
461         0x0020600000000000ULL, 0x0060600000000000ULL,
462         0x0020600000000000ULL, 0x0060600000000000ULL,
463         0x0020600000000000ULL, 0x0060600000000000ULL,
464         0x0020600000000000ULL, 0x0060600000000000ULL,
465         0x0020600000000000ULL, 0x0060600000000000ULL,
466         0x0020600000000000ULL, 0x0060600000000000ULL,
467         0x0020600000000000ULL, 0x0060600000000000ULL,
468         0x0020600000000000ULL, 0x0060600000000000ULL,
469         0x0020600000000000ULL, 0x0000600000000000ULL,
470         0x0040600000000000ULL, 0x0060600000000000ULL,
471         END_SIGN
472 };
473
474 MODULE_LICENSE("GPL");
475 MODULE_VERSION(DRV_VERSION);
476
477
478 /* Module Loadable parameters. */
479 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
480 S2IO_PARM_INT(rx_ring_num, 1);
481 S2IO_PARM_INT(multiq, 0);
482 S2IO_PARM_INT(rx_ring_mode, 1);
483 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
484 S2IO_PARM_INT(rmac_pause_time, 0x100);
485 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
486 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
487 S2IO_PARM_INT(shared_splits, 0);
488 S2IO_PARM_INT(tmac_util_period, 5);
489 S2IO_PARM_INT(rmac_util_period, 5);
490 S2IO_PARM_INT(l3l4hdr_size, 128);
491 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
492 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
493 /* Frequency of Rx desc syncs expressed as power of 2 */
494 S2IO_PARM_INT(rxsync_frequency, 3);
495 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
496 S2IO_PARM_INT(intr_type, 2);
497 /* Large receive offload feature */
498 static unsigned int lro_enable;
499 module_param_named(lro, lro_enable, uint, 0);
500
501 /* Max pkts to be aggregated by LRO at one time. If not specified,
502  * aggregation happens until we hit max IP pkt size(64K)
503  */
504 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
505 S2IO_PARM_INT(indicate_max_pkts, 0);
506
507 S2IO_PARM_INT(napi, 1);
508 S2IO_PARM_INT(ufo, 0);
509 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
510
511 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
512 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
513 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
514 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
515 static unsigned int rts_frm_len[MAX_RX_RINGS] =
516 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
517
518 module_param_array(tx_fifo_len, uint, NULL, 0);
519 module_param_array(rx_ring_sz, uint, NULL, 0);
520 module_param_array(rts_frm_len, uint, NULL, 0);
521
522 /*
523  * S2IO device table.
524  * This table lists all the devices that this driver supports.
525  */
526 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
527         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
528          PCI_ANY_ID, PCI_ANY_ID},
529         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
530          PCI_ANY_ID, PCI_ANY_ID},
531         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
532          PCI_ANY_ID, PCI_ANY_ID},
533         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
534          PCI_ANY_ID, PCI_ANY_ID},
535         {0,}
536 };
537
538 MODULE_DEVICE_TABLE(pci, s2io_tbl);
539
540 static struct pci_error_handlers s2io_err_handler = {
541         .error_detected = s2io_io_error_detected,
542         .slot_reset = s2io_io_slot_reset,
543         .resume = s2io_io_resume,
544 };
545
546 static struct pci_driver s2io_driver = {
547         .name = "S2IO",
548         .id_table = s2io_tbl,
549         .probe = s2io_init_nic,
550         .remove = __devexit_p(s2io_rem_nic),
551         .err_handler = &s2io_err_handler,
552 };
553
554 /* A simplifier macro used both by init and free shared_mem Fns(). */
555 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
556
557 /* netqueue manipulation helper functions */
558 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
559 {
560         if (!sp->config.multiq) {
561                 int i;
562
563                 for (i = 0; i < sp->config.tx_fifo_num; i++)
564                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
565         }
566         netif_tx_stop_all_queues(sp->dev);
567 }
568
569 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
570 {
571         if (!sp->config.multiq)
572                 sp->mac_control.fifos[fifo_no].queue_state =
573                         FIFO_QUEUE_STOP;
574
575         netif_tx_stop_all_queues(sp->dev);
576 }
577
578 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
579 {
580         if (!sp->config.multiq) {
581                 int i;
582
583                 for (i = 0; i < sp->config.tx_fifo_num; i++)
584                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
585         }
586         netif_tx_start_all_queues(sp->dev);
587 }
588
589 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
590 {
591         if (!sp->config.multiq)
592                 sp->mac_control.fifos[fifo_no].queue_state =
593                         FIFO_QUEUE_START;
594
595         netif_tx_start_all_queues(sp->dev);
596 }
597
598 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
599 {
600         if (!sp->config.multiq) {
601                 int i;
602
603                 for (i = 0; i < sp->config.tx_fifo_num; i++)
604                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
605         }
606         netif_tx_wake_all_queues(sp->dev);
607 }
608
609 static inline void s2io_wake_tx_queue(
610         struct fifo_info *fifo, int cnt, u8 multiq)
611 {
612
613         if (multiq) {
614                 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
615                         netif_wake_subqueue(fifo->dev, fifo->fifo_no);
616         } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
617                 if (netif_queue_stopped(fifo->dev)) {
618                         fifo->queue_state = FIFO_QUEUE_START;
619                         netif_wake_queue(fifo->dev);
620                 }
621         }
622 }
623
624 /**
625  * init_shared_mem - Allocation and Initialization of Memory
626  * @nic: Device private variable.
627  * Description: The function allocates all the memory areas shared
628  * between the NIC and the driver. This includes Tx descriptors,
629  * Rx descriptors and the statistics block.
630  */
631
632 static int init_shared_mem(struct s2io_nic *nic)
633 {
634         u32 size;
635         void *tmp_v_addr, *tmp_v_addr_next;
636         dma_addr_t tmp_p_addr, tmp_p_addr_next;
637         struct RxD_block *pre_rxd_blk = NULL;
638         int i, j, blk_cnt;
639         int lst_size, lst_per_page;
640         struct net_device *dev = nic->dev;
641         unsigned long tmp;
642         struct buffAdd *ba;
643         struct config_param *config = &nic->config;
644         struct mac_info *mac_control = &nic->mac_control;
645         unsigned long long mem_allocated = 0;
646
647         /* Allocation and initialization of TXDLs in FIFOs */
648         size = 0;
649         for (i = 0; i < config->tx_fifo_num; i++) {
650                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
651
652                 size += tx_cfg->fifo_len;
653         }
654         if (size > MAX_AVAILABLE_TXDS) {
655                 DBG_PRINT(ERR_DBG,
656                           "Too many TxDs requested: %d, max supported: %d\n",
657                           size, MAX_AVAILABLE_TXDS);
658                 return -EINVAL;
659         }
660
661         size = 0;
662         for (i = 0; i < config->tx_fifo_num; i++) {
663                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
664
665                 size = tx_cfg->fifo_len;
666                 /*
667                  * Legal values are from 2 to 8192
668                  */
669                 if (size < 2) {
670                         DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
671                                   "Valid lengths are 2 through 8192\n",
672                                   i, size);
673                         return -EINVAL;
674                 }
675         }
676
677         lst_size = (sizeof(struct TxD) * config->max_txds);
678         lst_per_page = PAGE_SIZE / lst_size;
679
680         for (i = 0; i < config->tx_fifo_num; i++) {
681                 struct fifo_info *fifo = &mac_control->fifos[i];
682                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
683                 int fifo_len = tx_cfg->fifo_len;
684                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
685
686                 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
687                 if (!fifo->list_info) {
688                         DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
689                         return -ENOMEM;
690                 }
691                 mem_allocated += list_holder_size;
692         }
693         for (i = 0; i < config->tx_fifo_num; i++) {
694                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
695                                                 lst_per_page);
696                 struct fifo_info *fifo = &mac_control->fifos[i];
697                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
698
699                 fifo->tx_curr_put_info.offset = 0;
700                 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
701                 fifo->tx_curr_get_info.offset = 0;
702                 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
703                 fifo->fifo_no = i;
704                 fifo->nic = nic;
705                 fifo->max_txds = MAX_SKB_FRAGS + 2;
706                 fifo->dev = dev;
707
708                 for (j = 0; j < page_num; j++) {
709                         int k = 0;
710                         dma_addr_t tmp_p;
711                         void *tmp_v;
712                         tmp_v = pci_alloc_consistent(nic->pdev,
713                                                      PAGE_SIZE, &tmp_p);
714                         if (!tmp_v) {
715                                 DBG_PRINT(INFO_DBG,
716                                           "pci_alloc_consistent failed for TxDL\n");
717                                 return -ENOMEM;
718                         }
719                         /* If we got a zero DMA address(can happen on
720                          * certain platforms like PPC), reallocate.
721                          * Store virtual address of page we don't want,
722                          * to be freed later.
723                          */
724                         if (!tmp_p) {
725                                 mac_control->zerodma_virt_addr = tmp_v;
726                                 DBG_PRINT(INIT_DBG,
727                                           "%s: Zero DMA address for TxDL. "
728                                           "Virtual address %p\n",
729                                           dev->name, tmp_v);
730                                 tmp_v = pci_alloc_consistent(nic->pdev,
731                                                              PAGE_SIZE, &tmp_p);
732                                 if (!tmp_v) {
733                                         DBG_PRINT(INFO_DBG,
734                                                   "pci_alloc_consistent failed for TxDL\n");
735                                         return -ENOMEM;
736                                 }
737                                 mem_allocated += PAGE_SIZE;
738                         }
739                         while (k < lst_per_page) {
740                                 int l = (j * lst_per_page) + k;
741                                 if (l == tx_cfg->fifo_len)
742                                         break;
743                                 fifo->list_info[l].list_virt_addr =
744                                         tmp_v + (k * lst_size);
745                                 fifo->list_info[l].list_phy_addr =
746                                         tmp_p + (k * lst_size);
747                                 k++;
748                         }
749                 }
750         }
751
752         for (i = 0; i < config->tx_fifo_num; i++) {
753                 struct fifo_info *fifo = &mac_control->fifos[i];
754                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
755
756                 size = tx_cfg->fifo_len;
757                 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
758                 if (!fifo->ufo_in_band_v)
759                         return -ENOMEM;
760                 mem_allocated += (size * sizeof(u64));
761         }
762
763         /* Allocation and initialization of RXDs in Rings */
764         size = 0;
765         for (i = 0; i < config->rx_ring_num; i++) {
766                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
767                 struct ring_info *ring = &mac_control->rings[i];
768
769                 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
770                         DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
771                                   "multiple of RxDs per Block\n",
772                                   dev->name, i);
773                         return FAILURE;
774                 }
775                 size += rx_cfg->num_rxd;
776                 ring->block_count = rx_cfg->num_rxd /
777                         (rxd_count[nic->rxd_mode] + 1);
778                 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
779         }
780         if (nic->rxd_mode == RXD_MODE_1)
781                 size = (size * (sizeof(struct RxD1)));
782         else
783                 size = (size * (sizeof(struct RxD3)));
784
785         for (i = 0; i < config->rx_ring_num; i++) {
786                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
787                 struct ring_info *ring = &mac_control->rings[i];
788
789                 ring->rx_curr_get_info.block_index = 0;
790                 ring->rx_curr_get_info.offset = 0;
791                 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
792                 ring->rx_curr_put_info.block_index = 0;
793                 ring->rx_curr_put_info.offset = 0;
794                 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
795                 ring->nic = nic;
796                 ring->ring_no = i;
797                 ring->lro = lro_enable;
798
799                 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
800                 /*  Allocating all the Rx blocks */
801                 for (j = 0; j < blk_cnt; j++) {
802                         struct rx_block_info *rx_blocks;
803                         int l;
804
805                         rx_blocks = &ring->rx_blocks[j];
806                         size = SIZE_OF_BLOCK;   /* size is always page size */
807                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
808                                                           &tmp_p_addr);
809                         if (tmp_v_addr == NULL) {
810                                 /*
811                                  * In case of failure, free_shared_mem()
812                                  * is called, which should free any
813                                  * memory that was alloced till the
814                                  * failure happened.
815                                  */
816                                 rx_blocks->block_virt_addr = tmp_v_addr;
817                                 return -ENOMEM;
818                         }
819                         mem_allocated += size;
820                         memset(tmp_v_addr, 0, size);
821
822                         size = sizeof(struct rxd_info) *
823                                 rxd_count[nic->rxd_mode];
824                         rx_blocks->block_virt_addr = tmp_v_addr;
825                         rx_blocks->block_dma_addr = tmp_p_addr;
826                         rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
827                         if (!rx_blocks->rxds)
828                                 return -ENOMEM;
829                         mem_allocated += size;
830                         for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
831                                 rx_blocks->rxds[l].virt_addr =
832                                         rx_blocks->block_virt_addr +
833                                         (rxd_size[nic->rxd_mode] * l);
834                                 rx_blocks->rxds[l].dma_addr =
835                                         rx_blocks->block_dma_addr +
836                                         (rxd_size[nic->rxd_mode] * l);
837                         }
838                 }
839                 /* Interlinking all Rx Blocks */
840                 for (j = 0; j < blk_cnt; j++) {
841                         int next = (j + 1) % blk_cnt;
842                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
843                         tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
844                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
845                         tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
846
847                         pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
848                         pre_rxd_blk->reserved_2_pNext_RxD_block =
849                                 (unsigned long)tmp_v_addr_next;
850                         pre_rxd_blk->pNext_RxD_Blk_physical =
851                                 (u64)tmp_p_addr_next;
852                 }
853         }
854         if (nic->rxd_mode == RXD_MODE_3B) {
855                 /*
856                  * Allocation of Storages for buffer addresses in 2BUFF mode
857                  * and the buffers as well.
858                  */
859                 for (i = 0; i < config->rx_ring_num; i++) {
860                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
861                         struct ring_info *ring = &mac_control->rings[i];
862
863                         blk_cnt = rx_cfg->num_rxd /
864                                 (rxd_count[nic->rxd_mode] + 1);
865                         size = sizeof(struct buffAdd *) * blk_cnt;
866                         ring->ba = kmalloc(size, GFP_KERNEL);
867                         if (!ring->ba)
868                                 return -ENOMEM;
869                         mem_allocated += size;
870                         for (j = 0; j < blk_cnt; j++) {
871                                 int k = 0;
872
873                                 size = sizeof(struct buffAdd) *
874                                         (rxd_count[nic->rxd_mode] + 1);
875                                 ring->ba[j] = kmalloc(size, GFP_KERNEL);
876                                 if (!ring->ba[j])
877                                         return -ENOMEM;
878                                 mem_allocated += size;
879                                 while (k != rxd_count[nic->rxd_mode]) {
880                                         ba = &ring->ba[j][k];
881                                         size = BUF0_LEN + ALIGN_SIZE;
882                                         ba->ba_0_org = kmalloc(size, GFP_KERNEL);
883                                         if (!ba->ba_0_org)
884                                                 return -ENOMEM;
885                                         mem_allocated += size;
886                                         tmp = (unsigned long)ba->ba_0_org;
887                                         tmp += ALIGN_SIZE;
888                                         tmp &= ~((unsigned long)ALIGN_SIZE);
889                                         ba->ba_0 = (void *)tmp;
890
891                                         size = BUF1_LEN + ALIGN_SIZE;
892                                         ba->ba_1_org = kmalloc(size, GFP_KERNEL);
893                                         if (!ba->ba_1_org)
894                                                 return -ENOMEM;
895                                         mem_allocated += size;
896                                         tmp = (unsigned long)ba->ba_1_org;
897                                         tmp += ALIGN_SIZE;
898                                         tmp &= ~((unsigned long)ALIGN_SIZE);
899                                         ba->ba_1 = (void *)tmp;
900                                         k++;
901                                 }
902                         }
903                 }
904         }
905
906         /* Allocation and initialization of Statistics block */
907         size = sizeof(struct stat_block);
908         mac_control->stats_mem =
909                 pci_alloc_consistent(nic->pdev, size,
910                                      &mac_control->stats_mem_phy);
911
912         if (!mac_control->stats_mem) {
913                 /*
914                  * In case of failure, free_shared_mem() is called, which
915                  * should free any memory that was alloced till the
916                  * failure happened.
917                  */
918                 return -ENOMEM;
919         }
920         mem_allocated += size;
921         mac_control->stats_mem_sz = size;
922
923         tmp_v_addr = mac_control->stats_mem;
924         mac_control->stats_info = (struct stat_block *)tmp_v_addr;
925         memset(tmp_v_addr, 0, size);
926         DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
927                 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
928         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
929         return SUCCESS;
930 }
931
932 /**
933  * free_shared_mem - Free the allocated Memory
934  * @nic:  Device private variable.
935  * Description: This function is to free all memory locations allocated by
936  * the init_shared_mem() function and return it to the kernel.
937  */
938
939 static void free_shared_mem(struct s2io_nic *nic)
940 {
941         int i, j, blk_cnt, size;
942         void *tmp_v_addr;
943         dma_addr_t tmp_p_addr;
944         int lst_size, lst_per_page;
945         struct net_device *dev;
946         int page_num = 0;
947         struct config_param *config;
948         struct mac_info *mac_control;
949         struct stat_block *stats;
950         struct swStat *swstats;
951
952         if (!nic)
953                 return;
954
955         dev = nic->dev;
956
957         config = &nic->config;
958         mac_control = &nic->mac_control;
959         stats = mac_control->stats_info;
960         swstats = &stats->sw_stat;
961
962         lst_size = sizeof(struct TxD) * config->max_txds;
963         lst_per_page = PAGE_SIZE / lst_size;
964
965         for (i = 0; i < config->tx_fifo_num; i++) {
966                 struct fifo_info *fifo = &mac_control->fifos[i];
967                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
968
969                 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
970                 for (j = 0; j < page_num; j++) {
971                         int mem_blks = (j * lst_per_page);
972                         struct list_info_hold *fli;
973
974                         if (!fifo->list_info)
975                                 return;
976
977                         fli = &fifo->list_info[mem_blks];
978                         if (!fli->list_virt_addr)
979                                 break;
980                         pci_free_consistent(nic->pdev, PAGE_SIZE,
981                                             fli->list_virt_addr,
982                                             fli->list_phy_addr);
983                         swstats->mem_freed += PAGE_SIZE;
984                 }
985                 /* If we got a zero DMA address during allocation,
986                  * free the page now
987                  */
988                 if (mac_control->zerodma_virt_addr) {
989                         pci_free_consistent(nic->pdev, PAGE_SIZE,
990                                             mac_control->zerodma_virt_addr,
991                                             (dma_addr_t)0);
992                         DBG_PRINT(INIT_DBG,
993                                   "%s: Freeing TxDL with zero DMA address. "
994                                   "Virtual address %p\n",
995                                   dev->name, mac_control->zerodma_virt_addr);
996                         swstats->mem_freed += PAGE_SIZE;
997                 }
998                 kfree(fifo->list_info);
999                 swstats->mem_freed += tx_cfg->fifo_len *
1000                         sizeof(struct list_info_hold);
1001         }
1002
1003         size = SIZE_OF_BLOCK;
1004         for (i = 0; i < config->rx_ring_num; i++) {
1005                 struct ring_info *ring = &mac_control->rings[i];
1006
1007                 blk_cnt = ring->block_count;
1008                 for (j = 0; j < blk_cnt; j++) {
1009                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1010                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1011                         if (tmp_v_addr == NULL)
1012                                 break;
1013                         pci_free_consistent(nic->pdev, size,
1014                                             tmp_v_addr, tmp_p_addr);
1015                         swstats->mem_freed += size;
1016                         kfree(ring->rx_blocks[j].rxds);
1017                         swstats->mem_freed += sizeof(struct rxd_info) *
1018                                 rxd_count[nic->rxd_mode];
1019                 }
1020         }
1021
1022         if (nic->rxd_mode == RXD_MODE_3B) {
1023                 /* Freeing buffer storage addresses in 2BUFF mode. */
1024                 for (i = 0; i < config->rx_ring_num; i++) {
1025                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1026                         struct ring_info *ring = &mac_control->rings[i];
1027
1028                         blk_cnt = rx_cfg->num_rxd /
1029                                 (rxd_count[nic->rxd_mode] + 1);
1030                         for (j = 0; j < blk_cnt; j++) {
1031                                 int k = 0;
1032                                 if (!ring->ba[j])
1033                                         continue;
1034                                 while (k != rxd_count[nic->rxd_mode]) {
1035                                         struct buffAdd *ba = &ring->ba[j][k];
1036                                         kfree(ba->ba_0_org);
1037                                         swstats->mem_freed +=
1038                                                 BUF0_LEN + ALIGN_SIZE;
1039                                         kfree(ba->ba_1_org);
1040                                         swstats->mem_freed +=
1041                                                 BUF1_LEN + ALIGN_SIZE;
1042                                         k++;
1043                                 }
1044                                 kfree(ring->ba[j]);
1045                                 swstats->mem_freed += sizeof(struct buffAdd) *
1046                                         (rxd_count[nic->rxd_mode] + 1);
1047                         }
1048                         kfree(ring->ba);
1049                         swstats->mem_freed += sizeof(struct buffAdd *) *
1050                                 blk_cnt;
1051                 }
1052         }
1053
1054         for (i = 0; i < nic->config.tx_fifo_num; i++) {
1055                 struct fifo_info *fifo = &mac_control->fifos[i];
1056                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1057
1058                 if (fifo->ufo_in_band_v) {
1059                         swstats->mem_freed += tx_cfg->fifo_len *
1060                                 sizeof(u64);
1061                         kfree(fifo->ufo_in_band_v);
1062                 }
1063         }
1064
1065         if (mac_control->stats_mem) {
1066                 swstats->mem_freed += mac_control->stats_mem_sz;
1067                 pci_free_consistent(nic->pdev,
1068                                     mac_control->stats_mem_sz,
1069                                     mac_control->stats_mem,
1070                                     mac_control->stats_mem_phy);
1071         }
1072 }
1073
1074 /**
1075  * s2io_verify_pci_mode -
1076  */
1077
1078 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1079 {
1080         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1081         register u64 val64 = 0;
1082         int     mode;
1083
1084         val64 = readq(&bar0->pci_mode);
1085         mode = (u8)GET_PCI_MODE(val64);
1086
1087         if (val64 & PCI_MODE_UNKNOWN_MODE)
1088                 return -1;      /* Unknown PCI mode */
1089         return mode;
1090 }
1091
1092 #define NEC_VENID   0x1033
1093 #define NEC_DEVID   0x0125
1094 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1095 {
1096         struct pci_dev *tdev = NULL;
1097         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1098                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1099                         if (tdev->bus == s2io_pdev->bus->parent) {
1100                                 pci_dev_put(tdev);
1101                                 return 1;
1102                         }
1103                 }
1104         }
1105         return 0;
1106 }
1107
1108 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1109 /**
1110  * s2io_print_pci_mode -
1111  */
1112 static int s2io_print_pci_mode(struct s2io_nic *nic)
1113 {
1114         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1115         register u64 val64 = 0;
1116         int     mode;
1117         struct config_param *config = &nic->config;
1118         const char *pcimode;
1119
1120         val64 = readq(&bar0->pci_mode);
1121         mode = (u8)GET_PCI_MODE(val64);
1122
1123         if (val64 & PCI_MODE_UNKNOWN_MODE)
1124                 return -1;      /* Unknown PCI mode */
1125
1126         config->bus_speed = bus_speed[mode];
1127
1128         if (s2io_on_nec_bridge(nic->pdev)) {
1129                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1130                           nic->dev->name);
1131                 return mode;
1132         }
1133
1134         switch (mode) {
1135         case PCI_MODE_PCI_33:
1136                 pcimode = "33MHz PCI bus";
1137                 break;
1138         case PCI_MODE_PCI_66:
1139                 pcimode = "66MHz PCI bus";
1140                 break;
1141         case PCI_MODE_PCIX_M1_66:
1142                 pcimode = "66MHz PCIX(M1) bus";
1143                 break;
1144         case PCI_MODE_PCIX_M1_100:
1145                 pcimode = "100MHz PCIX(M1) bus";
1146                 break;
1147         case PCI_MODE_PCIX_M1_133:
1148                 pcimode = "133MHz PCIX(M1) bus";
1149                 break;
1150         case PCI_MODE_PCIX_M2_66:
1151                 pcimode = "133MHz PCIX(M2) bus";
1152                 break;
1153         case PCI_MODE_PCIX_M2_100:
1154                 pcimode = "200MHz PCIX(M2) bus";
1155                 break;
1156         case PCI_MODE_PCIX_M2_133:
1157                 pcimode = "266MHz PCIX(M2) bus";
1158                 break;
1159         default:
1160                 pcimode = "unsupported bus!";
1161                 mode = -1;
1162         }
1163
1164         DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1165                   nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1166
1167         return mode;
1168 }
1169
1170 /**
1171  *  init_tti - Initialization transmit traffic interrupt scheme
1172  *  @nic: device private variable
1173  *  @link: link status (UP/DOWN) used to enable/disable continuous
1174  *  transmit interrupts
1175  *  Description: The function configures transmit traffic interrupts
1176  *  Return Value:  SUCCESS on success and
1177  *  '-1' on failure
1178  */
1179
1180 static int init_tti(struct s2io_nic *nic, int link)
1181 {
1182         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1183         register u64 val64 = 0;
1184         int i;
1185         struct config_param *config = &nic->config;
1186
1187         for (i = 0; i < config->tx_fifo_num; i++) {
1188                 /*
1189                  * TTI Initialization. Default Tx timer gets us about
1190                  * 250 interrupts per sec. Continuous interrupts are enabled
1191                  * by default.
1192                  */
1193                 if (nic->device_type == XFRAME_II_DEVICE) {
1194                         int count = (nic->config.bus_speed * 125)/2;
1195                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1196                 } else
1197                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1198
1199                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1200                         TTI_DATA1_MEM_TX_URNG_B(0x10) |
1201                         TTI_DATA1_MEM_TX_URNG_C(0x30) |
1202                         TTI_DATA1_MEM_TX_TIMER_AC_EN;
1203                 if (i == 0)
1204                         if (use_continuous_tx_intrs && (link == LINK_UP))
1205                                 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1206                 writeq(val64, &bar0->tti_data1_mem);
1207
1208                 if (nic->config.intr_type == MSI_X) {
1209                         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1210                                 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1211                                 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1212                                 TTI_DATA2_MEM_TX_UFC_D(0x300);
1213                 } else {
1214                         if ((nic->config.tx_steering_type ==
1215                              TX_DEFAULT_STEERING) &&
1216                             (config->tx_fifo_num > 1) &&
1217                             (i >= nic->udp_fifo_idx) &&
1218                             (i < (nic->udp_fifo_idx +
1219                                   nic->total_udp_fifos)))
1220                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1221                                         TTI_DATA2_MEM_TX_UFC_B(0x80) |
1222                                         TTI_DATA2_MEM_TX_UFC_C(0x100) |
1223                                         TTI_DATA2_MEM_TX_UFC_D(0x120);
1224                         else
1225                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1226                                         TTI_DATA2_MEM_TX_UFC_B(0x20) |
1227                                         TTI_DATA2_MEM_TX_UFC_C(0x40) |
1228                                         TTI_DATA2_MEM_TX_UFC_D(0x80);
1229                 }
1230
1231                 writeq(val64, &bar0->tti_data2_mem);
1232
1233                 val64 = TTI_CMD_MEM_WE |
1234                         TTI_CMD_MEM_STROBE_NEW_CMD |
1235                         TTI_CMD_MEM_OFFSET(i);
1236                 writeq(val64, &bar0->tti_command_mem);
1237
1238                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1239                                           TTI_CMD_MEM_STROBE_NEW_CMD,
1240                                           S2IO_BIT_RESET) != SUCCESS)
1241                         return FAILURE;
1242         }
1243
1244         return SUCCESS;
1245 }
1246
1247 /**
1248  *  init_nic - Initialization of hardware
1249  *  @nic: device private variable
1250  *  Description: The function sequentially configures every block
1251  *  of the H/W from their reset values.
1252  *  Return Value:  SUCCESS on success and
1253  *  '-1' on failure (endian settings incorrect).
1254  */
1255
1256 static int init_nic(struct s2io_nic *nic)
1257 {
1258         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1259         struct net_device *dev = nic->dev;
1260         register u64 val64 = 0;
1261         void __iomem *add;
1262         u32 time;
1263         int i, j;
1264         int dtx_cnt = 0;
1265         unsigned long long mem_share;
1266         int mem_size;
1267         struct config_param *config = &nic->config;
1268         struct mac_info *mac_control = &nic->mac_control;
1269
1270         /* to set the swapper controle on the card */
1271         if (s2io_set_swapper(nic)) {
1272                 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1273                 return -EIO;
1274         }
1275
1276         /*
1277          * Herc requires EOI to be removed from reset before XGXS, so..
1278          */
1279         if (nic->device_type & XFRAME_II_DEVICE) {
1280                 val64 = 0xA500000000ULL;
1281                 writeq(val64, &bar0->sw_reset);
1282                 msleep(500);
1283                 val64 = readq(&bar0->sw_reset);
1284         }
1285
1286         /* Remove XGXS from reset state */
1287         val64 = 0;
1288         writeq(val64, &bar0->sw_reset);
1289         msleep(500);
1290         val64 = readq(&bar0->sw_reset);
1291
1292         /* Ensure that it's safe to access registers by checking
1293          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1294          */
1295         if (nic->device_type == XFRAME_II_DEVICE) {
1296                 for (i = 0; i < 50; i++) {
1297                         val64 = readq(&bar0->adapter_status);
1298                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1299                                 break;
1300                         msleep(10);
1301                 }
1302                 if (i == 50)
1303                         return -ENODEV;
1304         }
1305
1306         /*  Enable Receiving broadcasts */
1307         add = &bar0->mac_cfg;
1308         val64 = readq(&bar0->mac_cfg);
1309         val64 |= MAC_RMAC_BCAST_ENABLE;
1310         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1311         writel((u32)val64, add);
1312         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1313         writel((u32) (val64 >> 32), (add + 4));
1314
1315         /* Read registers in all blocks */
1316         val64 = readq(&bar0->mac_int_mask);
1317         val64 = readq(&bar0->mc_int_mask);
1318         val64 = readq(&bar0->xgxs_int_mask);
1319
1320         /*  Set MTU */
1321         val64 = dev->mtu;
1322         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1323
1324         if (nic->device_type & XFRAME_II_DEVICE) {
1325                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1326                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1327                                           &bar0->dtx_control, UF);
1328                         if (dtx_cnt & 0x1)
1329                                 msleep(1); /* Necessary!! */
1330                         dtx_cnt++;
1331                 }
1332         } else {
1333                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1334                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1335                                           &bar0->dtx_control, UF);
1336                         val64 = readq(&bar0->dtx_control);
1337                         dtx_cnt++;
1338                 }
1339         }
1340
1341         /*  Tx DMA Initialization */
1342         val64 = 0;
1343         writeq(val64, &bar0->tx_fifo_partition_0);
1344         writeq(val64, &bar0->tx_fifo_partition_1);
1345         writeq(val64, &bar0->tx_fifo_partition_2);
1346         writeq(val64, &bar0->tx_fifo_partition_3);
1347
1348         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1349                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1350
1351                 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1352                         vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1353
1354                 if (i == (config->tx_fifo_num - 1)) {
1355                         if (i % 2 == 0)
1356                                 i++;
1357                 }
1358
1359                 switch (i) {
1360                 case 1:
1361                         writeq(val64, &bar0->tx_fifo_partition_0);
1362                         val64 = 0;
1363                         j = 0;
1364                         break;
1365                 case 3:
1366                         writeq(val64, &bar0->tx_fifo_partition_1);
1367                         val64 = 0;
1368                         j = 0;
1369                         break;
1370                 case 5:
1371                         writeq(val64, &bar0->tx_fifo_partition_2);
1372                         val64 = 0;
1373                         j = 0;
1374                         break;
1375                 case 7:
1376                         writeq(val64, &bar0->tx_fifo_partition_3);
1377                         val64 = 0;
1378                         j = 0;
1379                         break;
1380                 default:
1381                         j++;
1382                         break;
1383                 }
1384         }
1385
1386         /*
1387          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1388          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1389          */
1390         if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1391                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1392
1393         val64 = readq(&bar0->tx_fifo_partition_0);
1394         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1395                   &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1396
1397         /*
1398          * Initialization of Tx_PA_CONFIG register to ignore packet
1399          * integrity checking.
1400          */
1401         val64 = readq(&bar0->tx_pa_cfg);
1402         val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1403                 TX_PA_CFG_IGNORE_SNAP_OUI |
1404                 TX_PA_CFG_IGNORE_LLC_CTRL |
1405                 TX_PA_CFG_IGNORE_L2_ERR;
1406         writeq(val64, &bar0->tx_pa_cfg);
1407
1408         /* Rx DMA intialization. */
1409         val64 = 0;
1410         for (i = 0; i < config->rx_ring_num; i++) {
1411                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1412
1413                 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1414         }
1415         writeq(val64, &bar0->rx_queue_priority);
1416
1417         /*
1418          * Allocating equal share of memory to all the
1419          * configured Rings.
