2557aeef65e6cedff2561e755d5e1c5b5558afb1
[linux-2.6.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 struct e1000_stats {
39         char stat_string[ETH_GSTRING_LEN];
40         int sizeof_stat;
41         int stat_offset;
42 };
43
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45                       offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47         { "rx_packets", E1000_STAT(stats.gprc) },
48         { "tx_packets", E1000_STAT(stats.gptc) },
49         { "rx_bytes", E1000_STAT(stats.gorc) },
50         { "tx_bytes", E1000_STAT(stats.gotc) },
51         { "rx_broadcast", E1000_STAT(stats.bprc) },
52         { "tx_broadcast", E1000_STAT(stats.bptc) },
53         { "rx_multicast", E1000_STAT(stats.mprc) },
54         { "tx_multicast", E1000_STAT(stats.mptc) },
55         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58         { "multicast", E1000_STAT(stats.mprc) },
59         { "collisions", E1000_STAT(stats.colc) },
60         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65         { "rx_missed_errors", E1000_STAT(stats.mpc) },
66         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70         { "tx_window_errors", E1000_STAT(stats.latecol) },
71         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72         { "tx_deferred_ok", E1000_STAT(stats.dc) },
73         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76         { "tx_restart_queue", E1000_STAT(restart_queue) },
77         { "rx_long_length_errors", E1000_STAT(stats.roc) },
78         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86         { "rx_long_byte_count", E1000_STAT(stats.gorc) },
87         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89         { "rx_header_split", E1000_STAT(rx_hdr_split) },
90         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91         { "tx_smbus", E1000_STAT(stats.mgptc) },
92         { "rx_smbus", E1000_STAT(stats.mgprc) },
93         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
96 };
97
98 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
101         "Register test  (offline)", "Eeprom test    (offline)",
102         "Interrupt test (offline)", "Loopback test  (offline)",
103         "Link test   (on/offline)"
104 };
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
106
107 static int e1000_get_settings(struct net_device *netdev,
108                               struct ethtool_cmd *ecmd)
109 {
110         struct e1000_adapter *adapter = netdev_priv(netdev);
111         struct e1000_hw *hw = &adapter->hw;
112         u32 status;
113
114         if (hw->phy.media_type == e1000_media_type_copper) {
115
116                 ecmd->supported = (SUPPORTED_10baseT_Half |
117                                    SUPPORTED_10baseT_Full |
118                                    SUPPORTED_100baseT_Half |
119                                    SUPPORTED_100baseT_Full |
120                                    SUPPORTED_1000baseT_Full |
121                                    SUPPORTED_Autoneg |
122                                    SUPPORTED_TP);
123                 if (hw->phy.type == e1000_phy_ife)
124                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125                 ecmd->advertising = ADVERTISED_TP;
126
127                 if (hw->mac.autoneg == 1) {
128                         ecmd->advertising |= ADVERTISED_Autoneg;
129                         /* the e1000 autoneg seems to match ethtool nicely */
130                         ecmd->advertising |= hw->phy.autoneg_advertised;
131                 }
132
133                 ecmd->port = PORT_TP;
134                 ecmd->phy_address = hw->phy.addr;
135                 ecmd->transceiver = XCVR_INTERNAL;
136
137         } else {
138                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
139                                      SUPPORTED_FIBRE |
140                                      SUPPORTED_Autoneg);
141
142                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143                                      ADVERTISED_FIBRE |
144                                      ADVERTISED_Autoneg);
145
146                 ecmd->port = PORT_FIBRE;
147                 ecmd->transceiver = XCVR_EXTERNAL;
148         }
149
150         status = er32(STATUS);
151         if (status & E1000_STATUS_LU) {
152                 if (status & E1000_STATUS_SPEED_1000)
153                         ecmd->speed = 1000;
154                 else if (status & E1000_STATUS_SPEED_100)
155                         ecmd->speed = 100;
156                 else
157                         ecmd->speed = 10;
158
159                 if (status & E1000_STATUS_FD)
160                         ecmd->duplex = DUPLEX_FULL;
161                 else
162                         ecmd->duplex = DUPLEX_HALF;
163         } else {
164                 ecmd->speed = -1;
165                 ecmd->duplex = -1;
166         }
167
168         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
169                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170         return 0;
171 }
172
173 static u32 e1000_get_link(struct net_device *netdev)
174 {
175         struct e1000_adapter *adapter = netdev_priv(netdev);
176
177         return e1000_has_link(adapter);
178 }
179
180 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
181 {
182         struct e1000_mac_info *mac = &adapter->hw.mac;
183
184         mac->autoneg = 0;
185
186         /* Fiber NICs only allow 1000 gbps Full duplex */
187         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
188                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
189                 e_err("Unsupported Speed/Duplex configuration\n");
190                 return -EINVAL;
191         }
192
193         switch (spddplx) {
194         case SPEED_10 + DUPLEX_HALF:
195                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
196                 break;
197         case SPEED_10 + DUPLEX_FULL:
198                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
199                 break;
200         case SPEED_100 + DUPLEX_HALF:
201                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
202                 break;
203         case SPEED_100 + DUPLEX_FULL:
204                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
205                 break;
206         case SPEED_1000 + DUPLEX_FULL:
207                 mac->autoneg = 1;
208                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
209                 break;
210         case SPEED_1000 + DUPLEX_HALF: /* not supported */
211         default:
212                 e_err("Unsupported Speed/Duplex configuration\n");
213                 return -EINVAL;
214         }
215         return 0;
216 }
217
218 static int e1000_set_settings(struct net_device *netdev,
219                               struct ethtool_cmd *ecmd)
220 {
221         struct e1000_adapter *adapter = netdev_priv(netdev);
222         struct e1000_hw *hw = &adapter->hw;
223
224         /*
225          * When SoL/IDER sessions are active, autoneg/speed/duplex
226          * cannot be changed
227          */
228         if (e1000_check_reset_block(hw)) {
229                 e_err("Cannot change link characteristics when SoL/IDER is "
230                       "active.\n");
231                 return -EINVAL;
232         }
233
234         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
235                 msleep(1);
236
237         if (ecmd->autoneg == AUTONEG_ENABLE) {
238                 hw->mac.autoneg = 1;
239                 if (hw->phy.media_type == e1000_media_type_fiber)
240                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
241                                                      ADVERTISED_FIBRE |
242                                                      ADVERTISED_Autoneg;
243                 else
244                         hw->phy.autoneg_advertised = ecmd->advertising |
245                                                      ADVERTISED_TP |
246                                                      ADVERTISED_Autoneg;
247                 ecmd->advertising = hw->phy.autoneg_advertised;
248                 if (adapter->fc_autoneg)
249                         hw->fc.requested_mode = e1000_fc_default;
250         } else {
251                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
252                         clear_bit(__E1000_RESETTING, &adapter->state);
253                         return -EINVAL;
254                 }
255         }
256
257         /* reset the link */
258
259         if (netif_running(adapter->netdev)) {
260                 e1000e_down(adapter);
261                 e1000e_up(adapter);
262         } else {
263                 e1000e_reset(adapter);
264         }
265
266         clear_bit(__E1000_RESETTING, &adapter->state);
267         return 0;
268 }
269
270 static void e1000_get_pauseparam(struct net_device *netdev,
271                                  struct ethtool_pauseparam *pause)
272 {
273         struct e1000_adapter *adapter = netdev_priv(netdev);
274         struct e1000_hw *hw = &adapter->hw;
275
276         pause->autoneg =
277                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
278
279         if (hw->fc.current_mode == e1000_fc_rx_pause) {
280                 pause->rx_pause = 1;
281         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
282                 pause->tx_pause = 1;
283         } else if (hw->fc.current_mode == e1000_fc_full) {
284                 pause->rx_pause = 1;
285                 pause->tx_pause = 1;
