]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - drivers/net/e1000/e1000_main.c
[SK_BUFF]: Introduce skb_transport_offset()
[linux-2.6.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x1049),
77         INTEL_E1000_ETHERNET_DEVICE(0x104A),
78         INTEL_E1000_ETHERNET_DEVICE(0x104B),
79         INTEL_E1000_ETHERNET_DEVICE(0x104C),
80         INTEL_E1000_ETHERNET_DEVICE(0x104D),
81         INTEL_E1000_ETHERNET_DEVICE(0x105E),
82         INTEL_E1000_ETHERNET_DEVICE(0x105F),
83         INTEL_E1000_ETHERNET_DEVICE(0x1060),
84         INTEL_E1000_ETHERNET_DEVICE(0x1075),
85         INTEL_E1000_ETHERNET_DEVICE(0x1076),
86         INTEL_E1000_ETHERNET_DEVICE(0x1077),
87         INTEL_E1000_ETHERNET_DEVICE(0x1078),
88         INTEL_E1000_ETHERNET_DEVICE(0x1079),
89         INTEL_E1000_ETHERNET_DEVICE(0x107A),
90         INTEL_E1000_ETHERNET_DEVICE(0x107B),
91         INTEL_E1000_ETHERNET_DEVICE(0x107C),
92         INTEL_E1000_ETHERNET_DEVICE(0x107D),
93         INTEL_E1000_ETHERNET_DEVICE(0x107E),
94         INTEL_E1000_ETHERNET_DEVICE(0x107F),
95         INTEL_E1000_ETHERNET_DEVICE(0x108A),
96         INTEL_E1000_ETHERNET_DEVICE(0x108B),
97         INTEL_E1000_ETHERNET_DEVICE(0x108C),
98         INTEL_E1000_ETHERNET_DEVICE(0x1096),
99         INTEL_E1000_ETHERNET_DEVICE(0x1098),
100         INTEL_E1000_ETHERNET_DEVICE(0x1099),
101         INTEL_E1000_ETHERNET_DEVICE(0x109A),
102         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
104         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
106         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
107         INTEL_E1000_ETHERNET_DEVICE(0x10BC),
108         INTEL_E1000_ETHERNET_DEVICE(0x10C4),
109         INTEL_E1000_ETHERNET_DEVICE(0x10C5),
110         /* required last entry */
111         {0,}
112 };
113
114 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
115
116 int e1000_up(struct e1000_adapter *adapter);
117 void e1000_down(struct e1000_adapter *adapter);
118 void e1000_reinit_locked(struct e1000_adapter *adapter);
119 void e1000_reset(struct e1000_adapter *adapter);
120 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
121 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
122 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
123 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
124 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
125 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
126                              struct e1000_tx_ring *txdr);
127 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
128                              struct e1000_rx_ring *rxdr);
129 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
130                              struct e1000_tx_ring *tx_ring);
131 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
132                              struct e1000_rx_ring *rx_ring);
133 void e1000_update_stats(struct e1000_adapter *adapter);
134
135 static int e1000_init_module(void);
136 static void e1000_exit_module(void);
137 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
138 static void __devexit e1000_remove(struct pci_dev *pdev);
139 static int e1000_alloc_queues(struct e1000_adapter *adapter);
140 static int e1000_sw_init(struct e1000_adapter *adapter);
141 static int e1000_open(struct net_device *netdev);
142 static int e1000_close(struct net_device *netdev);
143 static void e1000_configure_tx(struct e1000_adapter *adapter);
144 static void e1000_configure_rx(struct e1000_adapter *adapter);
145 static void e1000_setup_rctl(struct e1000_adapter *adapter);
146 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
147 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
148 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
149                                 struct e1000_tx_ring *tx_ring);
150 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
151                                 struct e1000_rx_ring *rx_ring);
152 static void e1000_set_multi(struct net_device *netdev);
153 static void e1000_update_phy_info(unsigned long data);
154 static void e1000_watchdog(unsigned long data);
155 static void e1000_82547_tx_fifo_stall(unsigned long data);
156 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
157 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
158 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
159 static int e1000_set_mac(struct net_device *netdev, void *p);
160 static irqreturn_t e1000_intr(int irq, void *data);
161 #ifdef CONFIG_PCI_MSI
162 static irqreturn_t e1000_intr_msi(int irq, void *data);
163 #endif
164 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
165                                     struct e1000_tx_ring *tx_ring);
166 #ifdef CONFIG_E1000_NAPI
167 static int e1000_clean(struct net_device *poll_dev, int *budget);
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring,
170                                     int *work_done, int work_to_do);
171 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
172                                        struct e1000_rx_ring *rx_ring,
173                                        int *work_done, int work_to_do);
174 #else
175 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
176                                     struct e1000_rx_ring *rx_ring);
177 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
178                                        struct e1000_rx_ring *rx_ring);
179 #endif
180 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
181                                    struct e1000_rx_ring *rx_ring,
182                                    int cleaned_count);
183 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
184                                       struct e1000_rx_ring *rx_ring,
185                                       int cleaned_count);
186 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
187 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
188                            int cmd);
189 void e1000_set_ethtool_ops(struct net_device *netdev);
190 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
191 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
192 static void e1000_tx_timeout(struct net_device *dev);
193 static void e1000_reset_task(struct work_struct *work);
194 static void e1000_smartspeed(struct e1000_adapter *adapter);
195 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
196                                        struct sk_buff *skb);
197
198 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
199 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
200 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
201 static void e1000_restore_vlan(struct e1000_adapter *adapter);
202
203 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
204 #ifdef CONFIG_PM
205 static int e1000_resume(struct pci_dev *pdev);
206 #endif
207 static void e1000_shutdown(struct pci_dev *pdev);
208
209 #ifdef CONFIG_NET_POLL_CONTROLLER
210 /* for netdump / net console */
211 static void e1000_netpoll (struct net_device *netdev);
212 #endif
213
214 extern void e1000_check_options(struct e1000_adapter *adapter);
215
216 #define COPYBREAK_DEFAULT 256
217 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
218 module_param(copybreak, uint, 0644);
219 MODULE_PARM_DESC(copybreak,
220         "Maximum size of packet that is copied to a new buffer on receive");
221
222 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
223                      pci_channel_state_t state);
224 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
225 static void e1000_io_resume(struct pci_dev *pdev);
226
227 static struct pci_error_handlers e1000_err_handler = {
228         .error_detected = e1000_io_error_detected,
229         .slot_reset = e1000_io_slot_reset,
230         .resume = e1000_io_resume,
231 };
232
233 static struct pci_driver e1000_driver = {
234         .name     = e1000_driver_name,
235         .id_table = e1000_pci_tbl,
236         .probe    = e1000_probe,
237         .remove   = __devexit_p(e1000_remove),
238 #ifdef CONFIG_PM
239         /* Power Managment Hooks */
240         .suspend  = e1000_suspend,
241         .resume   = e1000_resume,
242 #endif
243         .shutdown = e1000_shutdown,
244         .err_handler = &e1000_err_handler
245 };
246
247 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
248 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION);
251
252 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256 /**
257  * e1000_init_module - Driver Registration Routine
258  *
259  * e1000_init_module is the first routine called when the driver is
260  * loaded. All it does is register with the PCI subsystem.
261  **/
262
263 static int __init
264 e1000_init_module(void)
265 {
266         int ret;
267         printk(KERN_INFO "%s - version %s\n",
268                e1000_driver_string, e1000_driver_version);
269
270         printk(KERN_INFO "%s\n", e1000_copyright);
271
272         ret = pci_register_driver(&e1000_driver);
273         if (copybreak != COPYBREAK_DEFAULT) {
274                 if (copybreak == 0)
275                         printk(KERN_INFO "e1000: copybreak disabled\n");
276                 else
277                         printk(KERN_INFO "e1000: copybreak enabled for "
278                                "packets <= %u bytes\n", copybreak);
279         }
280         return ret;
281 }
282
283 module_init(e1000_init_module);
284
285 /**
286  * e1000_exit_module - Driver Exit Cleanup Routine
287  *
288  * e1000_exit_module is called just before the driver is removed
289  * from memory.
290  **/
291
292 static void __exit
293 e1000_exit_module(void)
294 {
295         pci_unregister_driver(&e1000_driver);
296 }
297
298 module_exit(e1000_exit_module);
299
300 static int e1000_request_irq(struct e1000_adapter *adapter)
301 {
302         struct net_device *netdev = adapter->netdev;
303         int flags, err = 0;
304
305         flags = IRQF_SHARED;
306 #ifdef CONFIG_PCI_MSI
307         if (adapter->hw.mac_type >= e1000_82571) {
308                 adapter->have_msi = TRUE;
309                 if ((err = pci_enable_msi(adapter->pdev))) {
310                         DPRINTK(PROBE, ERR,
311                          "Unable to allocate MSI interrupt Error: %d\n", err);
312                         adapter->have_msi = FALSE;
313                 }
314         }
315         if (adapter->have_msi) {
316                 flags &= ~IRQF_SHARED;
317                 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, flags,
318                                   netdev->name, netdev);
319                 if (err)
320                         DPRINTK(PROBE, ERR,
321                                "Unable to allocate interrupt Error: %d\n", err);
322         } else
323 #endif
324         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
325                                netdev->name, netdev)))
326                 DPRINTK(PROBE, ERR,
327                         "Unable to allocate interrupt Error: %d\n", err);
328
329         return err;
330 }
331
332 static void e1000_free_irq(struct e1000_adapter *adapter)
333 {
334         struct net_device *netdev = adapter->netdev;
335
336         free_irq(adapter->pdev->irq, netdev);
337
338 #ifdef CONFIG_PCI_MSI
339         if (adapter->have_msi)
340                 pci_disable_msi(adapter->pdev);
341 #endif
342 }
343
344 /**
345  * e1000_irq_disable - Mask off interrupt generation on the NIC
346  * @adapter: board private structure
347  **/
348
349 static void
350 e1000_irq_disable(struct e1000_adapter *adapter)
351 {
352         atomic_inc(&adapter->irq_sem);
353         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
354         E1000_WRITE_FLUSH(&adapter->hw);
355         synchronize_irq(adapter->pdev->irq);
356 }
357
358 /**
359  * e1000_irq_enable - Enable default interrupt generation settings
360  * @adapter: board private structure
361  **/
362
363 static void
364 e1000_irq_enable(struct e1000_adapter *adapter)
365 {
366         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
367                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
368                 E1000_WRITE_FLUSH(&adapter->hw);
369         }
370 }
371
372 static void
373 e1000_update_mng_vlan(struct e1000_adapter *adapter)
374 {
375         struct net_device *netdev = adapter->netdev;
376         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
377         uint16_t old_vid = adapter->mng_vlan_id;
378         if (adapter->vlgrp) {
379                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
380                         if (adapter->hw.mng_cookie.status &
381                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
382                                 e1000_vlan_rx_add_vid(netdev, vid);
383                                 adapter->mng_vlan_id = vid;
384                         } else
385                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
386
387                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
388                                         (vid != old_vid) &&
389                             !vlan_group_get_device(adapter->vlgrp, old_vid))
390                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
391                 } else
392                         adapter->mng_vlan_id = vid;
393         }
394 }
395
396 /**
397  * e1000_release_hw_control - release control of the h/w to f/w
398  * @adapter: address of board private structure
399  *
400  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
401  * For ASF and Pass Through versions of f/w this means that the
402  * driver is no longer loaded. For AMT version (only with 82573) i
403  * of the f/w this means that the network i/f is closed.
404  *
405  **/
406
407 static void
408 e1000_release_hw_control(struct e1000_adapter *adapter)
409 {
410         uint32_t ctrl_ext;
411         uint32_t swsm;
412         uint32_t extcnf;
413
414         /* Let firmware taken over control of h/w */
415         switch (adapter->hw.mac_type) {
416         case e1000_82571:
417         case e1000_82572:
418         case e1000_80003es2lan:
419                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
420                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
421                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
422                 break;
423         case e1000_82573:
424                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
425                 E1000_WRITE_REG(&adapter->hw, SWSM,
426                                 swsm & ~E1000_SWSM_DRV_LOAD);
427         case e1000_ich8lan:
428                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
429                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
430                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
431                 break;
432         default:
433                 break;
434         }
435 }
436
437 /**
438  * e1000_get_hw_control - get control of the h/w from f/w
439  * @adapter: address of board private structure
440  *
441  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
442  * For ASF and Pass Through versions of f/w this means that
443  * the driver is loaded. For AMT version (only with 82573)
444  * of the f/w this means that the network i/f is open.