1420          */
1421         val64 = 0;
1422         if (nic->device_type & XFRAME_II_DEVICE)
1423                 mem_size = 32;
1424         else
1425                 mem_size = 64;
1426
1427         for (i = 0; i < config->rx_ring_num; i++) {
1428                 switch (i) {
1429                 case 0:
1430                         mem_share = (mem_size / config->rx_ring_num +
1431                                      mem_size % config->rx_ring_num);
1432                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1433                         continue;
1434                 case 1:
1435                         mem_share = (mem_size / config->rx_ring_num);
1436                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1437                         continue;
1438                 case 2:
1439                         mem_share = (mem_size / config->rx_ring_num);
1440                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1441                         continue;
1442                 case 3:
1443                         mem_share = (mem_size / config->rx_ring_num);
1444                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1445                         continue;
1446                 case 4:
1447                         mem_share = (mem_size / config->rx_ring_num);
1448                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1449                         continue;
1450                 case 5:
1451                         mem_share = (mem_size / config->rx_ring_num);
1452                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1453                         continue;
1454                 case 6:
1455                         mem_share = (mem_size / config->rx_ring_num);
1456                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1457                         continue;
1458                 case 7:
1459                         mem_share = (mem_size / config->rx_ring_num);
1460                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1461                         continue;
1462                 }
1463         }
1464         writeq(val64, &bar0->rx_queue_cfg);
1465
1466         /*
1467          * Filling Tx round robin registers
1468          * as per the number of FIFOs for equal scheduling priority
1469          */
1470         switch (config->tx_fifo_num) {
1471         case 1:
1472                 val64 = 0x0;
1473                 writeq(val64, &bar0->tx_w_round_robin_0);
1474                 writeq(val64, &bar0->tx_w_round_robin_1);
1475                 writeq(val64, &bar0->tx_w_round_robin_2);
1476                 writeq(val64, &bar0->tx_w_round_robin_3);
1477                 writeq(val64, &bar0->tx_w_round_robin_4);
1478                 break;
1479         case 2:
1480                 val64 = 0x0001000100010001ULL;
1481                 writeq(val64, &bar0->tx_w_round_robin_0);
1482                 writeq(val64, &bar0->tx_w_round_robin_1);
1483                 writeq(val64, &bar0->tx_w_round_robin_2);
1484                 writeq(val64, &bar0->tx_w_round_robin_3);
1485                 val64 = 0x0001000100000000ULL;
1486                 writeq(val64, &bar0->tx_w_round_robin_4);
1487                 break;
1488         case 3:
1489                 val64 = 0x0001020001020001ULL;
1490                 writeq(val64, &bar0->tx_w_round_robin_0);
1491                 val64 = 0x0200010200010200ULL;
1492                 writeq(val64, &bar0->tx_w_round_robin_1);
1493                 val64 = 0x0102000102000102ULL;
1494                 writeq(val64, &bar0->tx_w_round_robin_2);
1495                 val64 = 0x0001020001020001ULL;
1496                 writeq(val64, &bar0->tx_w_round_robin_3);
1497                 val64 = 0x0200010200000000ULL;
1498                 writeq(val64, &bar0->tx_w_round_robin_4);
1499                 break;
1500         case 4:
1501                 val64 = 0x0001020300010203ULL;
1502                 writeq(val64, &bar0->tx_w_round_robin_0);
1503                 writeq(val64, &bar0->tx_w_round_robin_1);
1504                 writeq(val64, &bar0->tx_w_round_robin_2);
1505                 writeq(val64, &bar0->tx_w_round_robin_3);
1506                 val64 = 0x0001020300000000ULL;
1507                 writeq(val64, &bar0->tx_w_round_robin_4);
1508                 break;
1509         case 5:
1510                 val64 = 0x0001020304000102ULL;
1511                 writeq(val64, &bar0->tx_w_round_robin_0);
1512                 val64 = 0x0304000102030400ULL;
1513                 writeq(val64, &bar0->tx_w_round_robin_1);
1514                 val64 = 0x0102030400010203ULL;
1515                 writeq(val64, &bar0->tx_w_round_robin_2);
1516                 val64 = 0x0400010203040001ULL;
1517                 writeq(val64, &bar0->tx_w_round_robin_3);
1518                 val64 = 0x0203040000000000ULL;
1519                 writeq(val64, &bar0->tx_w_round_robin_4);
1520                 break;
1521         case 6:
1522                 val64 = 0x0001020304050001ULL;
1523                 writeq(val64, &bar0->tx_w_round_robin_0);
1524                 val64 = 0x0203040500010203ULL;
1525                 writeq(val64, &bar0->tx_w_round_robin_1);
1526                 val64 = 0x0405000102030405ULL;
1527                 writeq(val64, &bar0->tx_w_round_robin_2);
1528                 val64 = 0x0001020304050001ULL;
1529                 writeq(val64, &bar0->tx_w_round_robin_3);
1530                 val64 = 0x0203040500000000ULL;
1531                 writeq(val64, &bar0->tx_w_round_robin_4);
1532                 break;
1533         case 7:
1534                 val64 = 0x0001020304050600ULL;
1535                 writeq(val64, &bar0->tx_w_round_robin_0);
1536                 val64 = 0x0102030405060001ULL;
1537                 writeq(val64, &bar0->tx_w_round_robin_1);
1538                 val64 = 0x0203040506000102ULL;
1539                 writeq(val64, &bar0->tx_w_round_robin_2);
1540                 val64 = 0x0304050600010203ULL;
1541                 writeq(val64, &bar0->tx_w_round_robin_3);
1542                 val64 = 0x0405060000000000ULL;
1543                 writeq(val64, &bar0->tx_w_round_robin_4);
1544                 break;
1545         case 8:
1546                 val64 = 0x0001020304050607ULL;
1547                 writeq(val64, &bar0->tx_w_round_robin_0);
1548                 writeq(val64, &bar0->tx_w_round_robin_1);
1549                 writeq(val64, &bar0->tx_w_round_robin_2);
1550                 writeq(val64, &bar0->tx_w_round_robin_3);
1551                 val64 = 0x0001020300000000ULL;
1552                 writeq(val64, &bar0->tx_w_round_robin_4);
1553                 break;
1554         }
1555
1556         /* Enable all configured Tx FIFO partitions */
1557         val64 = readq(&bar0->tx_fifo_partition_0);
1558         val64 |= (TX_FIFO_PARTITION_EN);
1559         writeq(val64, &bar0->tx_fifo_partition_0);
1560
1561         /* Filling the Rx round robin registers as per the
1562          * number of Rings and steering based on QoS with
1563          * equal priority.
1564          */
1565         switch (config->rx_ring_num) {
1566         case 1:
1567                 val64 = 0x0;
1568                 writeq(val64, &bar0->rx_w_round_robin_0);
1569                 writeq(val64, &bar0->rx_w_round_robin_1);
1570                 writeq(val64, &bar0->rx_w_round_robin_2);
1571                 writeq(val64, &bar0->rx_w_round_robin_3);
1572                 writeq(val64, &bar0->rx_w_round_robin_4);
1573
1574                 val64 = 0x8080808080808080ULL;
1575                 writeq(val64, &bar0->rts_qos_steering);
1576                 break;
1577         case 2:
1578                 val64 = 0x0001000100010001ULL;
1579                 writeq(val64, &bar0->rx_w_round_robin_0);
1580                 writeq(val64, &bar0->rx_w_round_robin_1);
1581                 writeq(val64, &bar0->rx_w_round_robin_2);
1582                 writeq(val64, &bar0->rx_w_round_robin_3);
1583                 val64 = 0x0001000100000000ULL;
1584                 writeq(val64, &bar0->rx_w_round_robin_4);
1585
1586                 val64 = 0x8080808040404040ULL;
1587                 writeq(val64, &bar0->rts_qos_steering);
1588                 break;
1589         case 3:
1590                 val64 = 0x0001020001020001ULL;
1591                 writeq(val64, &bar0->rx_w_round_robin_0);
1592                 val64 = 0x0200010200010200ULL;
1593                 writeq(val64, &bar0->rx_w_round_robin_1);
1594                 val64 = 0x0102000102000102ULL;
1595                 writeq(val64, &bar0->rx_w_round_robin_2);
1596                 val64 = 0x0001020001020001ULL;
1597                 writeq(val64, &bar0->rx_w_round_robin_3);
1598                 val64 = 0x0200010200000000ULL;
1599                 writeq(val64, &bar0->rx_w_round_robin_4);
1600
1601                 val64 = 0x8080804040402020ULL;
1602                 writeq(val64, &bar0->rts_qos_steering);
1603                 break;
1604         case 4:
1605                 val64 = 0x0001020300010203ULL;
1606                 writeq(val64, &bar0->rx_w_round_robin_0);
1607                 writeq(val64, &bar0->rx_w_round_robin_1);
1608                 writeq(val64, &bar0->rx_w_round_robin_2);
1609                 writeq(val64, &bar0->rx_w_round_robin_3);
1610                 val64 = 0x0001020300000000ULL;
1611                 writeq(val64, &bar0->rx_w_round_robin_4);
1612
1613                 val64 = 0x8080404020201010ULL;
1614                 writeq(val64, &bar0->rts_qos_steering);
1615                 break;
1616         case 5:
1617                 val64 = 0x0001020304000102ULL;
1618                 writeq(val64, &bar0->rx_w_round_robin_0);
1619                 val64 = 0x0304000102030400ULL;
1620                 writeq(val64, &bar0->rx_w_round_robin_1);
1621                 val64 = 0x0102030400010203ULL;
1622                 writeq(val64, &bar0->rx_w_round_robin_2);
1623                 val64 = 0x0400010203040001ULL;
1624                 writeq(val64, &bar0->rx_w_round_robin_3);
1625                 val64 = 0x0203040000000000ULL;
1626                 writeq(val64, &bar0->rx_w_round_robin_4);
1627
1628                 val64 = 0x8080404020201008ULL;
1629                 writeq(val64, &bar0->rts_qos_steering);
1630                 break;
1631         case 6:
1632                 val64 = 0x0001020304050001ULL;
1633                 writeq(val64, &bar0->rx_w_round_robin_0);
1634                 val64 = 0x0203040500010203ULL;
1635                 writeq(val64, &bar0->rx_w_round_robin_1);
1636                 val64 = 0x0405000102030405ULL;
1637                 writeq(val64, &bar0->rx_w_round_robin_2);
1638                 val64 = 0x0001020304050001ULL;
1639                 writeq(val64, &bar0->rx_w_round_robin_3);
1640                 val64 = 0x0203040500000000ULL;
1641                 writeq(val64, &bar0->rx_w_round_robin_4);
1642
1643                 val64 = 0x8080404020100804ULL;
1644                 writeq(val64, &bar0->rts_qos_steering);
1645                 break;
1646         case 7:
1647                 val64 = 0x0001020304050600ULL;
1648                 writeq(val64, &bar0->rx_w_round_robin_0);
1649                 val64 = 0x0102030405060001ULL;
1650                 writeq(val64, &bar0->rx_w_round_robin_1);
1651                 val64 = 0x0203040506000102ULL;
1652                 writeq(val64, &bar0->rx_w_round_robin_2);
1653                 val64 = 0x0304050600010203ULL;
1654                 writeq(val64, &bar0->rx_w_round_robin_3);
1655                 val64 = 0x0405060000000000ULL;
1656                 writeq(val64, &bar0->rx_w_round_robin_4);
1657
1658                 val64 = 0x8080402010080402ULL;
1659                 writeq(val64, &bar0->rts_qos_steering);
1660                 break;
1661         case 8:
1662                 val64 = 0x0001020304050607ULL;
1663                 writeq(val64, &bar0->rx_w_round_robin_0);
1664                 writeq(val64, &bar0->rx_w_round_robin_1);
1665                 writeq(val64, &bar0->rx_w_round_robin_2);
1666                 writeq(val64, &bar0->rx_w_round_robin_3);
1667                 val64 = 0x0001020300000000ULL;
1668                 writeq(val64, &bar0->rx_w_round_robin_4);
1669
1670                 val64 = 0x8040201008040201ULL;
1671                 writeq(val64, &bar0->rts_qos_steering);
1672                 break;
1673         }
1674
1675         /* UDP Fix */
1676         val64 = 0;
1677         for (i = 0; i < 8; i++)
1678                 writeq(val64, &bar0->rts_frm_len_n[i]);
1679
1680         /* Set the default rts frame length for the rings configured */
1681         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1682         for (i = 0 ; i < config->rx_ring_num ; i++)
1683                 writeq(val64, &bar0->rts_frm_len_n[i]);
1684
1685         /* Set the frame length for the configured rings
1686          * desired by the user
1687          */
1688         for (i = 0; i < config->rx_ring_num; i++) {
1689                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1690                  * specified frame length steering.
1691                  * If the user provides the frame length then program
1692                  * the rts_frm_len register for those values or else
1693                  * leave it as it is.
1694                  */
1695                 if (rts_frm_len[i] != 0) {
1696                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1697                                &bar0->rts_frm_len_n[i]);
1698                 }
1699         }
1700
1701         /* Disable differentiated services steering logic */
1702         for (i = 0; i < 64; i++) {
1703                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1704                         DBG_PRINT(ERR_DBG,
1705                                   "%s: rts_ds_steer failed on codepoint %d\n",
1706                                   dev->name, i);
1707                         return -ENODEV;
1708                 }
1709         }
1710
1711         /* Program statistics memory */
1712         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1713
1714         if (nic->device_type == XFRAME_II_DEVICE) {
1715                 val64 = STAT_BC(0x320);
1716                 writeq(val64, &bar0->stat_byte_cnt);
1717         }
1718
1719         /*
1720          * Initializing the sampling rate for the device to calculate the
1721          * bandwidth utilization.
1722          */
1723         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1724                 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1725         writeq(val64, &bar0->mac_link_util);
1726
1727         /*
1728          * Initializing the Transmit and Receive Traffic Interrupt
1729          * Scheme.
1730          */
1731
1732         /* Initialize TTI */
1733         if (SUCCESS != init_tti(nic, nic->last_link_state))
1734                 return -ENODEV;
1735
1736         /* RTI Initialization */
1737         if (nic->device_type == XFRAME_II_DEVICE) {
1738                 /*
1739                  * Programmed to generate Apprx 500 Intrs per
1740                  * second
1741                  */
1742                 int count = (nic->config.bus_speed * 125)/4;
1743                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1744         } else
1745                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1746         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1747                 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1748                 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1749                 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1750
1751         writeq(val64, &bar0->rti_data1_mem);
1752
1753         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1754                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1755         if (nic->config.intr_type == MSI_X)
1756                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1757                           RTI_DATA2_MEM_RX_UFC_D(0x40));
1758         else
1759                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1760                           RTI_DATA2_MEM_RX_UFC_D(0x80));
1761         writeq(val64, &bar0->rti_data2_mem);
1762
1763         for (i = 0; i < config->rx_ring_num; i++) {
1764                 val64 = RTI_CMD_MEM_WE |
1765                         RTI_CMD_MEM_STROBE_NEW_CMD |
1766                         RTI_CMD_MEM_OFFSET(i);
1767                 writeq(val64, &bar0->rti_command_mem);
1768
1769                 /*
1770                  * Once the operation completes, the Strobe bit of the
1771                  * command register will be reset. We poll for this
1772                  * particular condition. We wait for a maximum of 500ms
1773                  * for the operation to complete, if it's not complete
1774                  * by then we return error.
1775                  */
1776                 time = 0;
1777                 while (true) {
1778                         val64 = readq(&bar0->rti_command_mem);
1779                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1780                                 break;
1781
1782                         if (time > 10) {
1783                                 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1784                                           dev->name);
1785                                 return -ENODEV;
1786                         }
1787                         time++;
1788                         msleep(50);
1789                 }
1790         }
1791
1792         /*
1793          * Initializing proper values as Pause threshold into all
1794          * the 8 Queues on Rx side.
1795          */
1796         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1797         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1798
1799         /* Disable RMAC PAD STRIPPING */
1800         add = &bar0->mac_cfg;
1801         val64 = readq(&bar0->mac_cfg);
1802         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1803         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1804         writel((u32) (val64), add);
1805         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1806         writel((u32) (val64 >> 32), (add + 4));
1807         val64 = readq(&bar0->mac_cfg);
1808
1809         /* Enable FCS stripping by adapter */
1810         add = &bar0->mac_cfg;
1811         val64 = readq(&bar0->mac_cfg);
1812         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1813         if (nic->device_type == XFRAME_II_DEVICE)
1814                 writeq(val64, &bar0->mac_cfg);
1815         else {
1816                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1817                 writel((u32) (val64), add);
1818                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1819                 writel((u32) (val64 >> 32), (add + 4));
1820         }
1821
1822         /*
1823          * Set the time value to be inserted in the pause frame
1824          * generated by xena.
1825          */
1826         val64 = readq(&bar0->rmac_pause_cfg);
1827         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1828         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1829         writeq(val64, &bar0->rmac_pause_cfg);
1830
1831         /*
1832          * Set the Threshold Limit for Generating the pause frame
1833          * If the amount of data in any Queue exceeds ratio of
1834          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1835          * pause frame is generated
1836          */
1837         val64 = 0;
1838         for (i = 0; i < 4; i++) {
1839                 val64 |= (((u64)0xFF00 |
1840                            nic->mac_control.mc_pause_threshold_q0q3)
1841                           << (i * 2 * 8));
1842         }
1843         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1844
1845         val64 = 0;
1846         for (i = 0; i < 4; i++) {
1847                 val64 |= (((u64)0xFF00 |
1848                            nic->mac_control.mc_pause_threshold_q4q7)
1849                           << (i * 2 * 8));
1850         }
1851         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1852
1853         /*
1854          * TxDMA will stop Read request if the number of read split has
1855          * exceeded the limit pointed by shared_splits
1856          */
1857         val64 = readq(&bar0->pic_control);
1858         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1859         writeq(val64, &bar0->pic_control);
1860
1861         if (nic->config.bus_speed == 266) {
1862                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1863                 writeq(0x0, &bar0->read_retry_delay);
1864                 writeq(0x0, &bar0->write_retry_delay);
1865         }
1866
1867         /*
1868          * Programming the Herc to split every write transaction
1869          * that does not start on an ADB to reduce disconnects.
1870          */
1871         if (nic->device_type == XFRAME_II_DEVICE) {
1872                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1873                         MISC_LINK_STABILITY_PRD(3);
1874                 writeq(val64, &bar0->misc_control);
1875                 val64 = readq(&bar0->pic_control2);
1876                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1877                 writeq(val64, &bar0->pic_control2);
1878         }
1879         if (strstr(nic->product_name, "CX4")) {
1880                 val64 = TMAC_AVG_IPG(0x17);
1881                 writeq(val64, &bar0->tmac_avg_ipg);
1882         }
1883
1884         return SUCCESS;
1885 }
1886 #define LINK_UP_DOWN_INTERRUPT          1
1887 #define MAC_RMAC_ERR_TIMER              2
1888
1889 static int s2io_link_fault_indication(struct s2io_nic *nic)
1890 {
1891         if (nic->device_type == XFRAME_II_DEVICE)
1892                 return LINK_UP_DOWN_INTERRUPT;
1893         else
1894                 return MAC_RMAC_ERR_TIMER;
1895 }
1896
1897 /**
1898  *  do_s2io_write_bits -  update alarm bits in alarm register
1899  *  @value: alarm bits
1900  *  @flag: interrupt status
1901  *  @addr: address value
1902  *  Description: update alarm bits in alarm register
1903  *  Return Value:
1904  *  NONE.
1905  */
1906 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1907 {
1908         u64 temp64;
1909
1910         temp64 = readq(addr);
1911
1912         if (flag == ENABLE_INTRS)
1913                 temp64 &= ~((u64)value);
1914         else
1915                 temp64 |= ((u64)value);
1916         writeq(temp64, addr);
1917 }
1918
1919 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1920 {
1921         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1922         register u64 gen_int_mask = 0;
1923         u64 interruptible;
1924
1925         writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1926         if (mask & TX_DMA_INTR) {
1927                 gen_int_mask |= TXDMA_INT_M;
1928
1929                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1930                                    TXDMA_PCC_INT | TXDMA_TTI_INT |
1931                                    TXDMA_LSO_INT | TXDMA_TPA_INT |
1932                                    TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1933
1934                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1935                                    PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1936                                    PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1937                                    &bar0->pfc_err_mask);
1938
1939                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1940                                    TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1941                                    TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1942
1943                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1944                                    PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1945                                    PCC_N_SERR | PCC_6_COF_OV_ERR |
1946                                    PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1947                                    PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1948                                    PCC_TXB_ECC_SG_ERR,
1949                                    flag, &bar0->pcc_err_mask);
1950
1951                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1952                                    TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1953
1954                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1955                                    LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1956                                    LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1957                                    flag, &bar0->lso_err_mask);
1958
1959                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1960                                    flag, &bar0->tpa_err_mask);
1961
1962                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1963         }
1964
1965         if (mask & TX_MAC_INTR) {
1966                 gen_int_mask |= TXMAC_INT_M;
1967                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1968                                    &bar0->mac_int_mask);
1969                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1970                                    TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1971                                    TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1972                                    flag, &bar0->mac_tmac_err_mask);
1973         }
1974
1975         if (mask & TX_XGXS_INTR) {
1976                 gen_int_mask |= TXXGXS_INT_M;
1977                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1978                                    &bar0->xgxs_int_mask);
1979                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1980                                    TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1981                                    flag, &bar0->xgxs_txgxs_err_mask);
1982         }
1983
1984         if (mask & RX_DMA_INTR) {
1985                 gen_int_mask |= RXDMA_INT_M;
1986                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1987                                    RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1988                                    flag, &bar0->rxdma_int_mask);
1989                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1990                                    RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1991                                    RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1992                                    RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1993                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1994                                    PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1995                                    PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1996                                    &bar0->prc_pcix_err_mask);
1997                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1998                                    RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1999                                    &bar0->rpa_err_mask);
2000                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2001                                    RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2002                                    RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2003                                    RDA_FRM_ECC_SG_ERR |
2004                                    RDA_MISC_ERR|RDA_PCIX_ERR,
2005                                    flag, &bar0->rda_err_mask);
2006                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2007                                    RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2008                                    flag, &bar0->rti_err_mask);
2009         }
2010
2011         if (mask & RX_MAC_INTR) {
2012                 gen_int_mask |= RXMAC_INT_M;
2013                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2014                                    &bar0->mac_int_mask);
2015                 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2016                                  RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2017                                  RMAC_DOUBLE_ECC_ERR);
2018                 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2019                         interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2020                 do_s2io_write_bits(interruptible,
2021                                    flag, &bar0->mac_rmac_err_mask);
2022         }
2023
2024         if (mask & RX_XGXS_INTR) {
2025                 gen_int_mask |= RXXGXS_INT_M;
2026                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2027                                    &bar0->xgxs_int_mask);
2028                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2029                                    &bar0->xgxs_rxgxs_err_mask);
2030         }
2031
2032         if (mask & MC_INTR) {
2033                 gen_int_mask |= MC_INT_M;
2034                 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2035                                    flag, &bar0->mc_int_mask);
2036                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2037                                    MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2038                                    &bar0->mc_err_mask);
2039         }
2040         nic->general_int_mask = gen_int_mask;
2041
2042         /* Remove this line when alarm interrupts are enabled */
2043         nic->general_int_mask = 0;
2044 }
2045
2046 /**
2047  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
2048  *  @nic: device private variable,
2049  *  @mask: A mask indicating which Intr block must be modified and,
2050  *  @flag: A flag indicating whether to enable or disable the Intrs.
2051  *  Description: This function will either disable or enable the interrupts
2052  *  depending on the flag argument. The mask argument can be used to
2053  *  enable/disable any Intr block.
2054  *  Return Value: NONE.
2055  */
2056
2057 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2058 {
2059         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2060         register u64 temp64 = 0, intr_mask = 0;
2061
2062         intr_mask = nic->general_int_mask;
2063
2064         /*  Top level interrupt classification */
2065         /*  PIC Interrupts */
2066         if (mask & TX_PIC_INTR) {
2067                 /*  Enable PIC Intrs in the general intr mask register */
2068                 intr_mask |= TXPIC_INT_M;
2069                 if (flag == ENABLE_INTRS) {
2070                         /*
2071                          * If Hercules adapter enable GPIO otherwise
2072                          * disable all PCIX, Flash, MDIO, IIC and GPIO
2073                          * interrupts for now.
2074                          * TODO
2075                          */
2076                         if (s2io_link_fault_indication(nic) ==
2077                             LINK_UP_DOWN_INTERRUPT) {
2078                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
2079                                                    &bar0->pic_int_mask);
2080                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2081                                                    &bar0->gpio_int_mask);
2082                         } else
2083                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2084                 } else if (flag == DISABLE_INTRS) {
2085                         /*
2086                          * Disable PIC Intrs in the general
2087                          * intr mask register
2088                          */
2089                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2090                 }
2091         }
2092
2093         /*  Tx traffic interrupts */
2094         if (mask & TX_TRAFFIC_INTR) {
2095                 intr_mask |= TXTRAFFIC_INT_M;
2096                 if (flag == ENABLE_INTRS) {
2097                         /*
2098                          * Enable all the Tx side interrupts
2099                          * writing 0 Enables all 64 TX interrupt levels
2100                          */
2101                         writeq(0x0, &bar0->tx_traffic_mask);
2102                 } else if (flag == DISABLE_INTRS) {
2103                         /*
2104                          * Disable Tx Traffic Intrs in the general intr mask
2105                          * register.
2106                          */
2107                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2108                 }
2109         }
2110
2111         /*  Rx traffic interrupts */
2112         if (mask & RX_TRAFFIC_INTR) {
2113                 intr_mask |= RXTRAFFIC_INT_M;
2114                 if (flag == ENABLE_INTRS) {
2115                         /* writing 0 Enables all 8 RX interrupt levels */
2116                         writeq(0x0, &bar0->rx_traffic_mask);
2117                 } else if (flag == DISABLE_INTRS) {
2118                         /*
2119                          * Disable Rx Traffic Intrs in the general intr mask
2120                          * register.
2121                          */
2122                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2123                 }
2124         }
2125
2126         temp64 = readq(&bar0->general_int_mask);
2127         if (flag == ENABLE_INTRS)
2128                 temp64 &= ~((u64)intr_mask);
2129         else
2130                 temp64 = DISABLE_ALL_INTRS;
2131         writeq(temp64, &bar0->general_int_mask);
2132
2133         nic->general_int_mask = readq(&bar0->general_int_mask);
2134 }
2135
2136 /**
2137  *  verify_pcc_quiescent- Checks for PCC quiescent state
2138  *  Return: 1 If PCC is quiescence
2139  *          0 If PCC is not quiescence
2140  */
2141 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2142 {
2143         int ret = 0, herc;
2144         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2145         u64 val64 = readq(&bar0->adapter_status);
2146
2147         herc = (sp->device_type == XFRAME_II_DEVICE);
2148
2149         if (flag == false) {
2150                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2151                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2152                                 ret = 1;
2153                 } else {
2154                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2155                                 ret = 1;
2156                 }
2157         } else {
2158                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2159                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2160                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2161                                 ret = 1;
2162                 } else {
2163                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2164                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2165                                 ret = 1;
2166                 }
2167         }
2168
2169         return ret;
2170 }
2171 /**
2172  *  verify_xena_quiescence - Checks whether the H/W is ready
2173  *  Description: Returns whether the H/W is ready to go or not. Depending
2174  *  on whether adapter enable bit was written or not the comparison
2175  *  differs and the calling function passes the input argument flag to
2176  *  indicate this.
2177  *  Return: 1 If xena is quiescence
2178  *          0 If Xena is not quiescence
2179  */
2180
2181 static int verify_xena_quiescence(struct s2io_nic *sp)
2182 {
2183         int  mode;
2184         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2185         u64 val64 = readq(&bar0->adapter_status);
2186         mode = s2io_verify_pci_mode(sp);
2187
2188         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2189                 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2190                 return 0;
2191         }
2192         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2193                 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2194                 return 0;
2195         }
2196         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2197                 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2198                 return 0;
2199         }
2200         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2201                 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2202                 return 0;
2203         }
2204         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2205                 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2206                 return 0;
2207         }
2208         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2209                 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2210                 return 0;
2211         }
2212         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2213                 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2214                 return 0;
2215         }
2216         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2217                 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2218                 return 0;
2219         }
2220
2221         /*
2222          * In PCI 33 mode, the P_PLL is not used, and therefore,
2223          * the the P_PLL_LOCK bit in the adapter_status register will
2224          * not be asserted.
2225          */
2226         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2227             sp->device_type == XFRAME_II_DEVICE &&
2228             mode != PCI_MODE_PCI_33) {
2229                 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2230                 return 0;
2231         }
2232         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2233               ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2234                 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2235                 return 0;
2236         }
2237         return 1;
2238 }
2239
2240 /**
2241  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2242  * @sp: Pointer to device specifc structure
2243  * Description :
2244  * New procedure to clear mac address reading  problems on Alpha platforms
2245  *
2246  */
2247
2248 static void fix_mac_address(struct s2io_nic *sp)
2249 {
2250         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2251         u64 val64;
2252         int i = 0;
2253
2254         while (fix_mac[i] != END_SIGN) {
2255                 writeq(fix_mac[i++], &bar0->gpio_control);
2256                 udelay(10);
2257                 val64 = readq(&bar0->gpio_control);
2258         }
2259 }
2260
2261 /**
2262  *  start_nic - Turns the device on
2263  *  @nic : device private variable.
2264  *  Description:
2265  *  This function actually turns the device on. Before this  function is
2266  *  called,all Registers are configured from their reset states
2267  *  and shared memory is allocated but the NIC is still quiescent. On
2268  *  calling this function, the device interrupts are cleared and the NIC is
2269  *  literally switched on by writing into the adapter control register.
2270  *  Return Value:
2271  *  SUCCESS on success and -1 on failure.
2272  */
2273
2274 static int start_nic(struct s2io_nic *nic)
2275 {
2276         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2277         struct net_device *dev = nic->dev;
2278         register u64 val64 = 0;
2279         u16 subid, i;
2280         struct config_param *config = &nic->config;
2281         struct mac_info *mac_control = &nic->mac_control;
2282
2283         /*  PRC Initialization and configuration */
2284         for (i = 0; i < config->rx_ring_num; i++) {
2285                 struct ring_info *ring = &mac_control->rings[i];
2286
2287                 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2288                        &bar0->prc_rxd0_n[i]);
2289
2290                 val64 = readq(&bar0->prc_ctrl_n[i]);
2291                 if (nic->rxd_mode == RXD_MODE_1)
2292                         val64 |= PRC_CTRL_RC_ENABLED;
2293                 else
2294                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2295                 if (nic->device_type == XFRAME_II_DEVICE)
2296                         val64 |= PRC_CTRL_GROUP_READS;
2297                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2298                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2299                 writeq(val64, &bar0->prc_ctrl_n[i]);
2300         }
2301
2302         if (nic->rxd_mode == RXD_MODE_3B) {
2303                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2304                 val64 = readq(&bar0->rx_pa_cfg);
2305                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2306                 writeq(val64, &bar0->rx_pa_cfg);
2307         }
2308
2309         if (vlan_tag_strip == 0) {
2310                 val64 = readq(&bar0->rx_pa_cfg);
2311                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2312                 writeq(val64, &bar0->rx_pa_cfg);
2313                 nic->vlan_strip_flag = 0;
2314         }
2315
2316         /*
2317          * Enabling MC-RLDRAM. After enabling the device, we timeout
2318          * for around 100ms, which is approximately the time required
2319          * for the device to be ready for operation.
2320          */
2321         val64 = readq(&bar0->mc_rldram_mrs);
2322         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2323         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2324         val64 = readq(&bar0->mc_rldram_mrs);
2325
2326         msleep(100);    /* Delay by around 100 ms. */
2327
2328         /* Enabling ECC Protection. */
2329         val64 = readq(&bar0->adapter_control);
2330         val64 &= ~ADAPTER_ECC_EN;
2331         writeq(val64, &bar0->adapter_control);
2332
2333         /*
2334          * Verify if the device is ready to be enabled, if so enable
2335          * it.
2336          */
2337         val64 = readq(&bar0->adapter_status);
2338         if (!verify_xena_quiescence(nic)) {
2339                 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2340                           "Adapter status reads: 0x%llx\n",
2341                           dev->name, (unsigned long long)val64);
2342                 return FAILURE;
2343         }
2344
2345         /*
2346          * With some switches, link might be already up at this point.
2347          * Because of this weird behavior, when we enable laser,
2348          * we may not get link. We need to handle this. We cannot
2349          * figure out which switch is misbehaving. So we are forced to
2350          * make a global change.
2351          */
2352
2353         /* Enabling Laser. */
2354         val64 = readq(&bar0->adapter_control);
2355         val64 |= ADAPTER_EOI_TX_ON;
2356         writeq(val64, &bar0->adapter_control);
2357
2358         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2359                 /*
2360                  * Dont see link state interrupts initally on some switches,
2361                  * so directly scheduling the link state task here.
2362                  */
2363                 schedule_work(&nic->set_link_task);
2364         }
2365         /* SXE-002: Initialize link and activity LED */
2366         subid = nic->pdev->subsystem_device;
2367         if (((subid & 0xFF) >= 0x07) &&
2368             (nic->device_type == XFRAME_I_DEVICE)) {
2369                 val64 = readq(&bar0->gpio_control);
2370                 val64 |= 0x0000800000000000ULL;
2371                 writeq(val64, &bar0->gpio_control);
2372                 val64 = 0x0411040400000000ULL;
2373                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2374         }
2375
2376         return SUCCESS;
2377 }
2378 /**
2379  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2380  */
2381 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2382                                         struct TxD *txdlp, int get_off)
2383 {
2384         struct s2io_nic *nic = fifo_data->nic;
2385         struct sk_buff *skb;
2386         struct TxD *txds;
2387         u16 j, frg_cnt;
2388
2389         txds = txdlp;
2390         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2391                 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2392                                  sizeof(u64), PCI_DMA_TODEVICE);
2393                 txds++;
2394         }
2395
2396         skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2397         if (!skb) {
2398                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2399                 return NULL;
2400         }
2401         pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2402                          skb->len - skb->data_len, PCI_DMA_TODEVICE);
2403         frg_cnt = skb_shinfo(skb)->nr_frags;
2404         if (frg_cnt) {
2405                 txds++;
2406                 for (j = 0; j < frg_cnt; j++, txds++) {
2407                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2408                         if (!txds->Buffer_Pointer)
2409                                 break;
2410                         pci_unmap_page(nic->pdev,
2411                                        (dma_addr_t)txds->Buffer_Pointer,
2412                                        frag->size, PCI_DMA_TODEVICE);
2413                 }
2414         }
2415         memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2416         return skb;
2417 }
2418
2419 /**
2420  *  free_tx_buffers - Free all queued Tx buffers
2421  *  @nic : device private variable.
2422  *  Description:
2423  *  Free all queued Tx buffers.