286         }
287 }
288
289 static int e1000_set_pauseparam(struct net_device *netdev,
290                                 struct ethtool_pauseparam *pause)
291 {
292         struct e1000_adapter *adapter = netdev_priv(netdev);
293         struct e1000_hw *hw = &adapter->hw;
294         int retval = 0;
295
296         adapter->fc_autoneg = pause->autoneg;
297
298         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
299                 msleep(1);
300
301         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
302                 hw->fc.requested_mode = e1000_fc_default;
303                 if (netif_running(adapter->netdev)) {
304                         e1000e_down(adapter);
305                         e1000e_up(adapter);
306                 } else {
307                         e1000e_reset(adapter);
308                 }
309         } else {
310                 if (pause->rx_pause && pause->tx_pause)
311                         hw->fc.requested_mode = e1000_fc_full;
312                 else if (pause->rx_pause && !pause->tx_pause)
313                         hw->fc.requested_mode = e1000_fc_rx_pause;
314                 else if (!pause->rx_pause && pause->tx_pause)
315                         hw->fc.requested_mode = e1000_fc_tx_pause;
316                 else if (!pause->rx_pause && !pause->tx_pause)
317                         hw->fc.requested_mode = e1000_fc_none;
318
319                 hw->fc.current_mode = hw->fc.requested_mode;
320
321                 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
322                           hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
323         }
324
325         clear_bit(__E1000_RESETTING, &adapter->state);
326         return retval;
327 }
328
329 static u32 e1000_get_rx_csum(struct net_device *netdev)
330 {
331         struct e1000_adapter *adapter = netdev_priv(netdev);
332         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
333 }
334
335 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
336 {
337         struct e1000_adapter *adapter = netdev_priv(netdev);
338
339         if (data)
340                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
341         else
342                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
343
344         if (netif_running(netdev))
345                 e1000e_reinit_locked(adapter);
346         else
347                 e1000e_reset(adapter);
348         return 0;
349 }
350
351 static u32 e1000_get_tx_csum(struct net_device *netdev)
352 {
353         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
354 }
355
356 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
357 {
358         if (data)
359                 netdev->features |= NETIF_F_HW_CSUM;
360         else
361                 netdev->features &= ~NETIF_F_HW_CSUM;
362
363         return 0;
364 }
365
366 static int e1000_set_tso(struct net_device *netdev, u32 data)
367 {
368         struct e1000_adapter *adapter = netdev_priv(netdev);
369
370         if (data) {
371                 netdev->features |= NETIF_F_TSO;
372                 netdev->features |= NETIF_F_TSO6;
373         } else {
374                 netdev->features &= ~NETIF_F_TSO;
375                 netdev->features &= ~NETIF_F_TSO6;
376         }
377
378         e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
379         adapter->flags |= FLAG_TSO_FORCE;
380         return 0;
381 }
382
383 static u32 e1000_get_msglevel(struct net_device *netdev)
384 {
385         struct e1000_adapter *adapter = netdev_priv(netdev);
386         return adapter->msg_enable;
387 }
388
389 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
390 {
391         struct e1000_adapter *adapter = netdev_priv(netdev);
392         adapter->msg_enable = data;
393 }
394
395 static int e1000_get_regs_len(struct net_device *netdev)
396 {
397 #define E1000_REGS_LEN 32 /* overestimate */
398         return E1000_REGS_LEN * sizeof(u32);
399 }
400
401 static void e1000_get_regs(struct net_device *netdev,
402                            struct ethtool_regs *regs, void *p)
403 {
404         struct e1000_adapter *adapter = netdev_priv(netdev);
405         struct e1000_hw *hw = &adapter->hw;
406         u32 *regs_buff = p;
407         u16 phy_data;
408         u8 revision_id;
409
410         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
411
412         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
413
414         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
415
416         regs_buff[0]  = er32(CTRL);
417         regs_buff[1]  = er32(STATUS);
418
419         regs_buff[2]  = er32(RCTL);
420         regs_buff[3]  = er32(RDLEN);
421         regs_buff[4]  = er32(RDH);
422         regs_buff[5]  = er32(RDT);
423         regs_buff[6]  = er32(RDTR);
424
425         regs_buff[7]  = er32(TCTL);
426         regs_buff[8]  = er32(TDLEN);
427         regs_buff[9]  = er32(TDH);
428         regs_buff[10] = er32(TDT);
429         regs_buff[11] = er32(TIDV);
430
431         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
432
433         /* ethtool doesn't use anything past this point, so all this
434          * code is likely legacy junk for apps that may or may not
435          * exist */
436         if (hw->phy.type == e1000_phy_m88) {
437                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
438                 regs_buff[13] = (u32)phy_data; /* cable length */
439                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
440                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
441                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
442                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
443                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
444                 regs_buff[18] = regs_buff[13]; /* cable polarity */
445                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
446                 regs_buff[20] = regs_buff[17]; /* polarity correction */
447                 /* phy receive errors */
448                 regs_buff[22] = adapter->phy_stats.receive_errors;
449                 regs_buff[23] = regs_buff[13]; /* mdix mode */
450         }
451         regs_buff[21] = 0; /* was idle_errors */
452         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
453         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
454         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
455 }
456
457 static int e1000_get_eeprom_len(struct net_device *netdev)
458 {
459         struct e1000_adapter *adapter = netdev_priv(netdev);
460         return adapter->hw.nvm.word_size * 2;
461 }
462
463 static int e1000_get_eeprom(struct net_device *netdev,
464                             struct ethtool_eeprom *eeprom, u8 *bytes)
465 {
466         struct e1000_adapter *adapter = netdev_priv(netdev);
467         struct e1000_hw *hw = &adapter->hw;
468         u16 *eeprom_buff;
469         int first_word;
470         int last_word;
471         int ret_val = 0;
472         u16 i;
473
474         if (eeprom->len == 0)
475                 return -EINVAL;
476
477         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
478
479         first_word = eeprom->offset >> 1;
480         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
481
482         eeprom_buff = kmalloc(sizeof(u16) *
483                         (last_word - first_word + 1), GFP_KERNEL);
484         if (!eeprom_buff)
485                 return -ENOMEM;
486
487         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
488                 ret_val = e1000_read_nvm(hw, first_word,
489                                          last_word - first_word + 1,
490                                          eeprom_buff);
491         } else {
492                 for (i = 0; i < last_word - first_word + 1; i++) {
493                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
494                                                       &eeprom_buff[i]);
495                         if (ret_val)
496                                 break;
497                 }
498         }
499
500         if (ret_val) {
501                 /* a read error occurred, throw away the result */
502                 memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
503         } else {
504                 /* Device's eeprom is always little-endian, word addressable */
505                 for (i = 0; i < last_word - first_word + 1; i++)
506                         le16_to_cpus(&eeprom_buff[i]);
507         }
508
509         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
510         kfree(eeprom_buff);
511
512         return ret_val;
513 }
514
515 static int e1000_set_eeprom(struct net_device *netdev,
516                             struct ethtool_eeprom *eeprom, u8 *bytes)
517 {
518         struct e1000_adapter *adapter = netdev_priv(netdev);
519         struct e1000_hw *hw = &adapter->hw;
520         u16 *eeprom_buff;
521         void *ptr;
522         int max_len;
523         int first_word;
524         int last_word;
525         int ret_val = 0;
526         u16 i;
527
528         if (eeprom->len == 0)
529                 return -EOPNOTSUPP;
530
531         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
532                 return -EFAULT;
533
534         if (adapter->flags & FLAG_READ_ONLY_NVM)
535                 return -EINVAL;
536
537         max_len = hw->nvm.word_size * 2;
538
539         first_word = eeprom->offset >> 1;
540         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
541         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