445  *
446  **/
447
448 static void
449 e1000_get_hw_control(struct e1000_adapter *adapter)
450 {
451         uint32_t ctrl_ext;
452         uint32_t swsm;
453         uint32_t extcnf;
454
455         /* Let firmware know the driver has taken over */
456         switch (adapter->hw.mac_type) {
457         case e1000_82571:
458         case e1000_82572:
459         case e1000_80003es2lan:
460                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
461                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
462                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
463                 break;
464         case e1000_82573:
465                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
466                 E1000_WRITE_REG(&adapter->hw, SWSM,
467                                 swsm | E1000_SWSM_DRV_LOAD);
468                 break;
469         case e1000_ich8lan:
470                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
471                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
472                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
473                 break;
474         default:
475                 break;
476         }
477 }
478
479 static void
480 e1000_init_manageability(struct e1000_adapter *adapter)
481 {
482         if (adapter->en_mng_pt) {
483                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
484
485                 /* disable hardware interception of ARP */
486                 manc &= ~(E1000_MANC_ARP_EN);
487
488                 /* enable receiving management packets to the host */
489                 /* this will probably generate destination unreachable messages
490                  * from the host OS, but the packets will be handled on SMBUS */
491                 if (adapter->hw.has_manc2h) {
492                         uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
493
494                         manc |= E1000_MANC_EN_MNG2HOST;
495 #define E1000_MNG2HOST_PORT_623 (1 << 5)
496 #define E1000_MNG2HOST_PORT_664 (1 << 6)
497                         manc2h |= E1000_MNG2HOST_PORT_623;
498                         manc2h |= E1000_MNG2HOST_PORT_664;
499                         E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
500                 }
501
502                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
503         }
504 }
505
506 static void
507 e1000_release_manageability(struct e1000_adapter *adapter)
508 {
509         if (adapter->en_mng_pt) {
510                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
511
512                 /* re-enable hardware interception of ARP */
513                 manc |= E1000_MANC_ARP_EN;
514
515                 if (adapter->hw.has_manc2h)
516                         manc &= ~E1000_MANC_EN_MNG2HOST;
517
518                 /* don't explicitly have to mess with MANC2H since
519                  * MANC has an enable disable that gates MANC2H */
520
521                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
522         }
523 }
524
525 int
526 e1000_up(struct e1000_adapter *adapter)
527 {
528         struct net_device *netdev = adapter->netdev;
529         int i;
530
531         /* hardware has been reset, we need to reload some things */
532
533         e1000_set_multi(netdev);
534
535         e1000_restore_vlan(adapter);
536         e1000_init_manageability(adapter);
537
538         e1000_configure_tx(adapter);
539         e1000_setup_rctl(adapter);
540         e1000_configure_rx(adapter);
541         /* call E1000_DESC_UNUSED which always leaves
542          * at least 1 descriptor unused to make sure
543          * next_to_use != next_to_clean */
544         for (i = 0; i < adapter->num_rx_queues; i++) {
545                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
546                 adapter->alloc_rx_buf(adapter, ring,
547                                       E1000_DESC_UNUSED(ring));
548         }
549
550         adapter->tx_queue_len = netdev->tx_queue_len;
551
552 #ifdef CONFIG_E1000_NAPI
553         netif_poll_enable(netdev);
554 #endif
555         e1000_irq_enable(adapter);
556
557         clear_bit(__E1000_DOWN, &adapter->flags);
558
559         /* fire a link change interrupt to start the watchdog */
560         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
561         return 0;
562 }
563
564 /**
565  * e1000_power_up_phy - restore link in case the phy was powered down
566  * @adapter: address of board private structure
567  *
568  * The phy may be powered down to save power and turn off link when the
569  * driver is unloaded and wake on lan is not enabled (among others)
570  * *** this routine MUST be followed by a call to e1000_reset ***
571  *
572  **/
573
574 void e1000_power_up_phy(struct e1000_adapter *adapter)
575 {
576         uint16_t mii_reg = 0;
577
578         /* Just clear the power down bit to wake the phy back up */
579         if (adapter->hw.media_type == e1000_media_type_copper) {
580                 /* according to the manual, the phy will retain its
581                  * settings across a power-down/up cycle */
582                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
583                 mii_reg &= ~MII_CR_POWER_DOWN;
584                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
585         }
586 }
587
588 static void e1000_power_down_phy(struct e1000_adapter *adapter)
589 {
590         /* Power down the PHY so no link is implied when interface is down *
591          * The PHY cannot be powered down if any of the following is TRUE *
592          * (a) WoL is enabled
593          * (b) AMT is active
594          * (c) SoL/IDER session is active */
595         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
596            adapter->hw.media_type == e1000_media_type_copper) {
597                 uint16_t mii_reg = 0;
598
599                 switch (adapter->hw.mac_type) {
600                 case e1000_82540:
601                 case e1000_82545:
602                 case e1000_82545_rev_3:
603                 case e1000_82546:
604                 case e1000_82546_rev_3:
605                 case e1000_82541:
606                 case e1000_82541_rev_2:
607                 case e1000_82547:
608                 case e1000_82547_rev_2:
609                         if (E1000_READ_REG(&adapter->hw, MANC) &
610                             E1000_MANC_SMBUS_EN)
611                                 goto out;
612                         break;
613                 case e1000_82571:
614                 case e1000_82572:
615                 case e1000_82573:
616                 case e1000_80003es2lan:
617                 case e1000_ich8lan:
618                         if (e1000_check_mng_mode(&adapter->hw) ||
619                             e1000_check_phy_reset_block(&adapter->hw))
620                                 goto out;
621                         break;
622                 default:
623                         goto out;
624                 }
625                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
626                 mii_reg |= MII_CR_POWER_DOWN;
627                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
628                 mdelay(1);
629         }
630 out:
631         return;
632 }
633
634 void
635 e1000_down(struct e1000_adapter *adapter)
636 {
637         struct net_device *netdev = adapter->netdev;
638
639         /* signal that we're down so the interrupt handler does not
640          * reschedule our watchdog timer */
641         set_bit(__E1000_DOWN, &adapter->flags);
642
643         e1000_irq_disable(adapter);
644
645         del_timer_sync(&adapter->tx_fifo_stall_timer);
646         del_timer_sync(&adapter->watchdog_timer);
647         del_timer_sync(&adapter->phy_info_timer);
648
649 #ifdef CONFIG_E1000_NAPI
650         netif_poll_disable(netdev);
651 #endif
652         netdev->tx_queue_len = adapter->tx_queue_len;
653         adapter->link_speed = 0;
654         adapter->link_duplex = 0;
655         netif_carrier_off(netdev);
656         netif_stop_queue(netdev);
657
658         e1000_reset(adapter);
659         e1000_clean_all_tx_rings(adapter);
660         e1000_clean_all_rx_rings(adapter);
661 }
662
663 void
664 e1000_reinit_locked(struct e1000_adapter *adapter)
665 {
666         WARN_ON(in_interrupt());
667         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
668                 msleep(1);
669         e1000_down(adapter);
670         e1000_up(adapter);
671         clear_bit(__E1000_RESETTING, &adapter->flags);
672 }
673
674 void
675 e1000_reset(struct e1000_adapter *adapter)
676 {
677         uint32_t pba = 0, tx_space, min_tx_space, min_rx_space;
678         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
679         boolean_t legacy_pba_adjust = FALSE;
680
681         /* Repartition Pba for greater than 9k mtu
682          * To take effect CTRL.RST is required.
683          */
684
685         switch (adapter->hw.mac_type) {
686         case e1000_82542_rev2_0:
687         case e1000_82542_rev2_1:
688         case e1000_82543:
689         case e1000_82544:
690         case e1000_82540:
691         case e1000_82541:
692         case e1000_82541_rev_2:
693                 legacy_pba_adjust = TRUE;
694                 pba = E1000_PBA_48K;
695                 break;
696         case e1000_82545:
697         case e1000_82545_rev_3:
698         case e1000_82546:
699         case e1000_82546_rev_3:
700                 pba = E1000_PBA_48K;
701                 break;
702         case e1000_82547:
703         case e1000_82547_rev_2:
704                 legacy_pba_adjust = TRUE;
705                 pba = E1000_PBA_30K;
706                 break;
707         case e1000_82571:
708         case e1000_82572:
709         case e1000_80003es2lan:
710                 pba = E1000_PBA_38K;
711                 break;
712         case e1000_82573:
713                 pba = E1000_PBA_20K;
714                 break;
715         case e1000_ich8lan:
716                 pba = E1000_PBA_8K;
717         case e1000_undefined:
718         case e1000_num_macs:
719                 break;
720         }
721
722         if (legacy_pba_adjust == TRUE) {
723                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
724                         pba -= 8; /* allocate more FIFO for Tx */
725
726                 if (adapter->hw.mac_type == e1000_82547) {
727                         adapter->tx_fifo_head = 0;
728                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
729                         adapter->tx_fifo_size =
730                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
731                         atomic_set(&adapter->tx_fifo_stall, 0);
732                 }
733         } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
734                 /* adjust PBA for jumbo frames */
735                 E1000_WRITE_REG(&adapter->hw, PBA, pba);
736
737                 /* To maintain wire speed transmits, the Tx FIFO should be
738                  * large enough to accomodate two full transmit packets,
739                  * rounded up to the next 1KB and expressed in KB.  Likewise,
740                  * the Rx FIFO should be large enough to accomodate at least
741                  * one full receive packet and is similarly rounded up and
742                  * expressed in KB. */
743                 pba = E1000_READ_REG(&adapter->hw, PBA);
744                 /* upper 16 bits has Tx packet buffer allocation size in KB */
745                 tx_space = pba >> 16;
746                 /* lower 16 bits has Rx packet buffer allocation size in KB */
747                 pba &= 0xffff;
748                 /* don't include ethernet FCS because hardware appends/strips */
749                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
750                                VLAN_TAG_SIZE;
751                 min_tx_space = min_rx_space;
752                 min_tx_space *= 2;
753                 E1000_ROUNDUP(min_tx_space, 1024);
754                 min_tx_space >>= 10;
755                 E1000_ROUNDUP(min_rx_space, 1024);
756                 min_rx_space >>= 10;
757
758                 /* If current Tx allocation is less than the min Tx FIFO size,
759                  * and the min Tx FIFO size is less than the current Rx FIFO
760                  * allocation, take space away from current Rx allocation */
761                 if (tx_space < min_tx_space &&
762                     ((min_tx_space - tx_space) < pba)) {
763                         pba = pba - (min_tx_space - tx_space);
764
765                         /* PCI/PCIx hardware has PBA alignment constraints */
766                         switch (adapter->hw.mac_type) {
767                         case e1000_82545 ... e1000_82546_rev_3:
768                                 pba &= ~(E1000_PBA_8K - 1);
769                                 break;
770                         default:
771                                 break;
772                         }
773
774                         /* if short on rx space, rx wins and must trump tx
775                          * adjustment or use Early Receive if available */
776                         if (pba < min_rx_space) {
777                                 switch (adapter->hw.mac_type) {
778                                 case e1000_82573:
779                                         /* ERT enabled in e1000_configure_rx */
780                                         break;
781                                 default:
782                                         pba = min_rx_space;
783                                         break;
784                                 }
785                         }
786                 }
787         }
788
789         E1000_WRITE_REG(&adapter->hw, PBA, pba);
790
791         /* flow control settings */
792         /* Set the FC high water mark to 90% of the FIFO size.
793          * Required to clear last 3 LSB */
794         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
795         /* We can't use 90% on small FIFOs because the remainder
796          * would be less than 1 full frame.  In this case, we size
797          * it to allow at least a full frame above the high water
798          *  mark. */
799         if (pba < E1000_PBA_16K)
800                 fc_high_water_mark = (pba * 1024) - 1600;
801
802         adapter->hw.fc_high_water = fc_high_water_mark;
803         adapter->hw.fc_low_water = fc_high_water_mark - 8;
804         if (adapter->hw.mac_type == e1000_80003es2lan)
805                 adapter->hw.fc_pause_time = 0xFFFF;
806         else
807                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
808         adapter->hw.fc_send_xon = 1;
809         adapter->hw.fc = adapter->hw.original_fc;
810
811         /* Allow time for pending master requests to run */
812         e1000_reset_hw(&adapter->hw);
813         if (adapter->hw.mac_type >= e1000_82544)
814                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
815
816         if (e1000_init_hw(&adapter->hw))
817                 DPRINTK(PROBE, ERR, "Hardware Error\n");
818         e1000_update_mng_vlan(adapter);
819
820         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
821         if (adapter->hw.mac_type >= e1000_82544 &&
822             adapter->hw.mac_type <= e1000_82547_rev_2 &&
823             adapter->hw.autoneg == 1 &&
824             adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
825                 uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
826                 /* clear phy power management bit if we are in gig only mode,
827                  * which if enabled will attempt negotiation to 100Mb, which
828                  * can cause a loss of link at power off or driver unload */
829                 ctrl &= ~E1000_CTRL_SWDPIN3;
830                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
831         }
832
833         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
834         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
835
836         e1000_reset_adaptive(&adapter->hw);
837         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
838
839         if (!adapter->smart_power_down &&
840             (adapter->hw.mac_type == e1000_82571 ||
841              adapter->hw.mac_type == e1000_82572)) {
842                 uint16_t phy_data = 0;
843                 /* speed up time to link by disabling smart power down, ignore
844                  * the return value of this function because there is nothing
845                  * different we would do if it failed */
846                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
847                                    &phy_data);
848                 phy_data &= ~IGP02E1000_PM_SPD;
849                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
850                                     phy_data);
851         }
852
853         e1000_release_manageability(adapter);
854 }
855
856 /**
857  * e1000_probe - Device Initialization Routine
858  * @pdev: PCI device information struct
859  * @ent: entry in e1000_pci_tbl
860  *
861  * Returns 0 on success, negative on failure
862  *
863  * e1000_probe initializes an adapter identified by a pci_dev structure.
864  * The OS initialization, configuring of the adapter private structure,
865  * and a hardware reset occur.