2424  *  Return Value: void
2425  */
2426
2427 static void free_tx_buffers(struct s2io_nic *nic)
2428 {
2429         struct net_device *dev = nic->dev;
2430         struct sk_buff *skb;
2431         struct TxD *txdp;
2432         int i, j;
2433         int cnt = 0;
2434         struct config_param *config = &nic->config;
2435         struct mac_info *mac_control = &nic->mac_control;
2436         struct stat_block *stats = mac_control->stats_info;
2437         struct swStat *swstats = &stats->sw_stat;
2438
2439         for (i = 0; i < config->tx_fifo_num; i++) {
2440                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2441                 struct fifo_info *fifo = &mac_control->fifos[i];
2442                 unsigned long flags;
2443
2444                 spin_lock_irqsave(&fifo->tx_lock, flags);
2445                 for (j = 0; j < tx_cfg->fifo_len; j++) {
2446                         txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
2447                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2448                         if (skb) {
2449                                 swstats->mem_freed += skb->truesize;
2450                                 dev_kfree_skb(skb);
2451                                 cnt++;
2452                         }
2453                 }
2454                 DBG_PRINT(INTR_DBG,
2455                           "%s: forcibly freeing %d skbs on FIFO%d\n",
2456                           dev->name, cnt, i);
2457                 fifo->tx_curr_get_info.offset = 0;
2458                 fifo->tx_curr_put_info.offset = 0;
2459                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2460         }
2461 }
2462
2463 /**
2464  *   stop_nic -  To stop the nic
2465  *   @nic ; device private variable.
2466  *   Description:
2467  *   This function does exactly the opposite of what the start_nic()
2468  *   function does. This function is called to stop the device.
2469  *   Return Value:
2470  *   void.
2471  */
2472
2473 static void stop_nic(struct s2io_nic *nic)
2474 {
2475         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2476         register u64 val64 = 0;
2477         u16 interruptible;
2478
2479         /*  Disable all interrupts */
2480         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2481         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2482         interruptible |= TX_PIC_INTR;
2483         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2484
2485         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2486         val64 = readq(&bar0->adapter_control);
2487         val64 &= ~(ADAPTER_CNTL_EN);
2488         writeq(val64, &bar0->adapter_control);
2489 }
2490
2491 /**
2492  *  fill_rx_buffers - Allocates the Rx side skbs
2493  *  @ring_info: per ring structure
2494  *  @from_card_up: If this is true, we will map the buffer to get
2495  *     the dma address for buf0 and buf1 to give it to the card.
2496  *     Else we will sync the already mapped buffer to give it to the card.
2497  *  Description:
2498  *  The function allocates Rx side skbs and puts the physical
2499  *  address of these buffers into the RxD buffer pointers, so that the NIC
2500  *  can DMA the received frame into these locations.
2501  *  The NIC supports 3 receive modes, viz
2502  *  1. single buffer,
2503  *  2. three buffer and
2504  *  3. Five buffer modes.
2505  *  Each mode defines how many fragments the received frame will be split
2506  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2507  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2508  *  is split into 3 fragments. As of now only single buffer mode is
2509  *  supported.
2510  *   Return Value:
2511  *  SUCCESS on success or an appropriate -ve value on failure.
2512  */
2513 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2514                            int from_card_up)
2515 {
2516         struct sk_buff *skb;
2517         struct RxD_t *rxdp;
2518         int off, size, block_no, block_no1;
2519         u32 alloc_tab = 0;
2520         u32 alloc_cnt;
2521         u64 tmp;
2522         struct buffAdd *ba;
2523         struct RxD_t *first_rxdp = NULL;
2524         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2525         int rxd_index = 0;
2526         struct RxD1 *rxdp1;
2527         struct RxD3 *rxdp3;
2528         struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2529
2530         alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2531
2532         block_no1 = ring->rx_curr_get_info.block_index;
2533         while (alloc_tab < alloc_cnt) {
2534                 block_no = ring->rx_curr_put_info.block_index;
2535
2536                 off = ring->rx_curr_put_info.offset;
2537
2538                 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2539
2540                 rxd_index = off + 1;
2541                 if (block_no)
2542                         rxd_index += (block_no * ring->rxd_count);
2543
2544                 if ((block_no == block_no1) &&
2545                     (off == ring->rx_curr_get_info.offset) &&
2546                     (rxdp->Host_Control)) {
2547                         DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2548                                   ring->dev->name);
2549                         goto end;
2550                 }
2551                 if (off && (off == ring->rxd_count)) {
2552                         ring->rx_curr_put_info.block_index++;
2553                         if (ring->rx_curr_put_info.block_index ==
2554                             ring->block_count)
2555                                 ring->rx_curr_put_info.block_index = 0;
2556                         block_no = ring->rx_curr_put_info.block_index;
2557                         off = 0;
2558                         ring->rx_curr_put_info.offset = off;
2559                         rxdp = ring->rx_blocks[block_no].block_virt_addr;
2560                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2561                                   ring->dev->name, rxdp);
2562
2563                 }
2564
2565                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2566                     ((ring->rxd_mode == RXD_MODE_3B) &&
2567                      (rxdp->Control_2 & s2BIT(0)))) {
2568                         ring->rx_curr_put_info.offset = off;
2569                         goto end;
2570                 }
2571                 /* calculate size of skb based on ring mode */
2572                 size = ring->mtu +
2573                         HEADER_ETHERNET_II_802_3_SIZE +
2574                         HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2575                 if (ring->rxd_mode == RXD_MODE_1)
2576                         size += NET_IP_ALIGN;
2577                 else
2578                         size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2579
2580                 /* allocate skb */
2581                 skb = dev_alloc_skb(size);
2582                 if (!skb) {
2583                         DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2584                                   ring->dev->name);
2585                         if (first_rxdp) {
2586                                 wmb();
2587                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2588                         }
2589                         swstats->mem_alloc_fail_cnt++;
2590
2591                         return -ENOMEM ;
2592                 }
2593                 swstats->mem_allocated += skb->truesize;
2594
2595                 if (ring->rxd_mode == RXD_MODE_1) {
2596                         /* 1 buffer mode - normal operation mode */
2597                         rxdp1 = (struct RxD1 *)rxdp;
2598                         memset(rxdp, 0, sizeof(struct RxD1));
2599                         skb_reserve(skb, NET_IP_ALIGN);
2600                         rxdp1->Buffer0_ptr =
2601                                 pci_map_single(ring->pdev, skb->data,
2602                                                size - NET_IP_ALIGN,
2603                                                PCI_DMA_FROMDEVICE);
2604                         if (pci_dma_mapping_error(nic->pdev,
2605                                                   rxdp1->Buffer0_ptr))
2606                                 goto pci_map_failed;
2607
2608                         rxdp->Control_2 =
2609                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2610                         rxdp->Host_Control = (unsigned long)skb;
2611                 } else if (ring->rxd_mode == RXD_MODE_3B) {
2612                         /*
2613                          * 2 buffer mode -
2614                          * 2 buffer mode provides 128
2615                          * byte aligned receive buffers.
2616                          */
2617
2618                         rxdp3 = (struct RxD3 *)rxdp;
2619                         /* save buffer pointers to avoid frequent dma mapping */
2620                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2621                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2622                         memset(rxdp, 0, sizeof(struct RxD3));
2623                         /* restore the buffer pointers for dma sync*/
2624                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2625                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2626
2627                         ba = &ring->ba[block_no][off];
2628                         skb_reserve(skb, BUF0_LEN);
2629                         tmp = (u64)(unsigned long)skb->data;
2630                         tmp += ALIGN_SIZE;
2631                         tmp &= ~ALIGN_SIZE;
2632                         skb->data = (void *) (unsigned long)tmp;
2633                         skb_reset_tail_pointer(skb);
2634
2635                         if (from_card_up) {
2636                                 rxdp3->Buffer0_ptr =
2637                                         pci_map_single(ring->pdev, ba->ba_0,
2638                                                        BUF0_LEN,
2639                                                        PCI_DMA_FROMDEVICE);
2640                                 if (pci_dma_mapping_error(nic->pdev,
2641                                                           rxdp3->Buffer0_ptr))
2642                                         goto pci_map_failed;
2643                         } else
2644                                 pci_dma_sync_single_for_device(ring->pdev,
2645                                                                (dma_addr_t)rxdp3->Buffer0_ptr,
2646                                                                BUF0_LEN,
2647                                                                PCI_DMA_FROMDEVICE);
2648
2649                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2650                         if (ring->rxd_mode == RXD_MODE_3B) {
2651                                 /* Two buffer mode */
2652
2653                                 /*
2654                                  * Buffer2 will have L3/L4 header plus
2655                                  * L4 payload
2656                                  */
2657                                 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2658                                                                     skb->data,
2659                                                                     ring->mtu + 4,
2660                                                                     PCI_DMA_FROMDEVICE);
2661
2662                                 if (pci_dma_mapping_error(nic->pdev,
2663                                                           rxdp3->Buffer2_ptr))
2664                                         goto pci_map_failed;
2665
2666                                 if (from_card_up) {
2667                                         rxdp3->Buffer1_ptr =
2668                                                 pci_map_single(ring->pdev,
2669                                                                ba->ba_1,
2670                                                                BUF1_LEN,
2671                                                                PCI_DMA_FROMDEVICE);
2672
2673                                         if (pci_dma_mapping_error(nic->pdev,
2674                                                                   rxdp3->Buffer1_ptr)) {
2675                                                 pci_unmap_single(ring->pdev,
2676                                                                  (dma_addr_t)(unsigned long)
2677                                                                  skb->data,
2678                                                                  ring->mtu + 4,
2679                                                                  PCI_DMA_FROMDEVICE);
2680                                                 goto pci_map_failed;
2681                                         }
2682                                 }
2683                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2684                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2685                                         (ring->mtu + 4);
2686                         }
2687                         rxdp->Control_2 |= s2BIT(0);
2688                         rxdp->Host_Control = (unsigned long) (skb);
2689                 }
2690                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2691                         rxdp->Control_1 |= RXD_OWN_XENA;
2692                 off++;
2693                 if (off == (ring->rxd_count + 1))
2694                         off = 0;
2695                 ring->rx_curr_put_info.offset = off;
2696
2697                 rxdp->Control_2 |= SET_RXD_MARKER;
2698                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2699                         if (first_rxdp) {
2700                                 wmb();
2701                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2702                         }
2703                         first_rxdp = rxdp;
2704                 }
2705                 ring->rx_bufs_left += 1;
2706                 alloc_tab++;
2707         }
2708
2709 end:
2710         /* Transfer ownership of first descriptor to adapter just before
2711          * exiting. Before that, use memory barrier so that ownership
2712          * and other fields are seen by adapter correctly.
2713          */
2714         if (first_rxdp) {
2715                 wmb();
2716                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2717         }
2718
2719         return SUCCESS;
2720
2721 pci_map_failed:
2722         swstats->pci_map_fail_cnt++;
2723         swstats->mem_freed += skb->truesize;
2724         dev_kfree_skb_irq(skb);
2725         return -ENOMEM;
2726 }
2727
2728 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2729 {
2730         struct net_device *dev = sp->dev;
2731         int j;
2732         struct sk_buff *skb;
2733         struct RxD_t *rxdp;
2734         struct buffAdd *ba;
2735         struct RxD1 *rxdp1;
2736         struct RxD3 *rxdp3;
2737         struct mac_info *mac_control = &sp->mac_control;
2738         struct stat_block *stats = mac_control->stats_info;
2739         struct swStat *swstats = &stats->sw_stat;
2740
2741         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2742                 rxdp = mac_control->rings[ring_no].
2743                         rx_blocks[blk].rxds[j].virt_addr;
2744                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2745                 if (!skb)
2746                         continue;
2747                 if (sp->rxd_mode == RXD_MODE_1) {
2748                         rxdp1 = (struct RxD1 *)rxdp;
2749                         pci_unmap_single(sp->pdev,
2750                                          (dma_addr_t)rxdp1->Buffer0_ptr,
2751                                          dev->mtu +
2752                                          HEADER_ETHERNET_II_802_3_SIZE +
2753                                          HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2754                                          PCI_DMA_FROMDEVICE);
2755                         memset(rxdp, 0, sizeof(struct RxD1));
2756                 } else if (sp->rxd_mode == RXD_MODE_3B) {
2757                         rxdp3 = (struct RxD3 *)rxdp;
2758                         ba = &mac_control->rings[ring_no].ba[blk][j];
2759                         pci_unmap_single(sp->pdev,
2760                                          (dma_addr_t)rxdp3->Buffer0_ptr,
2761                                          BUF0_LEN,
2762                                          PCI_DMA_FROMDEVICE);
2763                         pci_unmap_single(sp->pdev,
2764                                          (dma_addr_t)rxdp3->Buffer1_ptr,
2765                                          BUF1_LEN,
2766                                          PCI_DMA_FROMDEVICE);
2767                         pci_unmap_single(sp->pdev,
2768                                          (dma_addr_t)rxdp3->Buffer2_ptr,
2769                                          dev->mtu + 4,
2770                                          PCI_DMA_FROMDEVICE);
2771                         memset(rxdp, 0, sizeof(struct RxD3));
2772                 }
2773                 swstats->mem_freed += skb->truesize;
2774                 dev_kfree_skb(skb);
2775                 mac_control->rings[ring_no].rx_bufs_left -= 1;
2776         }
2777 }
2778
2779 /**
2780  *  free_rx_buffers - Frees all Rx buffers
2781  *  @sp: device private variable.
2782  *  Description:
2783  *  This function will free all Rx buffers allocated by host.
2784  *  Return Value:
2785  *  NONE.
2786  */
2787
2788 static void free_rx_buffers(struct s2io_nic *sp)
2789 {
2790         struct net_device *dev = sp->dev;
2791         int i, blk = 0, buf_cnt = 0;
2792         struct config_param *config = &sp->config;
2793         struct mac_info *mac_control = &sp->mac_control;
2794
2795         for (i = 0; i < config->rx_ring_num; i++) {
2796                 struct ring_info *ring = &mac_control->rings[i];
2797
2798                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2799                         free_rxd_blk(sp, i, blk);
2800
2801                 ring->rx_curr_put_info.block_index = 0;
2802                 ring->rx_curr_get_info.block_index = 0;
2803                 ring->rx_curr_put_info.offset = 0;
2804                 ring->rx_curr_get_info.offset = 0;
2805                 ring->rx_bufs_left = 0;
2806                 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2807                           dev->name, buf_cnt, i);
2808         }
2809 }
2810
2811 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2812 {
2813         if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2814                 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2815                           ring->dev->name);
2816         }
2817         return 0;
2818 }
2819
2820 /**
2821  * s2io_poll - Rx interrupt handler for NAPI support
2822  * @napi : pointer to the napi structure.
2823  * @budget : The number of packets that were budgeted to be processed
2824  * during  one pass through the 'Poll" function.
2825  * Description:
2826  * Comes into picture only if NAPI support has been incorporated. It does
2827  * the same thing that rx_intr_handler does, but not in a interrupt context
2828  * also It will process only a given number of packets.
2829  * Return value:
2830  * 0 on success and 1 if there are No Rx packets to be processed.
2831  */
2832
2833 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2834 {
2835         struct ring_info *ring = container_of(napi, struct ring_info, napi);
2836         struct net_device *dev = ring->dev;
2837         int pkts_processed = 0;
2838         u8 __iomem *addr = NULL;
2839         u8 val8 = 0;
2840         struct s2io_nic *nic = netdev_priv(dev);
2841         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2842         int budget_org = budget;
2843
2844         if (unlikely(!is_s2io_card_up(nic)))
2845                 return 0;
2846
2847         pkts_processed = rx_intr_handler(ring, budget);
2848         s2io_chk_rx_buffers(nic, ring);
2849
2850         if (pkts_processed < budget_org) {
2851                 napi_complete(napi);
2852                 /*Re Enable MSI-Rx Vector*/
2853                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2854                 addr += 7 - ring->ring_no;
2855                 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2856                 writeb(val8, addr);
2857                 val8 = readb(addr);
2858         }
2859         return pkts_processed;
2860 }
2861
2862 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2863 {
2864         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2865         int pkts_processed = 0;
2866         int ring_pkts_processed, i;
2867         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2868         int budget_org = budget;
2869         struct config_param *config = &nic->config;
2870         struct mac_info *mac_control = &nic->mac_control;
2871
2872         if (unlikely(!is_s2io_card_up(nic)))
2873                 return 0;
2874
2875         for (i = 0; i < config->rx_ring_num; i++) {
2876                 struct ring_info *ring = &mac_control->rings[i];
2877                 ring_pkts_processed = rx_intr_handler(ring, budget);
2878                 s2io_chk_rx_buffers(nic, ring);
2879                 pkts_processed += ring_pkts_processed;
2880                 budget -= ring_pkts_processed;
2881                 if (budget <= 0)
2882                         break;
2883         }
2884         if (pkts_processed < budget_org) {
2885                 napi_complete(napi);
2886                 /* Re enable the Rx interrupts for the ring */
2887                 writeq(0, &bar0->rx_traffic_mask);
2888                 readl(&bar0->rx_traffic_mask);
2889         }
2890         return pkts_processed;
2891 }
2892
2893 #ifdef CONFIG_NET_POLL_CONTROLLER
2894 /**
2895  * s2io_netpoll - netpoll event handler entry point
2896  * @dev : pointer to the device structure.
2897  * Description:
2898  *      This function will be called by upper layer to check for events on the
2899  * interface in situations where interrupts are disabled. It is used for
2900  * specific in-kernel networking tasks, such as remote consoles and kernel
2901  * debugging over the network (example netdump in RedHat).
2902  */
2903 static void s2io_netpoll(struct net_device *dev)
2904 {
2905         struct s2io_nic *nic = netdev_priv(dev);
2906         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2907         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2908         int i;
2909         struct config_param *config = &nic->config;
2910         struct mac_info *mac_control = &nic->mac_control;
2911
2912         if (pci_channel_offline(nic->pdev))
2913                 return;
2914
2915         disable_irq(dev->irq);
2916
2917         writeq(val64, &bar0->rx_traffic_int);
2918         writeq(val64, &bar0->tx_traffic_int);
2919
2920         /* we need to free up the transmitted skbufs or else netpoll will
2921          * run out of skbs and will fail and eventually netpoll application such
2922          * as netdump will fail.
2923          */
2924         for (i = 0; i < config->tx_fifo_num; i++)
2925                 tx_intr_handler(&mac_control->fifos[i]);
2926
2927         /* check for received packet and indicate up to network */
2928         for (i = 0; i < config->rx_ring_num; i++) {
2929                 struct ring_info *ring = &mac_control->rings[i];
2930
2931                 rx_intr_handler(ring, 0);
2932         }
2933
2934         for (i = 0; i < config->rx_ring_num; i++) {
2935                 struct ring_info *ring = &mac_control->rings[i];
2936
2937                 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2938                         DBG_PRINT(INFO_DBG,
2939                                   "%s: Out of memory in Rx Netpoll!!\n",
2940                                   dev->name);
2941                         break;
2942                 }
2943         }
2944         enable_irq(dev->irq);
2945         return;
2946 }
2947 #endif
2948
2949 /**
2950  *  rx_intr_handler - Rx interrupt handler
2951  *  @ring_info: per ring structure.
2952  *  @budget: budget for napi processing.
2953  *  Description:
2954  *  If the interrupt is because of a received frame or if the
2955  *  receive ring contains fresh as yet un-processed frames,this function is
2956  *  called. It picks out the RxD at which place the last Rx processing had
2957  *  stopped and sends the skb to the OSM's Rx handler and then increments
2958  *  the offset.
2959  *  Return Value:
2960  *  No. of napi packets processed.
2961  */
2962 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2963 {
2964         int get_block, put_block;
2965         struct rx_curr_get_info get_info, put_info;
2966         struct RxD_t *rxdp;
2967         struct sk_buff *skb;
2968         int pkt_cnt = 0, napi_pkts = 0;
2969         int i;
2970         struct RxD1 *rxdp1;
2971         struct RxD3 *rxdp3;
2972
2973         get_info = ring_data->rx_curr_get_info;
2974         get_block = get_info.block_index;
2975         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2976         put_block = put_info.block_index;
2977         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2978
2979         while (RXD_IS_UP2DT(rxdp)) {
2980                 /*
2981                  * If your are next to put index then it's
2982                  * FIFO full condition
2983                  */
2984                 if ((get_block == put_block) &&
2985                     (get_info.offset + 1) == put_info.offset) {
2986                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2987                                   ring_data->dev->name);
2988                         break;
2989                 }
2990                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2991                 if (skb == NULL) {
2992                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2993                                   ring_data->dev->name);
2994                         return 0;
2995                 }
2996                 if (ring_data->rxd_mode == RXD_MODE_1) {
2997                         rxdp1 = (struct RxD1 *)rxdp;
2998                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
2999                                          rxdp1->Buffer0_ptr,
3000                                          ring_data->mtu +
3001                                          HEADER_ETHERNET_II_802_3_SIZE +
3002                                          HEADER_802_2_SIZE +
3003                                          HEADER_SNAP_SIZE,
3004                                          PCI_DMA_FROMDEVICE);
3005                 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3006                         rxdp3 = (struct RxD3 *)rxdp;
3007                         pci_dma_sync_single_for_cpu(ring_data->pdev,
3008                                                     (dma_addr_t)rxdp3->Buffer0_ptr,
3009                                                     BUF0_LEN,
3010                                                     PCI_DMA_FROMDEVICE);
3011                         pci_unmap_single(ring_data->pdev,
3012                                          (dma_addr_t)rxdp3->Buffer2_ptr,
3013                                          ring_data->mtu + 4,
3014                                          PCI_DMA_FROMDEVICE);
3015                 }
3016                 prefetch(skb->data);
3017                 rx_osm_handler(ring_data, rxdp);
3018                 get_info.offset++;
3019                 ring_data->rx_curr_get_info.offset = get_info.offset;
3020                 rxdp = ring_data->rx_blocks[get_block].
3021                         rxds[get_info.offset].virt_addr;
3022                 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3023                         get_info.offset = 0;
3024                         ring_data->rx_curr_get_info.offset = get_info.offset;
3025                         get_block++;
3026                         if (get_block == ring_data->block_count)
3027                                 get_block = 0;
3028                         ring_data->rx_curr_get_info.block_index = get_block;
3029                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3030                 }
3031
3032                 if (ring_data->nic->config.napi) {
3033                         budget--;
3034                         napi_pkts++;
3035                         if (!budget)
3036                                 break;
3037                 }
3038                 pkt_cnt++;
3039                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3040                         break;
3041         }
3042         if (ring_data->lro) {
3043                 /* Clear all LRO sessions before exiting */
3044                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
3045                         struct lro *lro = &ring_data->lro0_n[i];
3046                         if (lro->in_use) {
3047                                 update_L3L4_header(ring_data->nic, lro);
3048                                 queue_rx_frame(lro->parent, lro->vlan_tag);
3049                                 clear_lro_session(lro);
3050                         }
3051                 }
3052         }
3053         return napi_pkts;
3054 }
3055
3056 /**
3057  *  tx_intr_handler - Transmit interrupt handler
3058  *  @nic : device private variable
3059  *  Description:
3060  *  If an interrupt was raised to indicate DMA complete of the
3061  *  Tx packet, this function is called. It identifies the last TxD
3062  *  whose buffer was freed and frees all skbs whose data have already
3063  *  DMA'ed into the NICs internal memory.
3064  *  Return Value:
3065  *  NONE
3066  */
3067
3068 static void tx_intr_handler(struct fifo_info *fifo_data)
3069 {
3070         struct s2io_nic *nic = fifo_data->nic;
3071         struct tx_curr_get_info get_info, put_info;
3072         struct sk_buff *skb = NULL;
3073         struct TxD *txdlp;
3074         int pkt_cnt = 0;
3075         unsigned long flags = 0;
3076         u8 err_mask;
3077         struct stat_block *stats = nic->mac_control.stats_info;
3078         struct swStat *swstats = &stats->sw_stat;
3079
3080         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3081                 return;
3082
3083         get_info = fifo_data->tx_curr_get_info;
3084         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3085         txdlp = (struct TxD *)
3086                 fifo_data->list_info[get_info.offset].list_virt_addr;
3087         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3088                (get_info.offset != put_info.offset) &&
3089                (txdlp->Host_Control)) {
3090                 /* Check for TxD errors */
3091                 if (txdlp->Control_1 & TXD_T_CODE) {
3092                         unsigned long long err;
3093                         err = txdlp->Control_1 & TXD_T_CODE;
3094                         if (err & 0x1) {
3095                                 swstats->parity_err_cnt++;
3096                         }
3097
3098                         /* update t_code statistics */
3099                         err_mask = err >> 48;
3100                         switch (err_mask) {
3101                         case 2:
3102                                 swstats->tx_buf_abort_cnt++;
3103                                 break;
3104
3105                         case 3:
3106                                 swstats->tx_desc_abort_cnt++;
3107                                 break;
3108
3109                         case 7:
3110                                 swstats->tx_parity_err_cnt++;
3111                                 break;
3112
3113                         case 10:
3114                                 swstats->tx_link_loss_cnt++;
3115                                 break;
3116
3117                         case 15:
3118                                 swstats->tx_list_proc_err_cnt++;
3119                                 break;
3120                         }
3121                 }
3122
3123                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3124                 if (skb == NULL) {
3125                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3126                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3127                                   __func__);
3128                         return;
3129                 }
3130                 pkt_cnt++;
3131
3132                 /* Updating the statistics block */
3133                 nic->dev->stats.tx_bytes += skb->len;
3134                 swstats->mem_freed += skb->truesize;
3135                 dev_kfree_skb_irq(skb);
3136
3137                 get_info.offset++;
3138                 if (get_info.offset == get_info.fifo_len + 1)
3139                         get_info.offset = 0;
3140                 txdlp = (struct TxD *)
3141                         fifo_data->list_info[get_info.offset].list_virt_addr;
3142                 fifo_data->tx_curr_get_info.offset = get_info.offset;
3143         }
3144
3145         s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3146
3147         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3148 }
3149
3150 /**
3151  *  s2io_mdio_write - Function to write in to MDIO registers
3152  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3153  *  @addr     : address value
3154  *  @value    : data value
3155  *  @dev      : pointer to net_device structure
3156  *  Description:
3157  *  This function is used to write values to the MDIO registers
3158  *  NONE
3159  */
3160 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3161                             struct net_device *dev)
3162 {
3163         u64 val64;
3164         struct s2io_nic *sp = netdev_priv(dev);
3165         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3166
3167         /* address transaction */
3168         val64 = MDIO_MMD_INDX_ADDR(addr) |
3169                 MDIO_MMD_DEV_ADDR(mmd_type) |
3170                 MDIO_MMS_PRT_ADDR(0x0);
3171         writeq(val64, &bar0->mdio_control);
3172         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3173         writeq(val64, &bar0->mdio_control);
3174         udelay(100);
3175
3176         /* Data transaction */
3177         val64 = MDIO_MMD_INDX_ADDR(addr) |
3178                 MDIO_MMD_DEV_ADDR(mmd_type) |
3179                 MDIO_MMS_PRT_ADDR(0x0) |
3180                 MDIO_MDIO_DATA(value) |
3181                 MDIO_OP(MDIO_OP_WRITE_TRANS);
3182         writeq(val64, &bar0->mdio_control);
3183         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3184         writeq(val64, &bar0->mdio_control);
3185         udelay(100);
3186
3187         val64 = MDIO_MMD_INDX_ADDR(addr) |
3188                 MDIO_MMD_DEV_ADDR(mmd_type) |
3189                 MDIO_MMS_PRT_ADDR(0x0) |
3190                 MDIO_OP(MDIO_OP_READ_TRANS);
3191         writeq(val64, &bar0->mdio_control);
3192         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3193         writeq(val64, &bar0->mdio_control);
3194         udelay(100);
3195 }
3196
3197 /**
3198  *  s2io_mdio_read - Function to write in to MDIO registers
3199  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3200  *  @addr     : address value
3201  *  @dev      : pointer to net_device structure
3202  *  Description:
3203  *  This function is used to read values to the MDIO registers
3204  *  NONE
3205  */
3206 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3207 {
3208         u64 val64 = 0x0;
3209         u64 rval64 = 0x0;
3210         struct s2io_nic *sp = netdev_priv(dev);
3211         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3212
3213         /* address transaction */
3214         val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3215                          | MDIO_MMD_DEV_ADDR(mmd_type)
3216                          | MDIO_MMS_PRT_ADDR(0x0));
3217         writeq(val64, &bar0->mdio_control);
3218         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3219         writeq(val64, &bar0->mdio_control);
3220         udelay(100);
3221
3222         /* Data transaction */
3223         val64 = MDIO_MMD_INDX_ADDR(addr) |
3224                 MDIO_MMD_DEV_ADDR(mmd_type) |
3225                 MDIO_MMS_PRT_ADDR(0x0) |
3226                 MDIO_OP(MDIO_OP_READ_TRANS);
3227         writeq(val64, &bar0->mdio_control);
3228         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3229         writeq(val64, &bar0->mdio_control);
3230         udelay(100);
3231
3232         /* Read the value from regs */
3233         rval64 = readq(&bar0->mdio_control);
3234         rval64 = rval64 & 0xFFFF0000;
3235         rval64 = rval64 >> 16;
3236         return rval64;
3237 }
3238
3239 /**
3240  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3241  *  @counter      : counter value to be updated
3242  *  @flag         : flag to indicate the status
3243  *  @type         : counter type
3244  *  Description:
3245  *  This function is to check the status of the xpak counters value
3246  *  NONE
3247  */
3248
3249 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3250                                   u16 flag, u16 type)
3251 {
3252         u64 mask = 0x3;
3253         u64 val64;
3254         int i;
3255         for (i = 0; i < index; i++)
3256                 mask = mask << 0x2;
3257
3258         if (flag > 0) {
3259                 *counter = *counter + 1;
3260                 val64 = *regs_stat & mask;
3261                 val64 = val64 >> (index * 0x2);
3262                 val64 = val64 + 1;
3263                 if (val64 == 3) {
3264                         switch (type) {
3265                         case 1:
3266                                 DBG_PRINT(ERR_DBG,
3267                                           "Take Xframe NIC out of service.\n");
3268                                 DBG_PRINT(ERR_DBG,
3269 "Excessive temperatures may result in premature transceiver failure.\n");
3270                                 break;
3271                         case 2:
3272                                 DBG_PRINT(ERR_DBG,
3273                                           "Take Xframe NIC out of service.\n");
3274                                 DBG_PRINT(ERR_DBG,
3275 "Excessive bias currents may indicate imminent laser diode failure.\n");
3276                                 break;
3277                         case 3:
3278                                 DBG_PRINT(ERR_DBG,
3279                                           "Take Xframe NIC out of service.\n");
3280                                 DBG_PRINT(ERR_DBG,
3281 "Excessive laser output power may saturate far-end receiver.\n");
3282                                 break;
3283                         default:
3284                                 DBG_PRINT(ERR_DBG,
3285                                           "Incorrect XPAK Alarm type\n");
3286                         }
3287                         val64 = 0x0;
3288                 }
3289                 val64 = val64 << (index * 0x2);
3290                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3291
3292         } else {
3293                 *regs_stat = *regs_stat & (~mask);
3294         }
3295 }
3296
3297 /**
3298  *  s2io_updt_xpak_counter - Function to update the xpak counters
3299  *  @dev         : pointer to net_device struct
3300  *  Description:
3301  *  This function is to upate the status of the xpak counters value
3302  *  NONE
3303  */
3304 static void s2io_updt_xpak_counter(struct net_device *dev)
3305 {
3306         u16 flag  = 0x0;
3307         u16 type  = 0x0;
3308         u16 val16 = 0x0;
3309         u64 val64 = 0x0;
3310         u64 addr  = 0x0;
3311
3312         struct s2io_nic *sp = netdev_priv(dev);
3313         struct stat_block *stats = sp->mac_control.stats_info;
3314         struct xpakStat *xstats = &stats->xpak_stat;
3315
3316         /* Check the communication with the MDIO slave */
3317         addr = MDIO_CTRL1;
3318         val64 = 0x0;
3319         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3320         if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3321                 DBG_PRINT(ERR_DBG,
3322                           "ERR: MDIO slave access failed - Returned %llx\n",
3323                           (unsigned long long)val64);
3324                 return;
3325         }
3326
3327         /* Check for the expected value of control reg 1 */
3328         if (val64 != MDIO_CTRL1_SPEED10G) {
3329                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3330                           "Returned: %llx- Expected: 0x%x\n",
3331                           (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3332                 return;
3333         }
3334
3335         /* Loading the DOM register to MDIO register */
3336         addr = 0xA100;
3337         s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3338         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3339
3340         /* Reading the Alarm flags */
3341         addr = 0xA070;
3342         val64 = 0x0;
3343         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3344
3345         flag = CHECKBIT(val64, 0x7);
3346         type = 1;
3347         s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3348                               &xstats->xpak_regs_stat,
3349                               0x0, flag, type);
3350
3351         if (CHECKBIT(val64, 0x6))
3352                 xstats->alarm_transceiver_temp_low++;
3353
3354         flag = CHECKBIT(val64, 0x3);
3355         type = 2;
3356         s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3357                               &xstats->xpak_regs_stat,
3358                               0x2, flag, type);
3359
3360         if (CHECKBIT(val64, 0x2))
3361                 xstats->alarm_laser_bias_current_low++;
3362
3363         flag = CHECKBIT(val64, 0x1);
3364         type = 3;
3365         s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3366                               &xstats->xpak_regs_stat,
3367                               0x4, flag, type);
3368
3369         if (CHECKBIT(val64, 0x0))
3370                 xstats->alarm_laser_output_power_low++;
3371
3372         /* Reading the Warning flags */
3373         addr = 0xA074;
3374         val64 = 0x0;
3375         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3376
3377         if (CHECKBIT(val64, 0x7))
3378                 xstats->warn_transceiver_temp_high++;
3379
3380         if (CHECKBIT(val64, 0x6))
3381                 xstats->warn_transceiver_temp_low++;
3382
3383         if (CHECKBIT(val64, 0x3))
3384                 xstats->warn_laser_bias_current_high++;
3385
3386         if (CHECKBIT(val64, 0x2))
3387                 xstats->warn_laser_bias_current_low++;
3388
3389         if (CHECKBIT(val64, 0x1))
3390                 xstats->warn_laser_output_power_high++;
3391
3392         if (CHECKBIT(val64, 0x0))
3393                 xstats->warn_laser_output_power_low++;
3394 }
3395
3396 /**
3397  *  wait_for_cmd_complete - waits for a command to complete.
3398  *  @sp : private member of the device structure, which is a pointer to the
3399  *  s2io_nic structure.