542         if (!eeprom_buff)
543                 return -ENOMEM;
544
545         ptr = (void *)eeprom_buff;
546
547         if (eeprom->offset & 1) {
548                 /* need read/modify/write of first changed EEPROM word */
549                 /* only the second byte of the word is being modified */
550                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
551                 ptr++;
552         }
553         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
554                 /* need read/modify/write of last changed EEPROM word */
555                 /* only the first byte of the word is being modified */
556                 ret_val = e1000_read_nvm(hw, last_word, 1,
557                                   &eeprom_buff[last_word - first_word]);
558
559         if (ret_val)
560                 goto out;
561
562         /* Device's eeprom is always little-endian, word addressable */
563         for (i = 0; i < last_word - first_word + 1; i++)
564                 le16_to_cpus(&eeprom_buff[i]);
565
566         memcpy(ptr, bytes, eeprom->len);
567
568         for (i = 0; i < last_word - first_word + 1; i++)
569                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
570
571         ret_val = e1000_write_nvm(hw, first_word,
572                                   last_word - first_word + 1, eeprom_buff);
573
574         if (ret_val)
575                 goto out;
576
577         /*
578          * Update the checksum over the first part of the EEPROM if needed
579          * and flush shadow RAM for applicable controllers
580          */
581         if ((first_word <= NVM_CHECKSUM_REG) ||
582             (hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82573))
583                 ret_val = e1000e_update_nvm_checksum(hw);
584
585 out:
586         kfree(eeprom_buff);
587         return ret_val;
588 }
589
590 static void e1000_get_drvinfo(struct net_device *netdev,
591                               struct ethtool_drvinfo *drvinfo)
592 {
593         struct e1000_adapter *adapter = netdev_priv(netdev);
594         char firmware_version[32];
595
596         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
597         strncpy(drvinfo->version, e1000e_driver_version, 32);
598
599         /*
600          * EEPROM image version # is reported as firmware version # for
601          * PCI-E controllers
602          */
603         sprintf(firmware_version, "%d.%d-%d",
604                 (adapter->eeprom_vers & 0xF000) >> 12,
605                 (adapter->eeprom_vers & 0x0FF0) >> 4,
606                 (adapter->eeprom_vers & 0x000F));
607
608         strncpy(drvinfo->fw_version, firmware_version, 32);
609         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
610         drvinfo->regdump_len = e1000_get_regs_len(netdev);
611         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
612 }
613
614 static void e1000_get_ringparam(struct net_device *netdev,
615                                 struct ethtool_ringparam *ring)
616 {
617         struct e1000_adapter *adapter = netdev_priv(netdev);
618         struct e1000_ring *tx_ring = adapter->tx_ring;
619         struct e1000_ring *rx_ring = adapter->rx_ring;
620
621         ring->rx_max_pending = E1000_MAX_RXD;
622         ring->tx_max_pending = E1000_MAX_TXD;
623         ring->rx_mini_max_pending = 0;
624         ring->rx_jumbo_max_pending = 0;
625         ring->rx_pending = rx_ring->count;
626         ring->tx_pending = tx_ring->count;
627         ring->rx_mini_pending = 0;
628         ring->rx_jumbo_pending = 0;
629 }
630
631 static int e1000_set_ringparam(struct net_device *netdev,
632                                struct ethtool_ringparam *ring)
633 {
634         struct e1000_adapter *adapter = netdev_priv(netdev);
635         struct e1000_ring *tx_ring, *tx_old;
636         struct e1000_ring *rx_ring, *rx_old;
637         int err;
638
639         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
640                 return -EINVAL;
641
642         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
643                 msleep(1);
644
645         if (netif_running(adapter->netdev))
646                 e1000e_down(adapter);
647
648         tx_old = adapter->tx_ring;
649         rx_old = adapter->rx_ring;
650
651         err = -ENOMEM;
652         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
653         if (!tx_ring)
654                 goto err_alloc_tx;
655         /*
656          * use a memcpy to save any previously configured
657          * items like napi structs from having to be
658          * reinitialized
659          */
660         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
661
662         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
663         if (!rx_ring)
664                 goto err_alloc_rx;
665         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
666
667         adapter->tx_ring = tx_ring;
668         adapter->rx_ring = rx_ring;
669
670         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
671         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
672         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
673
674         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
675         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
676         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
677
678         if (netif_running(adapter->netdev)) {
679                 /* Try to get new resources before deleting old */
680                 err = e1000e_setup_rx_resources(adapter);
681                 if (err)
682                         goto err_setup_rx;
683                 err = e1000e_setup_tx_resources(adapter);
684                 if (err)
685                         goto err_setup_tx;
686
687                 /*
688                  * restore the old in order to free it,
689                  * then add in the new
690                  */
691                 adapter->rx_ring = rx_old;
692                 adapter->tx_ring = tx_old;
693                 e1000e_free_rx_resources(adapter);
694                 e1000e_free_tx_resources(adapter);
695                 kfree(tx_old);
696                 kfree(rx_old);
697                 adapter->rx_ring = rx_ring;
698                 adapter->tx_ring = tx_ring;
699                 err = e1000e_up(adapter);
700                 if (err)
701                         goto err_setup;
702         }
703
704         clear_bit(__E1000_RESETTING, &adapter->state);
705         return 0;
706 err_setup_tx:
707         e1000e_free_rx_resources(adapter);
708 err_setup_rx:
709         adapter->rx_ring = rx_old;
710         adapter->tx_ring = tx_old;
711         kfree(rx_ring);
712 err_alloc_rx:
713         kfree(tx_ring);
714 err_alloc_tx:
715         e1000e_up(adapter);
716 err_setup:
717         clear_bit(__E1000_RESETTING, &adapter->state);
718         return err;
719 }
720
721 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
722                              int reg, int offset, u32 mask, u32 write)
723 {
724         u32 pat, val;
725         static const u32 test[] =
726                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
727         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
728                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
729                                       (test[pat] & write));
730                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
731                 if (val != (test[pat] & write & mask)) {
732                         e_err("pattern test reg %04X failed: got 0x%08X "
733                               "expected 0x%08X\n", reg + offset, val,
734                               (test[pat] & write & mask));
735                         *data = reg;
736                         return 1;
737                 }
738         }
739         return 0;
740 }
741
742 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
743                               int reg, u32 mask, u32 write)
744 {
745         u32 val;
746         __ew32(&adapter->hw, reg, write & mask);
747         val = __er32(&adapter->hw, reg);
748         if ((write & mask) != (val & mask)) {
749                 e_err("set/check reg %04X test failed: got 0x%08X "
750                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
751                 *data = reg;
752                 return 1;
753         }
754         return 0;
755 }
756 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
757         do {                                                                   \
758                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
759                         return 1;                                              \
760         } while (0)
761 #define REG_PATTERN_TEST(reg, mask, write)                                     \
762         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
763
764 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
765         do {                                                                   \
766                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
767                         return 1;                                              \
768         } while (0)
769
770 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
771 {
772         struct e1000_hw *hw = &adapter->hw;
773         struct e1000_mac_info *mac = &adapter->hw.mac;
774         u32 value;
775         u32 before;
776         u32 after;
777         u32 i;
778         u32 toggle;
779
780         /*
781          * The status register is Read Only, so a write should fail.