866  **/
867
868 static int __devinit
869 e1000_probe(struct pci_dev *pdev,
870             const struct pci_device_id *ent)
871 {
872         struct net_device *netdev;
873         struct e1000_adapter *adapter;
874         unsigned long mmio_start, mmio_len;
875         unsigned long flash_start, flash_len;
876
877         static int cards_found = 0;
878         static int global_quad_port_a = 0; /* global ksp3 port a indication */
879         int i, err, pci_using_dac;
880         uint16_t eeprom_data = 0;
881         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
882         if ((err = pci_enable_device(pdev)))
883                 return err;
884
885         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
886             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
887                 pci_using_dac = 1;
888         } else {
889                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
890                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
891                         E1000_ERR("No usable DMA configuration, aborting\n");
892                         goto err_dma;
893                 }
894                 pci_using_dac = 0;
895         }
896
897         if ((err = pci_request_regions(pdev, e1000_driver_name)))
898                 goto err_pci_reg;
899
900         pci_set_master(pdev);
901
902         err = -ENOMEM;
903         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
904         if (!netdev)
905                 goto err_alloc_etherdev;
906
907         SET_MODULE_OWNER(netdev);
908         SET_NETDEV_DEV(netdev, &pdev->dev);
909
910         pci_set_drvdata(pdev, netdev);
911         adapter = netdev_priv(netdev);
912         adapter->netdev = netdev;
913         adapter->pdev = pdev;
914         adapter->hw.back = adapter;
915         adapter->msg_enable = (1 << debug) - 1;
916
917         mmio_start = pci_resource_start(pdev, BAR_0);
918         mmio_len = pci_resource_len(pdev, BAR_0);
919
920         err = -EIO;
921         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
922         if (!adapter->hw.hw_addr)
923                 goto err_ioremap;
924
925         for (i = BAR_1; i <= BAR_5; i++) {
926                 if (pci_resource_len(pdev, i) == 0)
927                         continue;
928                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
929                         adapter->hw.io_base = pci_resource_start(pdev, i);
930                         break;
931                 }
932         }
933
934         netdev->open = &e1000_open;
935         netdev->stop = &e1000_close;
936         netdev->hard_start_xmit = &e1000_xmit_frame;
937         netdev->get_stats = &e1000_get_stats;
938         netdev->set_multicast_list = &e1000_set_multi;
939         netdev->set_mac_address = &e1000_set_mac;
940         netdev->change_mtu = &e1000_change_mtu;
941         netdev->do_ioctl = &e1000_ioctl;
942         e1000_set_ethtool_ops(netdev);
943         netdev->tx_timeout = &e1000_tx_timeout;
944         netdev->watchdog_timeo = 5 * HZ;
945 #ifdef CONFIG_E1000_NAPI
946         netdev->poll = &e1000_clean;
947         netdev->weight = 64;
948 #endif
949         netdev->vlan_rx_register = e1000_vlan_rx_register;
950         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
951         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
952 #ifdef CONFIG_NET_POLL_CONTROLLER
953         netdev->poll_controller = e1000_netpoll;
954 #endif
955         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
956
957         netdev->mem_start = mmio_start;
958         netdev->mem_end = mmio_start + mmio_len;
959         netdev->base_addr = adapter->hw.io_base;
960
961         adapter->bd_number = cards_found;
962
963         /* setup the private structure */
964
965         if ((err = e1000_sw_init(adapter)))
966                 goto err_sw_init;
967
968         err = -EIO;
969         /* Flash BAR mapping must happen after e1000_sw_init
970          * because it depends on mac_type */
971         if ((adapter->hw.mac_type == e1000_ich8lan) &&
972            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
973                 flash_start = pci_resource_start(pdev, 1);
974                 flash_len = pci_resource_len(pdev, 1);
975                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
976                 if (!adapter->hw.flash_address)
977                         goto err_flashmap;
978         }
979
980         if (e1000_check_phy_reset_block(&adapter->hw))
981                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
982
983         if (adapter->hw.mac_type >= e1000_82543) {
984                 netdev->features = NETIF_F_SG |
985                                    NETIF_F_HW_CSUM |
986                                    NETIF_F_HW_VLAN_TX |
987                                    NETIF_F_HW_VLAN_RX |
988                                    NETIF_F_HW_VLAN_FILTER;
989                 if (adapter->hw.mac_type == e1000_ich8lan)
990                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
991         }
992
993         if ((adapter->hw.mac_type >= e1000_82544) &&
994            (adapter->hw.mac_type != e1000_82547))
995                 netdev->features |= NETIF_F_TSO;
996
997         if (adapter->hw.mac_type > e1000_82547_rev_2)
998                 netdev->features |= NETIF_F_TSO6;
999         if (pci_using_dac)
1000                 netdev->features |= NETIF_F_HIGHDMA;
1001
1002         netdev->features |= NETIF_F_LLTX;
1003
1004         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
1005
1006         /* initialize eeprom parameters */
1007
1008         if (e1000_init_eeprom_params(&adapter->hw)) {
1009                 E1000_ERR("EEPROM initialization failed\n");
1010                 goto err_eeprom;
1011         }
1012
1013         /* before reading the EEPROM, reset the controller to
1014          * put the device in a known good starting state */
1015
1016         e1000_reset_hw(&adapter->hw);
1017
1018         /* make sure the EEPROM is good */
1019
1020         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
1021                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1022                 goto err_eeprom;
1023         }
1024
1025         /* copy the MAC address out of the EEPROM */
1026
1027         if (e1000_read_mac_addr(&adapter->hw))
1028                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1029         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1030         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1031
1032         if (!is_valid_ether_addr(netdev->perm_addr)) {
1033                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1034                 goto err_eeprom;
1035         }
1036
1037         e1000_get_bus_info(&adapter->hw);
1038
1039         init_timer(&adapter->tx_fifo_stall_timer);
1040         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1041         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1042
1043         init_timer(&adapter->watchdog_timer);
1044         adapter->watchdog_timer.function = &e1000_watchdog;
1045         adapter->watchdog_timer.data = (unsigned long) adapter;
1046
1047         init_timer(&adapter->phy_info_timer);
1048         adapter->phy_info_timer.function = &e1000_update_phy_info;
1049         adapter->phy_info_timer.data = (unsigned long) adapter;
1050
1051         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1052
1053         e1000_check_options(adapter);
1054
1055         /* Initial Wake on LAN setting
1056          * If APM wake is enabled in the EEPROM,
1057          * enable the ACPI Magic Packet filter
1058          */
1059
1060         switch (adapter->hw.mac_type) {
1061         case e1000_82542_rev2_0:
1062         case e1000_82542_rev2_1:
1063         case e1000_82543:
1064                 break;
1065         case e1000_82544:
1066                 e1000_read_eeprom(&adapter->hw,
1067                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1068                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1069                 break;
1070         case e1000_ich8lan:
1071                 e1000_read_eeprom(&adapter->hw,
1072                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1073                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1074                 break;
1075         case e1000_82546:
1076         case e1000_82546_rev_3:
1077         case e1000_82571:
1078         case e1000_80003es2lan:
1079                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1080                         e1000_read_eeprom(&adapter->hw,
1081                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1082                         break;
1083                 }
1084                 /* Fall Through */
1085         default:
1086                 e1000_read_eeprom(&adapter->hw,
1087                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1088                 break;
1089         }
1090         if (eeprom_data & eeprom_apme_mask)
1091                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1092
1093         /* now that we have the eeprom settings, apply the special cases
1094          * where the eeprom may be wrong or the board simply won't support
1095          * wake on lan on a particular port */
1096         switch (pdev->device) {
1097         case E1000_DEV_ID_82546GB_PCIE:
1098                 adapter->eeprom_wol = 0;
1099                 break;
1100         case E1000_DEV_ID_82546EB_FIBER:
1101         case E1000_DEV_ID_82546GB_FIBER:
1102         case E1000_DEV_ID_82571EB_FIBER:
1103                 /* Wake events only supported on port A for dual fiber
1104                  * regardless of eeprom setting */
1105                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1106                         adapter->eeprom_wol = 0;
1107                 break;
1108         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1109         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1110         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1111                 /* if quad port adapter, disable WoL on all but port A */
1112                 if (global_quad_port_a != 0)
1113                         adapter->eeprom_wol = 0;
1114                 else
1115                         adapter->quad_port_a = 1;
1116                 /* Reset for multiple quad port adapters */
1117                 if (++global_quad_port_a == 4)
1118                         global_quad_port_a = 0;
1119                 break;
1120         }
1121
1122         /* initialize the wol settings based on the eeprom settings */
1123         adapter->wol = adapter->eeprom_wol;
1124
1125         /* print bus type/speed/width info */
1126         {
1127         struct e1000_hw *hw = &adapter->hw;
1128         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1129                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1130                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1131                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1132                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1133                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1134                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1135                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1136                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1137                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1138                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1139                  "32-bit"));
1140         }
1141
1142         for (i = 0; i < 6; i++)
1143                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1144
1145         /* reset the hardware with the new settings */
1146         e1000_reset(adapter);
1147
1148         /* If the controller is 82573 and f/w is AMT, do not set
1149          * DRV_LOAD until the interface is up.  For all other cases,
1150          * let the f/w know that the h/w is now under the control
1151          * of the driver. */
1152         if (adapter->hw.mac_type != e1000_82573 ||
1153             !e1000_check_mng_mode(&adapter->hw))
1154                 e1000_get_hw_control(adapter);
1155
1156         strcpy(netdev->name, "eth%d");
1157         if ((err = register_netdev(netdev)))
1158                 goto err_register;
1159
1160         /* tell the stack to leave us alone until e1000_open() is called */
1161         netif_carrier_off(netdev);
1162         netif_stop_queue(netdev);
1163
1164         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1165
1166         cards_found++;
1167         return 0;
1168
1169 err_register:
1170         e1000_release_hw_control(adapter);
1171 err_eeprom:
1172         if (!e1000_check_phy_reset_block(&adapter->hw))
1173                 e1000_phy_hw_reset(&adapter->hw);
1174
1175         if (adapter->hw.flash_address)
1176                 iounmap(adapter->hw.flash_address);
1177 err_flashmap:
1178 #ifdef CONFIG_E1000_NAPI
1179         for (i = 0; i < adapter->num_rx_queues; i++)
1180                 dev_put(&adapter->polling_netdev[i]);
1181 #endif
1182
1183         kfree(adapter->tx_ring);
1184         kfree(adapter->rx_ring);
1185 #ifdef CONFIG_E1000_NAPI
1186         kfree(adapter->polling_netdev);
1187 #endif
1188 err_sw_init:
1189         iounmap(adapter->hw.hw_addr);
1190 err_ioremap:
1191         free_netdev(netdev);
1192 err_alloc_etherdev:
1193         pci_release_regions(pdev);
1194 err_pci_reg:
1195 err_dma:
1196         pci_disable_device(pdev);
1197         return err;
1198 }
1199
1200 /**
1201  * e1000_remove - Device Removal Routine
1202  * @pdev: PCI device information struct
1203  *
1204  * e1000_remove is called by the PCI subsystem to alert the driver
1205  * that it should release a PCI device.  The could be caused by a
1206  * Hot-Plug event, or because the driver is going to be removed from
1207  * memory.
1208  **/
1209
1210 static void __devexit
1211 e1000_remove(struct pci_dev *pdev)
1212 {
1213         struct net_device *netdev = pci_get_drvdata(pdev);
1214         struct e1000_adapter *adapter = netdev_priv(netdev);
1215 #ifdef CONFIG_E1000_NAPI
1216         int i;
1217 #endif
1218
1219         flush_scheduled_work();
1220
1221         e1000_release_manageability(adapter);
1222
1223         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1224          * would have already happened in close and is redundant. */
1225         e1000_release_hw_control(adapter);
1226
1227         unregister_netdev(netdev);
1228 #ifdef CONFIG_E1000_NAPI
1229         for (i = 0; i < adapter->num_rx_queues; i++)
1230                 dev_put(&adapter->polling_netdev[i]);
1231 #endif
1232
1233         if (!e1000_check_phy_reset_block(&adapter->hw))
1234                 e1000_phy_hw_reset(&adapter->hw);
1235
1236         kfree(adapter->tx_ring);
1237         kfree(adapter->rx_ring);
1238 #ifdef CONFIG_E1000_NAPI
1239         kfree(adapter->polling_netdev);
1240 #endif
1241
1242         iounmap(adapter->hw.hw_addr);
1243         if (adapter->hw.flash_address)
1244                 iounmap(adapter->hw.flash_address);
1245         pci_release_regions(pdev);
1246
1247         free_netdev(netdev);
1248
1249         pci_disable_device(pdev);
1250 }
1251
1252 /**
1253  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1254  * @adapter: board private structure to initialize
1255  *
1256  * e1000_sw_init initializes the Adapter private data structure.
1257  * Fields are initialized based on PCI device information and
1258  * OS network device settings (MTU size).
1259  **/
1260
1261 static int __devinit
1262 e1000_sw_init(struct e1000_adapter *adapter)
1263 {
1264         struct e1000_hw *hw = &adapter->hw;
1265         struct net_device *netdev = adapter->netdev;
1266         struct pci_dev *pdev = adapter->pdev;
1267 #ifdef CONFIG_E1000_NAPI
1268         int i;
1269 #endif
1270
1271         /* PCI config space info */
1272
1273         hw->vendor_id = pdev->vendor;
1274         hw->device_id = pdev->device;
1275         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1276         hw->subsystem_id = pdev->subsystem_device;
1277
1278         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1279
1280         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1281
1282         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1283         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1284         hw->max_frame_size = netdev->mtu +
1285                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1286         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1287
1288         /* identify the MAC */
1289
1290         if (e1000_set_mac_type(hw)) {
1291                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1292                 return -EIO;
1293         }
1294
1295         switch (hw->mac_type) {
1296         default:
1297                 break;
1298         case e1000_82541:
1299         case e1000_82547:
1300         case e1000_82541_rev_2:
1301         case e1000_82547_rev_2:
1302                 hw->phy_init_script = 1;
1303                 break;
1304         }
1305
1306         e1000_set_media_type(hw);
1307
1308         hw->wait_autoneg_complete = FALSE;
1309         hw->tbi_compatibility_en = TRUE;
1310         hw->adaptive_ifs = TRUE;
1311
1312         /* Copper options */
1313
1314         if (hw->media_type == e1000_media_type_copper) {
1315                 hw->mdix = AUTO_ALL_MODES;
1316                 hw->disable_polarity_correction = FALSE;
1317                 hw->master_slave = E1000_MASTER_SLAVE;
1318         }
1319
1320         adapter->num_tx_queues = 1;
1321         adapter->num_rx_queues = 1;
1322
1323         if (e1000_alloc_queues(adapter)) {
1324                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1325                 return -ENOMEM;
1326         }
1327
1328 #ifdef CONFIG_E1000_NAPI
1329         for (i = 0; i < adapter->num_rx_queues; i++) {
1330                 adapter->polling_netdev[i].priv = adapter;
1331                 adapter->polling_netdev[i].poll = &e1000_clean;
1332                 adapter->polling_netdev[i].weight = 64;
1333                 dev_hold(&adapter->polling_netdev[i]);
1334                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1335         }
1336         spin_lock_init(&adapter->tx_queue_lock);
1337 #endif
1338
1339         atomic_set(&adapter->irq_sem, 1);
1340         spin_lock_init(&adapter->stats_lock);
1341
1342         set_bit(__E1000_DOWN, &adapter->flags);
1343
1344         return 0;
1345 }
1346
1347 /**
1348  * e1000_alloc_queues - Allocate memory for all rings
1349  * @adapter: board private structure to initialize
1350  *
1351  * We allocate one ring per queue at run-time since we don't know the
1352  * number of queues at compile-time.  The polling_netdev array is
1353  * intended for Multiqueue, but should work fine with a single queue.