3400  *  Description: Function that waits for a command to Write into RMAC
3401  *  ADDR DATA registers to be completed and returns either success or
3402  *  error depending on whether the command was complete or not.
3403  *  Return value:
3404  *   SUCCESS on success and FAILURE on failure.
3405  */
3406
3407 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3408                                  int bit_state)
3409 {
3410         int ret = FAILURE, cnt = 0, delay = 1;
3411         u64 val64;
3412
3413         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3414                 return FAILURE;
3415
3416         do {
3417                 val64 = readq(addr);
3418                 if (bit_state == S2IO_BIT_RESET) {
3419                         if (!(val64 & busy_bit)) {
3420                                 ret = SUCCESS;
3421                                 break;
3422                         }
3423                 } else {
3424                         if (val64 & busy_bit) {
3425                                 ret = SUCCESS;
3426                                 break;
3427                         }
3428                 }
3429
3430                 if (in_interrupt())
3431                         mdelay(delay);
3432                 else
3433                         msleep(delay);
3434
3435                 if (++cnt >= 10)
3436                         delay = 50;
3437         } while (cnt < 20);
3438         return ret;
3439 }
3440 /*
3441  * check_pci_device_id - Checks if the device id is supported
3442  * @id : device id
3443  * Description: Function to check if the pci device id is supported by driver.
3444  * Return value: Actual device id if supported else PCI_ANY_ID
3445  */
3446 static u16 check_pci_device_id(u16 id)
3447 {
3448         switch (id) {
3449         case PCI_DEVICE_ID_HERC_WIN:
3450         case PCI_DEVICE_ID_HERC_UNI:
3451                 return XFRAME_II_DEVICE;
3452         case PCI_DEVICE_ID_S2IO_UNI:
3453         case PCI_DEVICE_ID_S2IO_WIN:
3454                 return XFRAME_I_DEVICE;
3455         default:
3456                 return PCI_ANY_ID;
3457         }
3458 }
3459
3460 /**
3461  *  s2io_reset - Resets the card.
3462  *  @sp : private member of the device structure.
3463  *  Description: Function to Reset the card. This function then also
3464  *  restores the previously saved PCI configuration space registers as
3465  *  the card reset also resets the configuration space.
3466  *  Return value:
3467  *  void.
3468  */
3469
3470 static void s2io_reset(struct s2io_nic *sp)
3471 {
3472         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3473         u64 val64;
3474         u16 subid, pci_cmd;
3475         int i;
3476         u16 val16;
3477         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3478         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3479         struct stat_block *stats;
3480         struct swStat *swstats;
3481
3482         DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3483                   __func__, pci_name(sp->pdev));
3484
3485         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3486         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3487
3488         val64 = SW_RESET_ALL;
3489         writeq(val64, &bar0->sw_reset);
3490         if (strstr(sp->product_name, "CX4"))
3491                 msleep(750);
3492         msleep(250);
3493         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3494
3495                 /* Restore the PCI state saved during initialization. */
3496                 pci_restore_state(sp->pdev);
3497                 pci_save_state(sp->pdev);
3498                 pci_read_config_word(sp->pdev, 0x2, &val16);
3499                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3500                         break;
3501                 msleep(200);
3502         }
3503
3504         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3505                 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3506
3507         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3508
3509         s2io_init_pci(sp);
3510
3511         /* Set swapper to enable I/O register access */
3512         s2io_set_swapper(sp);
3513
3514         /* restore mac_addr entries */
3515         do_s2io_restore_unicast_mc(sp);
3516
3517         /* Restore the MSIX table entries from local variables */
3518         restore_xmsi_data(sp);
3519
3520         /* Clear certain PCI/PCI-X fields after reset */
3521         if (sp->device_type == XFRAME_II_DEVICE) {
3522                 /* Clear "detected parity error" bit */
3523                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3524
3525                 /* Clearing PCIX Ecc status register */
3526                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3527
3528                 /* Clearing PCI_STATUS error reflected here */
3529                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3530         }
3531
3532         /* Reset device statistics maintained by OS */
3533         memset(&sp->stats, 0, sizeof(struct net_device_stats));
3534
3535         stats = sp->mac_control.stats_info;
3536         swstats = &stats->sw_stat;
3537
3538         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3539         up_cnt = swstats->link_up_cnt;
3540         down_cnt = swstats->link_down_cnt;
3541         up_time = swstats->link_up_time;
3542         down_time = swstats->link_down_time;
3543         reset_cnt = swstats->soft_reset_cnt;
3544         mem_alloc_cnt = swstats->mem_allocated;
3545         mem_free_cnt = swstats->mem_freed;
3546         watchdog_cnt = swstats->watchdog_timer_cnt;
3547
3548         memset(stats, 0, sizeof(struct stat_block));
3549
3550         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3551         swstats->link_up_cnt = up_cnt;
3552         swstats->link_down_cnt = down_cnt;
3553         swstats->link_up_time = up_time;
3554         swstats->link_down_time = down_time;
3555         swstats->soft_reset_cnt = reset_cnt;
3556         swstats->mem_allocated = mem_alloc_cnt;
3557         swstats->mem_freed = mem_free_cnt;
3558         swstats->watchdog_timer_cnt = watchdog_cnt;
3559
3560         /* SXE-002: Configure link and activity LED to turn it off */
3561         subid = sp->pdev->subsystem_device;
3562         if (((subid & 0xFF) >= 0x07) &&
3563             (sp->device_type == XFRAME_I_DEVICE)) {
3564                 val64 = readq(&bar0->gpio_control);
3565                 val64 |= 0x0000800000000000ULL;
3566                 writeq(val64, &bar0->gpio_control);
3567                 val64 = 0x0411040400000000ULL;
3568                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3569         }
3570
3571         /*
3572          * Clear spurious ECC interrupts that would have occured on
3573          * XFRAME II cards after reset.
3574          */
3575         if (sp->device_type == XFRAME_II_DEVICE) {
3576                 val64 = readq(&bar0->pcc_err_reg);
3577                 writeq(val64, &bar0->pcc_err_reg);
3578         }
3579
3580         sp->device_enabled_once = false;
3581 }
3582
3583 /**
3584  *  s2io_set_swapper - to set the swapper controle on the card
3585  *  @sp : private member of the device structure,
3586  *  pointer to the s2io_nic structure.
3587  *  Description: Function to set the swapper control on the card
3588  *  correctly depending on the 'endianness' of the system.
3589  *  Return value:
3590  *  SUCCESS on success and FAILURE on failure.
3591  */
3592
3593 static int s2io_set_swapper(struct s2io_nic *sp)
3594 {
3595         struct net_device *dev = sp->dev;
3596         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3597         u64 val64, valt, valr;
3598
3599         /*
3600          * Set proper endian settings and verify the same by reading
3601          * the PIF Feed-back register.
3602          */
3603
3604         val64 = readq(&bar0->pif_rd_swapper_fb);
3605         if (val64 != 0x0123456789ABCDEFULL) {
3606                 int i = 0;
3607                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3608                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3609                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3610                                 0};                     /* FE=0, SE=0 */
3611
3612                 while (i < 4) {
3613                         writeq(value[i], &bar0->swapper_ctrl);
3614                         val64 = readq(&bar0->pif_rd_swapper_fb);
3615                         if (val64 == 0x0123456789ABCDEFULL)
3616                                 break;
3617                         i++;
3618                 }
3619                 if (i == 4) {
3620                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3621                                   "feedback read %llx\n",
3622                                   dev->name, (unsigned long long)val64);
3623                         return FAILURE;
3624                 }
3625                 valr = value[i];
3626         } else {
3627                 valr = readq(&bar0->swapper_ctrl);
3628         }
3629
3630         valt = 0x0123456789ABCDEFULL;
3631         writeq(valt, &bar0->xmsi_address);
3632         val64 = readq(&bar0->xmsi_address);
3633
3634         if (val64 != valt) {
3635                 int i = 0;
3636                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3637                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3638                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3639                                 0};                     /* FE=0, SE=0 */
3640
3641                 while (i < 4) {
3642                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3643                         writeq(valt, &bar0->xmsi_address);
3644                         val64 = readq(&bar0->xmsi_address);
3645                         if (val64 == valt)
3646                                 break;
3647                         i++;
3648                 }
3649                 if (i == 4) {
3650                         unsigned long long x = val64;
3651                         DBG_PRINT(ERR_DBG,
3652                                   "Write failed, Xmsi_addr reads:0x%llx\n", x);
3653                         return FAILURE;
3654                 }
3655         }
3656         val64 = readq(&bar0->swapper_ctrl);
3657         val64 &= 0xFFFF000000000000ULL;
3658
3659 #ifdef __BIG_ENDIAN
3660         /*
3661          * The device by default set to a big endian format, so a
3662          * big endian driver need not set anything.
3663          */
3664         val64 |= (SWAPPER_CTRL_TXP_FE |
3665                   SWAPPER_CTRL_TXP_SE |
3666                   SWAPPER_CTRL_TXD_R_FE |
3667                   SWAPPER_CTRL_TXD_W_FE |
3668                   SWAPPER_CTRL_TXF_R_FE |
3669                   SWAPPER_CTRL_RXD_R_FE |
3670                   SWAPPER_CTRL_RXD_W_FE |
3671                   SWAPPER_CTRL_RXF_W_FE |
3672                   SWAPPER_CTRL_XMSI_FE |
3673                   SWAPPER_CTRL_STATS_FE |
3674                   SWAPPER_CTRL_STATS_SE);
3675         if (sp->config.intr_type == INTA)
3676                 val64 |= SWAPPER_CTRL_XMSI_SE;
3677         writeq(val64, &bar0->swapper_ctrl);
3678 #else
3679         /*
3680          * Initially we enable all bits to make it accessible by the
3681          * driver, then we selectively enable only those bits that
3682          * we want to set.
3683          */
3684         val64 |= (SWAPPER_CTRL_TXP_FE |
3685                   SWAPPER_CTRL_TXP_SE |
3686                   SWAPPER_CTRL_TXD_R_FE |
3687                   SWAPPER_CTRL_TXD_R_SE |
3688                   SWAPPER_CTRL_TXD_W_FE |
3689                   SWAPPER_CTRL_TXD_W_SE |
3690                   SWAPPER_CTRL_TXF_R_FE |
3691                   SWAPPER_CTRL_RXD_R_FE |
3692                   SWAPPER_CTRL_RXD_R_SE |
3693                   SWAPPER_CTRL_RXD_W_FE |
3694                   SWAPPER_CTRL_RXD_W_SE |
3695                   SWAPPER_CTRL_RXF_W_FE |
3696                   SWAPPER_CTRL_XMSI_FE |
3697                   SWAPPER_CTRL_STATS_FE |
3698                   SWAPPER_CTRL_STATS_SE);
3699         if (sp->config.intr_type == INTA)
3700                 val64 |= SWAPPER_CTRL_XMSI_SE;
3701         writeq(val64, &bar0->swapper_ctrl);
3702 #endif
3703         val64 = readq(&bar0->swapper_ctrl);
3704
3705         /*
3706          * Verifying if endian settings are accurate by reading a
3707          * feedback register.
3708          */
3709         val64 = readq(&bar0->pif_rd_swapper_fb);
3710         if (val64 != 0x0123456789ABCDEFULL) {
3711                 /* Endian settings are incorrect, calls for another dekko. */
3712                 DBG_PRINT(ERR_DBG,
3713                           "%s: Endian settings are wrong, feedback read %llx\n",
3714                           dev->name, (unsigned long long)val64);
3715                 return FAILURE;
3716         }
3717
3718         return SUCCESS;
3719 }
3720
3721 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3722 {
3723         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3724         u64 val64;
3725         int ret = 0, cnt = 0;
3726
3727         do {
3728                 val64 = readq(&bar0->xmsi_access);
3729                 if (!(val64 & s2BIT(15)))
3730                         break;
3731                 mdelay(1);
3732                 cnt++;
3733         } while (cnt < 5);
3734         if (cnt == 5) {
3735                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3736                 ret = 1;
3737         }
3738
3739         return ret;
3740 }
3741
3742 static void restore_xmsi_data(struct s2io_nic *nic)
3743 {
3744         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3745         u64 val64;
3746         int i, msix_index;
3747
3748         if (nic->device_type == XFRAME_I_DEVICE)
3749                 return;
3750
3751         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3752                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3753                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3754                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3755                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3756                 writeq(val64, &bar0->xmsi_access);
3757                 if (wait_for_msix_trans(nic, msix_index)) {
3758                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3759                                   __func__, msix_index);
3760                         continue;
3761                 }
3762         }
3763 }
3764
3765 static void store_xmsi_data(struct s2io_nic *nic)
3766 {
3767         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3768         u64 val64, addr, data;
3769         int i, msix_index;
3770
3771         if (nic->device_type == XFRAME_I_DEVICE)
3772                 return;
3773
3774         /* Store and display */
3775         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3776                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3777                 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3778                 writeq(val64, &bar0->xmsi_access);
3779                 if (wait_for_msix_trans(nic, msix_index)) {
3780                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3781                                   __func__, msix_index);
3782                         continue;
3783                 }
3784                 addr = readq(&bar0->xmsi_address);
3785                 data = readq(&bar0->xmsi_data);
3786                 if (addr && data) {
3787                         nic->msix_info[i].addr = addr;
3788                         nic->msix_info[i].data = data;
3789                 }
3790         }
3791 }
3792
3793 static int s2io_enable_msi_x(struct s2io_nic *nic)
3794 {
3795         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3796         u64 rx_mat;
3797         u16 msi_control; /* Temp variable */
3798         int ret, i, j, msix_indx = 1;
3799         int size;
3800         struct stat_block *stats = nic->mac_control.stats_info;
3801         struct swStat *swstats = &stats->sw_stat;
3802
3803         size = nic->num_entries * sizeof(struct msix_entry);
3804         nic->entries = kzalloc(size, GFP_KERNEL);
3805         if (!nic->entries) {
3806                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3807                           __func__);
3808                 swstats->mem_alloc_fail_cnt++;
3809                 return -ENOMEM;
3810         }
3811         swstats->mem_allocated += size;
3812
3813         size = nic->num_entries * sizeof(struct s2io_msix_entry);
3814         nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3815         if (!nic->s2io_entries) {
3816                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3817                           __func__);
3818                 swstats->mem_alloc_fail_cnt++;
3819                 kfree(nic->entries);
3820                 swstats->mem_freed
3821                         += (nic->num_entries * sizeof(struct msix_entry));
3822                 return -ENOMEM;
3823         }
3824         swstats->mem_allocated += size;
3825
3826         nic->entries[0].entry = 0;
3827         nic->s2io_entries[0].entry = 0;
3828         nic->s2io_entries[0].in_use = MSIX_FLG;
3829         nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3830         nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3831
3832         for (i = 1; i < nic->num_entries; i++) {
3833                 nic->entries[i].entry = ((i - 1) * 8) + 1;
3834                 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3835                 nic->s2io_entries[i].arg = NULL;
3836                 nic->s2io_entries[i].in_use = 0;
3837         }
3838
3839         rx_mat = readq(&bar0->rx_mat);
3840         for (j = 0; j < nic->config.rx_ring_num; j++) {
3841                 rx_mat |= RX_MAT_SET(j, msix_indx);
3842                 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3843                 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3844                 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3845                 msix_indx += 8;
3846         }
3847         writeq(rx_mat, &bar0->rx_mat);
3848         readq(&bar0->rx_mat);
3849
3850         ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3851         /* We fail init if error or we get less vectors than min required */
3852         if (ret) {
3853                 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3854                 kfree(nic->entries);
3855                 swstats->mem_freed += nic->num_entries *
3856                         sizeof(struct msix_entry);
3857                 kfree(nic->s2io_entries);
3858                 swstats->mem_freed += nic->num_entries *
3859                         sizeof(struct s2io_msix_entry);
3860                 nic->entries = NULL;
3861                 nic->s2io_entries = NULL;
3862                 return -ENOMEM;
3863         }
3864
3865         /*
3866          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3867          * in the herc NIC. (Temp change, needs to be removed later)
3868          */
3869         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3870         msi_control |= 0x1; /* Enable MSI */
3871         pci_write_config_word(nic->pdev, 0x42, msi_control);
3872
3873         return 0;
3874 }
3875
3876 /* Handle software interrupt used during MSI(X) test */
3877 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3878 {
3879         struct s2io_nic *sp = dev_id;
3880
3881         sp->msi_detected = 1;
3882         wake_up(&sp->msi_wait);
3883
3884         return IRQ_HANDLED;
3885 }
3886
3887 /* Test interrupt path by forcing a a software IRQ */
3888 static int s2io_test_msi(struct s2io_nic *sp)
3889 {
3890         struct pci_dev *pdev = sp->pdev;
3891         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3892         int err;
3893         u64 val64, saved64;
3894
3895         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3896                           sp->name, sp);
3897         if (err) {
3898                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3899                           sp->dev->name, pci_name(pdev), pdev->irq);
3900                 return err;
3901         }
3902
3903         init_waitqueue_head(&sp->msi_wait);
3904         sp->msi_detected = 0;
3905
3906         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3907         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3908         val64 |= SCHED_INT_CTRL_TIMER_EN;
3909         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3910         writeq(val64, &bar0->scheduled_int_ctrl);
3911
3912         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3913
3914         if (!sp->msi_detected) {
3915                 /* MSI(X) test failed, go back to INTx mode */
3916                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3917                           "using MSI(X) during test\n",
3918                           sp->dev->name, pci_name(pdev));
3919
3920                 err = -EOPNOTSUPP;
3921         }
3922
3923         free_irq(sp->entries[1].vector, sp);
3924
3925         writeq(saved64, &bar0->scheduled_int_ctrl);
3926
3927         return err;
3928 }
3929
3930 static void remove_msix_isr(struct s2io_nic *sp)
3931 {
3932         int i;
3933         u16 msi_control;
3934
3935         for (i = 0; i < sp->num_entries; i++) {
3936                 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3937                         int vector = sp->entries[i].vector;
3938                         void *arg = sp->s2io_entries[i].arg;
3939                         free_irq(vector, arg);
3940                 }
3941         }
3942
3943         kfree(sp->entries);
3944         kfree(sp->s2io_entries);
3945         sp->entries = NULL;
3946         sp->s2io_entries = NULL;
3947
3948         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3949         msi_control &= 0xFFFE; /* Disable MSI */
3950         pci_write_config_word(sp->pdev, 0x42, msi_control);
3951
3952         pci_disable_msix(sp->pdev);
3953 }
3954
3955 static void remove_inta_isr(struct s2io_nic *sp)
3956 {
3957         struct net_device *dev = sp->dev;
3958
3959         free_irq(sp->pdev->irq, dev);
3960 }
3961
3962 /* ********************************************************* *
3963  * Functions defined below concern the OS part of the driver *
3964  * ********************************************************* */
3965
3966 /**
3967  *  s2io_open - open entry point of the driver
3968  *  @dev : pointer to the device structure.
3969  *  Description:
3970  *  This function is the open entry point of the driver. It mainly calls a
3971  *  function to allocate Rx buffers and inserts them into the buffer
3972  *  descriptors and then enables the Rx part of the NIC.
3973  *  Return value:
3974  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3975  *   file on failure.
3976  */
3977
3978 static int s2io_open(struct net_device *dev)
3979 {
3980         struct s2io_nic *sp = netdev_priv(dev);
3981         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3982         int err = 0;
3983
3984         /*
3985          * Make sure you have link off by default every time
3986          * Nic is initialized
3987          */
3988         netif_carrier_off(dev);
3989         sp->last_link_state = 0;
3990
3991         /* Initialize H/W and enable interrupts */
3992         err = s2io_card_up(sp);
3993         if (err) {
3994                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3995                           dev->name);
3996                 goto hw_init_failed;
3997         }
3998
3999         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4000                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4001                 s2io_card_down(sp);
4002                 err = -ENODEV;
4003                 goto hw_init_failed;
4004         }
4005         s2io_start_all_tx_queue(sp);
4006         return 0;
4007
4008 hw_init_failed:
4009         if (sp->config.intr_type == MSI_X) {
4010                 if (sp->entries) {
4011                         kfree(sp->entries);
4012                         swstats->mem_freed += sp->num_entries *
4013                                 sizeof(struct msix_entry);
4014                 }
4015                 if (sp->s2io_entries) {
4016                         kfree(sp->s2io_entries);
4017                         swstats->mem_freed += sp->num_entries *
4018                                 sizeof(struct s2io_msix_entry);
4019                 }
4020         }
4021         return err;
4022 }
4023
4024 /**
4025  *  s2io_close -close entry point of the driver
4026  *  @dev : device pointer.
4027  *  Description:
4028  *  This is the stop entry point of the driver. It needs to undo exactly
4029  *  whatever was done by the open entry point,thus it's usually referred to
4030  *  as the close function.Among other things this function mainly stops the
4031  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4032  *  Return value:
4033  *  0 on success and an appropriate (-)ve integer as defined in errno.h
4034  *  file on failure.
4035  */
4036
4037 static int s2io_close(struct net_device *dev)
4038 {
4039         struct s2io_nic *sp = netdev_priv(dev);
4040         struct config_param *config = &sp->config;
4041         u64 tmp64;
4042         int offset;
4043
4044         /* Return if the device is already closed               *
4045          *  Can happen when s2io_card_up failed in change_mtu    *
4046          */
4047         if (!is_s2io_card_up(sp))
4048                 return 0;
4049
4050         s2io_stop_all_tx_queue(sp);
4051         /* delete all populated mac entries */
4052         for (offset = 1; offset < config->max_mc_addr; offset++) {
4053                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4054                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4055                         do_s2io_delete_unicast_mc(sp, tmp64);
4056         }
4057
4058         s2io_card_down(sp);
4059
4060         return 0;
4061 }
4062
4063 /**
4064  *  s2io_xmit - Tx entry point of te driver
4065  *  @skb : the socket buffer containing the Tx data.
4066  *  @dev : device pointer.
4067  *  Description :
4068  *  This function is the Tx entry point of the driver. S2IO NIC supports
4069  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4070  *  NOTE: when device cant queue the pkt,just the trans_start variable will
4071  *  not be upadted.
4072  *  Return value:
4073  *  0 on success & 1 on failure.
4074  */
4075
4076 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4077 {
4078         struct s2io_nic *sp = netdev_priv(dev);
4079         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4080         register u64 val64;
4081         struct TxD *txdp;
4082         struct TxFIFO_element __iomem *tx_fifo;
4083         unsigned long flags = 0;
4084         u16 vlan_tag = 0;
4085         struct fifo_info *fifo = NULL;
4086         int do_spin_lock = 1;
4087         int offload_type;
4088         int enable_per_list_interrupt = 0;
4089         struct config_param *config = &sp->config;
4090         struct mac_info *mac_control = &sp->mac_control;
4091         struct stat_block *stats = mac_control->stats_info;
4092         struct swStat *swstats = &stats->sw_stat;
4093
4094         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4095
4096         if (unlikely(skb->len <= 0)) {
4097                 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4098                 dev_kfree_skb_any(skb);
4099                 return NETDEV_TX_OK;
4100         }
4101
4102         if (!is_s2io_card_up(sp)) {
4103                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4104                           dev->name);
4105                 dev_kfree_skb(skb);
4106                 return NETDEV_TX_OK;
4107         }
4108
4109         queue = 0;
4110         if (sp->vlgrp && vlan_tx_tag_present(skb))
4111                 vlan_tag = vlan_tx_tag_get(skb);
4112         if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4113                 if (skb->protocol == htons(ETH_P_IP)) {
4114                         struct iphdr *ip;
4115                         struct tcphdr *th;
4116                         ip = ip_hdr(skb);
4117
4118                         if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4119                                 th = (struct tcphdr *)(((unsigned char *)ip) +
4120                                                        ip->ihl*4);
4121
4122                                 if (ip->protocol == IPPROTO_TCP) {
4123                                         queue_len = sp->total_tcp_fifos;
4124                                         queue = (ntohs(th->source) +
4125                                                  ntohs(th->dest)) &
4126                                                 sp->fifo_selector[queue_len - 1];
4127                                         if (queue >= queue_len)
4128                                                 queue = queue_len - 1;
4129                                 } else if (ip->protocol == IPPROTO_UDP) {
4130                                         queue_len = sp->total_udp_fifos;
4131                                         queue = (ntohs(th->source) +
4132                                                  ntohs(th->dest)) &
4133                                                 sp->fifo_selector[queue_len - 1];
4134                                         if (queue >= queue_len)
4135                                                 queue = queue_len - 1;
4136                                         queue += sp->udp_fifo_idx;
4137                                         if (skb->len > 1024)
4138                                                 enable_per_list_interrupt = 1;
4139                                         do_spin_lock = 0;
4140                                 }
4141                         }
4142                 }
4143         } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4144                 /* get fifo number based on skb->priority value */
4145                 queue = config->fifo_mapping
4146                         [skb->priority & (MAX_TX_FIFOS - 1)];
4147         fifo = &mac_control->fifos[queue];
4148
4149         if (do_spin_lock)
4150                 spin_lock_irqsave(&fifo->tx_lock, flags);
4151         else {
4152                 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4153                         return NETDEV_TX_LOCKED;
4154         }
4155
4156         if (sp->config.multiq) {
4157                 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4158                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4159                         return NETDEV_TX_BUSY;
4160                 }
4161         } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4162                 if (netif_queue_stopped(dev)) {
4163                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4164                         return NETDEV_TX_BUSY;
4165                 }
4166         }
4167
4168         put_off = (u16)fifo->tx_curr_put_info.offset;
4169         get_off = (u16)fifo->tx_curr_get_info.offset;
4170         txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
4171
4172         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4173         /* Avoid "put" pointer going beyond "get" pointer */
4174         if (txdp->Host_Control ||
4175             ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4176                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4177                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4178                 dev_kfree_skb(skb);
4179                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4180                 return NETDEV_TX_OK;
4181         }
4182
4183         offload_type = s2io_offload_type(skb);
4184         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4185                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4186                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4187         }
4188         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4189                 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4190                                     TXD_TX_CKO_TCP_EN |
4191                                     TXD_TX_CKO_UDP_EN);
4192         }
4193         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4194         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4195         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4196         if (enable_per_list_interrupt)
4197                 if (put_off & (queue_len >> 5))
4198                         txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4199         if (vlan_tag) {
4200                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4201                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4202         }
4203
4204         frg_len = skb->len - skb->data_len;
4205         if (offload_type == SKB_GSO_UDP) {
4206                 int ufo_size;
4207
4208                 ufo_size = s2io_udp_mss(skb);
4209                 ufo_size &= ~7;
4210                 txdp->Control_1 |= TXD_UFO_EN;
4211                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4212                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4213 #ifdef __BIG_ENDIAN
4214                 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4215                 fifo->ufo_in_band_v[put_off] =
4216                         (__force u64)skb_shinfo(skb)->ip6_frag_id;
4217 #else
4218                 fifo->ufo_in_band_v[put_off] =
4219                         (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4220 #endif
4221                 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4222                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4223                                                       fifo->ufo_in_band_v,
4224                                                       sizeof(u64),
4225                                                       PCI_DMA_TODEVICE);
4226                 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4227                         goto pci_map_failed;
4228                 txdp++;
4229         }
4230
4231         txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4232                                               frg_len, PCI_DMA_TODEVICE);
4233         if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4234                 goto pci_map_failed;
4235
4236         txdp->Host_Control = (unsigned long)skb;
4237         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4238         if (offload_type == SKB_GSO_UDP)
4239                 txdp->Control_1 |= TXD_UFO_EN;
4240
4241         frg_cnt = skb_shinfo(skb)->nr_frags;
4242         /* For fragmented SKB. */
4243         for (i = 0; i < frg_cnt; i++) {
4244                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4245                 /* A '0' length fragment will be ignored */
4246                 if (!frag->size)
4247                         continue;
4248                 txdp++;
4249                 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4250                                                          frag->page_offset,
4251                                                          frag->size,
4252                                                          PCI_DMA_TODEVICE);
4253                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4254                 if (offload_type == SKB_GSO_UDP)
4255                         txdp->Control_1 |= TXD_UFO_EN;
4256         }
4257         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4258
4259         if (offload_type == SKB_GSO_UDP)
4260                 frg_cnt++; /* as Txd0 was used for inband header */
4261
4262         tx_fifo = mac_control->tx_FIFO_start[queue];
4263         val64 = fifo->list_info[put_off].list_phy_addr;
4264         writeq(val64, &tx_fifo->TxDL_Pointer);
4265
4266         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4267                  TX_FIFO_LAST_LIST);
4268         if (offload_type)
4269                 val64 |= TX_FIFO_SPECIAL_FUNC;
4270
4271         writeq(val64, &tx_fifo->List_Control);
4272
4273         mmiowb();
4274
4275         put_off++;
4276         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4277                 put_off = 0;
4278         fifo->tx_curr_put_info.offset = put_off;
4279
4280         /* Avoid "put" pointer going beyond "get" pointer */
4281         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4282                 swstats->fifo_full_cnt++;
4283                 DBG_PRINT(TX_DBG,
4284                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4285                           put_off, get_off);
4286                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4287         }
4288         swstats->mem_allocated += skb->truesize;
4289         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4290
4291         if (sp->config.intr_type == MSI_X)
4292                 tx_intr_handler(fifo);
4293
4294         return NETDEV_TX_OK;
4295
4296 pci_map_failed:
4297         swstats->pci_map_fail_cnt++;
4298         s2io_stop_tx_queue(sp, fifo->fifo_no);
4299         swstats->mem_freed += skb->truesize;
4300         dev_kfree_skb(skb);
4301         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4302         return NETDEV_TX_OK;
4303 }
4304
4305 static void
4306 s2io_alarm_handle(unsigned long data)
4307 {
4308         struct s2io_nic *sp = (struct s2io_nic *)data;
4309         struct net_device *dev = sp->dev;
4310
4311         s2io_handle_errors(dev);
4312         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4313 }
4314
4315 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4316 {
4317         struct ring_info *ring = (struct ring_info *)dev_id;
4318         struct s2io_nic *sp = ring->nic;
4319         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4320
4321         if (unlikely(!is_s2io_card_up(sp)))
4322                 return IRQ_HANDLED;
4323
4324         if (sp->config.napi) {
4325                 u8 __iomem *addr = NULL;
4326                 u8 val8 = 0;
4327
4328                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4329                 addr += (7 - ring->ring_no);
4330                 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4331                 writeb(val8, addr);
4332                 val8 = readb(addr);
4333                 napi_schedule(&ring->napi);
4334         } else {
4335                 rx_intr_handler(ring, 0);
4336                 s2io_chk_rx_buffers(sp, ring);
4337         }
4338
4339         return IRQ_HANDLED;
4340 }
4341
4342 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4343 {
4344         int i;
4345         struct fifo_info *fifos = (struct fifo_info *)dev_id;
4346         struct s2io_nic *sp = fifos->nic;
4347         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4348         struct config_param *config  = &sp->config;
4349         u64 reason;
4350
4351         if (unlikely(!is_s2io_card_up(sp)))
4352                 return IRQ_NONE;
4353
4354         reason = readq(&bar0->general_int_status);
4355         if (unlikely(reason == S2IO_MINUS_ONE))
4356                 /* Nothing much can be done. Get out */
4357                 return IRQ_HANDLED;
4358
4359         if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4360                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4361
4362                 if (reason & GEN_INTR_TXPIC)
4363                         s2io_txpic_intr_handle(sp);
4364
4365                 if (reason & GEN_INTR_TXTRAFFIC)
4366                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4367
4368                 for (i = 0; i < config->tx_fifo_num; i++)
4369                         tx_intr_handler(&fifos[i]);
4370
4371                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4372                 readl(&bar0->general_int_status);
4373                 return IRQ_HANDLED;
4374         }
4375         /* The interrupt was not raised by us */
4376         return IRQ_NONE;
4377 }
4378
4379 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4380 {
4381         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4382         u64 val64;
4383
4384         val64 = readq(&bar0->pic_int_status);
4385         if (val64 & PIC_INT_GPIO) {
4386                 val64 = readq(&bar0->gpio_int_reg);
4387                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4388                     (val64 & GPIO_INT_REG_LINK_UP)) {
4389                         /*
4390                          * This is unstable state so clear both up/down
4391                          * interrupt and adapter to re-evaluate the link state.
4392                          */
4393                         val64 |= GPIO_INT_REG_LINK_DOWN;
4394                         val64 |= GPIO_INT_REG_LINK_UP;
4395                         writeq(val64, &bar0->gpio_int_reg);
4396                         val64 = readq(&bar0->gpio_int_mask);
4397                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4398                                    GPIO_INT_MASK_LINK_DOWN);
4399                         writeq(val64, &bar0->gpio_int_mask);
4400                 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4401                         val64 = readq(&bar0->adapter_status);
4402                         /* Enable Adapter */
4403                         val64 = readq(&bar0->adapter_control);
4404                         val64 |= ADAPTER_CNTL_EN;
4405                         writeq(val64, &bar0->adapter_control);
4406                         val64 |= ADAPTER_LED_ON;
4407                         writeq(val64, &bar0->adapter_control);
4408                         if (!sp->device_enabled_once)
4409                                 sp->device_enabled_once = 1;
4410
4411                         s2io_link(sp, LINK_UP);
4412                         /*
4413                          * unmask link down interrupt and mask link-up
4414                          * intr
4415                          */
4416                         val64 = readq(&bar0->gpio_int_mask);
4417                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4418                         val64 |= GPIO_INT_MASK_LINK_UP;
4419                         writeq(val64, &bar0->gpio_int_mask);
4420
4421                 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4422                         val64 = readq(&bar0->adapter_status);
4423                         s2io_link(sp, LINK_DOWN);
4424                         /* Link is down so unmaks link up interrupt */
4425                         val64 = readq(&bar0->gpio_int_mask);
4426                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4427                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4428                         writeq(val64, &bar0->gpio_int_mask);
4429
4430                         /* turn off LED */
4431                         val64 = readq(&bar0->adapter_control);
4432                         val64 = val64 & (~ADAPTER_LED_ON);
4433                         writeq(val64, &bar0->adapter_control);
4434                 }
4435         }
4436         val64 = readq(&bar0->gpio_int_mask);
4437 }
4438
4439 /**
4440  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4441  *  @value: alarm bits
4442  *  @addr: address value
4443  *  @cnt: counter variable
4444  *  Description: Check for alarm and increment the counter
4445  *  Return Value:
4446  *  1 - if alarm bit set
4447  *  0 - if alarm bit is not set
4448  */
4449 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4450                                  unsigned long long *cnt)
4451 {
4452         u64 val64;
4453         val64 = readq(addr);
4454         if (val64 & value) {
4455                 writeq(val64, addr);
4456                 (*cnt)++;
4457                 return 1;
4458         }
4459         return 0;
4460
4461 }
4462
4463 /**
4464  *  s2io_handle_errors - Xframe error indication handler
4465  *  @nic: device private variable
4466  *  Description: Handle alarms such as loss of link, single or
4467  *  double ECC errors, critical and serious errors.