782          * Some bits that get toggled are ignored.
783          */
784         switch (mac->type) {
785         /* there are several bits on newer hardware that are r/w */
786         case e1000_82571:
787         case e1000_82572:
788         case e1000_80003es2lan:
789                 toggle = 0x7FFFF3FF;
790                 break;
791         case e1000_82573:
792         case e1000_82574:
793         case e1000_ich8lan:
794         case e1000_ich9lan:
795         case e1000_ich10lan:
796                 toggle = 0x7FFFF033;
797                 break;
798         default:
799                 toggle = 0xFFFFF833;
800                 break;
801         }
802
803         before = er32(STATUS);
804         value = (er32(STATUS) & toggle);
805         ew32(STATUS, toggle);
806         after = er32(STATUS) & toggle;
807         if (value != after) {
808                 e_err("failed STATUS register test got: 0x%08X expected: "
809                       "0x%08X\n", after, value);
810                 *data = 1;
811                 return 1;
812         }
813         /* restore previous status */
814         ew32(STATUS, before);
815
816         if (!(adapter->flags & FLAG_IS_ICH)) {
817                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
818                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
819                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
820                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
821         }
822
823         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
824         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
825         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
826         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
827         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
828         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
829         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
830         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
831         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
832         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
833
834         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
835
836         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
837         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
838         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
839
840         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
841         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
842         if (!(adapter->flags & FLAG_IS_ICH))
843                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
844         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
845         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
846         for (i = 0; i < mac->rar_entry_count; i++)
847                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
848                                        ((mac->type == e1000_ich10lan) ?
849                                            0x8007FFFF : 0x8003FFFF),
850                                        0xFFFFFFFF);
851
852         for (i = 0; i < mac->mta_reg_count; i++)
853                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
854
855         *data = 0;
856         return 0;
857 }
858
859 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
860 {
861         u16 temp;
862         u16 checksum = 0;
863         u16 i;
864
865         *data = 0;
866         /* Read and add up the contents of the EEPROM */
867         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
868                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
869                         *data = 1;
870                         return *data;
871                 }
872                 checksum += temp;
873         }
874
875         /* If Checksum is not Correct return error else test passed */
876         if ((checksum != (u16) NVM_SUM) && !(*data))
877                 *data = 2;
878
879         return *data;
880 }
881
882 static irqreturn_t e1000_test_intr(int irq, void *data)
883 {
884         struct net_device *netdev = (struct net_device *) data;
885         struct e1000_adapter *adapter = netdev_priv(netdev);
886         struct e1000_hw *hw = &adapter->hw;
887
888         adapter->test_icr |= er32(ICR);
889
890         return IRQ_HANDLED;
891 }
892
893 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
894 {
895         struct net_device *netdev = adapter->netdev;
896         struct e1000_hw *hw = &adapter->hw;
897         u32 mask;
898         u32 shared_int = 1;
899         u32 irq = adapter->pdev->irq;
900         int i;
901         int ret_val = 0;
902         int int_mode = E1000E_INT_MODE_LEGACY;
903
904         *data = 0;
905
906         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
907         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
908                 int_mode = adapter->int_mode;
909                 e1000e_reset_interrupt_capability(adapter);
910                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
911                 e1000e_set_interrupt_capability(adapter);
912         }
913         /* Hook up test interrupt handler just for this test */
914         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
915                          netdev)) {
916                 shared_int = 0;
917         } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
918                  netdev->name, netdev)) {
919                 *data = 1;
920                 ret_val = -1;
921                 goto out;
922         }
923         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
924
925         /* Disable all the interrupts */
926         ew32(IMC, 0xFFFFFFFF);
927         msleep(10);
928
929         /* Test each interrupt */
930         for (i = 0; i < 10; i++) {
931                 /* Interrupt to test */
932                 mask = 1 << i;
933
934                 if (adapter->flags & FLAG_IS_ICH) {
935                         switch (mask) {
936                         case E1000_ICR_RXSEQ:
937                                 continue;
938                         case 0x00000100:
939                                 if (adapter->hw.mac.type == e1000_ich8lan ||
940                                     adapter->hw.mac.type == e1000_ich9lan)
941                                         continue;
942                                 break;
943                         default:
944                                 break;
945                         }
946                 }
947
948                 if (!shared_int) {
949                         /*
950                          * Disable the interrupt to be reported in
951                          * the cause register and then force the same
952                          * interrupt and see if one gets posted.  If
953                          * an interrupt was posted to the bus, the
954                          * test failed.
955                          */
956                         adapter->test_icr = 0;
957                         ew32(IMC, mask);
958                         ew32(ICS, mask);
959                         msleep(10);
960
961                         if (adapter->test_icr & mask) {
962                                 *data = 3;
963                                 break;
964                         }
965                 }
966
967                 /*
968                  * Enable the interrupt to be reported in
969                  * the cause register and then force the same
970                  * interrupt and see if one gets posted.  If
971                  * an interrupt was not posted to the bus, the
972                  * test failed.
973                  */
974                 adapter->test_icr = 0;
975                 ew32(IMS, mask);
976                 ew32(ICS, mask);
977                 msleep(10);
978
979                 if (!(adapter->test_icr & mask)) {
980                         *data = 4;
981                         break;
982                 }
983
984                 if (!shared_int) {
985                         /*
986                          * Disable the other interrupts to be reported in
987                          * the cause register and then force the other
988                          * interrupts and see if any get posted.  If
989                          * an interrupt was posted to the bus, the
990                          * test failed.