1354  **/
1355
1356 static int __devinit
1357 e1000_alloc_queues(struct e1000_adapter *adapter)
1358 {
1359         int size;
1360
1361         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1362         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1363         if (!adapter->tx_ring)
1364                 return -ENOMEM;
1365         memset(adapter->tx_ring, 0, size);
1366
1367         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1368         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1369         if (!adapter->rx_ring) {
1370                 kfree(adapter->tx_ring);
1371                 return -ENOMEM;
1372         }
1373         memset(adapter->rx_ring, 0, size);
1374
1375 #ifdef CONFIG_E1000_NAPI
1376         size = sizeof(struct net_device) * adapter->num_rx_queues;
1377         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1378         if (!adapter->polling_netdev) {
1379                 kfree(adapter->tx_ring);
1380                 kfree(adapter->rx_ring);
1381                 return -ENOMEM;
1382         }
1383         memset(adapter->polling_netdev, 0, size);
1384 #endif
1385
1386         return E1000_SUCCESS;
1387 }
1388
1389 /**
1390  * e1000_open - Called when a network interface is made active
1391  * @netdev: network interface device structure
1392  *
1393  * Returns 0 on success, negative value on failure
1394  *
1395  * The open entry point is called when a network interface is made
1396  * active by the system (IFF_UP).  At this point all resources needed
1397  * for transmit and receive operations are allocated, the interrupt
1398  * handler is registered with the OS, the watchdog timer is started,
1399  * and the stack is notified that the interface is ready.
1400  **/
1401
1402 static int
1403 e1000_open(struct net_device *netdev)
1404 {
1405         struct e1000_adapter *adapter = netdev_priv(netdev);
1406         int err;
1407
1408         /* disallow open during test */
1409         if (test_bit(__E1000_TESTING, &adapter->flags))
1410                 return -EBUSY;
1411
1412         /* allocate transmit descriptors */
1413         if ((err = e1000_setup_all_tx_resources(adapter)))
1414                 goto err_setup_tx;
1415
1416         /* allocate receive descriptors */
1417         if ((err = e1000_setup_all_rx_resources(adapter)))
1418                 goto err_setup_rx;
1419
1420         err = e1000_request_irq(adapter);
1421         if (err)
1422                 goto err_req_irq;
1423
1424         e1000_power_up_phy(adapter);
1425
1426         if ((err = e1000_up(adapter)))
1427                 goto err_up;
1428         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1429         if ((adapter->hw.mng_cookie.status &
1430                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1431                 e1000_update_mng_vlan(adapter);
1432         }
1433
1434         /* If AMT is enabled, let the firmware know that the network
1435          * interface is now open */
1436         if (adapter->hw.mac_type == e1000_82573 &&
1437             e1000_check_mng_mode(&adapter->hw))
1438                 e1000_get_hw_control(adapter);
1439
1440         return E1000_SUCCESS;
1441
1442 err_up:
1443         e1000_power_down_phy(adapter);
1444         e1000_free_irq(adapter);
1445 err_req_irq:
1446         e1000_free_all_rx_resources(adapter);
1447 err_setup_rx:
1448         e1000_free_all_tx_resources(adapter);
1449 err_setup_tx:
1450         e1000_reset(adapter);
1451
1452         return err;
1453 }
1454
1455 /**
1456  * e1000_close - Disables a network interface
1457  * @netdev: network interface device structure
1458  *
1459  * Returns 0, this is not allowed to fail
1460  *
1461  * The close entry point is called when an interface is de-activated
1462  * by the OS.  The hardware is still under the drivers control, but
1463  * needs to be disabled.  A global MAC reset is issued to stop the
1464  * hardware, and all transmit and receive resources are freed.
1465  **/
1466
1467 static int
1468 e1000_close(struct net_device *netdev)
1469 {
1470         struct e1000_adapter *adapter = netdev_priv(netdev);
1471
1472         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1473         e1000_down(adapter);
1474         e1000_power_down_phy(adapter);
1475         e1000_free_irq(adapter);
1476
1477         e1000_free_all_tx_resources(adapter);
1478         e1000_free_all_rx_resources(adapter);
1479
1480         /* kill manageability vlan ID if supported, but not if a vlan with
1481          * the same ID is registered on the host OS (let 8021q kill it) */
1482         if ((adapter->hw.mng_cookie.status &
1483                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1484              !(adapter->vlgrp &&
1485                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1486                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1487         }
1488
1489         /* If AMT is enabled, let the firmware know that the network
1490          * interface is now closed */
1491         if (adapter->hw.mac_type == e1000_82573 &&
1492             e1000_check_mng_mode(&adapter->hw))
1493                 e1000_release_hw_control(adapter);
1494
1495         return 0;
1496 }
1497
1498 /**
1499  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1500  * @adapter: address of board private structure
1501  * @start: address of beginning of memory
1502  * @len: length of memory
1503  **/
1504 static boolean_t
1505 e1000_check_64k_bound(struct e1000_adapter *adapter,
1506                       void *start, unsigned long len)
1507 {
1508         unsigned long begin = (unsigned long) start;
1509         unsigned long end = begin + len;
1510
1511         /* First rev 82545 and 82546 need to not allow any memory
1512          * write location to cross 64k boundary due to errata 23 */
1513         if (adapter->hw.mac_type == e1000_82545 ||
1514             adapter->hw.mac_type == e1000_82546) {
1515                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1516         }
1517
1518         return TRUE;
1519 }
1520
1521 /**
1522  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1523  * @adapter: board private structure
1524  * @txdr:    tx descriptor ring (for a specific queue) to setup
1525  *
1526  * Return 0 on success, negative on failure
1527  **/
1528
1529 static int
1530 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1531                          struct e1000_tx_ring *txdr)
1532 {
1533         struct pci_dev *pdev = adapter->pdev;
1534         int size;
1535
1536         size = sizeof(struct e1000_buffer) * txdr->count;
1537         txdr->buffer_info = vmalloc(size);
1538         if (!txdr->buffer_info) {
1539                 DPRINTK(PROBE, ERR,
1540                 "Unable to allocate memory for the transmit descriptor ring\n");
1541                 return -ENOMEM;
1542         }
1543         memset(txdr->buffer_info, 0, size);
1544
1545         /* round up to nearest 4K */
1546
1547         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1548         E1000_ROUNDUP(txdr->size, 4096);
1549
1550         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1551         if (!txdr->desc) {
1552 setup_tx_desc_die:
1553                 vfree(txdr->buffer_info);
1554                 DPRINTK(PROBE, ERR,
1555                 "Unable to allocate memory for the transmit descriptor ring\n");
1556                 return -ENOMEM;
1557         }
1558
1559         /* Fix for errata 23, can't cross 64kB boundary */
1560         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1561                 void *olddesc = txdr->desc;
1562                 dma_addr_t olddma = txdr->dma;
1563                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1564                                      "at %p\n", txdr->size, txdr->desc);
1565                 /* Try again, without freeing the previous */
1566                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1567                 /* Failed allocation, critical failure */
1568                 if (!txdr->desc) {
1569                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1570                         goto setup_tx_desc_die;
1571                 }
1572
1573                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1574                         /* give up */
1575                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1576                                             txdr->dma);
1577                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1578                         DPRINTK(PROBE, ERR,
1579                                 "Unable to allocate aligned memory "
1580                                 "for the transmit descriptor ring\n");
1581                         vfree(txdr->buffer_info);
1582                         return -ENOMEM;
1583                 } else {
1584                         /* Free old allocation, new allocation was successful */
1585                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1586                 }
1587         }
1588         memset(txdr->desc, 0, txdr->size);
1589
1590         txdr->next_to_use = 0;
1591         txdr->next_to_clean = 0;
1592         spin_lock_init(&txdr->tx_lock);
1593
1594         return 0;
1595 }
1596
1597 /**
1598  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1599  *                                (Descriptors) for all queues
1600  * @adapter: board private structure
1601  *
1602  * Return 0 on success, negative on failure
1603  **/
1604
1605 int
1606 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1607 {
1608         int i, err = 0;
1609
1610         for (i = 0; i < adapter->num_tx_queues; i++) {
1611                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1612                 if (err) {
1613                         DPRINTK(PROBE, ERR,
1614                                 "Allocation for Tx Queue %u failed\n", i);
1615                         for (i-- ; i >= 0; i--)
1616                                 e1000_free_tx_resources(adapter,
1617                                                         &adapter->tx_ring[i]);
1618                         break;
1619                 }
1620         }
1621
1622         return err;
1623 }
1624
1625 /**
1626  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1627  * @adapter: board private structure
1628  *
1629  * Configure the Tx unit of the MAC after a reset.
1630  **/
1631
1632 static void
1633 e1000_configure_tx(struct e1000_adapter *adapter)
1634 {
1635         uint64_t tdba;
1636         struct e1000_hw *hw = &adapter->hw;
1637         uint32_t tdlen, tctl, tipg, tarc;
1638         uint32_t ipgr1, ipgr2;
1639
1640         /* Setup the HW Tx Head and Tail descriptor pointers */
1641
1642         switch (adapter->num_tx_queues) {
1643         case 1:
1644         default:
1645                 tdba = adapter->tx_ring[0].dma;
1646                 tdlen = adapter->tx_ring[0].count *
1647                         sizeof(struct e1000_tx_desc);
1648                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1649                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1650                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1651                 E1000_WRITE_REG(hw, TDT, 0);
1652                 E1000_WRITE_REG(hw, TDH, 0);
1653                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1654                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1655                 break;
1656         }
1657
1658         /* Set the default values for the Tx Inter Packet Gap timer */
1659         if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1660             (hw->media_type == e1000_media_type_fiber ||
1661              hw->media_type == e1000_media_type_internal_serdes))
1662                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1663         else
1664                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1665
1666         switch (hw->mac_type) {
1667         case e1000_82542_rev2_0:
1668         case e1000_82542_rev2_1:
1669                 tipg = DEFAULT_82542_TIPG_IPGT;
1670                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1671                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1672                 break;
1673         case e1000_80003es2lan:
1674                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1675                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1676                 break;
1677         default:
1678                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1679                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1680                 break;
1681         }
1682         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1683         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1684         E1000_WRITE_REG(hw, TIPG, tipg);
1685
1686         /* Set the Tx Interrupt Delay register */
1687
1688         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1689         if (hw->mac_type >= e1000_82540)
1690                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1691
1692         /* Program the Transmit Control Register */
1693
1694         tctl = E1000_READ_REG(hw, TCTL);
1695         tctl &= ~E1000_TCTL_CT;
1696         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1697                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1698
1699         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1700                 tarc = E1000_READ_REG(hw, TARC0);
1701                 /* set the speed mode bit, we'll clear it if we're not at
1702                  * gigabit link later */
1703                 tarc |= (1 << 21);
1704                 E1000_WRITE_REG(hw, TARC0, tarc);
1705         } else if (hw->mac_type == e1000_80003es2lan) {
1706                 tarc = E1000_READ_REG(hw, TARC0);
1707                 tarc |= 1;
1708                 E1000_WRITE_REG(hw, TARC0, tarc);
1709                 tarc = E1000_READ_REG(hw, TARC1);
1710                 tarc |= 1;
1711                 E1000_WRITE_REG(hw, TARC1, tarc);
1712         }
1713
1714         e1000_config_collision_dist(hw);
1715
1716         /* Setup Transmit Descriptor Settings for eop descriptor */
1717         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1718
1719         /* only set IDE if we are delaying interrupts using the timers */
1720         if (adapter->tx_int_delay)
1721                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1722
1723         if (hw->mac_type < e1000_82543)
1724                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1725         else
1726                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1727
1728         /* Cache if we're 82544 running in PCI-X because we'll
1729          * need this to apply a workaround later in the send path. */
1730         if (hw->mac_type == e1000_82544 &&
1731             hw->bus_type == e1000_bus_type_pcix)
1732                 adapter->pcix_82544 = 1;
1733
1734         E1000_WRITE_REG(hw, TCTL, tctl);
1735
1736 }
1737
1738 /**
1739  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1740  * @adapter: board private structure
1741  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1742  *
1743  * Returns 0 on success, negative on failure
1744  **/
1745
1746 static int
1747 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1748                          struct e1000_rx_ring *rxdr)
1749 {
1750         struct pci_dev *pdev = adapter->pdev;
1751         int size, desc_len;
1752
1753         size = sizeof(struct e1000_buffer) * rxdr->count;
1754         rxdr->buffer_info = vmalloc(size);
1755         if (!rxdr->buffer_info) {
1756                 DPRINTK(PROBE, ERR,
1757                 "Unable to allocate memory for the receive descriptor ring\n");
1758                 return -ENOMEM;
1759         }
1760         memset(rxdr->buffer_info, 0, size);
1761
1762         size = sizeof(struct e1000_ps_page) * rxdr->count;
1763         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1764         if (!rxdr->ps_page) {
1765                 vfree(rxdr->buffer_info);
1766                 DPRINTK(PROBE, ERR,
1767                 "Unable to allocate memory for the receive descriptor ring\n");
1768                 return -ENOMEM;
1769         }
1770         memset(rxdr->ps_page, 0, size);
1771
1772         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1773         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1774         if (!rxdr->ps_page_dma) {
1775                 vfree(rxdr->buffer_info);
1776                 kfree(rxdr->ps_page);
1777                 DPRINTK(PROBE, ERR,
1778                 "Unable to allocate memory for the receive descriptor ring\n");
1779                 return -ENOMEM;
1780         }
1781         memset(rxdr->ps_page_dma, 0, size);
1782
1783         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1784                 desc_len = sizeof(struct e1000_rx_desc);
1785         else
1786                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1787
1788         /* Round up to nearest 4K */
1789
1790         rxdr->size = rxdr->count * desc_len;
1791         E1000_ROUNDUP(rxdr->size, 4096);
1792
1793         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1794
1795         if (!rxdr->desc) {
1796                 DPRINTK(PROBE, ERR,
1797                 "Unable to allocate memory for the receive descriptor ring\n");
1798 setup_rx_desc_die:
1799                 vfree(rxdr->buffer_info);
1800                 kfree(rxdr->ps_page);
1801                 kfree(rxdr->ps_page_dma);
1802                 return -ENOMEM;
1803         }
1804
1805         /* Fix for errata 23, can't cross 64kB boundary */
1806         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1807                 void *olddesc = rxdr->desc;
1808                 dma_addr_t olddma = rxdr->dma;
1809                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1810                                      "at %p\n", rxdr->size, rxdr->desc);
1811                 /* Try again, without freeing the previous */
1812                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1813                 /* Failed allocation, critical failure */
1814                 if (!rxdr->desc) {
1815                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1816                         DPRINTK(PROBE, ERR,
1817                                 "Unable to allocate memory "