4468  *  Return Value:
4469  *  NONE
4470  */
4471 static void s2io_handle_errors(void *dev_id)
4472 {
4473         struct net_device *dev = (struct net_device *)dev_id;
4474         struct s2io_nic *sp = netdev_priv(dev);
4475         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4476         u64 temp64 = 0, val64 = 0;
4477         int i = 0;
4478
4479         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4480         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4481
4482         if (!is_s2io_card_up(sp))
4483                 return;
4484
4485         if (pci_channel_offline(sp->pdev))
4486                 return;
4487
4488         memset(&sw_stat->ring_full_cnt, 0,
4489                sizeof(sw_stat->ring_full_cnt));
4490
4491         /* Handling the XPAK counters update */
4492         if (stats->xpak_timer_count < 72000) {
4493                 /* waiting for an hour */
4494                 stats->xpak_timer_count++;
4495         } else {
4496                 s2io_updt_xpak_counter(dev);
4497                 /* reset the count to zero */
4498                 stats->xpak_timer_count = 0;
4499         }
4500
4501         /* Handling link status change error Intr */
4502         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4503                 val64 = readq(&bar0->mac_rmac_err_reg);
4504                 writeq(val64, &bar0->mac_rmac_err_reg);
4505                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4506                         schedule_work(&sp->set_link_task);
4507         }
4508
4509         /* In case of a serious error, the device will be Reset. */
4510         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4511                                   &sw_stat->serious_err_cnt))
4512                 goto reset;
4513
4514         /* Check for data parity error */
4515         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4516                                   &sw_stat->parity_err_cnt))
4517                 goto reset;
4518
4519         /* Check for ring full counter */
4520         if (sp->device_type == XFRAME_II_DEVICE) {
4521                 val64 = readq(&bar0->ring_bump_counter1);
4522                 for (i = 0; i < 4; i++) {
4523                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4524                         temp64 >>= 64 - ((i+1)*16);
4525                         sw_stat->ring_full_cnt[i] += temp64;
4526                 }
4527
4528                 val64 = readq(&bar0->ring_bump_counter2);
4529                 for (i = 0; i < 4; i++) {
4530                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4531                         temp64 >>= 64 - ((i+1)*16);
4532                         sw_stat->ring_full_cnt[i+4] += temp64;
4533                 }
4534         }
4535
4536         val64 = readq(&bar0->txdma_int_status);
4537         /*check for pfc_err*/
4538         if (val64 & TXDMA_PFC_INT) {
4539                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4540                                           PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4541                                           PFC_PCIX_ERR,
4542                                           &bar0->pfc_err_reg,
4543                                           &sw_stat->pfc_err_cnt))
4544                         goto reset;
4545                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4546                                       &bar0->pfc_err_reg,
4547                                       &sw_stat->pfc_err_cnt);
4548         }
4549
4550         /*check for tda_err*/
4551         if (val64 & TXDMA_TDA_INT) {
4552                 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4553                                           TDA_SM0_ERR_ALARM |
4554                                           TDA_SM1_ERR_ALARM,
4555                                           &bar0->tda_err_reg,
4556                                           &sw_stat->tda_err_cnt))
4557                         goto reset;
4558                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4559                                       &bar0->tda_err_reg,
4560                                       &sw_stat->tda_err_cnt);
4561         }
4562         /*check for pcc_err*/
4563         if (val64 & TXDMA_PCC_INT) {
4564                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4565                                           PCC_N_SERR | PCC_6_COF_OV_ERR |
4566                                           PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4567                                           PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4568                                           PCC_TXB_ECC_DB_ERR,
4569                                           &bar0->pcc_err_reg,
4570                                           &sw_stat->pcc_err_cnt))
4571                         goto reset;
4572                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4573                                       &bar0->pcc_err_reg,
4574                                       &sw_stat->pcc_err_cnt);
4575         }
4576
4577         /*check for tti_err*/
4578         if (val64 & TXDMA_TTI_INT) {
4579                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4580                                           &bar0->tti_err_reg,
4581                                           &sw_stat->tti_err_cnt))
4582                         goto reset;
4583                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4584                                       &bar0->tti_err_reg,
4585                                       &sw_stat->tti_err_cnt);
4586         }
4587
4588         /*check for lso_err*/
4589         if (val64 & TXDMA_LSO_INT) {
4590                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4591                                           LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4592                                           &bar0->lso_err_reg,
4593                                           &sw_stat->lso_err_cnt))
4594                         goto reset;
4595                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4596                                       &bar0->lso_err_reg,
4597                                       &sw_stat->lso_err_cnt);
4598         }
4599
4600         /*check for tpa_err*/
4601         if (val64 & TXDMA_TPA_INT) {
4602                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4603                                           &bar0->tpa_err_reg,
4604                                           &sw_stat->tpa_err_cnt))
4605                         goto reset;
4606                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4607                                       &bar0->tpa_err_reg,
4608                                       &sw_stat->tpa_err_cnt);
4609         }
4610
4611         /*check for sm_err*/
4612         if (val64 & TXDMA_SM_INT) {
4613                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4614                                           &bar0->sm_err_reg,
4615                                           &sw_stat->sm_err_cnt))
4616                         goto reset;
4617         }
4618
4619         val64 = readq(&bar0->mac_int_status);
4620         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4621                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4622                                           &bar0->mac_tmac_err_reg,
4623                                           &sw_stat->mac_tmac_err_cnt))
4624                         goto reset;
4625                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4626                                       TMAC_DESC_ECC_SG_ERR |
4627                                       TMAC_DESC_ECC_DB_ERR,
4628                                       &bar0->mac_tmac_err_reg,
4629                                       &sw_stat->mac_tmac_err_cnt);
4630         }
4631
4632         val64 = readq(&bar0->xgxs_int_status);
4633         if (val64 & XGXS_INT_STATUS_TXGXS) {
4634                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4635                                           &bar0->xgxs_txgxs_err_reg,
4636                                           &sw_stat->xgxs_txgxs_err_cnt))
4637                         goto reset;
4638                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4639                                       &bar0->xgxs_txgxs_err_reg,
4640                                       &sw_stat->xgxs_txgxs_err_cnt);
4641         }
4642
4643         val64 = readq(&bar0->rxdma_int_status);
4644         if (val64 & RXDMA_INT_RC_INT_M) {
4645                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4646                                           RC_FTC_ECC_DB_ERR |
4647                                           RC_PRCn_SM_ERR_ALARM |
4648                                           RC_FTC_SM_ERR_ALARM,
4649                                           &bar0->rc_err_reg,
4650                                           &sw_stat->rc_err_cnt))
4651                         goto reset;
4652                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4653                                       RC_FTC_ECC_SG_ERR |
4654                                       RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4655                                       &sw_stat->rc_err_cnt);
4656                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4657                                           PRC_PCI_AB_WR_Rn |
4658                                           PRC_PCI_AB_F_WR_Rn,
4659                                           &bar0->prc_pcix_err_reg,
4660                                           &sw_stat->prc_pcix_err_cnt))
4661                         goto reset;
4662                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4663                                       PRC_PCI_DP_WR_Rn |
4664                                       PRC_PCI_DP_F_WR_Rn,
4665                                       &bar0->prc_pcix_err_reg,
4666                                       &sw_stat->prc_pcix_err_cnt);
4667         }
4668
4669         if (val64 & RXDMA_INT_RPA_INT_M) {
4670                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4671                                           &bar0->rpa_err_reg,
4672                                           &sw_stat->rpa_err_cnt))
4673                         goto reset;
4674                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4675                                       &bar0->rpa_err_reg,
4676                                       &sw_stat->rpa_err_cnt);
4677         }
4678
4679         if (val64 & RXDMA_INT_RDA_INT_M) {
4680                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4681                                           RDA_FRM_ECC_DB_N_AERR |
4682                                           RDA_SM1_ERR_ALARM |
4683                                           RDA_SM0_ERR_ALARM |
4684                                           RDA_RXD_ECC_DB_SERR,
4685                                           &bar0->rda_err_reg,
4686                                           &sw_stat->rda_err_cnt))
4687                         goto reset;
4688                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4689                                       RDA_FRM_ECC_SG_ERR |
4690                                       RDA_MISC_ERR |
4691                                       RDA_PCIX_ERR,
4692                                       &bar0->rda_err_reg,
4693                                       &sw_stat->rda_err_cnt);
4694         }
4695
4696         if (val64 & RXDMA_INT_RTI_INT_M) {
4697                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4698                                           &bar0->rti_err_reg,
4699                                           &sw_stat->rti_err_cnt))
4700                         goto reset;
4701                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4702                                       &bar0->rti_err_reg,
4703                                       &sw_stat->rti_err_cnt);
4704         }
4705
4706         val64 = readq(&bar0->mac_int_status);
4707         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4708                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4709                                           &bar0->mac_rmac_err_reg,
4710                                           &sw_stat->mac_rmac_err_cnt))
4711                         goto reset;
4712                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4713                                       RMAC_SINGLE_ECC_ERR |
4714                                       RMAC_DOUBLE_ECC_ERR,
4715                                       &bar0->mac_rmac_err_reg,
4716                                       &sw_stat->mac_rmac_err_cnt);
4717         }
4718
4719         val64 = readq(&bar0->xgxs_int_status);
4720         if (val64 & XGXS_INT_STATUS_RXGXS) {
4721                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4722                                           &bar0->xgxs_rxgxs_err_reg,
4723                                           &sw_stat->xgxs_rxgxs_err_cnt))
4724                         goto reset;
4725         }
4726
4727         val64 = readq(&bar0->mc_int_status);
4728         if (val64 & MC_INT_STATUS_MC_INT) {
4729                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4730                                           &bar0->mc_err_reg,
4731                                           &sw_stat->mc_err_cnt))
4732                         goto reset;
4733
4734                 /* Handling Ecc errors */
4735                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4736                         writeq(val64, &bar0->mc_err_reg);
4737                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4738                                 sw_stat->double_ecc_errs++;
4739                                 if (sp->device_type != XFRAME_II_DEVICE) {
4740                                         /*
4741                                          * Reset XframeI only if critical error
4742                                          */
4743                                         if (val64 &
4744                                             (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4745                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4746                                                 goto reset;
4747                                 }
4748                         } else
4749                                 sw_stat->single_ecc_errs++;
4750                 }
4751         }
4752         return;
4753
4754 reset:
4755         s2io_stop_all_tx_queue(sp);
4756         schedule_work(&sp->rst_timer_task);
4757         sw_stat->soft_reset_cnt++;
4758         return;
4759 }
4760
4761 /**
4762  *  s2io_isr - ISR handler of the device .
4763  *  @irq: the irq of the device.
4764  *  @dev_id: a void pointer to the dev structure of the NIC.
4765  *  Description:  This function is the ISR handler of the device. It
4766  *  identifies the reason for the interrupt and calls the relevant
4767  *  service routines. As a contongency measure, this ISR allocates the
4768  *  recv buffers, if their numbers are below the panic value which is
4769  *  presently set to 25% of the original number of rcv buffers allocated.
4770  *  Return value:
4771  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4772  *   IRQ_NONE: will be returned if interrupt is not from our device
4773  */
4774 static irqreturn_t s2io_isr(int irq, void *dev_id)
4775 {
4776         struct net_device *dev = (struct net_device *)dev_id;
4777         struct s2io_nic *sp = netdev_priv(dev);
4778         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4779         int i;
4780         u64 reason = 0;
4781         struct mac_info *mac_control;
4782         struct config_param *config;
4783
4784         /* Pretend we handled any irq's from a disconnected card */
4785         if (pci_channel_offline(sp->pdev))
4786                 return IRQ_NONE;
4787
4788         if (!is_s2io_card_up(sp))
4789                 return IRQ_NONE;
4790
4791         config = &sp->config;
4792         mac_control = &sp->mac_control;
4793
4794         /*
4795          * Identify the cause for interrupt and call the appropriate
4796          * interrupt handler. Causes for the interrupt could be;
4797          * 1. Rx of packet.
4798          * 2. Tx complete.
4799          * 3. Link down.
4800          */
4801         reason = readq(&bar0->general_int_status);
4802
4803         if (unlikely(reason == S2IO_MINUS_ONE))
4804                 return IRQ_HANDLED;     /* Nothing much can be done. Get out */
4805
4806         if (reason &
4807             (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4808                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4809
4810                 if (config->napi) {
4811                         if (reason & GEN_INTR_RXTRAFFIC) {
4812                                 napi_schedule(&sp->napi);
4813                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4814                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4815                                 readl(&bar0->rx_traffic_int);
4816                         }
4817                 } else {
4818                         /*
4819                          * rx_traffic_int reg is an R1 register, writing all 1's
4820                          * will ensure that the actual interrupt causing bit
4821                          * get's cleared and hence a read can be avoided.
4822                          */
4823                         if (reason & GEN_INTR_RXTRAFFIC)
4824                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4825
4826                         for (i = 0; i < config->rx_ring_num; i++) {
4827                                 struct ring_info *ring = &mac_control->rings[i];
4828
4829                                 rx_intr_handler(ring, 0);
4830                         }
4831                 }
4832
4833                 /*
4834                  * tx_traffic_int reg is an R1 register, writing all 1's
4835                  * will ensure that the actual interrupt causing bit get's
4836                  * cleared and hence a read can be avoided.
4837                  */
4838                 if (reason & GEN_INTR_TXTRAFFIC)
4839                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4840
4841                 for (i = 0; i < config->tx_fifo_num; i++)
4842                         tx_intr_handler(&mac_control->fifos[i]);
4843
4844                 if (reason & GEN_INTR_TXPIC)
4845                         s2io_txpic_intr_handle(sp);
4846
4847                 /*
4848                  * Reallocate the buffers from the interrupt handler itself.
4849                  */
4850                 if (!config->napi) {
4851                         for (i = 0; i < config->rx_ring_num; i++) {
4852                                 struct ring_info *ring = &mac_control->rings[i];
4853
4854                                 s2io_chk_rx_buffers(sp, ring);
4855                         }
4856                 }
4857                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4858                 readl(&bar0->general_int_status);
4859
4860                 return IRQ_HANDLED;
4861
4862         } else if (!reason) {
4863                 /* The interrupt was not raised by us */
4864                 return IRQ_NONE;
4865         }
4866
4867         return IRQ_HANDLED;
4868 }
4869
4870 /**
4871  * s2io_updt_stats -
4872  */
4873 static void s2io_updt_stats(struct s2io_nic *sp)
4874 {
4875         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4876         u64 val64;
4877         int cnt = 0;
4878
4879         if (is_s2io_card_up(sp)) {
4880                 /* Apprx 30us on a 133 MHz bus */
4881                 val64 = SET_UPDT_CLICKS(10) |
4882                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4883                 writeq(val64, &bar0->stat_cfg);
4884                 do {
4885                         udelay(100);
4886                         val64 = readq(&bar0->stat_cfg);
4887                         if (!(val64 & s2BIT(0)))
4888                                 break;
4889                         cnt++;
4890                         if (cnt == 5)
4891                                 break; /* Updt failed */
4892                 } while (1);
4893         }
4894 }
4895
4896 /**
4897  *  s2io_get_stats - Updates the device statistics structure.
4898  *  @dev : pointer to the device structure.
4899  *  Description:
4900  *  This function updates the device statistics structure in the s2io_nic
4901  *  structure and returns a pointer to the same.
4902  *  Return value:
4903  *  pointer to the updated net_device_stats structure.
4904  */
4905
4906 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4907 {
4908         struct s2io_nic *sp = netdev_priv(dev);
4909         struct config_param *config = &sp->config;
4910         struct mac_info *mac_control = &sp->mac_control;
4911         struct stat_block *stats = mac_control->stats_info;
4912         int i;
4913
4914         /* Configure Stats for immediate updt */
4915         s2io_updt_stats(sp);
4916
4917         /* Using sp->stats as a staging area, because reset (due to mtu
4918            change, for example) will clear some hardware counters */
4919         dev->stats.tx_packets += le32_to_cpu(stats->tmac_frms) -
4920                 sp->stats.tx_packets;
4921         sp->stats.tx_packets = le32_to_cpu(stats->tmac_frms);
4922
4923         dev->stats.tx_errors += le32_to_cpu(stats->tmac_any_err_frms) -
4924                 sp->stats.tx_errors;
4925         sp->stats.tx_errors = le32_to_cpu(stats->tmac_any_err_frms);
4926
4927         dev->stats.rx_errors += le64_to_cpu(stats->rmac_drop_frms) -
4928                 sp->stats.rx_errors;
4929         sp->stats.rx_errors = le64_to_cpu(stats->rmac_drop_frms);
4930
4931         dev->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms) -
4932                 sp->stats.multicast;
4933         sp->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms);
4934
4935         dev->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms) -
4936                 sp->stats.rx_length_errors;
4937         sp->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms);
4938
4939         /* collect per-ring rx_packets and rx_bytes */
4940         dev->stats.rx_packets = dev->stats.rx_bytes = 0;
4941         for (i = 0; i < config->rx_ring_num; i++) {
4942                 struct ring_info *ring = &mac_control->rings[i];
4943
4944                 dev->stats.rx_packets += ring->rx_packets;
4945                 dev->stats.rx_bytes += ring->rx_bytes;
4946         }
4947
4948         return &dev->stats;
4949 }
4950
4951 /**
4952  *  s2io_set_multicast - entry point for multicast address enable/disable.
4953  *  @dev : pointer to the device structure
4954  *  Description:
4955  *  This function is a driver entry point which gets called by the kernel
4956  *  whenever multicast addresses must be enabled/disabled. This also gets
4957  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4958  *  determine, if multicast address must be enabled or if promiscuous mode
4959  *  is to be disabled etc.
4960  *  Return value:
4961  *  void.
4962  */
4963
4964 static void s2io_set_multicast(struct net_device *dev)
4965 {
4966         int i, j, prev_cnt;
4967         struct dev_mc_list *mclist;
4968         struct s2io_nic *sp = netdev_priv(dev);
4969         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4970         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4971                 0xfeffffffffffULL;
4972         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4973         void __iomem *add;
4974         struct config_param *config = &sp->config;
4975
4976         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4977                 /*  Enable all Multicast addresses */
4978                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4979                        &bar0->rmac_addr_data0_mem);
4980                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4981                        &bar0->rmac_addr_data1_mem);
4982                 val64 = RMAC_ADDR_CMD_MEM_WE |
4983                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4984                         RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4985                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4986                 /* Wait till command completes */
4987                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4988                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4989                                       S2IO_BIT_RESET);
4990
4991                 sp->m_cast_flg = 1;
4992                 sp->all_multi_pos = config->max_mc_addr - 1;
4993         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4994                 /*  Disable all Multicast addresses */
4995                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4996                        &bar0->rmac_addr_data0_mem);
4997                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4998                        &bar0->rmac_addr_data1_mem);
4999                 val64 = RMAC_ADDR_CMD_MEM_WE |
5000                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5001                         RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
5002                 writeq(val64, &bar0->rmac_addr_cmd_mem);
5003                 /* Wait till command completes */
5004                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5005                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5006                                       S2IO_BIT_RESET);
5007
5008                 sp->m_cast_flg = 0;
5009                 sp->all_multi_pos = 0;
5010         }
5011
5012         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5013                 /*  Put the NIC into promiscuous mode */
5014                 add = &bar0->mac_cfg;
5015                 val64 = readq(&bar0->mac_cfg);
5016                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5017
5018                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5019                 writel((u32)val64, add);
5020                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5021                 writel((u32) (val64 >> 32), (add + 4));
5022
5023                 if (vlan_tag_strip != 1) {
5024                         val64 = readq(&bar0->rx_pa_cfg);
5025                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5026                         writeq(val64, &bar0->rx_pa_cfg);
5027                         sp->vlan_strip_flag = 0;
5028                 }
5029
5030                 val64 = readq(&bar0->mac_cfg);
5031                 sp->promisc_flg = 1;
5032                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5033                           dev->name);
5034         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5035                 /*  Remove the NIC from promiscuous mode */
5036                 add = &bar0->mac_cfg;
5037                 val64 = readq(&bar0->mac_cfg);
5038                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5039
5040                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5041                 writel((u32)val64, add);
5042                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5043                 writel((u32) (val64 >> 32), (add + 4));
5044
5045                 if (vlan_tag_strip != 0) {
5046                         val64 = readq(&bar0->rx_pa_cfg);
5047                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5048                         writeq(val64, &bar0->rx_pa_cfg);
5049                         sp->vlan_strip_flag = 1;
5050                 }
5051
5052                 val64 = readq(&bar0->mac_cfg);
5053                 sp->promisc_flg = 0;
5054                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5055         }
5056
5057         /*  Update individual M_CAST address list */
5058         if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5059                 if (netdev_mc_count(dev) >
5060                     (config->max_mc_addr - config->max_mac_addr)) {
5061                         DBG_PRINT(ERR_DBG,
5062                                   "%s: No more Rx filters can be added - "
5063                                   "please enable ALL_MULTI instead\n",
5064                                   dev->name);
5065                         return;
5066                 }
5067
5068                 prev_cnt = sp->mc_addr_count;
5069                 sp->mc_addr_count = netdev_mc_count(dev);
5070
5071                 /* Clear out the previous list of Mc in the H/W. */
5072                 for (i = 0; i < prev_cnt; i++) {
5073                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5074                                &bar0->rmac_addr_data0_mem);
5075                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5076                                &bar0->rmac_addr_data1_mem);
5077                         val64 = RMAC_ADDR_CMD_MEM_WE |
5078                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5079                                 RMAC_ADDR_CMD_MEM_OFFSET
5080                                 (config->mc_start_offset + i);
5081                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5082
5083                         /* Wait for command completes */
5084                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5085                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5086                                                   S2IO_BIT_RESET)) {
5087                                 DBG_PRINT(ERR_DBG,
5088                                           "%s: Adding Multicasts failed\n",
5089                                           dev->name);
5090                                 return;
5091                         }
5092                 }
5093
5094                 /* Create the new Rx filter list and update the same in H/W. */
5095                 i = 0;
5096                 netdev_for_each_mc_addr(mclist, dev) {
5097                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5098                                ETH_ALEN);
5099                         mac_addr = 0;
5100                         for (j = 0; j < ETH_ALEN; j++) {
5101                                 mac_addr |= mclist->dmi_addr[j];
5102                                 mac_addr <<= 8;
5103                         }
5104                         mac_addr >>= 8;
5105                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5106                                &bar0->rmac_addr_data0_mem);
5107                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5108                                &bar0->rmac_addr_data1_mem);
5109                         val64 = RMAC_ADDR_CMD_MEM_WE |
5110                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5111                                 RMAC_ADDR_CMD_MEM_OFFSET
5112                                 (i + config->mc_start_offset);
5113                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5114
5115                         /* Wait for command completes */
5116                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5117                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5118                                                   S2IO_BIT_RESET)) {
5119                                 DBG_PRINT(ERR_DBG,
5120                                           "%s: Adding Multicasts failed\n",
5121                                           dev->name);
5122                                 return;
5123                         }
5124                         i++;
5125                 }
5126         }
5127 }
5128
5129 /* read from CAM unicast & multicast addresses and store it in
5130  * def_mac_addr structure
5131  */
5132 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5133 {
5134         int offset;
5135         u64 mac_addr = 0x0;
5136         struct config_param *config = &sp->config;
5137
5138         /* store unicast & multicast mac addresses */
5139         for (offset = 0; offset < config->max_mc_addr; offset++) {
5140                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5141                 /* if read fails disable the entry */
5142                 if (mac_addr == FAILURE)
5143                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
5144                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5145         }
5146 }
5147
5148 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5149 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5150 {
5151         int offset;
5152         struct config_param *config = &sp->config;
5153         /* restore unicast mac address */
5154         for (offset = 0; offset < config->max_mac_addr; offset++)
5155                 do_s2io_prog_unicast(sp->dev,
5156                                      sp->def_mac_addr[offset].mac_addr);
5157
5158         /* restore multicast mac address */
5159         for (offset = config->mc_start_offset;
5160              offset < config->max_mc_addr; offset++)
5161                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5162 }
5163
5164 /* add a multicast MAC address to CAM */
5165 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5166 {
5167         int i;
5168         u64 mac_addr = 0;
5169         struct config_param *config = &sp->config;
5170
5171         for (i = 0; i < ETH_ALEN; i++) {
5172                 mac_addr <<= 8;
5173                 mac_addr |= addr[i];
5174         }
5175         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5176                 return SUCCESS;
5177
5178         /* check if the multicast mac already preset in CAM */
5179         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5180                 u64 tmp64;
5181                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5182                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5183                         break;
5184
5185                 if (tmp64 == mac_addr)
5186                         return SUCCESS;
5187         }
5188         if (i == config->max_mc_addr) {
5189                 DBG_PRINT(ERR_DBG,
5190                           "CAM full no space left for multicast MAC\n");
5191                 return FAILURE;
5192         }
5193         /* Update the internal structure with this new mac address */
5194         do_s2io_copy_mac_addr(sp, i, mac_addr);
5195
5196         return do_s2io_add_mac(sp, mac_addr, i);
5197 }
5198
5199 /* add MAC address to CAM */
5200 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5201 {
5202         u64 val64;
5203         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5204
5205         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5206                &bar0->rmac_addr_data0_mem);
5207
5208         val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5209                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5210         writeq(val64, &bar0->rmac_addr_cmd_mem);
5211
5212         /* Wait till command completes */
5213         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5214                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5215                                   S2IO_BIT_RESET)) {
5216                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5217                 return FAILURE;
5218         }
5219         return SUCCESS;
5220 }
5221 /* deletes a specified unicast/multicast mac entry from CAM */
5222 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5223 {
5224         int offset;
5225         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5226         struct config_param *config = &sp->config;
5227
5228         for (offset = 1;
5229              offset < config->max_mc_addr; offset++) {
5230                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5231                 if (tmp64 == addr) {
5232                         /* disable the entry by writing  0xffffffffffffULL */
5233                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5234                                 return FAILURE;
5235                         /* store the new mac list from CAM */
5236                         do_s2io_store_unicast_mc(sp);
5237                         return SUCCESS;
5238                 }
5239         }
5240         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5241                   (unsigned long long)addr);
5242         return FAILURE;
5243 }
5244
5245 /* read mac entries from CAM */
5246 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5247 {
5248         u64 tmp64 = 0xffffffffffff0000ULL, val64;
5249         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5250
5251         /* read mac addr */
5252         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5253                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5254         writeq(val64, &bar0->rmac_addr_cmd_mem);
5255
5256         /* Wait till command completes */
5257         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5258                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5259                                   S2IO_BIT_RESET)) {
5260                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5261                 return FAILURE;
5262         }
5263         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5264
5265         return tmp64 >> 16;
5266 }
5267
5268 /**
5269  * s2io_set_mac_addr driver entry point
5270  */
5271
5272 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5273 {
5274         struct sockaddr *addr = p;
5275
5276         if (!is_valid_ether_addr(addr->sa_data))
5277                 return -EINVAL;
5278
5279         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5280
5281         /* store the MAC address in CAM */
5282         return do_s2io_prog_unicast(dev, dev->dev_addr);
5283 }
5284 /**
5285  *  do_s2io_prog_unicast - Programs the Xframe mac address
5286  *  @dev : pointer to the device structure.
5287  *  @addr: a uchar pointer to the new mac address which is to be set.
5288  *  Description : This procedure will program the Xframe to receive
5289  *  frames with new Mac Address
5290  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5291  *  as defined in errno.h file on failure.
5292  */
5293
5294 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5295 {
5296         struct s2io_nic *sp = netdev_priv(dev);
5297         register u64 mac_addr = 0, perm_addr = 0;
5298         int i;
5299         u64 tmp64;
5300         struct config_param *config = &sp->config;
5301
5302         /*
5303          * Set the new MAC address as the new unicast filter and reflect this
5304          * change on the device address registered with the OS. It will be
5305          * at offset 0.
5306          */
5307         for (i = 0; i < ETH_ALEN; i++) {
5308                 mac_addr <<= 8;
5309                 mac_addr |= addr[i];
5310                 perm_addr <<= 8;
5311                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5312         }
5313
5314         /* check if the dev_addr is different than perm_addr */
5315         if (mac_addr == perm_addr)
5316                 return SUCCESS;
5317
5318         /* check if the mac already preset in CAM */
5319         for (i = 1; i < config->max_mac_addr; i++) {
5320                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5321                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5322                         break;
5323
5324                 if (tmp64 == mac_addr) {
5325                         DBG_PRINT(INFO_DBG,
5326                                   "MAC addr:0x%llx already present in CAM\n",
5327                                   (unsigned long long)mac_addr);
5328                         return SUCCESS;
5329                 }
5330         }
5331         if (i == config->max_mac_addr) {
5332                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5333                 return FAILURE;
5334         }
5335         /* Update the internal structure with this new mac address */
5336         do_s2io_copy_mac_addr(sp, i, mac_addr);
5337
5338         return do_s2io_add_mac(sp, mac_addr, i);
5339 }
5340
5341 /**
5342  * s2io_ethtool_sset - Sets different link parameters.
5343  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5344  * @info: pointer to the structure with parameters given by ethtool to set
5345  * link information.
5346  * Description:
5347  * The function sets different link parameters provided by the user onto
5348  * the NIC.
5349  * Return value:
5350  * 0 on success.
5351  */
5352
5353 static int s2io_ethtool_sset(struct net_device *dev,
5354                              struct ethtool_cmd *info)
5355 {
5356         struct s2io_nic *sp = netdev_priv(dev);
5357         if ((info->autoneg == AUTONEG_ENABLE) ||
5358             (info->speed != SPEED_10000) ||
5359             (info->duplex != DUPLEX_FULL))
5360                 return -EINVAL;
5361         else {
5362                 s2io_close(sp->dev);
5363                 s2io_open(sp->dev);
5364         }
5365
5366         return 0;
5367 }
5368
5369 /**
5370  * s2io_ethtol_gset - Return link specific information.
5371  * @sp : private member of the device structure, pointer to the
5372  *      s2io_nic structure.
5373  * @info : pointer to the structure with parameters given by ethtool
5374  * to return link information.
5375  * Description:
5376  * Returns link specific information like speed, duplex etc.. to ethtool.
5377  * Return value :
5378  * return 0 on success.
5379  */
5380
5381 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5382 {
5383         struct s2io_nic *sp = netdev_priv(dev);
5384         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5385         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5386         info->port = PORT_FIBRE;
5387
5388         /* info->transceiver */
5389         info->transceiver = XCVR_EXTERNAL;
5390
5391         if (netif_carrier_ok(sp->dev)) {
5392                 info->speed = 10000;
5393                 info->duplex = DUPLEX_FULL;
5394         } else {
5395                 info->speed = -1;
5396                 info->duplex = -1;
5397         }
5398
5399         info->autoneg = AUTONEG_DISABLE;
5400         return 0;
5401 }
5402
5403 /**
5404  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5405  * @sp : private member of the device structure, which is a pointer to the
5406  * s2io_nic structure.
5407  * @info : pointer to the structure with parameters given by ethtool to
5408  * return driver information.
5409  * Description:
5410  * Returns driver specefic information like name, version etc.. to ethtool.
5411  * Return value:
5412  *  void
5413  */
5414
5415 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5416                                   struct ethtool_drvinfo *info)
5417 {
5418         struct s2io_nic *sp = netdev_priv(dev);
5419
5420         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5421         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5422         strncpy(info->fw_version, "", sizeof(info->fw_version));
5423         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5424         info->regdump_len = XENA_REG_SPACE;
5425         info->eedump_len = XENA_EEPROM_SPACE;
5426 }
5427
5428 /**
5429  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5430  *  @sp: private member of the device structure, which is a pointer to the
5431  *  s2io_nic structure.
5432  *  @regs : pointer to the structure with parameters given by ethtool for
5433  *  dumping the registers.
5434  *  @reg_space: The input argumnet into which all the registers are dumped.
5435  *  Description:
5436  *  Dumps the entire register space of xFrame NIC into the user given
5437  *  buffer area.
5438  * Return value :
5439  * void .
5440  */
5441
5442 static void s2io_ethtool_gregs(struct net_device *dev,
5443                                struct ethtool_regs *regs, void *space)
5444 {
5445         int i;
5446         u64 reg;
5447         u8 *reg_space = (u8 *)space;
5448         struct s2io_nic *sp = netdev_priv(dev);
5449
5450         regs->len = XENA_REG_SPACE;
5451         regs->version = sp->pdev->subsystem_device;
5452
5453         for (i = 0; i < regs->len; i += 8) {
5454                 reg = readq(sp->bar0 + i);
5455                 memcpy((reg_space + i), &reg, 8);
5456         }
5457 }
5458
5459 /**
5460  *  s2io_phy_id  - timer function that alternates adapter LED.
5461  *  @data : address of the private member of the device structure, which
5462  *  is a pointer to the s2io_nic structure, provided as an u32.
5463  * Description: This is actually the timer function that alternates the
5464  * adapter LED bit of the adapter control bit to set/reset every time on
5465  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5466  *  once every second.
5467  */
5468 static void s2io_phy_id(unsigned long data)
5469 {
5470         struct s2io_nic *sp = (struct s2io_nic *)data;
5471         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5472         u64 val64 = 0;
5473         u16 subid;
5474
5475         subid = sp->pdev->subsystem_device;
5476         if ((sp->device_type == XFRAME_II_DEVICE) ||
5477             ((subid & 0xFF) >= 0x07)) {
5478                 val64 = readq(&bar0->gpio_control);
5479                 val64 ^= GPIO_CTRL_GPIO_0;
5480                 writeq(val64, &bar0->gpio_control);
5481         } else {
5482                 val64 = readq(&bar0->adapter_control);
5483                 val64 ^= ADAPTER_LED_ON;
5484                 writeq(val64, &bar0->adapter_control);
5485         }
5486
5487         mod_timer(&sp->id_timer, jiffies + HZ / 2);
5488 }
5489
5490 /**
5491  * s2io_ethtool_idnic - To physically identify the nic on the system.