991                          */
992                         adapter->test_icr = 0;
993                         ew32(IMC, ~mask & 0x00007FFF);
994                         ew32(ICS, ~mask & 0x00007FFF);
995                         msleep(10);
996
997                         if (adapter->test_icr) {
998                                 *data = 5;
999                                 break;
1000                         }
1001                 }
1002         }
1003
1004         /* Disable all the interrupts */
1005         ew32(IMC, 0xFFFFFFFF);
1006         msleep(10);
1007
1008         /* Unhook test interrupt handler */
1009         free_irq(irq, netdev);
1010
1011 out:
1012         if (int_mode == E1000E_INT_MODE_MSIX) {
1013                 e1000e_reset_interrupt_capability(adapter);
1014                 adapter->int_mode = int_mode;
1015                 e1000e_set_interrupt_capability(adapter);
1016         }
1017
1018         return ret_val;
1019 }
1020
1021 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1022 {
1023         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1024         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1025         struct pci_dev *pdev = adapter->pdev;
1026         int i;
1027
1028         if (tx_ring->desc && tx_ring->buffer_info) {
1029                 for (i = 0; i < tx_ring->count; i++) {
1030                         if (tx_ring->buffer_info[i].dma)
1031                                 pci_unmap_single(pdev,
1032                                         tx_ring->buffer_info[i].dma,
1033                                         tx_ring->buffer_info[i].length,
1034                                         PCI_DMA_TODEVICE);
1035                         if (tx_ring->buffer_info[i].skb)
1036                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1037                 }
1038         }
1039
1040         if (rx_ring->desc && rx_ring->buffer_info) {
1041                 for (i = 0; i < rx_ring->count; i++) {
1042                         if (rx_ring->buffer_info[i].dma)
1043                                 pci_unmap_single(pdev,
1044                                         rx_ring->buffer_info[i].dma,
1045                                         2048, PCI_DMA_FROMDEVICE);
1046                         if (rx_ring->buffer_info[i].skb)
1047                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1048                 }
1049         }
1050
1051         if (tx_ring->desc) {
1052                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1053                                   tx_ring->dma);
1054                 tx_ring->desc = NULL;
1055         }
1056         if (rx_ring->desc) {
1057                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1058                                   rx_ring->dma);
1059                 rx_ring->desc = NULL;
1060         }
1061
1062         kfree(tx_ring->buffer_info);
1063         tx_ring->buffer_info = NULL;
1064         kfree(rx_ring->buffer_info);
1065         rx_ring->buffer_info = NULL;
1066 }
1067
1068 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1069 {
1070         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1071         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1072         struct pci_dev *pdev = adapter->pdev;
1073         struct e1000_hw *hw = &adapter->hw;
1074         u32 rctl;
1075         int i;
1076         int ret_val;
1077
1078         /* Setup Tx descriptor ring and Tx buffers */
1079
1080         if (!tx_ring->count)
1081                 tx_ring->count = E1000_DEFAULT_TXD;
1082
1083         tx_ring->buffer_info = kcalloc(tx_ring->count,
1084                                        sizeof(struct e1000_buffer),
1085                                        GFP_KERNEL);
1086         if (!(tx_ring->buffer_info)) {
1087                 ret_val = 1;
1088                 goto err_nomem;
1089         }
1090
1091         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1092         tx_ring->size = ALIGN(tx_ring->size, 4096);
1093         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1094                                            &tx_ring->dma, GFP_KERNEL);
1095         if (!tx_ring->desc) {
1096                 ret_val = 2;
1097                 goto err_nomem;
1098         }
1099         tx_ring->next_to_use = 0;
1100         tx_ring->next_to_clean = 0;
1101
1102         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1103         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1104         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1105         ew32(TDH, 0);
1106         ew32(TDT, 0);
1107         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1108              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1109              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1110
1111         for (i = 0; i < tx_ring->count; i++) {
1112                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1113                 struct sk_buff *skb;
1114                 unsigned int skb_size = 1024;
1115
1116                 skb = alloc_skb(skb_size, GFP_KERNEL);
1117                 if (!skb) {
1118                         ret_val = 3;
1119                         goto err_nomem;
1120                 }
1121                 skb_put(skb, skb_size);
1122                 tx_ring->buffer_info[i].skb = skb;
1123                 tx_ring->buffer_info[i].length = skb->len;
1124                 tx_ring->buffer_info[i].dma =
1125                         pci_map_single(pdev, skb->data, skb->len,
1126                                        PCI_DMA_TODEVICE);
1127                 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1128                         ret_val = 4;
1129                         goto err_nomem;
1130                 }
1131                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1132                 tx_desc->lower.data = cpu_to_le32(skb->len);
1133                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1134                                                    E1000_TXD_CMD_IFCS |
1135                                                    E1000_TXD_CMD_RS);
1136                 tx_desc->upper.data = 0;
1137         }
1138
1139         /* Setup Rx descriptor ring and Rx buffers */
1140
1141         if (!rx_ring->count)
1142                 rx_ring->count = E1000_DEFAULT_RXD;
1143
1144         rx_ring->buffer_info = kcalloc(rx_ring->count,
1145                                        sizeof(struct e1000_buffer),
1146                                        GFP_KERNEL);
1147         if (!(rx_ring->buffer_info)) {
1148                 ret_val = 5;
1149                 goto err_nomem;
1150         }
1151
1152         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1153         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1154                                            &rx_ring->dma, GFP_KERNEL);
1155         if (!rx_ring->desc) {
1156                 ret_val = 6;
1157                 goto err_nomem;
1158         }
1159         rx_ring->next_to_use = 0;
1160         rx_ring->next_to_clean = 0;
1161
1162         rctl = er32(RCTL);
1163         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1164         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1165         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1166         ew32(RDLEN, rx_ring->size);
1167         ew32(RDH, 0);
1168         ew32(RDT, 0);
1169         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1170                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1171                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1172                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1173                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1174         ew32(RCTL, rctl);
1175
1176         for (i = 0; i < rx_ring->count; i++) {
1177                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1178                 struct sk_buff *skb;
1179
1180                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1181                 if (!skb) {
1182                         ret_val = 7;
1183                         goto err_nomem;
1184                 }
1185                 skb_reserve(skb, NET_IP_ALIGN);
1186                 rx_ring->buffer_info[i].skb = skb;
1187                 rx_ring->buffer_info[i].dma =
1188                         pci_map_single(pdev, skb->data, 2048,
1189                                        PCI_DMA_FROMDEVICE);
1190                 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1191                         ret_val = 8;
1192                         goto err_nomem;
1193                 }
1194                 rx_desc->buffer_addr =
1195                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1196                 memset(skb->data, 0x00, skb->len);
1197         }
1198
1199         return 0;
1200
1201 err_nomem:
1202         e1000_free_desc_rings(adapter);
1203         return ret_val;
1204 }
1205
1206 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1207 {
1208         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1209         e1e_wphy(&adapter->hw, 29, 0x001F);
1210         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1211         e1e_wphy(&adapter->hw, 29, 0x001A);
1212         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1213 }
1214
1215 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1216 {
1217         struct e1000_hw *hw = &adapter->hw;
1218         u32 ctrl_reg = 0;
1219         u32 stat_reg = 0;
1220         u16 phy_reg = 0;
1221
1222         hw->mac.autoneg = 0;
1223
1224         if (hw->phy.type == e1000_phy_m88) {
1225                 /* Auto-MDI/MDIX Off */
1226                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1227                 /* reset to update Auto-MDI/MDIX */
1228                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1229                 /* autoneg off */
1230                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1231         } else if (hw->phy.type == e1000_phy_gg82563)
1232                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1233
1234         ctrl_reg = er32(CTRL);
1235
1236         switch (hw->phy.type) {
1237         case e1000_phy_ife:
1238                 /* force 100, set loopback */
1239                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1240
1241                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1242                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1243                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1244                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1245                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1246                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1247                 break;
1248         case e1000_phy_bm:
1249                 /* Set Default MAC Interface speed to 1GB */
1250                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1251                 phy_reg &= ~0x0007;
1252                 phy_reg |= 0x006;
1253                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1254                 /* Assert SW reset for above settings to take effect */
1255                 e1000e_commit_phy(hw);
1256                 mdelay(1);
1257                 /* Force Full Duplex */
1258                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1259                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1260                 /* Set Link Up (in force link) */
1261                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1262                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1263                 /* Force Link */
1264                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1265                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1266                 /* Set Early Link Enable */
1267                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1268                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1269                 /* fall through */
1270         default:
1271                 /* force 1000, set loopback */
1272                 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1273                 mdelay(250);
1274
1275                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1276                 ctrl_reg = er32(CTRL);
1277                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1278                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1279                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1280                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1281                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1282
1283                 if (adapter->flags & FLAG_IS_ICH)
1284                         ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1285         }
1286
1287         if (hw->phy.media_type == e1000_media_type_copper &&
1288             hw->phy.type == e1000_phy_m88) {
1289                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1290         } else {
1291                 /*
1292                  * Set the ILOS bit on the fiber Nic if half duplex link is
1293                  * detected.