1818                                 "for the receive descriptor ring\n");
1819                         goto setup_rx_desc_die;
1820                 }
1821
1822                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1823                         /* give up */
1824                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1825                                             rxdr->dma);
1826                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1827                         DPRINTK(PROBE, ERR,
1828                                 "Unable to allocate aligned memory "
1829                                 "for the receive descriptor ring\n");
1830                         goto setup_rx_desc_die;
1831                 } else {
1832                         /* Free old allocation, new allocation was successful */
1833                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1834                 }
1835         }
1836         memset(rxdr->desc, 0, rxdr->size);
1837
1838         rxdr->next_to_clean = 0;
1839         rxdr->next_to_use = 0;
1840
1841         return 0;
1842 }
1843
1844 /**
1845  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1846  *                                (Descriptors) for all queues
1847  * @adapter: board private structure
1848  *
1849  * Return 0 on success, negative on failure
1850  **/
1851
1852 int
1853 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1854 {
1855         int i, err = 0;
1856
1857         for (i = 0; i < adapter->num_rx_queues; i++) {
1858                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1859                 if (err) {
1860                         DPRINTK(PROBE, ERR,
1861                                 "Allocation for Rx Queue %u failed\n", i);
1862                         for (i-- ; i >= 0; i--)
1863                                 e1000_free_rx_resources(adapter,
1864                                                         &adapter->rx_ring[i]);
1865                         break;
1866                 }
1867         }
1868
1869         return err;
1870 }
1871
1872 /**
1873  * e1000_setup_rctl - configure the receive control registers
1874  * @adapter: Board private structure
1875  **/
1876 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1877                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1878 static void
1879 e1000_setup_rctl(struct e1000_adapter *adapter)
1880 {
1881         uint32_t rctl, rfctl;
1882         uint32_t psrctl = 0;
1883 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1884         uint32_t pages = 0;
1885 #endif
1886
1887         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1888
1889         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1890
1891         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1892                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1893                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1894
1895         if (adapter->hw.tbi_compatibility_on == 1)
1896                 rctl |= E1000_RCTL_SBP;
1897         else
1898                 rctl &= ~E1000_RCTL_SBP;
1899
1900         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1901                 rctl &= ~E1000_RCTL_LPE;
1902         else
1903                 rctl |= E1000_RCTL_LPE;
1904
1905         /* Setup buffer sizes */
1906         rctl &= ~E1000_RCTL_SZ_4096;
1907         rctl |= E1000_RCTL_BSEX;
1908         switch (adapter->rx_buffer_len) {
1909                 case E1000_RXBUFFER_256:
1910                         rctl |= E1000_RCTL_SZ_256;
1911                         rctl &= ~E1000_RCTL_BSEX;
1912                         break;
1913                 case E1000_RXBUFFER_512:
1914                         rctl |= E1000_RCTL_SZ_512;
1915                         rctl &= ~E1000_RCTL_BSEX;
1916                         break;
1917                 case E1000_RXBUFFER_1024:
1918                         rctl |= E1000_RCTL_SZ_1024;
1919                         rctl &= ~E1000_RCTL_BSEX;
1920                         break;
1921                 case E1000_RXBUFFER_2048:
1922                 default:
1923                         rctl |= E1000_RCTL_SZ_2048;
1924                         rctl &= ~E1000_RCTL_BSEX;
1925                         break;
1926                 case E1000_RXBUFFER_4096:
1927                         rctl |= E1000_RCTL_SZ_4096;
1928                         break;
1929                 case E1000_RXBUFFER_8192:
1930                         rctl |= E1000_RCTL_SZ_8192;
1931                         break;
1932                 case E1000_RXBUFFER_16384:
1933                         rctl |= E1000_RCTL_SZ_16384;
1934                         break;
1935         }
1936
1937 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1938         /* 82571 and greater support packet-split where the protocol
1939          * header is placed in skb->data and the packet data is
1940          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1941          * In the case of a non-split, skb->data is linearly filled,
1942          * followed by the page buffers.  Therefore, skb->data is
1943          * sized to hold the largest protocol header.
1944          */
1945         /* allocations using alloc_page take too long for regular MTU
1946          * so only enable packet split for jumbo frames */
1947         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1948         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1949             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1950                 adapter->rx_ps_pages = pages;
1951         else
1952                 adapter->rx_ps_pages = 0;
1953 #endif
1954         if (adapter->rx_ps_pages) {
1955                 /* Configure extra packet-split registers */
1956                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1957                 rfctl |= E1000_RFCTL_EXTEN;
1958                 /* disable packet split support for IPv6 extension headers,
1959                  * because some malformed IPv6 headers can hang the RX */
1960                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1961                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1962
1963                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1964
1965                 rctl |= E1000_RCTL_DTYP_PS;
1966
1967                 psrctl |= adapter->rx_ps_bsize0 >>
1968                         E1000_PSRCTL_BSIZE0_SHIFT;
1969
1970                 switch (adapter->rx_ps_pages) {
1971                 case 3:
1972                         psrctl |= PAGE_SIZE <<
1973                                 E1000_PSRCTL_BSIZE3_SHIFT;
1974                 case 2:
1975                         psrctl |= PAGE_SIZE <<
1976                                 E1000_PSRCTL_BSIZE2_SHIFT;
1977                 case 1:
1978                         psrctl |= PAGE_SIZE >>
1979                                 E1000_PSRCTL_BSIZE1_SHIFT;
1980                         break;
1981                 }
1982
1983                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1984         }
1985
1986         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1987 }
1988
1989 /**
1990  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1991  * @adapter: board private structure
1992  *
1993  * Configure the Rx unit of the MAC after a reset.
1994  **/
1995
1996 static void
1997 e1000_configure_rx(struct e1000_adapter *adapter)
1998 {
1999         uint64_t rdba;
2000         struct e1000_hw *hw = &adapter->hw;
2001         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
2002
2003         if (adapter->rx_ps_pages) {
2004                 /* this is a 32 byte descriptor */
2005                 rdlen = adapter->rx_ring[0].count *
2006                         sizeof(union e1000_rx_desc_packet_split);
2007                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2008                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2009         } else {
2010                 rdlen = adapter->rx_ring[0].count *
2011                         sizeof(struct e1000_rx_desc);
2012                 adapter->clean_rx = e1000_clean_rx_irq;
2013                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2014         }
2015
2016         /* disable receives while setting up the descriptors */
2017         rctl = E1000_READ_REG(hw, RCTL);
2018         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2019
2020         /* set the Receive Delay Timer Register */
2021         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2022
2023         if (hw->mac_type >= e1000_82540) {
2024                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2025                 if (adapter->itr_setting != 0)
2026                         E1000_WRITE_REG(hw, ITR,
2027                                 1000000000 / (adapter->itr * 256));
2028         }
2029
2030         if (hw->mac_type >= e1000_82571) {
2031                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2032                 /* Reset delay timers after every interrupt */
2033                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2034 #ifdef CONFIG_E1000_NAPI
2035                 /* Auto-Mask interrupts upon ICR access */
2036                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2037                 E1000_WRITE_REG(hw, IAM, 0xffffffff);
2038 #endif
2039                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2040                 E1000_WRITE_FLUSH(hw);
2041         }
2042
2043         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2044          * the Base and Length of the Rx Descriptor Ring */
2045         switch (adapter->num_rx_queues) {
2046         case 1:
2047         default:
2048                 rdba = adapter->rx_ring[0].dma;
2049                 E1000_WRITE_REG(hw, RDLEN, rdlen);
2050                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2051                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2052                 E1000_WRITE_REG(hw, RDT, 0);
2053                 E1000_WRITE_REG(hw, RDH, 0);
2054                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2055                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2056                 break;
2057         }
2058
2059         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2060         if (hw->mac_type >= e1000_82543) {
2061                 rxcsum = E1000_READ_REG(hw, RXCSUM);
2062                 if (adapter->rx_csum == TRUE) {
2063                         rxcsum |= E1000_RXCSUM_TUOFL;
2064
2065                         /* Enable 82571 IPv4 payload checksum for UDP fragments
2066                          * Must be used in conjunction with packet-split. */
2067                         if ((hw->mac_type >= e1000_82571) &&
2068                             (adapter->rx_ps_pages)) {
2069                                 rxcsum |= E1000_RXCSUM_IPPCSE;
2070                         }
2071                 } else {
2072                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2073                         /* don't need to clear IPPCSE as it defaults to 0 */
2074                 }
2075                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2076         }
2077
2078         /* enable early receives on 82573, only takes effect if using > 2048
2079          * byte total frame size.  for example only for jumbo frames */
2080 #define E1000_ERT_2048 0x100
2081         if (hw->mac_type == e1000_82573)
2082                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2083
2084         /* Enable Receives */
2085         E1000_WRITE_REG(hw, RCTL, rctl);
2086 }
2087
2088 /**
2089  * e1000_free_tx_resources - Free Tx Resources per Queue
2090  * @adapter: board private structure
2091  * @tx_ring: Tx descriptor ring for a specific queue
2092  *
2093  * Free all transmit software resources
2094  **/
2095
2096 static void
2097 e1000_free_tx_resources(struct e1000_adapter *adapter,
2098                         struct e1000_tx_ring *tx_ring)
2099 {
2100         struct pci_dev *pdev = adapter->pdev;
2101
2102         e1000_clean_tx_ring(adapter, tx_ring);
2103
2104         vfree(tx_ring->buffer_info);
2105         tx_ring->buffer_info = NULL;
2106
2107         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2108
2109         tx_ring->desc = NULL;
2110 }
2111
2112 /**
2113  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2114  * @adapter: board private structure
2115  *
2116  * Free all transmit software resources
2117  **/
2118
2119 void
2120 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2121 {
2122         int i;
2123
2124         for (i = 0; i < adapter->num_tx_queues; i++)
2125                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2126 }
2127
2128 static void
2129 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2130                         struct e1000_buffer *buffer_info)
2131 {
2132         if (buffer_info->dma) {
2133                 pci_unmap_page(adapter->pdev,
2134                                 buffer_info->dma,
2135                                 buffer_info->length,
2136                                 PCI_DMA_TODEVICE);
2137                 buffer_info->dma = 0;
2138         }
2139         if (buffer_info->skb) {
2140                 dev_kfree_skb_any(buffer_info->skb);
2141                 buffer_info->skb = NULL;
2142         }
2143         /* buffer_info must be completely set up in the transmit path */
2144 }
2145
2146 /**
2147  * e1000_clean_tx_ring - Free Tx Buffers
2148  * @adapter: board private structure
2149  * @tx_ring: ring to be cleaned
2150  **/
2151
2152 static void
2153 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2154                     struct e1000_tx_ring *tx_ring)
2155 {
2156         struct e1000_buffer *buffer_info;
2157         unsigned long size;
2158         unsigned int i;
2159
2160         /* Free all the Tx ring sk_buffs */
2161
2162         for (i = 0; i < tx_ring->count; i++) {
2163                 buffer_info = &tx_ring->buffer_info[i];
2164                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2165         }
2166
2167         size = sizeof(struct e1000_buffer) * tx_ring->count;
2168         memset(tx_ring->buffer_info, 0, size);
2169
2170         /* Zero out the descriptor ring */
2171
2172         memset(tx_ring->desc, 0, tx_ring->size);
2173
2174         tx_ring->next_to_use = 0;
2175         tx_ring->next_to_clean = 0;
2176         tx_ring->last_tx_tso = 0;
2177
2178         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2179         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2180 }
2181
2182 /**
2183  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2184  * @adapter: board private structure
2185  **/
2186
2187 static void
2188 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2189 {
2190         int i;
2191
2192         for (i = 0; i < adapter->num_tx_queues; i++)
2193                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2194 }
2195
2196 /**
2197  * e1000_free_rx_resources - Free Rx Resources
2198  * @adapter: board private structure
2199  * @rx_ring: ring to clean the resources from
2200  *
2201  * Free all receive software resources
2202  **/
2203
2204 static void
2205 e1000_free_rx_resources(struct e1000_adapter *adapter,
2206                         struct e1000_rx_ring *rx_ring)
2207 {
2208         struct pci_dev *pdev = adapter->pdev;
2209
2210         e1000_clean_rx_ring(adapter, rx_ring);
2211
2212         vfree(rx_ring->buffer_info);
2213         rx_ring->buffer_info = NULL;
2214         kfree(rx_ring->ps_page);
2215         rx_ring->ps_page = NULL;
2216         kfree(rx_ring->ps_page_dma);
2217         rx_ring->ps_page_dma = NULL;
2218
2219         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2220
2221         rx_ring->desc = NULL;
2222 }
2223
2224 /**
2225  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2226  * @adapter: board private structure
2227  *
2228  * Free all receive software resources
2229  **/
2230
2231 void
2232 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2233 {
2234         int i;
2235
2236         for (i = 0; i < adapter->num_rx_queues; i++)
2237                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2238 }
2239
2240 /**
2241  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2242  * @adapter: board private structure
2243  * @rx_ring: ring to free buffers from
2244  **/
2245
2246 static void
2247 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2248                     struct e1000_rx_ring *rx_ring)
2249 {
2250         struct e1000_buffer *buffer_info;
2251         struct e1000_ps_page *ps_page;
2252         struct e1000_ps_page_dma *ps_page_dma;
2253         struct pci_dev *pdev = adapter->pdev;
2254         unsigned long size;
2255         unsigned int i, j;
2256
2257         /* Free all the Rx ring sk_buffs */
2258         for (i = 0; i < rx_ring->count; i++) {
2259                 buffer_info = &rx_ring->buffer_info[i];
2260                 if (buffer_info->skb) {
2261                         pci_unmap_single(pdev,
2262                                          buffer_info->dma,
2263                                          buffer_info->length,
2264                                          PCI_DMA_FROMDEVICE);
2265
2266                         dev_kfree_skb(buffer_info->skb);
2267                         buffer_info->skb = NULL;
2268                 }
2269                 ps_page = &rx_ring->ps_page[i];
2270                 ps_page_dma = &rx_ring->ps_page_dma[i];
2271                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2272                         if (!ps_page->ps_page[j]) break;
2273                         pci_unmap_page(pdev,
2274                                        ps_page_dma->ps_page_dma[j],
2275                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2276                         ps_page_dma->ps_page_dma[j] = 0;
2277                         put_page(ps_page->ps_page[j]);
2278                         ps_page->ps_page[j] = NULL;
2279                 }
2280         }
2281
2282         size = sizeof(struct e1000_buffer) * rx_ring->count;
2283         memset(rx_ring->buffer_info, 0, size);
2284         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2285         memset(rx_ring->ps_page, 0, size);
2286         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2287         memset(rx_ring->ps_page_dma, 0, size);
2288
2289         /* Zero out the descriptor ring */