5492  * @sp : private member of the device structure, which is a pointer to the
5493  * s2io_nic structure.
5494  * @id : pointer to the structure with identification parameters given by
5495  * ethtool.
5496  * Description: Used to physically identify the NIC on the system.
5497  * The Link LED will blink for a time specified by the user for
5498  * identification.
5499  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5500  * identification is possible only if it's link is up.
5501  * Return value:
5502  * int , returns 0 on success
5503  */
5504
5505 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5506 {
5507         u64 val64 = 0, last_gpio_ctrl_val;
5508         struct s2io_nic *sp = netdev_priv(dev);
5509         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5510         u16 subid;
5511
5512         subid = sp->pdev->subsystem_device;
5513         last_gpio_ctrl_val = readq(&bar0->gpio_control);
5514         if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5515                 val64 = readq(&bar0->adapter_control);
5516                 if (!(val64 & ADAPTER_CNTL_EN)) {
5517                         pr_err("Adapter Link down, cannot blink LED\n");
5518                         return -EFAULT;
5519                 }
5520         }
5521         if (sp->id_timer.function == NULL) {
5522                 init_timer(&sp->id_timer);
5523                 sp->id_timer.function = s2io_phy_id;
5524                 sp->id_timer.data = (unsigned long)sp;
5525         }
5526         mod_timer(&sp->id_timer, jiffies);
5527         if (data)
5528                 msleep_interruptible(data * HZ);
5529         else
5530                 msleep_interruptible(MAX_FLICKER_TIME);
5531         del_timer_sync(&sp->id_timer);
5532
5533         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5534                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5535                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5536         }
5537
5538         return 0;
5539 }
5540
5541 static void s2io_ethtool_gringparam(struct net_device *dev,
5542                                     struct ethtool_ringparam *ering)
5543 {
5544         struct s2io_nic *sp = netdev_priv(dev);
5545         int i, tx_desc_count = 0, rx_desc_count = 0;
5546
5547         if (sp->rxd_mode == RXD_MODE_1)
5548                 ering->rx_max_pending = MAX_RX_DESC_1;
5549         else if (sp->rxd_mode == RXD_MODE_3B)
5550                 ering->rx_max_pending = MAX_RX_DESC_2;
5551
5552         ering->tx_max_pending = MAX_TX_DESC;
5553         for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5554                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5555
5556         DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5557         ering->tx_pending = tx_desc_count;
5558         rx_desc_count = 0;
5559         for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5560                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5561
5562         ering->rx_pending = rx_desc_count;
5563
5564         ering->rx_mini_max_pending = 0;
5565         ering->rx_mini_pending = 0;
5566         if (sp->rxd_mode == RXD_MODE_1)
5567                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5568         else if (sp->rxd_mode == RXD_MODE_3B)
5569                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5570         ering->rx_jumbo_pending = rx_desc_count;
5571 }
5572
5573 /**
5574  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5575  * @sp : private member of the device structure, which is a pointer to the
5576  *      s2io_nic structure.
5577  * @ep : pointer to the structure with pause parameters given by ethtool.
5578  * Description:
5579  * Returns the Pause frame generation and reception capability of the NIC.
5580  * Return value:
5581  *  void
5582  */
5583 static void s2io_ethtool_getpause_data(struct net_device *dev,
5584                                        struct ethtool_pauseparam *ep)
5585 {
5586         u64 val64;
5587         struct s2io_nic *sp = netdev_priv(dev);
5588         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5589
5590         val64 = readq(&bar0->rmac_pause_cfg);
5591         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5592                 ep->tx_pause = true;
5593         if (val64 & RMAC_PAUSE_RX_ENABLE)
5594                 ep->rx_pause = true;
5595         ep->autoneg = false;
5596 }
5597
5598 /**
5599  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5600  * @sp : private member of the device structure, which is a pointer to the
5601  *      s2io_nic structure.
5602  * @ep : pointer to the structure with pause parameters given by ethtool.
5603  * Description:
5604  * It can be used to set or reset Pause frame generation or reception
5605  * support of the NIC.
5606  * Return value:
5607  * int, returns 0 on Success
5608  */
5609
5610 static int s2io_ethtool_setpause_data(struct net_device *dev,
5611                                       struct ethtool_pauseparam *ep)
5612 {
5613         u64 val64;
5614         struct s2io_nic *sp = netdev_priv(dev);
5615         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5616
5617         val64 = readq(&bar0->rmac_pause_cfg);
5618         if (ep->tx_pause)
5619                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5620         else
5621                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5622         if (ep->rx_pause)
5623                 val64 |= RMAC_PAUSE_RX_ENABLE;
5624         else
5625                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5626         writeq(val64, &bar0->rmac_pause_cfg);
5627         return 0;
5628 }
5629
5630 /**
5631  * read_eeprom - reads 4 bytes of data from user given offset.
5632  * @sp : private member of the device structure, which is a pointer to the
5633  *      s2io_nic structure.
5634  * @off : offset at which the data must be written
5635  * @data : Its an output parameter where the data read at the given
5636  *      offset is stored.
5637  * Description:
5638  * Will read 4 bytes of data from the user given offset and return the
5639  * read data.
5640  * NOTE: Will allow to read only part of the EEPROM visible through the
5641  *   I2C bus.
5642  * Return value:
5643  *  -1 on failure and 0 on success.
5644  */
5645
5646 #define S2IO_DEV_ID             5
5647 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5648 {
5649         int ret = -1;
5650         u32 exit_cnt = 0;
5651         u64 val64;
5652         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5653
5654         if (sp->device_type == XFRAME_I_DEVICE) {
5655                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5656                         I2C_CONTROL_ADDR(off) |
5657                         I2C_CONTROL_BYTE_CNT(0x3) |
5658                         I2C_CONTROL_READ |
5659                         I2C_CONTROL_CNTL_START;
5660                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5661
5662                 while (exit_cnt < 5) {
5663                         val64 = readq(&bar0->i2c_control);
5664                         if (I2C_CONTROL_CNTL_END(val64)) {
5665                                 *data = I2C_CONTROL_GET_DATA(val64);
5666                                 ret = 0;
5667                                 break;
5668                         }
5669                         msleep(50);
5670                         exit_cnt++;
5671                 }
5672         }
5673
5674         if (sp->device_type == XFRAME_II_DEVICE) {
5675                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5676                         SPI_CONTROL_BYTECNT(0x3) |
5677                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5678                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5679                 val64 |= SPI_CONTROL_REQ;
5680                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5681                 while (exit_cnt < 5) {
5682                         val64 = readq(&bar0->spi_control);
5683                         if (val64 & SPI_CONTROL_NACK) {
5684                                 ret = 1;
5685                                 break;
5686                         } else if (val64 & SPI_CONTROL_DONE) {
5687                                 *data = readq(&bar0->spi_data);
5688                                 *data &= 0xffffff;
5689                                 ret = 0;
5690                                 break;
5691                         }
5692                         msleep(50);
5693                         exit_cnt++;
5694                 }
5695         }
5696         return ret;
5697 }
5698
5699 /**
5700  *  write_eeprom - actually writes the relevant part of the data value.
5701  *  @sp : private member of the device structure, which is a pointer to the
5702  *       s2io_nic structure.
5703  *  @off : offset at which the data must be written
5704  *  @data : The data that is to be written
5705  *  @cnt : Number of bytes of the data that are actually to be written into
5706  *  the Eeprom. (max of 3)
5707  * Description:
5708  *  Actually writes the relevant part of the data value into the Eeprom
5709  *  through the I2C bus.
5710  * Return value:
5711  *  0 on success, -1 on failure.
5712  */
5713
5714 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5715 {
5716         int exit_cnt = 0, ret = -1;
5717         u64 val64;
5718         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5719
5720         if (sp->device_type == XFRAME_I_DEVICE) {
5721                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5722                         I2C_CONTROL_ADDR(off) |
5723                         I2C_CONTROL_BYTE_CNT(cnt) |
5724                         I2C_CONTROL_SET_DATA((u32)data) |
5725                         I2C_CONTROL_CNTL_START;
5726                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5727
5728                 while (exit_cnt < 5) {
5729                         val64 = readq(&bar0->i2c_control);
5730                         if (I2C_CONTROL_CNTL_END(val64)) {
5731                                 if (!(val64 & I2C_CONTROL_NACK))
5732                                         ret = 0;
5733                                 break;
5734                         }
5735                         msleep(50);
5736                         exit_cnt++;
5737                 }
5738         }
5739
5740         if (sp->device_type == XFRAME_II_DEVICE) {
5741                 int write_cnt = (cnt == 8) ? 0 : cnt;
5742                 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5743
5744                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5745                         SPI_CONTROL_BYTECNT(write_cnt) |
5746                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5747                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5748                 val64 |= SPI_CONTROL_REQ;
5749                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5750                 while (exit_cnt < 5) {
5751                         val64 = readq(&bar0->spi_control);
5752                         if (val64 & SPI_CONTROL_NACK) {
5753                                 ret = 1;
5754                                 break;
5755                         } else if (val64 & SPI_CONTROL_DONE) {
5756                                 ret = 0;
5757                                 break;
5758                         }
5759                         msleep(50);
5760                         exit_cnt++;
5761                 }
5762         }
5763         return ret;
5764 }
5765 static void s2io_vpd_read(struct s2io_nic *nic)
5766 {
5767         u8 *vpd_data;
5768         u8 data;
5769         int i = 0, cnt, fail = 0;
5770         int vpd_addr = 0x80;
5771         struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5772
5773         if (nic->device_type == XFRAME_II_DEVICE) {
5774                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5775                 vpd_addr = 0x80;
5776         } else {
5777                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5778                 vpd_addr = 0x50;
5779         }
5780         strcpy(nic->serial_num, "NOT AVAILABLE");
5781
5782         vpd_data = kmalloc(256, GFP_KERNEL);
5783         if (!vpd_data) {
5784                 swstats->mem_alloc_fail_cnt++;
5785                 return;
5786         }
5787         swstats->mem_allocated += 256;
5788
5789         for (i = 0; i < 256; i += 4) {
5790                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5791                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5792                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5793                 for (cnt = 0; cnt < 5; cnt++) {
5794                         msleep(2);
5795                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5796                         if (data == 0x80)
5797                                 break;
5798                 }
5799                 if (cnt >= 5) {
5800                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5801                         fail = 1;
5802                         break;
5803                 }
5804                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5805                                       (u32 *)&vpd_data[i]);
5806         }
5807
5808         if (!fail) {
5809                 /* read serial number of adapter */
5810                 for (cnt = 0; cnt < 256; cnt++) {
5811                         if ((vpd_data[cnt] == 'S') &&
5812                             (vpd_data[cnt+1] == 'N') &&
5813                             (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5814                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5815                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5816                                        vpd_data[cnt+2]);
5817                                 break;
5818                         }
5819                 }
5820         }
5821
5822         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN))
5823                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5824         kfree(vpd_data);
5825         swstats->mem_freed += 256;
5826 }
5827
5828 /**
5829  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5830  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5831  *  @eeprom : pointer to the user level structure provided by ethtool,
5832  *  containing all relevant information.
5833  *  @data_buf : user defined value to be written into Eeprom.
5834  *  Description: Reads the values stored in the Eeprom at given offset
5835  *  for a given length. Stores these values int the input argument data
5836  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5837  *  Return value:
5838  *  int  0 on success
5839  */
5840
5841 static int s2io_ethtool_geeprom(struct net_device *dev,
5842                                 struct ethtool_eeprom *eeprom, u8 * data_buf)
5843 {
5844         u32 i, valid;
5845         u64 data;
5846         struct s2io_nic *sp = netdev_priv(dev);
5847
5848         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5849
5850         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5851                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5852
5853         for (i = 0; i < eeprom->len; i += 4) {
5854                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5855                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5856                         return -EFAULT;
5857                 }
5858                 valid = INV(data);
5859                 memcpy((data_buf + i), &valid, 4);
5860         }
5861         return 0;
5862 }
5863
5864 /**
5865  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5866  *  @sp : private member of the device structure, which is a pointer to the
5867  *  s2io_nic structure.
5868  *  @eeprom : pointer to the user level structure provided by ethtool,
5869  *  containing all relevant information.
5870  *  @data_buf ; user defined value to be written into Eeprom.
5871  *  Description:
5872  *  Tries to write the user provided value in the Eeprom, at the offset
5873  *  given by the user.
5874  *  Return value:
5875  *  0 on success, -EFAULT on failure.
5876  */
5877
5878 static int s2io_ethtool_seeprom(struct net_device *dev,
5879                                 struct ethtool_eeprom *eeprom,
5880                                 u8 *data_buf)
5881 {
5882         int len = eeprom->len, cnt = 0;
5883         u64 valid = 0, data;
5884         struct s2io_nic *sp = netdev_priv(dev);
5885
5886         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5887                 DBG_PRINT(ERR_DBG,
5888                           "ETHTOOL_WRITE_EEPROM Err: "
5889                           "Magic value is wrong, it is 0x%x should be 0x%x\n",
5890                           (sp->pdev->vendor | (sp->pdev->device << 16)),
5891                           eeprom->magic);
5892                 return -EFAULT;
5893         }
5894
5895         while (len) {
5896                 data = (u32)data_buf[cnt] & 0x000000FF;
5897                 if (data)
5898                         valid = (u32)(data << 24);
5899                 else
5900                         valid = data;
5901
5902                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5903                         DBG_PRINT(ERR_DBG,
5904                                   "ETHTOOL_WRITE_EEPROM Err: "
5905                                   "Cannot write into the specified offset\n");
5906                         return -EFAULT;
5907                 }
5908                 cnt++;
5909                 len--;
5910         }
5911
5912         return 0;
5913 }
5914
5915 /**
5916  * s2io_register_test - reads and writes into all clock domains.
5917  * @sp : private member of the device structure, which is a pointer to the
5918  * s2io_nic structure.
5919  * @data : variable that returns the result of each of the test conducted b
5920  * by the driver.
5921  * Description:
5922  * Read and write into all clock domains. The NIC has 3 clock domains,
5923  * see that registers in all the three regions are accessible.
5924  * Return value:
5925  * 0 on success.
5926  */
5927
5928 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5929 {
5930         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5931         u64 val64 = 0, exp_val;
5932         int fail = 0;
5933
5934         val64 = readq(&bar0->pif_rd_swapper_fb);
5935         if (val64 != 0x123456789abcdefULL) {
5936                 fail = 1;
5937                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5938         }
5939
5940         val64 = readq(&bar0->rmac_pause_cfg);
5941         if (val64 != 0xc000ffff00000000ULL) {
5942                 fail = 1;
5943                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5944         }
5945
5946         val64 = readq(&bar0->rx_queue_cfg);
5947         if (sp->device_type == XFRAME_II_DEVICE)
5948                 exp_val = 0x0404040404040404ULL;
5949         else
5950                 exp_val = 0x0808080808080808ULL;
5951         if (val64 != exp_val) {
5952                 fail = 1;
5953                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5954         }
5955
5956         val64 = readq(&bar0->xgxs_efifo_cfg);
5957         if (val64 != 0x000000001923141EULL) {
5958                 fail = 1;
5959                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5960         }
5961
5962         val64 = 0x5A5A5A5A5A5A5A5AULL;
5963         writeq(val64, &bar0->xmsi_data);
5964         val64 = readq(&bar0->xmsi_data);
5965         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5966                 fail = 1;
5967                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5968         }
5969
5970         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5971         writeq(val64, &bar0->xmsi_data);
5972         val64 = readq(&bar0->xmsi_data);
5973         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5974                 fail = 1;
5975                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5976         }
5977
5978         *data = fail;
5979         return fail;
5980 }
5981
5982 /**
5983  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5984  * @sp : private member of the device structure, which is a pointer to the
5985  * s2io_nic structure.
5986  * @data:variable that returns the result of each of the test conducted by
5987  * the driver.
5988  * Description:
5989  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5990  * register.
5991  * Return value:
5992  * 0 on success.
5993  */
5994
5995 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5996 {
5997         int fail = 0;
5998         u64 ret_data, org_4F0, org_7F0;
5999         u8 saved_4F0 = 0, saved_7F0 = 0;
6000         struct net_device *dev = sp->dev;
6001
6002         /* Test Write Error at offset 0 */
6003         /* Note that SPI interface allows write access to all areas
6004          * of EEPROM. Hence doing all negative testing only for Xframe I.
6005          */
6006         if (sp->device_type == XFRAME_I_DEVICE)
6007                 if (!write_eeprom(sp, 0, 0, 3))
6008                         fail = 1;
6009
6010         /* Save current values at offsets 0x4F0 and 0x7F0 */
6011         if (!read_eeprom(sp, 0x4F0, &org_4F0))
6012                 saved_4F0 = 1;
6013         if (!read_eeprom(sp, 0x7F0, &org_7F0))
6014                 saved_7F0 = 1;
6015
6016         /* Test Write at offset 4f0 */
6017         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6018                 fail = 1;
6019         if (read_eeprom(sp, 0x4F0, &ret_data))
6020                 fail = 1;
6021
6022         if (ret_data != 0x012345) {
6023                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6024                           "Data written %llx Data read %llx\n",
6025                           dev->name, (unsigned long long)0x12345,
6026                           (unsigned long long)ret_data);
6027                 fail = 1;
6028         }
6029
6030         /* Reset the EEPROM data go FFFF */
6031         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6032
6033         /* Test Write Request Error at offset 0x7c */
6034         if (sp->device_type == XFRAME_I_DEVICE)
6035                 if (!write_eeprom(sp, 0x07C, 0, 3))
6036                         fail = 1;
6037
6038         /* Test Write Request at offset 0x7f0 */
6039         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6040                 fail = 1;
6041         if (read_eeprom(sp, 0x7F0, &ret_data))
6042                 fail = 1;
6043
6044         if (ret_data != 0x012345) {
6045                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6046                           "Data written %llx Data read %llx\n",
6047                           dev->name, (unsigned long long)0x12345,
6048                           (unsigned long long)ret_data);
6049                 fail = 1;
6050         }
6051
6052         /* Reset the EEPROM data go FFFF */
6053         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6054
6055         if (sp->device_type == XFRAME_I_DEVICE) {
6056                 /* Test Write Error at offset 0x80 */
6057                 if (!write_eeprom(sp, 0x080, 0, 3))
6058                         fail = 1;
6059
6060                 /* Test Write Error at offset 0xfc */
6061                 if (!write_eeprom(sp, 0x0FC, 0, 3))
6062                         fail = 1;
6063
6064                 /* Test Write Error at offset 0x100 */
6065                 if (!write_eeprom(sp, 0x100, 0, 3))
6066                         fail = 1;
6067
6068                 /* Test Write Error at offset 4ec */
6069                 if (!write_eeprom(sp, 0x4EC, 0, 3))
6070                         fail = 1;
6071         }
6072
6073         /* Restore values at offsets 0x4F0 and 0x7F0 */
6074         if (saved_4F0)
6075                 write_eeprom(sp, 0x4F0, org_4F0, 3);
6076         if (saved_7F0)
6077                 write_eeprom(sp, 0x7F0, org_7F0, 3);
6078
6079         *data = fail;
6080         return fail;
6081 }
6082
6083 /**
6084  * s2io_bist_test - invokes the MemBist test of the card .
6085  * @sp : private member of the device structure, which is a pointer to the
6086  * s2io_nic structure.
6087  * @data:variable that returns the result of each of the test conducted by
6088  * the driver.
6089  * Description:
6090  * This invokes the MemBist test of the card. We give around
6091  * 2 secs time for the Test to complete. If it's still not complete
6092  * within this peiod, we consider that the test failed.
6093  * Return value:
6094  * 0 on success and -1 on failure.
6095  */
6096
6097 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6098 {
6099         u8 bist = 0;
6100         int cnt = 0, ret = -1;
6101
6102         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6103         bist |= PCI_BIST_START;
6104         pci_write_config_word(sp->pdev, PCI_BIST, bist);
6105
6106         while (cnt < 20) {
6107                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6108                 if (!(bist & PCI_BIST_START)) {
6109                         *data = (bist & PCI_BIST_CODE_MASK);
6110                         ret = 0;
6111                         break;
6112                 }
6113                 msleep(100);
6114                 cnt++;
6115         }
6116
6117         return ret;
6118 }
6119
6120 /**
6121  * s2io-link_test - verifies the link state of the nic
6122  * @sp ; private member of the device structure, which is a pointer to the
6123  * s2io_nic structure.
6124  * @data: variable that returns the result of each of the test conducted by
6125  * the driver.
6126  * Description:
6127  * The function verifies the link state of the NIC and updates the input
6128  * argument 'data' appropriately.
6129  * Return value:
6130  * 0 on success.
6131  */
6132
6133 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6134 {
6135         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6136         u64 val64;
6137
6138         val64 = readq(&bar0->adapter_status);
6139         if (!(LINK_IS_UP(val64)))
6140                 *data = 1;
6141         else
6142                 *data = 0;
6143
6144         return *data;
6145 }
6146
6147 /**
6148  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6149  * @sp - private member of the device structure, which is a pointer to the
6150  * s2io_nic structure.
6151  * @data - variable that returns the result of each of the test
6152  * conducted by the driver.
6153  * Description:
6154  *  This is one of the offline test that tests the read and write
6155  *  access to the RldRam chip on the NIC.
6156  * Return value:
6157  *  0 on success.
6158  */
6159
6160 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6161 {
6162         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6163         u64 val64;
6164         int cnt, iteration = 0, test_fail = 0;
6165
6166         val64 = readq(&bar0->adapter_control);
6167         val64 &= ~ADAPTER_ECC_EN;
6168         writeq(val64, &bar0->adapter_control);
6169
6170         val64 = readq(&bar0->mc_rldram_test_ctrl);
6171         val64 |= MC_RLDRAM_TEST_MODE;
6172         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6173
6174         val64 = readq(&bar0->mc_rldram_mrs);
6175         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6176         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6177
6178         val64 |= MC_RLDRAM_MRS_ENABLE;
6179         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6180
6181         while (iteration < 2) {
6182                 val64 = 0x55555555aaaa0000ULL;
6183                 if (iteration == 1)
6184                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6185                 writeq(val64, &bar0->mc_rldram_test_d0);
6186
6187                 val64 = 0xaaaa5a5555550000ULL;
6188                 if (iteration == 1)
6189                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6190                 writeq(val64, &bar0->mc_rldram_test_d1);
6191
6192                 val64 = 0x55aaaaaaaa5a0000ULL;
6193                 if (iteration == 1)
6194                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6195                 writeq(val64, &bar0->mc_rldram_test_d2);
6196
6197                 val64 = (u64) (0x0000003ffffe0100ULL);
6198                 writeq(val64, &bar0->mc_rldram_test_add);
6199
6200                 val64 = MC_RLDRAM_TEST_MODE |
6201                         MC_RLDRAM_TEST_WRITE |
6202                         MC_RLDRAM_TEST_GO;
6203                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6204
6205                 for (cnt = 0; cnt < 5; cnt++) {
6206                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6207                         if (val64 & MC_RLDRAM_TEST_DONE)
6208                                 break;
6209                         msleep(200);
6210                 }
6211
6212                 if (cnt == 5)
6213                         break;
6214
6215                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6216                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6217
6218                 for (cnt = 0; cnt < 5; cnt++) {
6219                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6220                         if (val64 & MC_RLDRAM_TEST_DONE)
6221                                 break;
6222                         msleep(500);
6223                 }
6224
6225                 if (cnt == 5)
6226                         break;
6227
6228                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6229                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6230                         test_fail = 1;
6231
6232                 iteration++;
6233         }
6234
6235         *data = test_fail;
6236
6237         /* Bring the adapter out of test mode */
6238         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6239
6240         return test_fail;
6241 }
6242
6243 /**
6244  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6245  *  @sp : private member of the device structure, which is a pointer to the
6246  *  s2io_nic structure.
6247  *  @ethtest : pointer to a ethtool command specific structure that will be
6248  *  returned to the user.
6249  *  @data : variable that returns the result of each of the test
6250  * conducted by the driver.
6251  * Description:
6252  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6253  *  the health of the card.
6254  * Return value:
6255  *  void
6256  */
6257
6258 static void s2io_ethtool_test(struct net_device *dev,
6259                               struct ethtool_test *ethtest,
6260                               uint64_t *data)
6261 {
6262         struct s2io_nic *sp = netdev_priv(dev);
6263         int orig_state = netif_running(sp->dev);
6264
6265         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6266                 /* Offline Tests. */
6267                 if (orig_state)
6268                         s2io_close(sp->dev);
6269
6270                 if (s2io_register_test(sp, &data[0]))
6271                         ethtest->flags |= ETH_TEST_FL_FAILED;
6272
6273                 s2io_reset(sp);
6274
6275                 if (s2io_rldram_test(sp, &data[3]))
6276                         ethtest->flags |= ETH_TEST_FL_FAILED;
6277
6278                 s2io_reset(sp);
6279
6280                 if (s2io_eeprom_test(sp, &data[1]))
6281                         ethtest->flags |= ETH_TEST_FL_FAILED;
6282
6283                 if (s2io_bist_test(sp, &data[4]))
6284                         ethtest->flags |= ETH_TEST_FL_FAILED;
6285
6286                 if (orig_state)
6287                         s2io_open(sp->dev);
6288
6289                 data[2] = 0;
6290         } else {
6291                 /* Online Tests. */
6292                 if (!orig_state) {
6293                         DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6294                                   dev->name);
6295                         data[0] = -1;
6296                         data[1] = -1;
6297                         data[2] = -1;
6298                         data[3] = -1;
6299                         data[4] = -1;
6300                 }
6301
6302                 if (s2io_link_test(sp, &data[2]))
6303                         ethtest->flags |= ETH_TEST_FL_FAILED;
6304
6305                 data[0] = 0;
6306                 data[1] = 0;
6307                 data[3] = 0;
6308                 data[4] = 0;
6309         }
6310 }
6311
6312 static void s2io_get_ethtool_stats(struct net_device *dev,
6313                                    struct ethtool_stats *estats,
6314                                    u64 *tmp_stats)
6315 {
6316         int i = 0, k;
6317         struct s2io_nic *sp = netdev_priv(dev);
6318         struct stat_block *stats = sp->mac_control.stats_info;
6319         struct swStat *swstats = &stats->sw_stat;
6320         struct xpakStat *xstats = &stats->xpak_stat;
6321
6322         s2io_updt_stats(sp);
6323         tmp_stats[i++] =
6324                 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6325                 le32_to_cpu(stats->tmac_frms);
6326         tmp_stats[i++] =
6327                 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6328                 le32_to_cpu(stats->tmac_data_octets);
6329         tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6330         tmp_stats[i++] =
6331                 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6332                 le32_to_cpu(stats->tmac_mcst_frms);
6333         tmp_stats[i++] =
6334                 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6335                 le32_to_cpu(stats->tmac_bcst_frms);
6336         tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6337         tmp_stats[i++] =
6338                 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6339                 le32_to_cpu(stats->tmac_ttl_octets);
6340         tmp_stats[i++] =
6341                 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6342                 le32_to_cpu(stats->tmac_ucst_frms);
6343         tmp_stats[i++] =
6344                 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6345                 le32_to_cpu(stats->tmac_nucst_frms);
6346         tmp_stats[i++] =
6347                 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6348                 le32_to_cpu(stats->tmac_any_err_frms);
6349         tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6350         tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6351         tmp_stats[i++] =
6352                 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6353                 le32_to_cpu(stats->tmac_vld_ip);
6354         tmp_stats[i++] =
6355                 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6356                 le32_to_cpu(stats->tmac_drop_ip);
6357         tmp_stats[i++] =
6358                 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6359                 le32_to_cpu(stats->tmac_icmp);
6360         tmp_stats[i++] =
6361                 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6362                 le32_to_cpu(stats->tmac_rst_tcp);
6363         tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6364         tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6365                 le32_to_cpu(stats->tmac_udp);
6366         tmp_stats[i++] =
6367                 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6368                 le32_to_cpu(stats->rmac_vld_frms);
6369         tmp_stats[i++] =
6370                 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6371                 le32_to_cpu(stats->rmac_data_octets);
6372         tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6373         tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6374         tmp_stats[i++] =
6375                 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6376                 le32_to_cpu(stats->rmac_vld_mcst_frms);
6377         tmp_stats[i++] =
6378                 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6379                 le32_to_cpu(stats->rmac_vld_bcst_frms);
6380         tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6381         tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6382         tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6383         tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6384         tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6385         tmp_stats[i++] =
6386                 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6387                 le32_to_cpu(stats->rmac_ttl_octets);
6388         tmp_stats[i++] =
6389                 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6390                 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6391         tmp_stats[i++] =
6392                 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6393                 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6394         tmp_stats[i++] =
6395                 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6396                 le32_to_cpu(stats->rmac_discarded_frms);
6397         tmp_stats[i++] =
6398                 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6399                 << 32 | le32_to_cpu(stats->rmac_drop_events);
6400         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6401         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6402         tmp_stats[i++] =
6403                 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6404                 le32_to_cpu(stats->rmac_usized_frms);
6405         tmp_stats[i++] =
6406                 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6407                 le32_to_cpu(stats->rmac_osized_frms);
6408         tmp_stats[i++] =
6409                 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6410                 le32_to_cpu(stats->rmac_frag_frms);
6411         tmp_stats[i++] =
6412                 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6413                 le32_to_cpu(stats->rmac_jabber_frms);
6414         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6415         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6416         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6417         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6418         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6419         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6420         tmp_stats[i++] =
6421                 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6422                 le32_to_cpu(stats->rmac_ip);
6423         tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6424         tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6425         tmp_stats[i++] =
6426                 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6427                 le32_to_cpu(stats->rmac_drop_ip);
6428         tmp_stats[i++] =
6429                 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6430                 le32_to_cpu(stats->rmac_icmp);
6431         tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6432         tmp_stats[i++] =
6433                 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6434                 le32_to_cpu(stats->rmac_udp);
6435         tmp_stats[i++] =
6436                 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6437                 le32_to_cpu(stats->rmac_err_drp_udp);
6438         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6439         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6440         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6441         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6442         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6443         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6444         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6445         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6446         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6447         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6448         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6449         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6450         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6451         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6452         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6453         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6454         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6455         tmp_stats[i++] =
6456                 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6457                 le32_to_cpu(stats->rmac_pause_cnt);
6458         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6459         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6460         tmp_stats[i++] =
6461                 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6462                 le32_to_cpu(stats->rmac_accepted_ip);
6463         tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6464         tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6465         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6466         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6467         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6468         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6469         tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6470         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6471         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6472         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6473         tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6474         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6475         tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6476         tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6477         tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6478         tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6479         tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6480         tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6481         tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6482
6483         /* Enhanced statistics exist only for Hercules */
6484         if (sp->device_type == XFRAME_II_DEVICE) {
6485                 tmp_stats[i++] =
6486                         le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6487                 tmp_stats[i++] =
6488                         le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6489                 tmp_stats[i++] =
6490                         le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6491                 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6492                 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6493                 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6494                 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6495                 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6496                 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6497                 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6498                 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6499                 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6500                 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6501                 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6502                 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6503                 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6504         }
6505
6506         tmp_stats[i++] = 0;
6507         tmp_stats[i++] = swstats->single_ecc_errs;
6508         tmp_stats[i++] = swstats->double_ecc_errs;
6509         tmp_stats[i++] = swstats->parity_err_cnt;
6510         tmp_stats[i++] = swstats->serious_err_cnt;
6511         tmp_stats[i++] = swstats->soft_reset_cnt;
6512         tmp_stats[i++] = swstats->fifo_full_cnt;
6513         for (k = 0; k < MAX_RX_RINGS; k++)
6514                 tmp_stats[i++] = swstats->ring_full_cnt[k];
6515         tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6516         tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6517         tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6518         tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6519         tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6520         tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6521         tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6522         tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6523         tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6524         tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6525         tmp_stats[i++] = xstats->warn_laser_output_power_high;
6526         tmp_stats[i++] = xstats->warn_laser_output_power_low;
6527         tmp_stats[i++] = swstats->clubbed_frms_cnt;
6528         tmp_stats[i++] = swstats->sending_both;
6529         tmp_stats[i++] = swstats->outof_sequence_pkts;
6530         tmp_stats[i++] = swstats->flush_max_pkts;
6531         if (swstats->num_aggregations) {
6532                 u64 tmp = swstats->sum_avg_pkts_aggregated;
6533                 int count = 0;
6534                 /*
6535                  * Since 64-bit divide does not work on all platforms,
6536                  * do repeated subtraction.