1294                  */
1295                 stat_reg = er32(STATUS);
1296                 if ((stat_reg & E1000_STATUS_FD) == 0)
1297                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1298         }
1299
1300         ew32(CTRL, ctrl_reg);
1301
1302         /*
1303          * Disable the receiver on the PHY so when a cable is plugged in, the
1304          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1305          */
1306         if (hw->phy.type == e1000_phy_m88)
1307                 e1000_phy_disable_receiver(adapter);
1308
1309         udelay(500);
1310
1311         return 0;
1312 }
1313
1314 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1315 {
1316         struct e1000_hw *hw = &adapter->hw;
1317         u32 ctrl = er32(CTRL);
1318         int link = 0;
1319
1320         /* special requirements for 82571/82572 fiber adapters */
1321
1322         /*
1323          * jump through hoops to make sure link is up because serdes
1324          * link is hardwired up
1325          */
1326         ctrl |= E1000_CTRL_SLU;
1327         ew32(CTRL, ctrl);
1328
1329         /* disable autoneg */
1330         ctrl = er32(TXCW);
1331         ctrl &= ~(1 << 31);
1332         ew32(TXCW, ctrl);
1333
1334         link = (er32(STATUS) & E1000_STATUS_LU);
1335
1336         if (!link) {
1337                 /* set invert loss of signal */
1338                 ctrl = er32(CTRL);
1339                 ctrl |= E1000_CTRL_ILOS;
1340                 ew32(CTRL, ctrl);
1341         }
1342
1343         /*
1344          * special write to serdes control register to enable SerDes analog
1345          * loopback
1346          */
1347 #define E1000_SERDES_LB_ON 0x410
1348         ew32(SCTL, E1000_SERDES_LB_ON);
1349         msleep(10);
1350
1351         return 0;
1352 }
1353
1354 /* only call this for fiber/serdes connections to es2lan */
1355 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1356 {
1357         struct e1000_hw *hw = &adapter->hw;
1358         u32 ctrlext = er32(CTRL_EXT);
1359         u32 ctrl = er32(CTRL);
1360
1361         /*
1362          * save CTRL_EXT to restore later, reuse an empty variable (unused
1363          * on mac_type 80003es2lan)
1364          */
1365         adapter->tx_fifo_head = ctrlext;
1366
1367         /* clear the serdes mode bits, putting the device into mac loopback */
1368         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1369         ew32(CTRL_EXT, ctrlext);
1370
1371         /* force speed to 1000/FD, link up */
1372         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1373         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1374                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1375         ew32(CTRL, ctrl);
1376
1377         /* set mac loopback */
1378         ctrl = er32(RCTL);
1379         ctrl |= E1000_RCTL_LBM_MAC;
1380         ew32(RCTL, ctrl);
1381
1382         /* set testing mode parameters (no need to reset later) */
1383 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1384 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1385         ew32(KMRNCTRLSTA,
1386              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1387
1388         return 0;
1389 }
1390
1391 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1392 {
1393         struct e1000_hw *hw = &adapter->hw;
1394         u32 rctl;
1395
1396         if (hw->phy.media_type == e1000_media_type_fiber ||
1397             hw->phy.media_type == e1000_media_type_internal_serdes) {
1398                 switch (hw->mac.type) {
1399                 case e1000_80003es2lan:
1400                         return e1000_set_es2lan_mac_loopback(adapter);
1401                         break;
1402                 case e1000_82571:
1403                 case e1000_82572:
1404                         return e1000_set_82571_fiber_loopback(adapter);
1405                         break;
1406                 default:
1407                         rctl = er32(RCTL);
1408                         rctl |= E1000_RCTL_LBM_TCVR;
1409                         ew32(RCTL, rctl);
1410                         return 0;
1411                 }
1412         } else if (hw->phy.media_type == e1000_media_type_copper) {
1413                 return e1000_integrated_phy_loopback(adapter);
1414         }
1415
1416         return 7;
1417 }
1418
1419 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1420 {
1421         struct e1000_hw *hw = &adapter->hw;
1422         u32 rctl;
1423         u16 phy_reg;
1424
1425         rctl = er32(RCTL);
1426         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1427         ew32(RCTL, rctl);
1428
1429         switch (hw->mac.type) {
1430         case e1000_80003es2lan:
1431                 if (hw->phy.media_type == e1000_media_type_fiber ||
1432                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1433                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1434                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1435                         adapter->tx_fifo_head = 0;
1436                 }
1437                 /* fall through */
1438         case e1000_82571:
1439         case e1000_82572:
1440                 if (hw->phy.media_type == e1000_media_type_fiber ||
1441                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1442 #define E1000_SERDES_LB_OFF 0x400
1443                         ew32(SCTL, E1000_SERDES_LB_OFF);
1444                         msleep(10);
1445                         break;
1446                 }
1447                 /* Fall Through */
1448         default:
1449                 hw->mac.autoneg = 1;
1450                 if (hw->phy.type == e1000_phy_gg82563)
1451                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1452                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1453                 if (phy_reg & MII_CR_LOOPBACK) {
1454                         phy_reg &= ~MII_CR_LOOPBACK;
1455                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1456                         e1000e_commit_phy(hw);
1457                 }
1458                 break;
1459         }
1460 }
1461
1462 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1463                                       unsigned int frame_size)
1464 {
1465         memset(skb->data, 0xFF, frame_size);
1466         frame_size &= ~1;
1467         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1468         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1469         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1470 }
1471
1472 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1473                                     unsigned int frame_size)
1474 {
1475         frame_size &= ~1;
1476         if (*(skb->data + 3) == 0xFF)
1477                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1478                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1479                         return 0;
1480         return 13;
1481 }
1482
1483 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1484 {
1485         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1486         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1487         struct pci_dev *pdev = adapter->pdev;
1488         struct e1000_hw *hw = &adapter->hw;
1489         int i, j, k, l;
1490         int lc;
1491         int good_cnt;
1492         int ret_val = 0;
1493         unsigned long time;
1494
1495         ew32(RDT, rx_ring->count - 1);
1496
1497         /*
1498          * Calculate the loop count based on the largest descriptor ring
1499          * The idea is to wrap the largest ring a number of times using 64
1500          * send/receive pairs during each loop
1501          */
1502
1503         if (rx_ring->count <= tx_ring->count)
1504                 lc = ((tx_ring->count / 64) * 2) + 1;
1505         else
1506                 lc = ((rx_ring->count / 64) * 2) + 1;
1507
1508         k = 0;
1509         l = 0;
1510         for (j = 0; j <= lc; j++) { /* loop count loop */
1511                 for (i = 0; i < 64; i++) { /* send the packets */
1512                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1513                                                   1024);
1514                         pci_dma_sync_single_for_device(pdev,
1515                                         tx_ring->buffer_info[k].dma,
1516                                         tx_ring->buffer_info[k].length,
1517                                         PCI_DMA_TODEVICE);
1518                         k++;
1519                         if (k == tx_ring->count)
1520                                 k = 0;
1521                 }
1522                 ew32(TDT, k);
1523                 msleep(200);