2290
2291         memset(rx_ring->desc, 0, rx_ring->size);
2292
2293         rx_ring->next_to_clean = 0;
2294         rx_ring->next_to_use = 0;
2295
2296         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2297         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2298 }
2299
2300 /**
2301  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2302  * @adapter: board private structure
2303  **/
2304
2305 static void
2306 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2307 {
2308         int i;
2309
2310         for (i = 0; i < adapter->num_rx_queues; i++)
2311                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2312 }
2313
2314 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2315  * and memory write and invalidate disabled for certain operations
2316  */
2317 static void
2318 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2319 {
2320         struct net_device *netdev = adapter->netdev;
2321         uint32_t rctl;
2322
2323         e1000_pci_clear_mwi(&adapter->hw);
2324
2325         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2326         rctl |= E1000_RCTL_RST;
2327         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2328         E1000_WRITE_FLUSH(&adapter->hw);
2329         mdelay(5);
2330
2331         if (netif_running(netdev))
2332                 e1000_clean_all_rx_rings(adapter);
2333 }
2334
2335 static void
2336 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2337 {
2338         struct net_device *netdev = adapter->netdev;
2339         uint32_t rctl;
2340
2341         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2342         rctl &= ~E1000_RCTL_RST;
2343         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2344         E1000_WRITE_FLUSH(&adapter->hw);
2345         mdelay(5);
2346
2347         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2348                 e1000_pci_set_mwi(&adapter->hw);
2349
2350         if (netif_running(netdev)) {
2351                 /* No need to loop, because 82542 supports only 1 queue */
2352                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2353                 e1000_configure_rx(adapter);
2354                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2355         }
2356 }
2357
2358 /**
2359  * e1000_set_mac - Change the Ethernet Address of the NIC
2360  * @netdev: network interface device structure
2361  * @p: pointer to an address structure
2362  *
2363  * Returns 0 on success, negative on failure
2364  **/
2365
2366 static int
2367 e1000_set_mac(struct net_device *netdev, void *p)
2368 {
2369         struct e1000_adapter *adapter = netdev_priv(netdev);
2370         struct sockaddr *addr = p;
2371
2372         if (!is_valid_ether_addr(addr->sa_data))
2373                 return -EADDRNOTAVAIL;
2374
2375         /* 82542 2.0 needs to be in reset to write receive address registers */
2376
2377         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2378                 e1000_enter_82542_rst(adapter);
2379
2380         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2381         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2382
2383         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2384
2385         /* With 82571 controllers, LAA may be overwritten (with the default)
2386          * due to controller reset from the other port. */
2387         if (adapter->hw.mac_type == e1000_82571) {
2388                 /* activate the work around */
2389                 adapter->hw.laa_is_present = 1;
2390
2391                 /* Hold a copy of the LAA in RAR[14] This is done so that
2392                  * between the time RAR[0] gets clobbered  and the time it
2393                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2394                  * of the RARs and no incoming packets directed to this port
2395                  * are dropped. Eventaully the LAA will be in RAR[0] and
2396                  * RAR[14] */
2397                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2398                                         E1000_RAR_ENTRIES - 1);
2399         }
2400
2401         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2402                 e1000_leave_82542_rst(adapter);
2403
2404         return 0;
2405 }
2406
2407 /**
2408  * e1000_set_multi - Multicast and Promiscuous mode set
2409  * @netdev: network interface device structure
2410  *
2411  * The set_multi entry point is called whenever the multicast address
2412  * list or the network interface flags are updated.  This routine is
2413  * responsible for configuring the hardware for proper multicast,
2414  * promiscuous mode, and all-multi behavior.
2415  **/
2416
2417 static void
2418 e1000_set_multi(struct net_device *netdev)
2419 {
2420         struct e1000_adapter *adapter = netdev_priv(netdev);
2421         struct e1000_hw *hw = &adapter->hw;
2422         struct dev_mc_list *mc_ptr;
2423         uint32_t rctl;
2424         uint32_t hash_value;
2425         int i, rar_entries = E1000_RAR_ENTRIES;
2426         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2427                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2428                                 E1000_NUM_MTA_REGISTERS;
2429
2430         if (adapter->hw.mac_type == e1000_ich8lan)
2431                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2432
2433         /* reserve RAR[14] for LAA over-write work-around */
2434         if (adapter->hw.mac_type == e1000_82571)
2435                 rar_entries--;
2436
2437         /* Check for Promiscuous and All Multicast modes */
2438
2439         rctl = E1000_READ_REG(hw, RCTL);
2440
2441         if (netdev->flags & IFF_PROMISC) {
2442                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2443         } else if (netdev->flags & IFF_ALLMULTI) {
2444                 rctl |= E1000_RCTL_MPE;
2445                 rctl &= ~E1000_RCTL_UPE;
2446         } else {
2447                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2448         }
2449
2450         E1000_WRITE_REG(hw, RCTL, rctl);
2451
2452         /* 82542 2.0 needs to be in reset to write receive address registers */
2453
2454         if (hw->mac_type == e1000_82542_rev2_0)
2455                 e1000_enter_82542_rst(adapter);
2456
2457         /* load the first 14 multicast address into the exact filters 1-14
2458          * RAR 0 is used for the station MAC adddress
2459          * if there are not 14 addresses, go ahead and clear the filters
2460          * -- with 82571 controllers only 0-13 entries are filled here
2461          */
2462         mc_ptr = netdev->mc_list;
2463
2464         for (i = 1; i < rar_entries; i++) {
2465                 if (mc_ptr) {
2466                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2467                         mc_ptr = mc_ptr->next;
2468                 } else {
2469                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2470                         E1000_WRITE_FLUSH(hw);
2471                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2472                         E1000_WRITE_FLUSH(hw);
2473                 }
2474         }
2475
2476         /* clear the old settings from the multicast hash table */
2477
2478         for (i = 0; i < mta_reg_count; i++) {
2479                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2480                 E1000_WRITE_FLUSH(hw);
2481         }
2482
2483         /* load any remaining addresses into the hash table */
2484
2485         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2486                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2487                 e1000_mta_set(hw, hash_value);
2488         }
2489
2490         if (hw->mac_type == e1000_82542_rev2_0)
2491                 e1000_leave_82542_rst(adapter);
2492 }
2493
2494 /* Need to wait a few seconds after link up to get diagnostic information from
2495  * the phy */
2496
2497 static void
2498 e1000_update_phy_info(unsigned long data)
2499 {
2500         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2501         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2502 }
2503
2504 /**
2505  * e1000_82547_tx_fifo_stall - Timer Call-back
2506  * @data: pointer to adapter cast into an unsigned long
2507  **/
2508
2509 static void
2510 e1000_82547_tx_fifo_stall(unsigned long data)
2511 {
2512         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2513         struct net_device *netdev = adapter->netdev;
2514         uint32_t tctl;
2515
2516         if (atomic_read(&adapter->tx_fifo_stall)) {
2517                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2518                     E1000_READ_REG(&adapter->hw, TDH)) &&
2519                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2520                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2521                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2522                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2523                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2524                         E1000_WRITE_REG(&adapter->hw, TCTL,
2525                                         tctl & ~E1000_TCTL_EN);
2526                         E1000_WRITE_REG(&adapter->hw, TDFT,
2527                                         adapter->tx_head_addr);
2528                         E1000_WRITE_REG(&adapter->hw, TDFH,
2529                                         adapter->tx_head_addr);
2530                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2531                                         adapter->tx_head_addr);
2532                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2533                                         adapter->tx_head_addr);
2534                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2535                         E1000_WRITE_FLUSH(&adapter->hw);
2536
2537                         adapter->tx_fifo_head = 0;
2538                         atomic_set(&adapter->tx_fifo_stall, 0);
2539                         netif_wake_queue(netdev);
2540                 } else {
2541                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2542                 }
2543         }
2544 }
2545
2546 /**
2547  * e1000_watchdog - Timer Call-back
2548  * @data: pointer to adapter cast into an unsigned long
2549  **/
2550 static void
2551 e1000_watchdog(unsigned long data)
2552 {
2553         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2554         struct net_device *netdev = adapter->netdev;
2555         struct e1000_tx_ring *txdr = adapter->tx_ring;
2556         uint32_t link, tctl;
2557         int32_t ret_val;
2558
2559         ret_val = e1000_check_for_link(&adapter->hw);
2560         if ((ret_val == E1000_ERR_PHY) &&
2561             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2562             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2563                 /* See e1000_kumeran_lock_loss_workaround() */
2564                 DPRINTK(LINK, INFO,
2565                         "Gigabit has been disabled, downgrading speed\n");
2566         }
2567
2568         if (adapter->hw.mac_type == e1000_82573) {
2569                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2570                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2571                         e1000_update_mng_vlan(adapter);
2572         }
2573
2574         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2575            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2576                 link = !adapter->hw.serdes_link_down;
2577         else
2578                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2579
2580         if (link) {
2581                 if (!netif_carrier_ok(netdev)) {
2582                         uint32_t ctrl;
2583                         boolean_t txb2b = 1;
2584                         e1000_get_speed_and_duplex(&adapter->hw,
2585                                                    &adapter->link_speed,
2586                                                    &adapter->link_duplex);
2587
2588                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2589                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2590                                 "Flow Control: %s\n",
2591                                 adapter->link_speed,
2592                                 adapter->link_duplex == FULL_DUPLEX ?
2593                                 "Full Duplex" : "Half Duplex",
2594                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2595                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2596                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2597                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2598
2599                         /* tweak tx_queue_len according to speed/duplex
2600                          * and adjust the timeout factor */
2601                         netdev->tx_queue_len = adapter->tx_queue_len;
2602                         adapter->tx_timeout_factor = 1;
2603                         switch (adapter->link_speed) {
2604                         case SPEED_10:
2605                                 txb2b = 0;
2606                                 netdev->tx_queue_len = 10;
2607                                 adapter->tx_timeout_factor = 8;
2608                                 break;
2609                         case SPEED_100:
2610                                 txb2b = 0;
2611                                 netdev->tx_queue_len = 100;
2612                                 /* maybe add some timeout factor ? */
2613                                 break;
2614                         }
2615
2616                         if ((adapter->hw.mac_type == e1000_82571 ||
2617                              adapter->hw.mac_type == e1000_82572) &&
2618                             txb2b == 0) {
2619                                 uint32_t tarc0;
2620                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2621                                 tarc0 &= ~(1 << 21);
2622                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2623                         }
2624
2625                         /* disable TSO for pcie and 10/100 speeds, to avoid
2626                          * some hardware issues */
2627                         if (!adapter->tso_force &&
2628                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2629                                 switch (adapter->link_speed) {
2630                                 case SPEED_10:
2631                                 case SPEED_100:
2632                                         DPRINTK(PROBE,INFO,
2633                                         "10/100 speed: disabling TSO\n");
2634                                         netdev->features &= ~NETIF_F_TSO;
2635                                         netdev->features &= ~NETIF_F_TSO6;
2636                                         break;
2637                                 case SPEED_1000:
2638                                         netdev->features |= NETIF_F_TSO;
2639                                         netdev->features |= NETIF_F_TSO6;
2640                                         break;
2641                                 default:
2642                                         /* oops */
2643                                         break;
2644                                 }
2645                         }
2646
2647                         /* enable transmits in the hardware, need to do this
2648                          * after setting TARC0 */
2649                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2650                         tctl |= E1000_TCTL_EN;
2651                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2652
2653                         netif_carrier_on(netdev);
2654                         netif_wake_queue(netdev);
2655                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2656                         adapter->smartspeed = 0;
2657                 } else {
2658                         /* make sure the receive unit is started */
2659                         if (adapter->hw.rx_needs_kicking) {
2660                                 struct e1000_hw *hw = &adapter->hw;
2661                                 uint32_t rctl = E1000_READ_REG(hw, RCTL);
2662                                 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2663                         }
2664                 }
2665         } else {
2666                 if (netif_carrier_ok(netdev)) {
2667                         adapter->link_speed = 0;
2668                         adapter->link_duplex = 0;
2669                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2670                         netif_carrier_off(netdev);
2671                         netif_stop_queue(netdev);
2672                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2673
2674                         /* 80003ES2LAN workaround--
2675                          * For packet buffer work-around on link down event;
2676                          * disable receives in the ISR and
2677                          * reset device here in the watchdog
2678                          */
2679                         if (adapter->hw.mac_type == e1000_80003es2lan)
2680                                 /* reset device */
2681                                 schedule_work(&adapter->reset_task);
2682                 }
2683
2684                 e1000_smartspeed(adapter);
2685         }
2686
2687         e1000_update_stats(adapter);
2688
2689         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2690         adapter->tpt_old = adapter->stats.tpt;
2691         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2692         adapter->colc_old = adapter->stats.colc;
2693
2694         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2695         adapter->gorcl_old = adapter->stats.gorcl;
2696         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2697         adapter->gotcl_old = adapter->stats.gotcl;
2698
2699         e1000_update_adaptive(&adapter->hw);
2700
2701         if (!netif_carrier_ok(netdev)) {
2702                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2703                         /* We've lost link, so the controller stops DMA,
2704                          * but we've got queued Tx work that's never going
2705                          * to get done, so reset controller to flush Tx.