6537                  */
6538                 while (tmp >= swstats->num_aggregations) {
6539                         tmp -= swstats->num_aggregations;
6540                         count++;
6541                 }
6542                 tmp_stats[i++] = count;
6543         } else
6544                 tmp_stats[i++] = 0;
6545         tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6546         tmp_stats[i++] = swstats->pci_map_fail_cnt;
6547         tmp_stats[i++] = swstats->watchdog_timer_cnt;
6548         tmp_stats[i++] = swstats->mem_allocated;
6549         tmp_stats[i++] = swstats->mem_freed;
6550         tmp_stats[i++] = swstats->link_up_cnt;
6551         tmp_stats[i++] = swstats->link_down_cnt;
6552         tmp_stats[i++] = swstats->link_up_time;
6553         tmp_stats[i++] = swstats->link_down_time;
6554
6555         tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6556         tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6557         tmp_stats[i++] = swstats->tx_parity_err_cnt;
6558         tmp_stats[i++] = swstats->tx_link_loss_cnt;
6559         tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6560
6561         tmp_stats[i++] = swstats->rx_parity_err_cnt;
6562         tmp_stats[i++] = swstats->rx_abort_cnt;
6563         tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6564         tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6565         tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6566         tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6567         tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6568         tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6569         tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6570         tmp_stats[i++] = swstats->tda_err_cnt;
6571         tmp_stats[i++] = swstats->pfc_err_cnt;
6572         tmp_stats[i++] = swstats->pcc_err_cnt;
6573         tmp_stats[i++] = swstats->tti_err_cnt;
6574         tmp_stats[i++] = swstats->tpa_err_cnt;
6575         tmp_stats[i++] = swstats->sm_err_cnt;
6576         tmp_stats[i++] = swstats->lso_err_cnt;
6577         tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6578         tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6579         tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6580         tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6581         tmp_stats[i++] = swstats->rc_err_cnt;
6582         tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6583         tmp_stats[i++] = swstats->rpa_err_cnt;
6584         tmp_stats[i++] = swstats->rda_err_cnt;
6585         tmp_stats[i++] = swstats->rti_err_cnt;
6586         tmp_stats[i++] = swstats->mc_err_cnt;
6587 }
6588
6589 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6590 {
6591         return XENA_REG_SPACE;
6592 }
6593
6594
6595 static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
6596 {
6597         struct s2io_nic *sp = netdev_priv(dev);
6598
6599         return sp->rx_csum;
6600 }
6601
6602 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6603 {
6604         struct s2io_nic *sp = netdev_priv(dev);
6605
6606         if (data)
6607                 sp->rx_csum = 1;
6608         else
6609                 sp->rx_csum = 0;
6610
6611         return 0;
6612 }
6613
6614 static int s2io_get_eeprom_len(struct net_device *dev)
6615 {
6616         return XENA_EEPROM_SPACE;
6617 }
6618
6619 static int s2io_get_sset_count(struct net_device *dev, int sset)
6620 {
6621         struct s2io_nic *sp = netdev_priv(dev);
6622
6623         switch (sset) {
6624         case ETH_SS_TEST:
6625                 return S2IO_TEST_LEN;
6626         case ETH_SS_STATS:
6627                 switch (sp->device_type) {
6628                 case XFRAME_I_DEVICE:
6629                         return XFRAME_I_STAT_LEN;
6630                 case XFRAME_II_DEVICE:
6631                         return XFRAME_II_STAT_LEN;
6632                 default:
6633                         return 0;
6634                 }
6635         default:
6636                 return -EOPNOTSUPP;
6637         }
6638 }
6639
6640 static void s2io_ethtool_get_strings(struct net_device *dev,
6641                                      u32 stringset, u8 *data)
6642 {
6643         int stat_size = 0;
6644         struct s2io_nic *sp = netdev_priv(dev);
6645
6646         switch (stringset) {
6647         case ETH_SS_TEST:
6648                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6649                 break;
6650         case ETH_SS_STATS:
6651                 stat_size = sizeof(ethtool_xena_stats_keys);
6652                 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6653                 if (sp->device_type == XFRAME_II_DEVICE) {
6654                         memcpy(data + stat_size,
6655                                &ethtool_enhanced_stats_keys,
6656                                sizeof(ethtool_enhanced_stats_keys));
6657                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6658                 }
6659
6660                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6661                        sizeof(ethtool_driver_stats_keys));
6662         }
6663 }
6664
6665 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6666 {
6667         if (data)
6668                 dev->features |= NETIF_F_IP_CSUM;
6669         else
6670                 dev->features &= ~NETIF_F_IP_CSUM;
6671
6672         return 0;
6673 }
6674
6675 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6676 {
6677         return (dev->features & NETIF_F_TSO) != 0;
6678 }
6679 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6680 {
6681         if (data)
6682                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6683         else
6684                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6685
6686         return 0;
6687 }
6688
6689 static const struct ethtool_ops netdev_ethtool_ops = {
6690         .get_settings = s2io_ethtool_gset,
6691         .set_settings = s2io_ethtool_sset,
6692         .get_drvinfo = s2io_ethtool_gdrvinfo,
6693         .get_regs_len = s2io_ethtool_get_regs_len,
6694         .get_regs = s2io_ethtool_gregs,
6695         .get_link = ethtool_op_get_link,
6696         .get_eeprom_len = s2io_get_eeprom_len,
6697         .get_eeprom = s2io_ethtool_geeprom,
6698         .set_eeprom = s2io_ethtool_seeprom,
6699         .get_ringparam = s2io_ethtool_gringparam,
6700         .get_pauseparam = s2io_ethtool_getpause_data,
6701         .set_pauseparam = s2io_ethtool_setpause_data,
6702         .get_rx_csum = s2io_ethtool_get_rx_csum,
6703         .set_rx_csum = s2io_ethtool_set_rx_csum,
6704         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6705         .set_sg = ethtool_op_set_sg,
6706         .get_tso = s2io_ethtool_op_get_tso,
6707         .set_tso = s2io_ethtool_op_set_tso,
6708         .set_ufo = ethtool_op_set_ufo,
6709         .self_test = s2io_ethtool_test,
6710         .get_strings = s2io_ethtool_get_strings,
6711         .phys_id = s2io_ethtool_idnic,
6712         .get_ethtool_stats = s2io_get_ethtool_stats,
6713         .get_sset_count = s2io_get_sset_count,
6714 };
6715
6716 /**
6717  *  s2io_ioctl - Entry point for the Ioctl
6718  *  @dev :  Device pointer.
6719  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6720  *  a proprietary structure used to pass information to the driver.
6721  *  @cmd :  This is used to distinguish between the different commands that
6722  *  can be passed to the IOCTL functions.
6723  *  Description:
6724  *  Currently there are no special functionality supported in IOCTL, hence
6725  *  function always return EOPNOTSUPPORTED
6726  */
6727
6728 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6729 {
6730         return -EOPNOTSUPP;
6731 }
6732
6733 /**
6734  *  s2io_change_mtu - entry point to change MTU size for the device.
6735  *   @dev : device pointer.
6736  *   @new_mtu : the new MTU size for the device.
6737  *   Description: A driver entry point to change MTU size for the device.
6738  *   Before changing the MTU the device must be stopped.
6739  *  Return value:
6740  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6741  *   file on failure.
6742  */
6743
6744 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6745 {
6746         struct s2io_nic *sp = netdev_priv(dev);
6747         int ret = 0;
6748
6749         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6750                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6751                 return -EPERM;
6752         }
6753
6754         dev->mtu = new_mtu;
6755         if (netif_running(dev)) {
6756                 s2io_stop_all_tx_queue(sp);
6757                 s2io_card_down(sp);
6758                 ret = s2io_card_up(sp);
6759                 if (ret) {
6760                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6761                                   __func__);
6762                         return ret;
6763                 }
6764                 s2io_wake_all_tx_queue(sp);
6765         } else { /* Device is down */
6766                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6767                 u64 val64 = new_mtu;
6768
6769                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6770         }
6771
6772         return ret;
6773 }
6774
6775 /**
6776  * s2io_set_link - Set the LInk status
6777  * @data: long pointer to device private structue
6778  * Description: Sets the link status for the adapter
6779  */
6780
6781 static void s2io_set_link(struct work_struct *work)
6782 {
6783         struct s2io_nic *nic = container_of(work, struct s2io_nic,
6784                                             set_link_task);
6785         struct net_device *dev = nic->dev;
6786         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6787         register u64 val64;
6788         u16 subid;
6789
6790         rtnl_lock();
6791
6792         if (!netif_running(dev))
6793                 goto out_unlock;
6794
6795         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6796                 /* The card is being reset, no point doing anything */
6797                 goto out_unlock;
6798         }
6799
6800         subid = nic->pdev->subsystem_device;
6801         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6802                 /*
6803                  * Allow a small delay for the NICs self initiated
6804                  * cleanup to complete.
6805                  */
6806                 msleep(100);
6807         }
6808
6809         val64 = readq(&bar0->adapter_status);
6810         if (LINK_IS_UP(val64)) {
6811                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6812                         if (verify_xena_quiescence(nic)) {
6813                                 val64 = readq(&bar0->adapter_control);
6814                                 val64 |= ADAPTER_CNTL_EN;
6815                                 writeq(val64, &bar0->adapter_control);
6816                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6817                                             nic->device_type, subid)) {
6818                                         val64 = readq(&bar0->gpio_control);
6819                                         val64 |= GPIO_CTRL_GPIO_0;
6820                                         writeq(val64, &bar0->gpio_control);
6821                                         val64 = readq(&bar0->gpio_control);
6822                                 } else {
6823                                         val64 |= ADAPTER_LED_ON;
6824                                         writeq(val64, &bar0->adapter_control);
6825                                 }
6826                                 nic->device_enabled_once = true;
6827                         } else {
6828                                 DBG_PRINT(ERR_DBG,
6829                                           "%s: Error: device is not Quiescent\n",
6830                                           dev->name);
6831                                 s2io_stop_all_tx_queue(nic);
6832                         }
6833                 }
6834                 val64 = readq(&bar0->adapter_control);
6835                 val64 |= ADAPTER_LED_ON;
6836                 writeq(val64, &bar0->adapter_control);
6837                 s2io_link(nic, LINK_UP);
6838         } else {
6839                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6840                                                       subid)) {
6841                         val64 = readq(&bar0->gpio_control);
6842                         val64 &= ~GPIO_CTRL_GPIO_0;
6843                         writeq(val64, &bar0->gpio_control);
6844                         val64 = readq(&bar0->gpio_control);
6845                 }
6846                 /* turn off LED */
6847                 val64 = readq(&bar0->adapter_control);
6848                 val64 = val64 & (~ADAPTER_LED_ON);
6849                 writeq(val64, &bar0->adapter_control);
6850                 s2io_link(nic, LINK_DOWN);
6851         }
6852         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6853
6854 out_unlock:
6855         rtnl_unlock();
6856 }
6857
6858 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6859                                   struct buffAdd *ba,
6860                                   struct sk_buff **skb, u64 *temp0, u64 *temp1,
6861                                   u64 *temp2, int size)
6862 {
6863         struct net_device *dev = sp->dev;
6864         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6865
6866         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6867                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6868                 /* allocate skb */
6869                 if (*skb) {
6870                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6871                         /*
6872                          * As Rx frame are not going to be processed,
6873                          * using same mapped address for the Rxd
6874                          * buffer pointer
6875                          */
6876                         rxdp1->Buffer0_ptr = *temp0;
6877                 } else {
6878                         *skb = dev_alloc_skb(size);
6879                         if (!(*skb)) {
6880                                 DBG_PRINT(INFO_DBG,
6881                                           "%s: Out of memory to allocate %s\n",
6882                                           dev->name, "1 buf mode SKBs");
6883                                 stats->mem_alloc_fail_cnt++;
6884                                 return -ENOMEM ;
6885                         }
6886                         stats->mem_allocated += (*skb)->truesize;
6887                         /* storing the mapped addr in a temp variable
6888                          * such it will be used for next rxd whose
6889                          * Host Control is NULL
6890                          */
6891                         rxdp1->Buffer0_ptr = *temp0 =
6892                                 pci_map_single(sp->pdev, (*skb)->data,
6893                                                size - NET_IP_ALIGN,
6894                                                PCI_DMA_FROMDEVICE);
6895                         if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6896                                 goto memalloc_failed;
6897                         rxdp->Host_Control = (unsigned long) (*skb);
6898                 }
6899         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6900                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6901                 /* Two buffer Mode */
6902                 if (*skb) {
6903                         rxdp3->Buffer2_ptr = *temp2;
6904                         rxdp3->Buffer0_ptr = *temp0;
6905                         rxdp3->Buffer1_ptr = *temp1;
6906                 } else {
6907                         *skb = dev_alloc_skb(size);
6908                         if (!(*skb)) {
6909                                 DBG_PRINT(INFO_DBG,
6910                                           "%s: Out of memory to allocate %s\n",
6911                                           dev->name,
6912                                           "2 buf mode SKBs");
6913                                 stats->mem_alloc_fail_cnt++;
6914                                 return -ENOMEM;
6915                         }
6916                         stats->mem_allocated += (*skb)->truesize;
6917                         rxdp3->Buffer2_ptr = *temp2 =
6918                                 pci_map_single(sp->pdev, (*skb)->data,
6919                                                dev->mtu + 4,
6920                                                PCI_DMA_FROMDEVICE);
6921                         if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6922                                 goto memalloc_failed;
6923                         rxdp3->Buffer0_ptr = *temp0 =
6924                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6925                                                PCI_DMA_FROMDEVICE);
6926                         if (pci_dma_mapping_error(sp->pdev,
6927                                                   rxdp3->Buffer0_ptr)) {
6928                                 pci_unmap_single(sp->pdev,
6929                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6930                                                  dev->mtu + 4,
6931                                                  PCI_DMA_FROMDEVICE);
6932                                 goto memalloc_failed;
6933                         }
6934                         rxdp->Host_Control = (unsigned long) (*skb);
6935
6936                         /* Buffer-1 will be dummy buffer not used */
6937                         rxdp3->Buffer1_ptr = *temp1 =
6938                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6939                                                PCI_DMA_FROMDEVICE);
6940                         if (pci_dma_mapping_error(sp->pdev,
6941                                                   rxdp3->Buffer1_ptr)) {
6942                                 pci_unmap_single(sp->pdev,
6943                                                  (dma_addr_t)rxdp3->Buffer0_ptr,
6944                                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
6945                                 pci_unmap_single(sp->pdev,
6946                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6947                                                  dev->mtu + 4,
6948                                                  PCI_DMA_FROMDEVICE);
6949                                 goto memalloc_failed;
6950                         }
6951                 }
6952         }
6953         return 0;
6954
6955 memalloc_failed:
6956         stats->pci_map_fail_cnt++;
6957         stats->mem_freed += (*skb)->truesize;
6958         dev_kfree_skb(*skb);
6959         return -ENOMEM;
6960 }
6961
6962 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6963                                 int size)
6964 {
6965         struct net_device *dev = sp->dev;
6966         if (sp->rxd_mode == RXD_MODE_1) {
6967                 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6968         } else if (sp->rxd_mode == RXD_MODE_3B) {
6969                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6970                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6971                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6972         }
6973 }
6974
6975 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6976 {
6977         int i, j, k, blk_cnt = 0, size;
6978         struct config_param *config = &sp->config;
6979         struct mac_info *mac_control = &sp->mac_control;
6980         struct net_device *dev = sp->dev;
6981         struct RxD_t *rxdp = NULL;
6982         struct sk_buff *skb = NULL;
6983         struct buffAdd *ba = NULL;
6984         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6985
6986         /* Calculate the size based on ring mode */
6987         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6988                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6989         if (sp->rxd_mode == RXD_MODE_1)
6990                 size += NET_IP_ALIGN;
6991         else if (sp->rxd_mode == RXD_MODE_3B)
6992                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6993
6994         for (i = 0; i < config->rx_ring_num; i++) {
6995                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6996                 struct ring_info *ring = &mac_control->rings[i];
6997
6998                 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6999
7000                 for (j = 0; j < blk_cnt; j++) {
7001                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7002                                 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7003                                 if (sp->rxd_mode == RXD_MODE_3B)
7004                                         ba = &ring->ba[j][k];
7005                                 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7006                                                            (u64 *)&temp0_64,
7007                                                            (u64 *)&temp1_64,
7008                                                            (u64 *)&temp2_64,
7009                                                            size) == -ENOMEM) {
7010                                         return 0;
7011                                 }
7012
7013                                 set_rxd_buffer_size(sp, rxdp, size);
7014                                 wmb();
7015                                 /* flip the Ownership bit to Hardware */
7016                                 rxdp->Control_1 |= RXD_OWN_XENA;
7017                         }
7018                 }
7019         }
7020         return 0;
7021
7022 }
7023
7024 static int s2io_add_isr(struct s2io_nic *sp)
7025 {
7026         int ret = 0;
7027         struct net_device *dev = sp->dev;
7028         int err = 0;
7029
7030         if (sp->config.intr_type == MSI_X)
7031                 ret = s2io_enable_msi_x(sp);
7032         if (ret) {
7033                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7034                 sp->config.intr_type = INTA;
7035         }
7036
7037         /*
7038          * Store the values of the MSIX table in
7039          * the struct s2io_nic structure
7040          */
7041         store_xmsi_data(sp);
7042
7043         /* After proper initialization of H/W, register ISR */
7044         if (sp->config.intr_type == MSI_X) {
7045                 int i, msix_rx_cnt = 0;
7046
7047                 for (i = 0; i < sp->num_entries; i++) {
7048                         if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7049                                 if (sp->s2io_entries[i].type ==
7050                                     MSIX_RING_TYPE) {
7051                                         sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7052                                                 dev->name, i);
7053                                         err = request_irq(sp->entries[i].vector,
7054                                                           s2io_msix_ring_handle,
7055                                                           0,
7056                                                           sp->desc[i],
7057                                                           sp->s2io_entries[i].arg);
7058                                 } else if (sp->s2io_entries[i].type ==
7059                                            MSIX_ALARM_TYPE) {
7060                                         sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7061                                                 dev->name, i);
7062                                         err = request_irq(sp->entries[i].vector,
7063                                                           s2io_msix_fifo_handle,
7064                                                           0,
7065                                                           sp->desc[i],
7066                                                           sp->s2io_entries[i].arg);
7067
7068                                 }
7069                                 /* if either data or addr is zero print it. */
7070                                 if (!(sp->msix_info[i].addr &&
7071                                       sp->msix_info[i].data)) {
7072                                         DBG_PRINT(ERR_DBG,
7073                                                   "%s @Addr:0x%llx Data:0x%llx\n",
7074                                                   sp->desc[i],
7075                                                   (unsigned long long)
7076                                                   sp->msix_info[i].addr,
7077                                                   (unsigned long long)
7078                                                   ntohl(sp->msix_info[i].data));
7079                                 } else
7080                                         msix_rx_cnt++;
7081                                 if (err) {
7082                                         remove_msix_isr(sp);
7083
7084                                         DBG_PRINT(ERR_DBG,
7085                                                   "%s:MSI-X-%d registration "
7086                                                   "failed\n", dev->name, i);
7087
7088                                         DBG_PRINT(ERR_DBG,
7089                                                   "%s: Defaulting to INTA\n",
7090                                                   dev->name);
7091                                         sp->config.intr_type = INTA;
7092                                         break;
7093                                 }
7094                                 sp->s2io_entries[i].in_use =
7095                                         MSIX_REGISTERED_SUCCESS;
7096                         }
7097                 }
7098                 if (!err) {
7099                         pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7100                         DBG_PRINT(INFO_DBG,
7101                                   "MSI-X-TX entries enabled through alarm vector\n");
7102                 }
7103         }
7104         if (sp->config.intr_type == INTA) {
7105                 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7106                                   sp->name, dev);
7107                 if (err) {
7108                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7109                                   dev->name);
7110                         return -1;
7111                 }
7112         }
7113         return 0;
7114 }
7115
7116 static void s2io_rem_isr(struct s2io_nic *sp)
7117 {
7118         if (sp->config.intr_type == MSI_X)
7119                 remove_msix_isr(sp);
7120         else
7121                 remove_inta_isr(sp);
7122 }
7123
7124 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7125 {
7126         int cnt = 0;
7127         struct XENA_dev_config __iomem *bar0 = sp->bar0;
7128         register u64 val64 = 0;
7129         struct config_param *config;
7130         config = &sp->config;
7131
7132         if (!is_s2io_card_up(sp))
7133                 return;
7134
7135         del_timer_sync(&sp->alarm_timer);
7136         /* If s2io_set_link task is executing, wait till it completes. */
7137         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7138                 msleep(50);
7139         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7140
7141         /* Disable napi */
7142         if (sp->config.napi) {
7143                 int off = 0;
7144                 if (config->intr_type ==  MSI_X) {
7145                         for (; off < sp->config.rx_ring_num; off++)
7146                                 napi_disable(&sp->mac_control.rings[off].napi);
7147                 }
7148                 else
7149                         napi_disable(&sp->napi);
7150         }
7151
7152         /* disable Tx and Rx traffic on the NIC */
7153         if (do_io)
7154                 stop_nic(sp);
7155
7156         s2io_rem_isr(sp);
7157
7158         /* stop the tx queue, indicate link down */
7159         s2io_link(sp, LINK_DOWN);
7160
7161         /* Check if the device is Quiescent and then Reset the NIC */
7162         while (do_io) {
7163                 /* As per the HW requirement we need to replenish the
7164                  * receive buffer to avoid the ring bump. Since there is
7165                  * no intention of processing the Rx frame at this pointwe are
7166                  * just settting the ownership bit of rxd in Each Rx
7167                  * ring to HW and set the appropriate buffer size
7168                  * based on the ring mode
7169                  */
7170                 rxd_owner_bit_reset(sp);
7171
7172                 val64 = readq(&bar0->adapter_status);
7173                 if (verify_xena_quiescence(sp)) {
7174                         if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7175                                 break;
7176                 }
7177
7178                 msleep(50);
7179                 cnt++;
7180                 if (cnt == 10) {
7181                         DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7182                                   "adapter status reads 0x%llx\n",
7183                                   (unsigned long long)val64);
7184                         break;
7185                 }
7186         }
7187         if (do_io)
7188                 s2io_reset(sp);
7189
7190         /* Free all Tx buffers */
7191         free_tx_buffers(sp);
7192
7193         /* Free all Rx buffers */
7194         free_rx_buffers(sp);
7195
7196         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7197 }
7198
7199 static void s2io_card_down(struct s2io_nic *sp)
7200 {
7201         do_s2io_card_down(sp, 1);
7202 }
7203
7204 static int s2io_card_up(struct s2io_nic *sp)
7205 {
7206         int i, ret = 0;
7207         struct config_param *config;
7208         struct mac_info *mac_control;
7209         struct net_device *dev = (struct net_device *)sp->dev;
7210         u16 interruptible;
7211
7212         /* Initialize the H/W I/O registers */
7213         ret = init_nic(sp);
7214         if (ret != 0) {
7215                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7216                           dev->name);
7217                 if (ret != -EIO)
7218                         s2io_reset(sp);
7219                 return ret;
7220         }
7221
7222         /*
7223          * Initializing the Rx buffers. For now we are considering only 1
7224          * Rx ring and initializing buffers into 30 Rx blocks
7225          */
7226         config = &sp->config;
7227         mac_control = &sp->mac_control;
7228
7229         for (i = 0; i < config->rx_ring_num; i++) {
7230                 struct ring_info *ring = &mac_control->rings[i];
7231
7232                 ring->mtu = dev->mtu;
7233                 ret = fill_rx_buffers(sp, ring, 1);
7234                 if (ret) {
7235                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7236                                   dev->name);
7237                         s2io_reset(sp);
7238                         free_rx_buffers(sp);
7239                         return -ENOMEM;
7240                 }
7241                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7242                           ring->rx_bufs_left);
7243         }
7244
7245         /* Initialise napi */
7246         if (config->napi) {
7247                 if (config->intr_type ==  MSI_X) {
7248                         for (i = 0; i < sp->config.rx_ring_num; i++)
7249                                 napi_enable(&sp->mac_control.rings[i].napi);
7250                 } else {
7251                         napi_enable(&sp->napi);
7252                 }
7253         }
7254
7255         /* Maintain the state prior to the open */
7256         if (sp->promisc_flg)
7257                 sp->promisc_flg = 0;
7258         if (sp->m_cast_flg) {
7259                 sp->m_cast_flg = 0;
7260                 sp->all_multi_pos = 0;
7261         }
7262
7263         /* Setting its receive mode */
7264         s2io_set_multicast(dev);
7265
7266         if (sp->lro) {
7267                 /* Initialize max aggregatable pkts per session based on MTU */
7268                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7269                 /* Check if we can use (if specified) user provided value */
7270                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7271                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7272         }
7273
7274         /* Enable Rx Traffic and interrupts on the NIC */
7275         if (start_nic(sp)) {
7276                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7277                 s2io_reset(sp);
7278                 free_rx_buffers(sp);
7279                 return -ENODEV;
7280         }
7281
7282         /* Add interrupt service routine */
7283         if (s2io_add_isr(sp) != 0) {
7284                 if (sp->config.intr_type == MSI_X)
7285                         s2io_rem_isr(sp);
7286                 s2io_reset(sp);
7287                 free_rx_buffers(sp);
7288                 return -ENODEV;
7289         }
7290
7291         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7292
7293         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7294
7295         /*  Enable select interrupts */
7296         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7297         if (sp->config.intr_type != INTA) {
7298                 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7299                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7300         } else {
7301                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7302                 interruptible |= TX_PIC_INTR;
7303                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7304         }
7305
7306         return 0;
7307 }
7308
7309 /**
7310  * s2io_restart_nic - Resets the NIC.
7311  * @data : long pointer to the device private structure
7312  * Description:
7313  * This function is scheduled to be run by the s2io_tx_watchdog
7314  * function after 0.5 secs to reset the NIC. The idea is to reduce
7315  * the run time of the watch dog routine which is run holding a
7316  * spin lock.
7317  */
7318
7319 static void s2io_restart_nic(struct work_struct *work)
7320 {
7321         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7322         struct net_device *dev = sp->dev;
7323
7324         rtnl_lock();
7325
7326         if (!netif_running(dev))
7327                 goto out_unlock;
7328
7329         s2io_card_down(sp);
7330         if (s2io_card_up(sp)) {
7331                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7332         }
7333         s2io_wake_all_tx_queue(sp);
7334         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7335 out_unlock:
7336         rtnl_unlock();
7337 }
7338
7339 /**
7340  *  s2io_tx_watchdog - Watchdog for transmit side.
7341  *  @dev : Pointer to net device structure
7342  *  Description:
7343  *  This function is triggered if the Tx Queue is stopped
7344  *  for a pre-defined amount of time when the Interface is still up.
7345  *  If the Interface is jammed in such a situation, the hardware is
7346  *  reset (by s2io_close) and restarted again (by s2io_open) to
7347  *  overcome any problem that might have been caused in the hardware.
7348  *  Return value:
7349  *  void
7350  */
7351
7352 static void s2io_tx_watchdog(struct net_device *dev)
7353 {
7354         struct s2io_nic *sp = netdev_priv(dev);
7355         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7356
7357         if (netif_carrier_ok(dev)) {
7358                 swstats->watchdog_timer_cnt++;
7359                 schedule_work(&sp->rst_timer_task);
7360                 swstats->soft_reset_cnt++;
7361         }
7362 }
7363
7364 /**
7365  *   rx_osm_handler - To perform some OS related operations on SKB.
7366  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7367  *   @skb : the socket buffer pointer.
7368  *   @len : length of the packet
7369  *   @cksum : FCS checksum of the frame.
7370  *   @ring_no : the ring from which this RxD was extracted.
7371  *   Description:
7372  *   This function is called by the Rx interrupt serivce routine to perform
7373  *   some OS related operations on the SKB before passing it to the upper
7374  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7375  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7376  *   to the upper layer. If the checksum is wrong, it increments the Rx
7377  *   packet error count, frees the SKB and returns error.
7378  *   Return value:
7379  *   SUCCESS on success and -1 on failure.
7380  */
7381 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7382 {
7383         struct s2io_nic *sp = ring_data->nic;
7384         struct net_device *dev = (struct net_device *)ring_data->dev;
7385         struct sk_buff *skb = (struct sk_buff *)
7386                 ((unsigned long)rxdp->Host_Control);
7387         int ring_no = ring_data->ring_no;
7388         u16 l3_csum, l4_csum;
7389         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7390         struct lro *uninitialized_var(lro);
7391         u8 err_mask;
7392         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7393
7394         skb->dev = dev;
7395
7396         if (err) {
7397                 /* Check for parity error */
7398                 if (err & 0x1)
7399                         swstats->parity_err_cnt++;
7400
7401                 err_mask = err >> 48;
7402                 switch (err_mask) {
7403                 case 1:
7404                         swstats->rx_parity_err_cnt++;
7405                         break;
7406
7407                 case 2:
7408                         swstats->rx_abort_cnt++;
7409                         break;
7410
7411                 case 3:
7412                         swstats->rx_parity_abort_cnt++;
7413                         break;
7414
7415                 case 4:
7416                         swstats->rx_rda_fail_cnt++;
7417                         break;
7418
7419                 case 5:
7420                         swstats->rx_unkn_prot_cnt++;
7421                         break;
7422
7423                 case 6:
7424                         swstats->rx_fcs_err_cnt++;
7425                         break;
7426
7427                 case 7:
7428                         swstats->rx_buf_size_err_cnt++;
7429                         break;
7430
7431                 case 8:
7432                         swstats->rx_rxd_corrupt_cnt++;
7433                         break;
7434
7435                 case 15:
7436                         swstats->rx_unkn_err_cnt++;
7437                         break;
7438                 }
7439                 /*
7440                  * Drop the packet if bad transfer code. Exception being
7441                  * 0x5, which could be due to unsupported IPv6 extension header.
7442                  * In this case, we let stack handle the packet.
7443                  * Note that in this case, since checksum will be incorrect,
7444                  * stack will validate the same.
7445                  */
7446                 if (err_mask != 0x5) {
7447                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7448                                   dev->name, err_mask);
7449                         dev->stats.rx_crc_errors++;
7450                         swstats->mem_freed
7451                                 += skb->truesize;
7452                         dev_kfree_skb(skb);
7453                         ring_data->rx_bufs_left -= 1;
7454                         rxdp->Host_Control = 0;
7455                         return 0;
7456                 }
7457         }
7458
7459         /* Updating statistics */
7460         ring_data->rx_packets++;
7461         rxdp->Host_Control = 0;
7462         if (sp->rxd_mode == RXD_MODE_1) {
7463                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7464
7465                 ring_data->rx_bytes += len;
7466                 skb_put(skb, len);
7467
7468         } else if (sp->rxd_mode == RXD_MODE_3B) {
7469                 int get_block = ring_data->rx_curr_get_info.block_index;
7470                 int get_off = ring_data->rx_curr_get_info.offset;
7471                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7472                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7473                 unsigned char *buff = skb_push(skb, buf0_len);
7474
7475                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7476                 ring_data->rx_bytes += buf0_len + buf2_len;
7477                 memcpy(buff, ba->ba_0, buf0_len);
7478                 skb_put(skb, buf2_len);
7479         }
7480
7481         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7482             ((!ring_data->lro) ||
7483              (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7484             (sp->rx_csum)) {
7485                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7486                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7487                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7488                         /*
7489                          * NIC verifies if the Checksum of the received
7490                          * frame is Ok or not and accordingly returns
7491                          * a flag in the RxD.
7492                          */
7493                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7494                         if (ring_data->lro) {
7495                                 u32 tcp_len;
7496                                 u8 *tcp;
7497                                 int ret = 0;
7498
7499                                 ret = s2io_club_tcp_session(ring_data,
7500                                                             skb->data, &tcp,
7501                                                             &tcp_len, &lro,
7502                                                             rxdp, sp);
7503                                 switch (ret) {
7504                                 case 3: /* Begin anew */
7505                                         lro->parent = skb;
7506                                         goto aggregate;
7507                                 case 1: /* Aggregate */
7508                                         lro_append_pkt(sp, lro, skb, tcp_len);
7509                                         goto aggregate;
7510                                 case 4: /* Flush session */
7511                                         lro_append_pkt(sp, lro, skb, tcp_len);
7512                                         queue_rx_frame(lro->parent,
7513                                                        lro->vlan_tag);
7514                                         clear_lro_session(lro);
7515                                         swstats->flush_max_pkts++;
7516                                         goto aggregate;
7517                                 case 2: /* Flush both */
7518                                         lro->parent->data_len = lro->frags_len;
7519                                         swstats->sending_both++;
7520                                         queue_rx_frame(lro->parent,
7521                                                        lro->vlan_tag);
7522                                         clear_lro_session(lro);
7523                                         goto send_up;
7524                                 case 0: /* sessions exceeded */
7525                                 case -1: /* non-TCP or not L2 aggregatable */
7526                                 case 5: /*
7527                                          * First pkt in session not
7528                                          * L3/L4 aggregatable
7529                                          */
7530                                         break;
7531                                 default:
7532                                         DBG_PRINT(ERR_DBG,
7533                                                   "%s: Samadhana!!\n",
7534                                                   __func__);
7535                                         BUG();
7536                                 }
7537                         }
7538                 } else {
7539                         /*
7540                          * Packet with erroneous checksum, let the
7541                          * upper layers deal with it.
7542                          */
7543                         skb->ip_summed = CHECKSUM_NONE;
7544                 }
7545         } else
7546                 skb->ip_summed = CHECKSUM_NONE;
7547
7548         swstats->mem_freed += skb->truesize;
7549 send_up:
7550         skb_record_rx_queue(skb, ring_no);
7551         queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7552 aggregate:
7553         sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7554         return SUCCESS;
7555 }
7556
7557 /**
7558  *  s2io_link - stops/starts the Tx queue.
7559  *  @sp : private member of the device structure, which is a pointer to the
7560  *  s2io_nic structure.
7561  *  @link : inidicates whether link is UP/DOWN.
7562  *  Description:
7563  *  This function stops/starts the Tx queue depending on whether the link
7564  *  status of the NIC is is down or up. This is called by the Alarm
7565  *  interrupt handler whenever a link change interrupt comes up.
7566  *  Return value:
7567  *  void.
7568  */
7569
7570 static void s2io_link(struct s2io_nic *sp, int link)
7571 {
7572         struct net_device *dev = (struct net_device *)sp->dev;
7573         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7574
7575         if (link != sp->last_link_state) {
7576                 init_tti(sp, link);
7577                 if (link == LINK_DOWN) {
7578                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7579                         s2io_stop_all_tx_queue(sp);
7580                         netif_carrier_off(dev);
7581                         if (swstats->link_up_cnt)
7582                                 swstats->link_up_time =
7583                                         jiffies - sp->start_time;
7584                         swstats->link_down_cnt++;
7585                 } else {
7586                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7587                         if (swstats->link_down_cnt)
7588                                 swstats->link_down_time =
7589                                         jiffies - sp->start_time;
7590                         swstats->link_up_cnt++;
7591                         netif_carrier_on(dev);
7592                         s2io_wake_all_tx_queue(sp);
7593                 }
7594         }
7595         sp->last_link_state = link;
7596         sp->start_time = jiffies;
7597 }
7598
7599 /**
7600  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7601  *  @sp : private member of the device structure, which is a pointer to the
7602  *  s2io_nic structure.
7603  *  Description:
7604  *  This function initializes a few of the PCI and PCI-X configuration registers
7605  *  with recommended values.