1524                 time = jiffies; /* set the start time for the receive */
1525                 good_cnt = 0;
1526                 do { /* receive the sent packets */
1527                         pci_dma_sync_single_for_cpu(pdev,
1528                                         rx_ring->buffer_info[l].dma, 2048,
1529                                         PCI_DMA_FROMDEVICE);
1530
1531                         ret_val = e1000_check_lbtest_frame(
1532                                         rx_ring->buffer_info[l].skb, 1024);
1533                         if (!ret_val)
1534                                 good_cnt++;
1535                         l++;
1536                         if (l == rx_ring->count)
1537                                 l = 0;
1538                         /*
1539                          * time + 20 msecs (200 msecs on 2.4) is more than
1540                          * enough time to complete the receives, if it's
1541                          * exceeded, break and error off
1542                          */
1543                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1544                 if (good_cnt != 64) {
1545                         ret_val = 13; /* ret_val is the same as mis-compare */
1546                         break;
1547                 }
1548                 if (jiffies >= (time + 20)) {
1549                         ret_val = 14; /* error code for time out error */
1550                         break;
1551                 }
1552         } /* end loop count loop */
1553         return ret_val;
1554 }
1555
1556 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1557 {
1558         /*
1559          * PHY loopback cannot be performed if SoL/IDER
1560          * sessions are active
1561          */
1562         if (e1000_check_reset_block(&adapter->hw)) {
1563                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1564                 *data = 0;
1565                 goto out;
1566         }
1567
1568         *data = e1000_setup_desc_rings(adapter);
1569         if (*data)
1570                 goto out;
1571
1572         *data = e1000_setup_loopback_test(adapter);
1573         if (*data)
1574                 goto err_loopback;
1575
1576         *data = e1000_run_loopback_test(adapter);
1577         e1000_loopback_cleanup(adapter);
1578
1579 err_loopback:
1580         e1000_free_desc_rings(adapter);
1581 out:
1582         return *data;
1583 }
1584
1585 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1586 {
1587         struct e1000_hw *hw = &adapter->hw;
1588
1589         *data = 0;
1590         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1591                 int i = 0;
1592                 hw->mac.serdes_has_link = false;
1593
1594                 /*
1595                  * On some blade server designs, link establishment
1596                  * could take as long as 2-3 minutes
1597                  */
1598                 do {
1599                         hw->mac.ops.check_for_link(hw);
1600                         if (hw->mac.serdes_has_link)
1601                                 return *data;
1602                         msleep(20);
1603                 } while (i++ < 3750);
1604
1605                 *data = 1;
1606         } else {
1607                 hw->mac.ops.check_for_link(hw);
1608                 if (hw->mac.autoneg)
1609                         msleep(4000);
1610
1611                 if (!(er32(STATUS) &
1612                       E1000_STATUS_LU))
1613                         *data = 1;
1614         }
1615         return *data;
1616 }
1617
1618 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1619 {
1620         switch (sset) {
1621         case ETH_SS_TEST:
1622                 return E1000_TEST_LEN;
1623         case ETH_SS_STATS:
1624                 return E1000_STATS_LEN;
1625         default:
1626                 return -EOPNOTSUPP;
1627         }
1628 }
1629
1630 static void e1000_diag_test(struct net_device *netdev,
1631                             struct ethtool_test *eth_test, u64 *data)
1632 {
1633         struct e1000_adapter *adapter = netdev_priv(netdev);
1634         u16 autoneg_advertised;
1635         u8 forced_speed_duplex;
1636         u8 autoneg;
1637         bool if_running = netif_running(netdev);
1638
1639         set_bit(__E1000_TESTING, &adapter->state);
1640         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1641                 /* Offline tests */
1642
1643                 /* save speed, duplex, autoneg settings */
1644                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1645                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1646                 autoneg = adapter->hw.mac.autoneg;
1647
1648                 e_info("offline testing starting\n");
1649
1650                 /*
1651                  * Link test performed before hardware reset so autoneg doesn't
1652                  * interfere with test result
1653                  */
1654                 if (e1000_link_test(adapter, &data[4]))
1655                         eth_test->flags |= ETH_TEST_FL_FAILED;
1656
1657                 if (if_running)
1658                         /* indicate we're in test mode */
1659                         dev_close(netdev);
1660                 else
1661                         e1000e_reset(adapter);
1662
1663                 if (e1000_reg_test(adapter, &data[0]))
1664                         eth_test->flags |= ETH_TEST_FL_FAILED;
1665
1666                 e1000e_reset(adapter);
1667                 if (e1000_eeprom_test(adapter, &data[1]))
1668                         eth_test->flags |= ETH_TEST_FL_FAILED;
1669
1670                 e1000e_reset(adapter);
1671                 if (e1000_intr_test(adapter, &data[2]))
1672                         eth_test->flags |= ETH_TEST_FL_FAILED;
1673
1674                 e1000e_reset(adapter);
1675                 /* make sure the phy is powered up */
1676                 e1000e_power_up_phy(adapter);
1677                 if (e1000_loopback_test(adapter, &data[3]))
1678                         eth_test->flags |= ETH_TEST_FL_FAILED;
1679
1680                 /* restore speed, duplex, autoneg settings */
1681                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1682                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1683                 adapter->hw.mac.autoneg = autoneg;
1684
1685                 /* force this routine to wait until autoneg complete/timeout */
1686                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1687                 e1000e_reset(adapter);
1688                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1689
1690                 clear_bit(__E1000_TESTING, &adapter->state);
1691                 if (if_running)
1692                         dev_open(netdev);
1693         } else {
1694                 e_info("online testing starting\n");
1695                 /* Online tests */
1696                 if (e1000_link_test(adapter, &data[4]))
1697                         eth_test->flags |= ETH_TEST_FL_FAILED;
1698
1699                 /* Online tests aren't run; pass by default */
1700                 data[0] = 0;
1701                 data[1] = 0;
1702                 data[2] = 0;
1703                 data[3] = 0;
1704
1705                 clear_bit(__E1000_TESTING, &adapter->state);
1706         }
1707         msleep_interruptible(4 * 1000);
1708 }
1709
1710 static void e1000_get_wol(struct net_device *netdev,
1711                           struct ethtool_wolinfo *wol)
1712 {
1713         struct e1000_adapter *adapter = netdev_priv(netdev);
1714
1715         wol->supported = 0;
1716         wol->wolopts = 0;
1717
1718         if (!(adapter->flags & FLAG_HAS_WOL) ||
1719             !device_can_wakeup(&adapter->pdev->dev))
1720                 return;
1721
1722         wol->supported = WAKE_UCAST | WAKE_MCAST |
1723                          WAKE_BCAST | WAKE_MAGIC |
1724                          WAKE_PHY | WAKE_ARP;
1725
1726         /* apply any specific unsupported masks here */
1727         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1728                 wol->supported &= ~WAKE_UCAST;
1729
1730                 if (adapter->wol & E1000_WUFC_EX)
1731                         e_err("Interface does not support directed (unicast) "
1732                               "frame wake-up packets\n");
1733         }
1734
1735         if (adapter->wol & E1000_WUFC_EX)
1736                 wol->wolopts |= WAKE_UCAST;
1737         if (adapter->wol & E1000_WUFC_MC)
1738                 wol->wolopts |= WAKE_MCAST;
1739         if (adapter->wol & E1000_WUFC_BC)
1740                 wol->wolopts |= WAKE_BCAST;
1741         if (adapter->wol & E1000_WUFC_MAG)