2706                          * (Do the reset outside of interrupt context). */
2707                         adapter->tx_timeout_count++;
2708                         schedule_work(&adapter->reset_task);
2709                 }
2710         }
2711
2712         /* Cause software interrupt to ensure rx ring is cleaned */
2713         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2714
2715         /* Force detection of hung controller every watchdog period */
2716         adapter->detect_tx_hung = TRUE;
2717
2718         /* With 82571 controllers, LAA may be overwritten due to controller
2719          * reset from the other port. Set the appropriate LAA in RAR[0] */
2720         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2721                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2722
2723         /* Reset the timer */
2724         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2725 }
2726
2727 enum latency_range {
2728         lowest_latency = 0,
2729         low_latency = 1,
2730         bulk_latency = 2,
2731         latency_invalid = 255
2732 };
2733
2734 /**
2735  * e1000_update_itr - update the dynamic ITR value based on statistics
2736  *      Stores a new ITR value based on packets and byte
2737  *      counts during the last interrupt.  The advantage of per interrupt
2738  *      computation is faster updates and more accurate ITR for the current
2739  *      traffic pattern.  Constants in this function were computed
2740  *      based on theoretical maximum wire speed and thresholds were set based
2741  *      on testing data as well as attempting to minimize response time
2742  *      while increasing bulk throughput.
2743  *      this functionality is controlled by the InterruptThrottleRate module
2744  *      parameter (see e1000_param.c)
2745  * @adapter: pointer to adapter
2746  * @itr_setting: current adapter->itr
2747  * @packets: the number of packets during this measurement interval
2748  * @bytes: the number of bytes during this measurement interval
2749  **/
2750 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2751                                    uint16_t itr_setting,
2752                                    int packets,
2753                                    int bytes)
2754 {
2755         unsigned int retval = itr_setting;
2756         struct e1000_hw *hw = &adapter->hw;
2757
2758         if (unlikely(hw->mac_type < e1000_82540))
2759                 goto update_itr_done;
2760
2761         if (packets == 0)
2762                 goto update_itr_done;
2763
2764         switch (itr_setting) {
2765         case lowest_latency:
2766                 /* jumbo frames get bulk treatment*/
2767                 if (bytes/packets > 8000)
2768                         retval = bulk_latency;
2769                 else if ((packets < 5) && (bytes > 512))
2770                         retval = low_latency;
2771                 break;
2772         case low_latency:  /* 50 usec aka 20000 ints/s */
2773                 if (bytes > 10000) {
2774                         /* jumbo frames need bulk latency setting */
2775                         if (bytes/packets > 8000)
2776                                 retval = bulk_latency;
2777                         else if ((packets < 10) || ((bytes/packets) > 1200))
2778                                 retval = bulk_latency;
2779                         else if ((packets > 35))
2780                                 retval = lowest_latency;
2781                 } else if (bytes/packets > 2000)
2782                         retval = bulk_latency;
2783                 else if (packets <= 2 && bytes < 512)
2784                         retval = lowest_latency;
2785                 break;
2786         case bulk_latency: /* 250 usec aka 4000 ints/s */
2787                 if (bytes > 25000) {
2788                         if (packets > 35)
2789                                 retval = low_latency;
2790                 } else if (bytes < 6000) {
2791                         retval = low_latency;
2792                 }
2793                 break;
2794         }
2795
2796 update_itr_done:
2797         return retval;
2798 }
2799
2800 static void e1000_set_itr(struct e1000_adapter *adapter)
2801 {
2802         struct e1000_hw *hw = &adapter->hw;
2803         uint16_t current_itr;
2804         uint32_t new_itr = adapter->itr;
2805
2806         if (unlikely(hw->mac_type < e1000_82540))
2807                 return;
2808
2809         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2810         if (unlikely(adapter->link_speed != SPEED_1000)) {
2811                 current_itr = 0;
2812                 new_itr = 4000;
2813                 goto set_itr_now;
2814         }
2815
2816         adapter->tx_itr = e1000_update_itr(adapter,
2817                                     adapter->tx_itr,
2818                                     adapter->total_tx_packets,
2819                                     adapter->total_tx_bytes);
2820         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2821         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2822                 adapter->tx_itr = low_latency;
2823
2824         adapter->rx_itr = e1000_update_itr(adapter,
2825                                     adapter->rx_itr,
2826                                     adapter->total_rx_packets,
2827                                     adapter->total_rx_bytes);
2828         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2829         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2830                 adapter->rx_itr = low_latency;
2831
2832         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2833
2834         switch (current_itr) {
2835         /* counts and packets in update_itr are dependent on these numbers */
2836         case lowest_latency:
2837                 new_itr = 70000;
2838                 break;
2839         case low_latency:
2840                 new_itr = 20000; /* aka hwitr = ~200 */
2841                 break;
2842         case bulk_latency:
2843                 new_itr = 4000;
2844                 break;
2845         default:
2846                 break;
2847         }
2848
2849 set_itr_now:
2850         if (new_itr != adapter->itr) {
2851                 /* this attempts to bias the interrupt rate towards Bulk
2852                  * by adding intermediate steps when interrupt rate is
2853                  * increasing */
2854                 new_itr = new_itr > adapter->itr ?
2855                              min(adapter->itr + (new_itr >> 2), new_itr) :
2856                              new_itr;
2857                 adapter->itr = new_itr;
2858                 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2859         }
2860
2861         return;
2862 }
2863
2864 #define E1000_TX_FLAGS_CSUM             0x00000001
2865 #define E1000_TX_FLAGS_VLAN             0x00000002
2866 #define E1000_TX_FLAGS_TSO              0x00000004
2867 #define E1000_TX_FLAGS_IPV4             0x00000008
2868 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2869 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2870
2871 static int
2872 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2873           struct sk_buff *skb)
2874 {
2875         struct e1000_context_desc *context_desc;
2876         struct e1000_buffer *buffer_info;
2877         unsigned int i;
2878         uint32_t cmd_length = 0;
2879         uint16_t ipcse = 0, tucse, mss;
2880         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2881         int err;
2882
2883         if (skb_is_gso(skb)) {
2884                 if (skb_header_cloned(skb)) {
2885                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2886                         if (err)
2887                                 return err;
2888                 }
2889
2890                 hdr_len = (skb_transport_offset(skb) + (skb->h.th->doff << 2));
2891                 mss = skb_shinfo(skb)->gso_size;
2892                 if (skb->protocol == htons(ETH_P_IP)) {
2893                         struct iphdr *iph = ip_hdr(skb);
2894                         iph->tot_len = 0;
2895                         iph->check = 0;
2896                         skb->h.th->check = ~csum_tcpudp_magic(iph->saddr,
2897                                                               iph->daddr, 0,
2898                                                               IPPROTO_TCP, 0);
2899                         cmd_length = E1000_TXD_CMD_IP;
2900                         ipcse = skb_transport_offset(skb) - 1;
2901                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2902                         ipv6_hdr(skb)->payload_len = 0;
2903                         skb->h.th->check =
2904                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2905                                                  &ipv6_hdr(skb)->daddr,
2906                                                  0, IPPROTO_TCP, 0);
2907                         ipcse = 0;
2908                 }
2909                 ipcss = skb_network_offset(skb);
2910                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2911                 tucss = skb_transport_offset(skb);
2912                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2913                 tucse = 0;
2914
2915                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2916                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2917
2918                 i = tx_ring->next_to_use;
2919                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2920                 buffer_info = &tx_ring->buffer_info[i];
2921
2922                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2923                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2924                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2925                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2926                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2927                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2928                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2929                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2930                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2931
2932                 buffer_info->time_stamp = jiffies;
2933                 buffer_info->next_to_watch = i;
2934
2935                 if (++i == tx_ring->count) i = 0;
2936                 tx_ring->next_to_use = i;
2937
2938                 return TRUE;
2939         }
2940         return FALSE;
2941 }
2942
2943 static boolean_t
2944 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2945               struct sk_buff *skb)
2946 {
2947         struct e1000_context_desc *context_desc;
2948         struct e1000_buffer *buffer_info;
2949         unsigned int i;
2950         uint8_t css;
2951
2952         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2953                 css = skb_transport_offset(skb);
2954
2955                 i = tx_ring->next_to_use;
2956                 buffer_info = &tx_ring->buffer_info[i];
2957                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2958
2959                 context_desc->lower_setup.ip_config = 0;
2960                 context_desc->upper_setup.tcp_fields.tucss = css;
2961                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2962                 context_desc->upper_setup.tcp_fields.tucse = 0;
2963                 context_desc->tcp_seg_setup.data = 0;
2964                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2965
2966                 buffer_info->time_stamp = jiffies;
2967                 buffer_info->next_to_watch = i;
2968
2969                 if (unlikely(++i == tx_ring->count)) i = 0;
2970                 tx_ring->next_to_use = i;
2971
2972                 return TRUE;
2973         }
2974
2975         return FALSE;
2976 }
2977
2978 #define E1000_MAX_TXD_PWR       12
2979 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2980
2981 static int
2982 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2983              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2984              unsigned int nr_frags, unsigned int mss)
2985 {
2986         struct e1000_buffer *buffer_info;
2987         unsigned int len = skb->len;
2988         unsigned int offset = 0, size, count = 0, i;
2989         unsigned int f;
2990         len -= skb->data_len;
2991
2992         i = tx_ring->next_to_use;
2993
2994         while (len) {
2995                 buffer_info = &tx_ring->buffer_info[i];
2996                 size = min(len, max_per_txd);
2997                 /* Workaround for Controller erratum --
2998                  * descriptor for non-tso packet in a linear SKB that follows a
2999                  * tso gets written back prematurely before the data is fully
3000                  * DMA'd to the controller */
3001                 if (!skb->data_len && tx_ring->last_tx_tso &&
3002                     !skb_is_gso(skb)) {
3003                         tx_ring->last_tx_tso = 0;
3004                         size -= 4;
3005                 }
3006
3007                 /* Workaround for premature desc write-backs
3008                  * in TSO mode.  Append 4-byte sentinel desc */
3009                 if (unlikely(mss && !nr_frags && size == len && size > 8))
3010                         size -= 4;
3011                 /* work-around for errata 10 and it applies
3012                  * to all controllers in PCI-X mode
3013                  * The fix is to make sure that the first descriptor of a
3014                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3015                  */
3016                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3017                                 (size > 2015) && count == 0))
3018                         size = 2015;
3019
3020                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
3021                  * terminating buffers within evenly-aligned dwords. */
3022                 if (unlikely(adapter->pcix_82544 &&
3023                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3024                    size > 4))
3025                         size -= 4;
3026
3027                 buffer_info->length = size;
3028                 buffer_info->dma =
3029                         pci_map_single(adapter->pdev,
3030                                 skb->data + offset,
3031                                 size,
3032                                 PCI_DMA_TODEVICE);
3033                 buffer_info->time_stamp = jiffies;
3034                 buffer_info->next_to_watch = i;
3035
3036                 len -= size;
3037                 offset += size;
3038                 count++;
3039                 if (unlikely(++i == tx_ring->count)) i = 0;
3040         }
3041
3042         for (f = 0; f < nr_frags; f++) {
3043                 struct skb_frag_struct *frag;
3044
3045                 frag = &skb_shinfo(skb)->frags[f];
3046                 len = frag->size;
3047                 offset = frag->page_offset;
3048
3049                 while (len) {
3050                         buffer_info = &tx_ring->buffer_info[i];
3051                         size = min(len, max_per_txd);
3052                         /* Workaround for premature desc write-backs
3053                          * in TSO mode.  Append 4-byte sentinel desc */
3054                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3055                                 size -= 4;
3056                         /* Workaround for potential 82544 hang in PCI-X.