7606  *  Return value:
7607  *  void
7608  */
7609
7610 static void s2io_init_pci(struct s2io_nic *sp)
7611 {
7612         u16 pci_cmd = 0, pcix_cmd = 0;
7613
7614         /* Enable Data Parity Error Recovery in PCI-X command register. */
7615         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7616                              &(pcix_cmd));
7617         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7618                               (pcix_cmd | 1));
7619         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7620                              &(pcix_cmd));
7621
7622         /* Set the PErr Response bit in PCI command register. */
7623         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7624         pci_write_config_word(sp->pdev, PCI_COMMAND,
7625                               (pci_cmd | PCI_COMMAND_PARITY));
7626         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7627 }
7628
7629 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7630                             u8 *dev_multiq)
7631 {
7632         if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7633                 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7634                           "(%d) not supported\n", tx_fifo_num);
7635
7636                 if (tx_fifo_num < 1)
7637                         tx_fifo_num = 1;
7638                 else
7639                         tx_fifo_num = MAX_TX_FIFOS;
7640
7641                 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7642         }
7643
7644         if (multiq)
7645                 *dev_multiq = multiq;
7646
7647         if (tx_steering_type && (1 == tx_fifo_num)) {
7648                 if (tx_steering_type != TX_DEFAULT_STEERING)
7649                         DBG_PRINT(ERR_DBG,
7650                                   "Tx steering is not supported with "
7651                                   "one fifo. Disabling Tx steering.\n");
7652                 tx_steering_type = NO_STEERING;
7653         }
7654
7655         if ((tx_steering_type < NO_STEERING) ||
7656             (tx_steering_type > TX_DEFAULT_STEERING)) {
7657                 DBG_PRINT(ERR_DBG,
7658                           "Requested transmit steering not supported\n");
7659                 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7660                 tx_steering_type = NO_STEERING;
7661         }
7662
7663         if (rx_ring_num > MAX_RX_RINGS) {
7664                 DBG_PRINT(ERR_DBG,
7665                           "Requested number of rx rings not supported\n");
7666                 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7667                           MAX_RX_RINGS);
7668                 rx_ring_num = MAX_RX_RINGS;
7669         }
7670
7671         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7672                 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7673                           "Defaulting to INTA\n");
7674                 *dev_intr_type = INTA;
7675         }
7676
7677         if ((*dev_intr_type == MSI_X) &&
7678             ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7679              (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7680                 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7681                           "Defaulting to INTA\n");
7682                 *dev_intr_type = INTA;
7683         }
7684
7685         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7686                 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7687                 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7688                 rx_ring_mode = 1;
7689         }
7690         return SUCCESS;
7691 }
7692
7693 /**
7694  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7695  * or Traffic class respectively.
7696  * @nic: device private variable
7697  * Description: The function configures the receive steering to
7698  * desired receive ring.
7699  * Return Value:  SUCCESS on success and
7700  * '-1' on failure (endian settings incorrect).
7701  */
7702 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7703 {
7704         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7705         register u64 val64 = 0;
7706
7707         if (ds_codepoint > 63)
7708                 return FAILURE;
7709
7710         val64 = RTS_DS_MEM_DATA(ring);
7711         writeq(val64, &bar0->rts_ds_mem_data);
7712
7713         val64 = RTS_DS_MEM_CTRL_WE |
7714                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7715                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7716
7717         writeq(val64, &bar0->rts_ds_mem_ctrl);
7718
7719         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7720                                      RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7721                                      S2IO_BIT_RESET);
7722 }
7723
7724 static const struct net_device_ops s2io_netdev_ops = {
7725         .ndo_open               = s2io_open,
7726         .ndo_stop               = s2io_close,
7727         .ndo_get_stats          = s2io_get_stats,
7728         .ndo_start_xmit         = s2io_xmit,
7729         .ndo_validate_addr      = eth_validate_addr,
7730         .ndo_set_multicast_list = s2io_set_multicast,
7731         .ndo_do_ioctl           = s2io_ioctl,
7732         .ndo_set_mac_address    = s2io_set_mac_addr,
7733         .ndo_change_mtu         = s2io_change_mtu,
7734         .ndo_vlan_rx_register   = s2io_vlan_rx_register,
7735         .ndo_vlan_rx_kill_vid   = s2io_vlan_rx_kill_vid,
7736         .ndo_tx_timeout         = s2io_tx_watchdog,
7737 #ifdef CONFIG_NET_POLL_CONTROLLER
7738         .ndo_poll_controller    = s2io_netpoll,
7739 #endif
7740 };
7741
7742 /**
7743  *  s2io_init_nic - Initialization of the adapter .
7744  *  @pdev : structure containing the PCI related information of the device.
7745  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7746  *  Description:
7747  *  The function initializes an adapter identified by the pci_dec structure.
7748  *  All OS related initialization including memory and device structure and
7749  *  initlaization of the device private variable is done. Also the swapper
7750  *  control register is initialized to enable read and write into the I/O
7751  *  registers of the device.
7752  *  Return value:
7753  *  returns 0 on success and negative on failure.
7754  */
7755
7756 static int __devinit
7757 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7758 {
7759         struct s2io_nic *sp;
7760         struct net_device *dev;
7761         int i, j, ret;
7762         int dma_flag = false;
7763         u32 mac_up, mac_down;
7764         u64 val64 = 0, tmp64 = 0;
7765         struct XENA_dev_config __iomem *bar0 = NULL;
7766         u16 subid;
7767         struct config_param *config;
7768         struct mac_info *mac_control;
7769         int mode;
7770         u8 dev_intr_type = intr_type;
7771         u8 dev_multiq = 0;
7772
7773         ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7774         if (ret)
7775                 return ret;
7776
7777         ret = pci_enable_device(pdev);
7778         if (ret) {
7779                 DBG_PRINT(ERR_DBG,
7780                           "%s: pci_enable_device failed\n", __func__);
7781                 return ret;
7782         }
7783
7784         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7785                 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7786                 dma_flag = true;
7787                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7788                         DBG_PRINT(ERR_DBG,
7789                                   "Unable to obtain 64bit DMA "
7790                                   "for consistent allocations\n");
7791                         pci_disable_device(pdev);
7792                         return -ENOMEM;
7793                 }
7794         } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7795                 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7796         } else {
7797                 pci_disable_device(pdev);
7798                 return -ENOMEM;
7799         }
7800         ret = pci_request_regions(pdev, s2io_driver_name);
7801         if (ret) {
7802                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7803                           __func__, ret);
7804                 pci_disable_device(pdev);
7805                 return -ENODEV;
7806         }
7807         if (dev_multiq)
7808                 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7809         else
7810                 dev = alloc_etherdev(sizeof(struct s2io_nic));
7811         if (dev == NULL) {
7812                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7813                 pci_disable_device(pdev);
7814                 pci_release_regions(pdev);
7815                 return -ENODEV;
7816         }
7817
7818         pci_set_master(pdev);
7819         pci_set_drvdata(pdev, dev);
7820         SET_NETDEV_DEV(dev, &pdev->dev);
7821
7822         /*  Private member variable initialized to s2io NIC structure */
7823         sp = netdev_priv(dev);
7824         memset(sp, 0, sizeof(struct s2io_nic));
7825         sp->dev = dev;
7826         sp->pdev = pdev;
7827         sp->high_dma_flag = dma_flag;
7828         sp->device_enabled_once = false;
7829         if (rx_ring_mode == 1)
7830                 sp->rxd_mode = RXD_MODE_1;
7831         if (rx_ring_mode == 2)
7832                 sp->rxd_mode = RXD_MODE_3B;
7833
7834         sp->config.intr_type = dev_intr_type;
7835
7836         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7837             (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7838                 sp->device_type = XFRAME_II_DEVICE;
7839         else
7840                 sp->device_type = XFRAME_I_DEVICE;
7841
7842         sp->lro = lro_enable;
7843
7844         /* Initialize some PCI/PCI-X fields of the NIC. */
7845         s2io_init_pci(sp);
7846
7847         /*
7848          * Setting the device configuration parameters.
7849          * Most of these parameters can be specified by the user during
7850          * module insertion as they are module loadable parameters. If
7851          * these parameters are not not specified during load time, they
7852          * are initialized with default values.
7853          */
7854         config = &sp->config;
7855         mac_control = &sp->mac_control;
7856
7857         config->napi = napi;
7858         config->tx_steering_type = tx_steering_type;
7859
7860         /* Tx side parameters. */
7861         if (config->tx_steering_type == TX_PRIORITY_STEERING)
7862                 config->tx_fifo_num = MAX_TX_FIFOS;
7863         else
7864                 config->tx_fifo_num = tx_fifo_num;
7865
7866         /* Initialize the fifos used for tx steering */
7867         if (config->tx_fifo_num < 5) {
7868                 if (config->tx_fifo_num  == 1)
7869                         sp->total_tcp_fifos = 1;
7870                 else
7871                         sp->total_tcp_fifos = config->tx_fifo_num - 1;
7872                 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7873                 sp->total_udp_fifos = 1;
7874                 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7875         } else {
7876                 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7877                                        FIFO_OTHER_MAX_NUM);
7878                 sp->udp_fifo_idx = sp->total_tcp_fifos;
7879                 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7880                 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7881         }
7882
7883         config->multiq = dev_multiq;
7884         for (i = 0; i < config->tx_fifo_num; i++) {
7885                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7886
7887                 tx_cfg->fifo_len = tx_fifo_len[i];
7888                 tx_cfg->fifo_priority = i;
7889         }
7890
7891         /* mapping the QoS priority to the configured fifos */
7892         for (i = 0; i < MAX_TX_FIFOS; i++)
7893                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7894
7895         /* map the hashing selector table to the configured fifos */
7896         for (i = 0; i < config->tx_fifo_num; i++)
7897                 sp->fifo_selector[i] = fifo_selector[i];
7898
7899
7900         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7901         for (i = 0; i < config->tx_fifo_num; i++) {
7902                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7903
7904                 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7905                 if (tx_cfg->fifo_len < 65) {
7906                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7907                         break;
7908                 }
7909         }
7910         /* + 2 because one Txd for skb->data and one Txd for UFO */
7911         config->max_txds = MAX_SKB_FRAGS + 2;
7912
7913         /* Rx side parameters. */
7914         config->rx_ring_num = rx_ring_num;
7915         for (i = 0; i < config->rx_ring_num; i++) {
7916                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7917                 struct ring_info *ring = &mac_control->rings[i];
7918
7919                 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7920                 rx_cfg->ring_priority = i;
7921                 ring->rx_bufs_left = 0;
7922                 ring->rxd_mode = sp->rxd_mode;
7923                 ring->rxd_count = rxd_count[sp->rxd_mode];
7924                 ring->pdev = sp->pdev;
7925                 ring->dev = sp->dev;
7926         }
7927
7928         for (i = 0; i < rx_ring_num; i++) {
7929                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7930
7931                 rx_cfg->ring_org = RING_ORG_BUFF1;
7932                 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7933         }
7934
7935         /*  Setting Mac Control parameters */
7936         mac_control->rmac_pause_time = rmac_pause_time;
7937         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7938         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7939
7940
7941         /*  initialize the shared memory used by the NIC and the host */
7942         if (init_shared_mem(sp)) {
7943                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7944                 ret = -ENOMEM;
7945                 goto mem_alloc_failed;
7946         }
7947
7948         sp->bar0 = pci_ioremap_bar(pdev, 0);
7949         if (!sp->bar0) {
7950                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7951                           dev->name);
7952                 ret = -ENOMEM;
7953                 goto bar0_remap_failed;
7954         }
7955
7956         sp->bar1 = pci_ioremap_bar(pdev, 2);
7957         if (!sp->bar1) {
7958                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7959                           dev->name);
7960                 ret = -ENOMEM;
7961                 goto bar1_remap_failed;
7962         }
7963
7964         dev->irq = pdev->irq;
7965         dev->base_addr = (unsigned long)sp->bar0;
7966
7967         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7968         for (j = 0; j < MAX_TX_FIFOS; j++) {
7969                 mac_control->tx_FIFO_start[j] =
7970                         (struct TxFIFO_element __iomem *)
7971                         (sp->bar1 + (j * 0x00020000));
7972         }
7973
7974         /*  Driver entry points */
7975         dev->netdev_ops = &s2io_netdev_ops;
7976         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7977         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7978
7979         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7980         if (sp->high_dma_flag == true)
7981                 dev->features |= NETIF_F_HIGHDMA;
7982         dev->features |= NETIF_F_TSO;
7983         dev->features |= NETIF_F_TSO6;
7984         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7985                 dev->features |= NETIF_F_UFO;
7986                 dev->features |= NETIF_F_HW_CSUM;
7987         }
7988         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7989         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7990         INIT_WORK(&sp->set_link_task, s2io_set_link);
7991
7992         pci_save_state(sp->pdev);
7993
7994         /* Setting swapper control on the NIC, for proper reset operation */
7995         if (s2io_set_swapper(sp)) {
7996                 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7997                           dev->name);
7998                 ret = -EAGAIN;
7999                 goto set_swap_failed;
8000         }
8001
8002         /* Verify if the Herc works on the slot its placed into */
8003         if (sp->device_type & XFRAME_II_DEVICE) {
8004                 mode = s2io_verify_pci_mode(sp);
8005                 if (mode < 0) {
8006                         DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8007                                   __func__);
8008                         ret = -EBADSLT;
8009                         goto set_swap_failed;
8010                 }
8011         }
8012
8013         if (sp->config.intr_type == MSI_X) {
8014                 sp->num_entries = config->rx_ring_num + 1;
8015                 ret = s2io_enable_msi_x(sp);
8016
8017                 if (!ret) {
8018                         ret = s2io_test_msi(sp);
8019                         /* rollback MSI-X, will re-enable during add_isr() */
8020                         remove_msix_isr(sp);
8021                 }
8022                 if (ret) {
8023
8024                         DBG_PRINT(ERR_DBG,
8025                                   "MSI-X requested but failed to enable\n");
8026                         sp->config.intr_type = INTA;
8027                 }
8028         }
8029
8030         if (config->intr_type ==  MSI_X) {
8031                 for (i = 0; i < config->rx_ring_num ; i++) {
8032                         struct ring_info *ring = &mac_control->rings[i];
8033
8034                         netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8035                 }
8036         } else {
8037                 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8038         }
8039
8040         /* Not needed for Herc */
8041         if (sp->device_type & XFRAME_I_DEVICE) {
8042                 /*
8043                  * Fix for all "FFs" MAC address problems observed on
8044                  * Alpha platforms
8045                  */
8046                 fix_mac_address(sp);
8047                 s2io_reset(sp);
8048         }
8049
8050         /*
8051          * MAC address initialization.
8052          * For now only one mac address will be read and used.
8053          */
8054         bar0 = sp->bar0;
8055         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8056                 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8057         writeq(val64, &bar0->rmac_addr_cmd_mem);
8058         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8059                               RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8060                               S2IO_BIT_RESET);
8061         tmp64 = readq(&bar0->rmac_addr_data0_mem);
8062         mac_down = (u32)tmp64;
8063         mac_up = (u32) (tmp64 >> 32);
8064
8065         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8066         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8067         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8068         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8069         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8070         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8071
8072         /*  Set the factory defined MAC address initially   */
8073         dev->addr_len = ETH_ALEN;
8074         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8075         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8076
8077         /* initialize number of multicast & unicast MAC entries variables */
8078         if (sp->device_type == XFRAME_I_DEVICE) {
8079                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8080                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8081                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8082         } else if (sp->device_type == XFRAME_II_DEVICE) {
8083                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8084                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8085                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8086         }
8087
8088         /* store mac addresses from CAM to s2io_nic structure */
8089         do_s2io_store_unicast_mc(sp);
8090
8091         /* Configure MSIX vector for number of rings configured plus one */
8092         if ((sp->device_type == XFRAME_II_DEVICE) &&
8093             (config->intr_type == MSI_X))
8094                 sp->num_entries = config->rx_ring_num + 1;
8095
8096         /* Store the values of the MSIX table in the s2io_nic structure */
8097         store_xmsi_data(sp);
8098         /* reset Nic and bring it to known state */
8099         s2io_reset(sp);
8100
8101         /*
8102          * Initialize link state flags
8103          * and the card state parameter
8104          */
8105         sp->state = 0;
8106
8107         /* Initialize spinlocks */
8108         for (i = 0; i < sp->config.tx_fifo_num; i++) {
8109                 struct fifo_info *fifo = &mac_control->fifos[i];
8110
8111                 spin_lock_init(&fifo->tx_lock);
8112         }
8113
8114         /*
8115          * SXE-002: Configure link and activity LED to init state
8116          * on driver load.
8117          */
8118         subid = sp->pdev->subsystem_device;
8119         if ((subid & 0xFF) >= 0x07) {
8120                 val64 = readq(&bar0->gpio_control);
8121                 val64 |= 0x0000800000000000ULL;
8122                 writeq(val64, &bar0->gpio_control);
8123                 val64 = 0x0411040400000000ULL;
8124                 writeq(val64, (void __iomem *)bar0 + 0x2700);
8125                 val64 = readq(&bar0->gpio_control);
8126         }
8127
8128         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8129
8130         if (register_netdev(dev)) {
8131                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8132                 ret = -ENODEV;
8133                 goto register_failed;
8134         }
8135         s2io_vpd_read(sp);
8136         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8137         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8138                   sp->product_name, pdev->revision);
8139         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8140                   s2io_driver_version);
8141         DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8142         DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8143         if (sp->device_type & XFRAME_II_DEVICE) {
8144                 mode = s2io_print_pci_mode(sp);
8145                 if (mode < 0) {
8146                         ret = -EBADSLT;
8147                         unregister_netdev(dev);
8148                         goto set_swap_failed;
8149                 }
8150         }
8151         switch (sp->rxd_mode) {
8152         case RXD_MODE_1:
8153                 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8154                           dev->name);
8155                 break;
8156         case RXD_MODE_3B:
8157                 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8158                           dev->name);
8159                 break;
8160         }
8161
8162         switch (sp->config.napi) {
8163         case 0:
8164                 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8165                 break;
8166         case 1:
8167                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8168                 break;
8169         }
8170
8171         DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8172                   sp->config.tx_fifo_num);
8173
8174         DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8175                   sp->config.rx_ring_num);
8176
8177         switch (sp->config.intr_type) {
8178         case INTA:
8179                 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8180                 break;
8181         case MSI_X:
8182                 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8183                 break;
8184         }
8185         if (sp->config.multiq) {
8186                 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8187                         struct fifo_info *fifo = &mac_control->fifos[i];
8188
8189                         fifo->multiq = config->multiq;
8190                 }
8191                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8192                           dev->name);
8193         } else
8194                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8195                           dev->name);
8196
8197         switch (sp->config.tx_steering_type) {
8198         case NO_STEERING:
8199                 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8200                           dev->name);
8201                 break;
8202         case TX_PRIORITY_STEERING:
8203                 DBG_PRINT(ERR_DBG,
8204                           "%s: Priority steering enabled for transmit\n",
8205                           dev->name);
8206                 break;
8207         case TX_DEFAULT_STEERING:
8208                 DBG_PRINT(ERR_DBG,
8209                           "%s: Default steering enabled for transmit\n",
8210                           dev->name);
8211         }
8212
8213         if (sp->lro)
8214                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8215                           dev->name);
8216         if (ufo)
8217                 DBG_PRINT(ERR_DBG,
8218                           "%s: UDP Fragmentation Offload(UFO) enabled\n",
8219                           dev->name);
8220         /* Initialize device name */
8221         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8222
8223         if (vlan_tag_strip)
8224                 sp->vlan_strip_flag = 1;
8225         else
8226                 sp->vlan_strip_flag = 0;
8227
8228         /*
8229          * Make Link state as off at this point, when the Link change
8230          * interrupt comes the state will be automatically changed to
8231          * the right state.
8232          */
8233         netif_carrier_off(dev);
8234
8235         return 0;
8236
8237 register_failed:
8238 set_swap_failed:
8239         iounmap(sp->bar1);
8240 bar1_remap_failed:
8241         iounmap(sp->bar0);
8242 bar0_remap_failed:
8243 mem_alloc_failed:
8244         free_shared_mem(sp);
8245         pci_disable_device(pdev);
8246         pci_release_regions(pdev);
8247         pci_set_drvdata(pdev, NULL);
8248         free_netdev(dev);
8249
8250         return ret;
8251 }
8252
8253 /**
8254  * s2io_rem_nic - Free the PCI device
8255  * @pdev: structure containing the PCI related information of the device.
8256  * Description: This function is called by the Pci subsystem to release a
8257  * PCI device and free up all resource held up by the device. This could
8258  * be in response to a Hot plug event or when the driver is to be removed
8259  * from memory.
8260  */
8261
8262 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8263 {
8264         struct net_device *dev =
8265                 (struct net_device *)pci_get_drvdata(pdev);
8266         struct s2io_nic *sp;
8267
8268         if (dev == NULL) {
8269                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8270                 return;
8271         }
8272
8273         flush_scheduled_work();
8274
8275         sp = netdev_priv(dev);
8276         unregister_netdev(dev);
8277
8278         free_shared_mem(sp);
8279         iounmap(sp->bar0);
8280         iounmap(sp->bar1);
8281         pci_release_regions(pdev);
8282         pci_set_drvdata(pdev, NULL);
8283         free_netdev(dev);
8284         pci_disable_device(pdev);
8285 }
8286
8287 /**
8288  * s2io_starter - Entry point for the driver
8289  * Description: This function is the entry point for the driver. It verifies
8290  * the module loadable parameters and initializes PCI configuration space.
8291  */
8292
8293 static int __init s2io_starter(void)
8294 {
8295         return pci_register_driver(&s2io_driver);
8296 }
8297
8298 /**
8299  * s2io_closer - Cleanup routine for the driver
8300  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8301  */
8302
8303 static __exit void s2io_closer(void)
8304 {
8305         pci_unregister_driver(&s2io_driver);
8306         DBG_PRINT(INIT_DBG, "cleanup done\n");
8307 }
8308
8309 module_init(s2io_starter);
8310 module_exit(s2io_closer);
8311
8312 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8313                                 struct tcphdr **tcp, struct RxD_t *rxdp,
8314                                 struct s2io_nic *sp)
8315 {
8316         int ip_off;
8317         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8318
8319         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8320                 DBG_PRINT(INIT_DBG,
8321                           "%s: Non-TCP frames not supported for LRO\n",
8322                           __func__);
8323                 return -1;
8324         }
8325
8326         /* Checking for DIX type or DIX type with VLAN */
8327         if ((l2_type == 0) || (l2_type == 4)) {
8328                 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8329                 /*
8330                  * If vlan stripping is disabled and the frame is VLAN tagged,
8331                  * shift the offset by the VLAN header size bytes.
8332                  */
8333                 if ((!sp->vlan_strip_flag) &&
8334                     (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8335                         ip_off += HEADER_VLAN_SIZE;
8336         } else {
8337                 /* LLC, SNAP etc are considered non-mergeable */
8338                 return -1;
8339         }
8340
8341         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8342         ip_len = (u8)((*ip)->ihl);
8343         ip_len <<= 2;
8344         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8345
8346         return 0;
8347 }
8348
8349 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8350                                   struct tcphdr *tcp)
8351 {
8352         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8353         if ((lro->iph->saddr != ip->saddr) ||
8354             (lro->iph->daddr != ip->daddr) ||
8355             (lro->tcph->source != tcp->source) ||
8356             (lro->tcph->dest != tcp->dest))
8357                 return -1;
8358         return 0;
8359 }
8360
8361 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8362 {
8363         return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8364 }
8365
8366 static void initiate_new_session(struct lro *lro, u8 *l2h,
8367                                  struct iphdr *ip, struct tcphdr *tcp,
8368                                  u32 tcp_pyld_len, u16 vlan_tag)
8369 {
8370         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8371         lro->l2h = l2h;
8372         lro->iph = ip;
8373         lro->tcph = tcp;
8374         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8375         lro->tcp_ack = tcp->ack_seq;
8376         lro->sg_num = 1;
8377         lro->total_len = ntohs(ip->tot_len);
8378         lro->frags_len = 0;
8379         lro->vlan_tag = vlan_tag;
8380         /*
8381          * Check if we saw TCP timestamp.
8382          * Other consistency checks have already been done.
8383          */
8384         if (tcp->doff == 8) {
8385                 __be32 *ptr;
8386                 ptr = (__be32 *)(tcp+1);
8387                 lro->saw_ts = 1;
8388                 lro->cur_tsval = ntohl(*(ptr+1));
8389                 lro->cur_tsecr = *(ptr+2);
8390         }
8391         lro->in_use = 1;
8392 }
8393
8394 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8395 {
8396         struct iphdr *ip = lro->iph;
8397         struct tcphdr *tcp = lro->tcph;
8398         __sum16 nchk;
8399         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8400
8401         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8402
8403         /* Update L3 header */
8404         ip->tot_len = htons(lro->total_len);
8405         ip->check = 0;
8406         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8407         ip->check = nchk;
8408
8409         /* Update L4 header */
8410         tcp->ack_seq = lro->tcp_ack;
8411         tcp->window = lro->window;
8412
8413         /* Update tsecr field if this session has timestamps enabled */
8414         if (lro->saw_ts) {
8415                 __be32 *ptr = (__be32 *)(tcp + 1);
8416                 *(ptr+2) = lro->cur_tsecr;
8417         }
8418
8419         /* Update counters required for calculation of
8420          * average no. of packets aggregated.
8421          */
8422         swstats->sum_avg_pkts_aggregated += lro->sg_num;
8423         swstats->num_aggregations++;
8424 }
8425
8426 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8427                              struct tcphdr *tcp, u32 l4_pyld)
8428 {
8429         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8430         lro->total_len += l4_pyld;
8431         lro->frags_len += l4_pyld;
8432         lro->tcp_next_seq += l4_pyld;
8433         lro->sg_num++;
8434
8435         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8436         lro->tcp_ack = tcp->ack_seq;
8437         lro->window = tcp->window;
8438
8439         if (lro->saw_ts) {
8440                 __be32 *ptr;
8441                 /* Update tsecr and tsval from this packet */
8442                 ptr = (__be32 *)(tcp+1);
8443                 lro->cur_tsval = ntohl(*(ptr+1));
8444                 lro->cur_tsecr = *(ptr + 2);
8445         }
8446 }
8447
8448 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8449                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8450 {
8451         u8 *ptr;
8452
8453         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8454
8455         if (!tcp_pyld_len) {
8456                 /* Runt frame or a pure ack */
8457                 return -1;
8458         }
8459
8460         if (ip->ihl != 5) /* IP has options */
8461                 return -1;
8462
8463         /* If we see CE codepoint in IP header, packet is not mergeable */
8464         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8465                 return -1;
8466
8467         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8468         if (tcp->urg || tcp->psh || tcp->rst ||
8469             tcp->syn || tcp->fin ||
8470             tcp->ece || tcp->cwr || !tcp->ack) {
8471                 /*
8472                  * Currently recognize only the ack control word and
8473                  * any other control field being set would result in
8474                  * flushing the LRO session
8475                  */
8476                 return -1;
8477         }
8478
8479         /*
8480          * Allow only one TCP timestamp option. Don't aggregate if
8481          * any other options are detected.
8482          */
8483         if (tcp->doff != 5 && tcp->doff != 8)
8484                 return -1;
8485
8486         if (tcp->doff == 8) {
8487                 ptr = (u8 *)(tcp + 1);
8488                 while (*ptr == TCPOPT_NOP)
8489                         ptr++;
8490                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8491                         return -1;
8492
8493                 /* Ensure timestamp value increases monotonically */
8494                 if (l_lro)
8495                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8496                                 return -1;
8497
8498                 /* timestamp echo reply should be non-zero */
8499                 if (*((__be32 *)(ptr+6)) == 0)
8500                         return -1;
8501         }
8502
8503         return 0;
8504 }
8505
8506 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8507                                  u8 **tcp, u32 *tcp_len, struct lro **lro,
8508                                  struct RxD_t *rxdp, struct s2io_nic *sp)
8509 {
8510         struct iphdr *ip;
8511         struct tcphdr *tcph;
8512         int ret = 0, i;
8513         u16 vlan_tag = 0;
8514         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8515
8516         ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8517                                    rxdp, sp);
8518         if (ret)
8519                 return ret;
8520
8521         DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8522
8523         vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8524         tcph = (struct tcphdr *)*tcp;
8525         *tcp_len = get_l4_pyld_length(ip, tcph);
8526         for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8527                 struct lro *l_lro = &ring_data->lro0_n[i];
8528                 if (l_lro->in_use) {
8529                         if (check_for_socket_match(l_lro, ip, tcph))
8530                                 continue;
8531                         /* Sock pair matched */
8532                         *lro = l_lro;
8533
8534                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8535                                 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8536                                           "expected 0x%x, actual 0x%x\n",
8537                                           __func__,
8538                                           (*lro)->tcp_next_seq,
8539                                           ntohl(tcph->seq));
8540
8541                                 swstats->outof_sequence_pkts++;
8542                                 ret = 2;
8543                                 break;
8544                         }
8545
8546                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8547                                                       *tcp_len))
8548                                 ret = 1; /* Aggregate */
8549                         else
8550                                 ret = 2; /* Flush both */
8551                         break;
8552                 }
8553         }
8554
8555         if (ret == 0) {
8556                 /* Before searching for available LRO objects,
8557                  * check if the pkt is L3/L4 aggregatable. If not
8558                  * don't create new LRO session. Just send this
8559                  * packet up.
8560                  */
8561                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8562                         return 5;
8563
8564                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8565                         struct lro *l_lro = &ring_data->lro0_n[i];
8566                         if (!(l_lro->in_use)) {
8567                                 *lro = l_lro;
8568                                 ret = 3; /* Begin anew */
8569                                 break;
8570                         }
8571                 }
8572         }
8573
8574         if (ret == 0) { /* sessions exceeded */
8575                 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8576                           __func__);
8577                 *lro = NULL;
8578                 return ret;
8579         }
8580
8581         switch (ret) {
8582         case 3:
8583                 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8584                                      vlan_tag);
8585                 break;
8586         case 2:
8587                 update_L3L4_header(sp, *lro);
8588                 break;
8589         case 1:
8590                 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8591                 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8592                         update_L3L4_header(sp, *lro);
8593                         ret = 4; /* Flush the LRO */
8594                 }
8595                 break;
8596         default:
8597                 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8598                 break;
8599         }
8600
8601         return ret;
8602 }
8603
8604 static void clear_lro_session(struct lro *lro)
8605 {
8606         static u16 lro_struct_size = sizeof(struct lro);
8607
8608         memset(lro, 0, lro_struct_size);
8609 }
8610
8611 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8612 {
8613         struct net_device *dev = skb->dev;
8614         struct s2io_nic *sp = netdev_priv(dev);
8615
8616         skb->protocol = eth_type_trans(skb, dev);
8617         if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
8618                 /* Queueing the vlan frame to the upper layer */
8619                 if (sp->config.napi)
8620                         vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8621                 else
8622                         vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8623         } else {
8624                 if (sp->config.napi)
8625                         netif_receive_skb(skb);
8626                 else
8627                         netif_rx(skb);
8628         }
8629 }
8630
8631 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8632                            struct sk_buff *skb, u32 tcp_len)
8633 {
8634         struct sk_buff *first = lro->parent;
8635         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8636
8637         first->len += tcp_len;
8638         first->data_len = lro->frags_len;
8639         skb_pull(skb, (skb->len - tcp_len));
8640         if (skb_shinfo(first)->frag_list)
8641                 lro->last_frag->next = skb;
8642         else
8643                 skb_shinfo(first)->frag_list = skb;
8644         first->truesize += skb->truesize;
8645         lro->last_frag = skb;
8646         swstats->clubbed_frms_cnt++;
8647         return;
8648 }
8649
8650 /**
8651  * s2io_io_error_detected - called when PCI error is detected
8652  * @pdev: Pointer to PCI device
8653  * @state: The current pci connection state
8654  *
8655  * This function is called after a PCI bus error affecting
8656  * this device has been detected.
8657  */
8658 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8659                                                pci_channel_state_t state)
8660 {
8661         struct net_device *netdev = pci_get_drvdata(pdev);
8662         struct s2io_nic *sp = netdev_priv(netdev);
8663
8664         netif_device_detach(netdev);
8665
8666         if (state == pci_channel_io_perm_failure)
8667                 return PCI_ERS_RESULT_DISCONNECT;
8668
8669         if (netif_running(netdev)) {
8670                 /* Bring down the card, while avoiding PCI I/O */
8671                 do_s2io_card_down(sp, 0);
8672         }
8673         pci_disable_device(pdev);
8674
8675         return PCI_ERS_RESULT_NEED_RESET;
8676 }
8677
8678 /**
8679  * s2io_io_slot_reset - called after the pci bus has been reset.
8680  * @pdev: Pointer to PCI device
8681  *
8682  * Restart the card from scratch, as if from a cold-boot.
8683  * At this point, the card has exprienced a hard reset,
8684  * followed by fixups by BIOS, and has its config space
8685  * set up identically to what it was at cold boot.
8686  */
8687 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8688 {
8689         struct net_device *netdev = pci_get_drvdata(pdev);
8690         struct s2io_nic *sp = netdev_priv(netdev);
8691
8692         if (pci_enable_device(pdev)) {
8693                 pr_err("Cannot re-enable PCI device after reset.\n");
8694                 return PCI_ERS_RESULT_DISCONNECT;
8695         }
8696
8697         pci_set_master(pdev);
8698         s2io_reset(sp);
8699
8700         return PCI_ERS_RESULT_RECOVERED;
8701 }
8702
8703 /**
8704  * s2io_io_resume - called when traffic can start flowing again.
8705  * @pdev: Pointer to PCI device
8706  *
8707  * This callback is called when the error recovery driver tells
8708  * us that its OK to resume normal operation.
8709  */
8710 static void s2io_io_resume(struct pci_dev *pdev)
8711 {
8712         struct net_device *netdev = pci_get_drvdata(pdev);
8713         struct s2io_nic *sp = netdev_priv(netdev);
8714
8715         if (netif_running(netdev)) {
8716                 if (s2io_card_up(sp)) {
8717                         pr_err("Can't bring device back up after reset.\n");
8718                         return;
8719                 }
8720
8721                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8722                         s2io_card_down(sp);
8723                         pr_err("Can't restore mac addr after reset.\n");
8724                         return;
8725                 }
8726         }
8727
8728         netif_device_attach(netdev);
8729         netif_tx_wake_all_queues(netdev);
8730 }