1742                 wol->wolopts |= WAKE_MAGIC;
1743         if (adapter->wol & E1000_WUFC_LNKC)
1744                 wol->wolopts |= WAKE_PHY;
1745         if (adapter->wol & E1000_WUFC_ARP)
1746                 wol->wolopts |= WAKE_ARP;
1747 }
1748
1749 static int e1000_set_wol(struct net_device *netdev,
1750                          struct ethtool_wolinfo *wol)
1751 {
1752         struct e1000_adapter *adapter = netdev_priv(netdev);
1753
1754         if (wol->wolopts & WAKE_MAGICSECURE)
1755                 return -EOPNOTSUPP;
1756
1757         if (!(adapter->flags & FLAG_HAS_WOL) ||
1758             !device_can_wakeup(&adapter->pdev->dev))
1759                 return wol->wolopts ? -EOPNOTSUPP : 0;
1760
1761         /* these settings will always override what we currently have */
1762         adapter->wol = 0;
1763
1764         if (wol->wolopts & WAKE_UCAST)
1765                 adapter->wol |= E1000_WUFC_EX;
1766         if (wol->wolopts & WAKE_MCAST)
1767                 adapter->wol |= E1000_WUFC_MC;
1768         if (wol->wolopts & WAKE_BCAST)
1769                 adapter->wol |= E1000_WUFC_BC;
1770         if (wol->wolopts & WAKE_MAGIC)
1771                 adapter->wol |= E1000_WUFC_MAG;
1772         if (wol->wolopts & WAKE_PHY)
1773                 adapter->wol |= E1000_WUFC_LNKC;
1774         if (wol->wolopts & WAKE_ARP)
1775                 adapter->wol |= E1000_WUFC_ARP;
1776
1777         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1778
1779         return 0;
1780 }
1781
1782 /* toggle LED 4 times per second = 2 "blinks" per second */
1783 #define E1000_ID_INTERVAL       (HZ/4)
1784
1785 /* bit defines for adapter->led_status */
1786 #define E1000_LED_ON            0
1787
1788 static void e1000_led_blink_callback(unsigned long data)
1789 {
1790         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1791
1792         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1793                 adapter->hw.mac.ops.led_off(&adapter->hw);
1794         else
1795                 adapter->hw.mac.ops.led_on(&adapter->hw);
1796
1797         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1798 }
1799
1800 static int e1000_phys_id(struct net_device *netdev, u32 data)
1801 {
1802         struct e1000_adapter *adapter = netdev_priv(netdev);
1803         struct e1000_hw *hw = &adapter->hw;
1804
1805         if (!data)
1806                 data = INT_MAX;
1807
1808         if ((hw->phy.type == e1000_phy_ife) ||
1809             (hw->mac.type == e1000_82574)) {
1810                 if (!adapter->blink_timer.function) {
1811                         init_timer(&adapter->blink_timer);
1812                         adapter->blink_timer.function =
1813                                 e1000_led_blink_callback;
1814                         adapter->blink_timer.data = (unsigned long) adapter;
1815                 }
1816                 mod_timer(&adapter->blink_timer, jiffies);
1817                 msleep_interruptible(data * 1000);
1818                 del_timer_sync(&adapter->blink_timer);
1819                 if (hw->phy.type == e1000_phy_ife)
1820                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1821         } else {
1822                 e1000e_blink_led(hw);
1823                 msleep_interruptible(data * 1000);
1824         }
1825
1826         hw->mac.ops.led_off(hw);
1827         clear_bit(E1000_LED_ON, &adapter->led_status);
1828         hw->mac.ops.cleanup_led(hw);
1829
1830         return 0;
1831 }
1832
1833 static int e1000_get_coalesce(struct net_device *netdev,
1834                               struct ethtool_coalesce *ec)
1835 {
1836         struct e1000_adapter *adapter = netdev_priv(netdev);
1837
1838         if (adapter->itr_setting <= 3)
1839                 ec->rx_coalesce_usecs = adapter->itr_setting;
1840         else
1841                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1842
1843         return 0;
1844 }
1845
1846 static int e1000_set_coalesce(struct net_device *netdev,
1847                               struct ethtool_coalesce *ec)
1848 {
1849         struct e1000_adapter *adapter = netdev_priv(netdev);
1850         struct e1000_hw *hw = &adapter->hw;
1851
1852         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1853             ((ec->rx_coalesce_usecs > 3) &&
1854              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1855             (ec->rx_coalesce_usecs == 2))
1856                 return -EINVAL;
1857
1858         if (ec->rx_coalesce_usecs <= 3) {
1859                 adapter->itr = 20000;
1860                 adapter->itr_setting = ec->rx_coalesce_usecs;
1861         } else {
1862                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1863                 adapter->itr_setting = adapter->itr & ~3;
1864         }
1865
1866         if (adapter->itr_setting != 0)
1867                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1868         else
1869                 ew32(ITR, 0);
1870
1871         return 0;
1872 }
1873
1874 static int e1000_nway_reset(struct net_device *netdev)
1875 {
1876         struct e1000_adapter *adapter = netdev_priv(netdev);
1877         if (netif_running(netdev))
1878                 e1000e_reinit_locked(adapter);
1879         return 0;
1880 }
1881
1882 static void e1000_get_ethtool_stats(struct net_device *netdev,
1883                                     struct ethtool_stats *stats,
1884                                     u64 *data)
1885 {
1886         struct e1000_adapter *adapter = netdev_priv(netdev);
1887         int i;
1888
1889         e1000e_update_stats(adapter);
1890         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1891                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1892                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1893                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1894         }
1895 }
1896
1897 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1898                               u8 *data)
1899 {
1900         u8 *p = data;
1901         int i;
1902
1903         switch (stringset) {
1904         case ETH_SS_TEST:
1905                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1906                 break;
1907         case ETH_SS_STATS:
1908                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1909                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1910                                ETH_GSTRING_LEN);
1911                         p += ETH_GSTRING_LEN;
1912                 }
1913                 break;
1914         }
1915 }
1916
1917 static const struct ethtool_ops e1000_ethtool_ops = {
1918         .get_settings           = e1000_get_settings,
1919         .set_settings           = e1000_set_settings,
1920         .get_drvinfo            = e1000_get_drvinfo,
1921         .get_regs_len           = e1000_get_regs_len,
1922         .get_regs               = e1000_get_regs,
1923         .get_wol                = e1000_get_wol,
1924         .set_wol                = e1000_set_wol,
1925         .get_msglevel           = e1000_get_msglevel,
1926         .set_msglevel           = e1000_set_msglevel,
1927         .nway_reset             = e1000_nway_reset,
1928         .get_link               = e1000_get_link,
1929         .get_eeprom_len         = e1000_get_eeprom_len,
1930         .get_eeprom             = e1000_get_eeprom,
1931         .set_eeprom             = e1000_set_eeprom,
1932         .get_ringparam          = e1000_get_ringparam,
1933         .set_ringparam          = e1000_set_ringparam,
1934         .get_pauseparam         = e1000_get_pauseparam,
1935         .set_pauseparam         = e1000_set_pauseparam,
1936         .get_rx_csum            = e1000_get_rx_csum,
1937         .set_rx_csum            = e1000_set_rx_csum,
1938         .get_tx_csum            = e1000_get_tx_csum,
1939         .set_tx_csum            = e1000_set_tx_csum,
1940         .get_sg                 = ethtool_op_get_sg,
1941         .set_sg                 = ethtool_op_set_sg,
1942         .get_tso                = ethtool_op_get_tso,
1943         .set_tso                = e1000_set_tso,
1944         .self_test              = e1000_diag_test,
1945         .get_strings            = e1000_get_strings,
1946         .phys_id                = e1000_phys_id,
1947         .get_ethtool_stats      = e1000_get_ethtool_stats,
1948         .get_sset_count         = e1000e_get_sset_count,
1949         .get_coalesce           = e1000_get_coalesce,
1950         .set_coalesce           = e1000_set_coalesce,
1951 };
1952
1953 void e1000e_set_ethtool_ops(struct net_device *netdev)
1954 {
1955         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1956 }