3057                          * Avoid terminating buffers within evenly-aligned
3058                          * dwords. */
3059                         if (unlikely(adapter->pcix_82544 &&
3060                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3061                            size > 4))
3062                                 size -= 4;
3063
3064                         buffer_info->length = size;
3065                         buffer_info->dma =
3066                                 pci_map_page(adapter->pdev,
3067                                         frag->page,
3068                                         offset,
3069                                         size,
3070                                         PCI_DMA_TODEVICE);
3071                         buffer_info->time_stamp = jiffies;
3072                         buffer_info->next_to_watch = i;
3073
3074                         len -= size;
3075                         offset += size;
3076                         count++;
3077                         if (unlikely(++i == tx_ring->count)) i = 0;
3078                 }
3079         }
3080
3081         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3082         tx_ring->buffer_info[i].skb = skb;
3083         tx_ring->buffer_info[first].next_to_watch = i;
3084
3085         return count;
3086 }
3087
3088 static void
3089 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3090                int tx_flags, int count)
3091 {
3092         struct e1000_tx_desc *tx_desc = NULL;
3093         struct e1000_buffer *buffer_info;
3094         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3095         unsigned int i;
3096
3097         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3098                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3099                              E1000_TXD_CMD_TSE;
3100                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3101
3102                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3103                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3104         }
3105
3106         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3107                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3108                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3109         }
3110
3111         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3112                 txd_lower |= E1000_TXD_CMD_VLE;
3113                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3114         }
3115
3116         i = tx_ring->next_to_use;
3117
3118         while (count--) {
3119                 buffer_info = &tx_ring->buffer_info[i];
3120                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3121                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3122                 tx_desc->lower.data =
3123                         cpu_to_le32(txd_lower | buffer_info->length);
3124                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3125                 if (unlikely(++i == tx_ring->count)) i = 0;
3126         }
3127
3128         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3129
3130         /* Force memory writes to complete before letting h/w
3131          * know there are new descriptors to fetch.  (Only
3132          * applicable for weak-ordered memory model archs,
3133          * such as IA-64). */
3134         wmb();
3135
3136         tx_ring->next_to_use = i;
3137         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3138         /* we need this if more than one processor can write to our tail
3139          * at a time, it syncronizes IO on IA64/Altix systems */
3140         mmiowb();
3141 }
3142
3143 /**
3144  * 82547 workaround to avoid controller hang in half-duplex environment.
3145  * The workaround is to avoid queuing a large packet that would span
3146  * the internal Tx FIFO ring boundary by notifying the stack to resend
3147  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3148  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3149  * to the beginning of the Tx FIFO.
3150  **/
3151
3152 #define E1000_FIFO_HDR                  0x10
3153 #define E1000_82547_PAD_LEN             0x3E0
3154
3155 static int
3156 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3157 {
3158         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3159         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3160
3161         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
3162
3163         if (adapter->link_duplex != HALF_DUPLEX)
3164                 goto no_fifo_stall_required;
3165
3166         if (atomic_read(&adapter->tx_fifo_stall))
3167                 return 1;
3168
3169         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3170                 atomic_set(&adapter->tx_fifo_stall, 1);
3171                 return 1;
3172         }
3173
3174 no_fifo_stall_required:
3175         adapter->tx_fifo_head += skb_fifo_len;
3176         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3177                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3178         return 0;
3179 }
3180
3181 #define MINIMUM_DHCP_PACKET_SIZE 282
3182 static int
3183 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3184 {
3185         struct e1000_hw *hw =  &adapter->hw;
3186         uint16_t length, offset;
3187         if (vlan_tx_tag_present(skb)) {
3188                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3189                         ( adapter->hw.mng_cookie.status &
3190                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3191                         return 0;
3192         }
3193         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3194                 struct ethhdr *eth = (struct ethhdr *) skb->data;
3195                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3196                         const struct iphdr *ip =
3197                                 (struct iphdr *)((uint8_t *)skb->data+14);
3198                         if (IPPROTO_UDP == ip->protocol) {
3199                                 struct udphdr *udp =
3200                                         (struct udphdr *)((uint8_t *)ip +
3201                                                 (ip->ihl << 2));
3202                                 if (ntohs(udp->dest) == 67) {
3203                                         offset = (uint8_t *)udp + 8 - skb->data;
3204                                         length = skb->len - offset;
3205
3206                                         return e1000_mng_write_dhcp_info(hw,
3207                                                         (uint8_t *)udp + 8,
3208                                                         length);
3209                                 }
3210                         }
3211                 }
3212         }
3213         return 0;
3214 }
3215
3216 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3217 {
3218         struct e1000_adapter *adapter = netdev_priv(netdev);
3219         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3220
3221         netif_stop_queue(netdev);
3222         /* Herbert's original patch had:
3223          *  smp_mb__after_netif_stop_queue();
3224          * but since that doesn't exist yet, just open code it. */
3225         smp_mb();
3226
3227         /* We need to check again in a case another CPU has just
3228          * made room available. */
3229         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3230                 return -EBUSY;
3231
3232         /* A reprieve! */
3233         netif_start_queue(netdev);
3234         ++adapter->restart_queue;
3235         return 0;
3236 }
3237
3238 static int e1000_maybe_stop_tx(struct net_device *netdev,
3239                                struct e1000_tx_ring *tx_ring, int size)
3240 {
3241         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3242                 return 0;
3243         return __e1000_maybe_stop_tx(netdev, size);
3244 }
3245
3246 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3247 static int
3248 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3249 {
3250         struct e1000_adapter *adapter = netdev_priv(netdev);
3251         struct e1000_tx_ring *tx_ring;
3252         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3253         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3254         unsigned int tx_flags = 0;
3255         unsigned int len = skb->len;
3256         unsigned long flags;
3257         unsigned int nr_frags = 0;
3258         unsigned int mss = 0;
3259         int count = 0;
3260         int tso;
3261         unsigned int f;
3262         len -= skb->data_len;
3263
3264         /* This goes back to the question of how to logically map a tx queue
3265          * to a flow.  Right now, performance is impacted slightly negatively
3266          * if using multiple tx queues.  If the stack breaks away from a
3267          * single qdisc implementation, we can look at this again. */
3268         tx_ring = adapter->tx_ring;
3269
3270         if (unlikely(skb->len <= 0)) {
3271                 dev_kfree_skb_any(skb);
3272                 return NETDEV_TX_OK;
3273         }
3274
3275         /* 82571 and newer doesn't need the workaround that limited descriptor
3276          * length to 4kB */
3277         if (adapter->hw.mac_type >= e1000_82571)
3278                 max_per_txd = 8192;
3279
3280         mss = skb_shinfo(skb)->gso_size;
3281         /* The controller does a simple calculation to
3282          * make sure there is enough room in the FIFO before
3283          * initiating the DMA for each buffer.  The calc is:
3284          * 4 = ceil(buffer len/mss).  To make sure we don't
3285          * overrun the FIFO, adjust the max buffer len if mss
3286          * drops. */
3287         if (mss) {
3288                 uint8_t hdr_len;
3289                 max_per_txd = min(mss << 2, max_per_txd);
3290                 max_txd_pwr = fls(max_per_txd) - 1;
3291
3292                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3293                 * points to just header, pull a few bytes of payload from
3294                 * frags into skb->data */
3295                 hdr_len = (skb_transport_offset(skb) + (skb->h.th->doff << 2));
3296                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3297                         switch (adapter->hw.mac_type) {
3298                                 unsigned int pull_size;
3299                         case e1000_82544:
3300                                 /* Make sure we have room to chop off 4 bytes,
3301                                  * and that the end alignment will work out to
3302                                  * this hardware's requirements
3303                                  * NOTE: this is a TSO only workaround
3304                                  * if end byte alignment not correct move us
3305                                  * into the next dword */
3306                                 if ((unsigned long)(skb->tail - 1) & 4)
3307                                         break;
3308                                 /* fall through */
3309                         case e1000_82571:
3310                         case e1000_82572:
3311                         case e1000_82573:
3312                         case e1000_ich8lan:
3313                                 pull_size = min((unsigned int)4, skb->data_len);
3314                                 if (!__pskb_pull_tail(skb, pull_size)) {
3315                                         DPRINTK(DRV, ERR,
3316                                                 "__pskb_pull_tail failed.\n");
3317                                         dev_kfree_skb_any(skb);
3318                                         return NETDEV_TX_OK;
3319                                 }
3320                                 len = skb->len - skb->data_len;
3321                                 break;
3322                         default:
3323                                 /* do nothing */
3324                                 break;
3325                         }
3326                 }
3327         }
3328
3329         /* reserve a descriptor for the offload context */
3330         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3331                 count++;
3332         count++;
3333
3334         /* Controller Erratum workaround */
3335         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3336                 count++;
3337
3338         count += TXD_USE_COUNT(len, max_txd_pwr);
3339
3340         if (adapter->pcix_82544)
3341                 count++;
3342
3343         /* work-around for errata 10 and it applies to all controllers
3344          * in PCI-X mode, so add one more descriptor to the count
3345          */
3346         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3347                         (len > 2015)))
3348                 count++;
3349
3350         nr_frags = skb_shinfo(skb)->nr_frags;
3351         for (f = 0; f < nr_frags; f++)
3352                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3353                                        max_txd_pwr);
3354         if (adapter->pcix_82544)
3355                 count += nr_frags;
3356
3357
3358         if (adapter->hw.tx_pkt_filtering &&
3359             (adapter->hw.mac_type == e1000_82573))
3360                 e1000_transfer_dhcp_info(adapter, skb);
3361
3362         local_irq_save(flags);
3363         if (!spin_trylock(&tx_ring->tx_lock)) {
3364                 /* Collision - tell upper layer to requeue */
3365                 local_irq_restore(flags);
3366                 return NETDEV_TX_LOCKED;
3367         }
3368
3369         /* need: count + 2 desc gap to keep tail from touching
3370          * head, otherwise try next time */
3371         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3372                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3373                 return NETDEV_TX_BUSY;
3374         }
3375
3376         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3377                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3378                         netif_stop_queue(netdev);
3379                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3380                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3381                         return NETDEV_TX_BUSY;
3382                 }
3383         }
3384
3385         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3386                 tx_flags |= E1000_TX_FLAGS_VLAN;
3387                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3388         }
3389
3390         first = tx_ring->next_to_use;
3391
3392         tso = e1000_tso(adapter, tx_ring, skb);
3393         if (tso < 0) {
3394                 dev_kfree_skb_any(skb);
3395                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3396                 return NETDEV_TX_OK;
3397         }
3398
3399         if (likely(tso)) {
3400                 tx_ring->last_tx_tso = 1;
3401                 tx_flags |= E1000_TX_FLAGS_TSO;
3402         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3403                 tx_flags |= E1000_TX_FLAGS_CSUM;
3404
3405         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3406          * 82571 hardware supports TSO capabilities for IPv6 as well...
3407          * no longer assume, we must. */
3408         if (likely(skb->protocol == htons(ETH_P_IP)))
3409                 tx_flags |= E1000_TX_FLAGS_IPV4;
3410
3411         e1000_tx_queue(adapter, tx_ring, tx_flags,
3412                        e1000_tx_map(adapter, tx_ring, skb, first,
3413                                     max_per_txd, nr_frags, mss));
3414
3415         netdev->trans_start = jiffies;
3416
3417         /* Make sure there is space in the ring for the next send. */
3418         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3419
3420         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3421         return NETDEV_TX_OK;
3422 }
3423
3424 /**
3425  * e1000_tx_timeout - Respond to a Tx Hang
3426  * @netdev: network interface device structure
3427  **/
3428
3429 static void
3430 e1000_tx_timeout(struct net_device *netdev)
3431 {
3432         struct e1000_adapter *adapter = netdev_priv(netdev);
3433
3434         /* Do the reset outside of interrupt context */
3435         adapter->tx_timeout_count++;
3436         schedule_work(&adapter->reset_task);
3437 }
3438
3439 static void
3440 e1000_reset_task(struct work_struct *work)
3441 {
3442         struct e1000_adapter *adapter =
3443                 container_of(work, struct e1000_adapter, reset_task);
3444
3445         e1000_reinit_locked(adapter);
3446 }
3447
3448 /**
3449  * e1000_get_stats - Get System Network Statistics
3450  * @netdev: network interface device structure
3451  *
3452  * Returns the address of the device statistics structure.
3453  * The statistics are actually updated from the timer callback.
3454  **/
3455
3456 static struct net_device_stats *
3457 e1000_get_stats(struct net_device *netdev)
3458 {
3459         struct e1000_adapter *adapter = netdev_priv(netdev);
3460
3461         /* only return the current stats */
3462         return &adapter->net_stats;
3463 }
3464
3465 /**
3466  * e1000_change_mtu - Change the Maximum Transfer Unit
3467  * @netdev: network interface device structure
3468  * @new_mtu: new value for maximum frame size
3469  *
3470  * Returns 0 on success, negative on failure
3471  **/
3472
3473 static int
3474 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3475 {
3476         struct e1000_adapter *adapter = netdev_priv(netdev);
3477         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3478         uint16_t eeprom_data = 0;
3479
3480         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3481             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3482                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3483                 return -EINVAL;
3484         }
3485
3486         /* Adapter-specific max frame size limits. */
3487         switch (adapter->hw.mac_type) {
3488         case e1000_undefined ... e1000_82542_rev2_1:
3489         case e1000_ich8lan:
3490                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3491                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3492                         return -EINVAL;
3493                 }
3494                 break;
3495         case e1000_82573:
3496                 /* Jumbo Frames not supported if:
3497                  * - this is not an 82573L device
3498                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3499                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3500                                   &eeprom_data);
3501                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3502                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3503                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3504                                 DPRINTK(PROBE, ERR,
3505                                         "Jumbo Frames not supported.\n");
3506                                 return -EINVAL;
3507                         }
3508                         break;
3509                 }
3510                 /* ERT will be enabled later to enable wire speed receives */
3511
3512                 /* fall through to get support */
3513         case e1000_82571:
3514         case e1000_82572:
3515         case e1000_80003es2lan:
3516 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3517                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3518                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3519                         return -EINVAL;
3520                 }
3521                 break;
3522         default:
3523                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3524                 break;
3525         }
3526
3527         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3528          * means we reserve 2 more, this pushes us to allocate from the next
3529          * larger slab size
3530          * i.e. RXBUFFER_2048 --> size-4096 slab */
3531
3532         if (max_frame <= E1000_RXBUFFER_256)
3533                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3534         else if (max_frame <= E1000_RXBUFFER_512)
3535                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3536         else if (max_frame <= E1000_RXBUFFER_1024)
3537                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3538         else if (max_frame <= E1000_RXBUFFER_2048)
3539                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3540         else if (max_frame <= E1000_RXBUFFER_4096)
3541                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3542         else if (max_frame <= E1000_RXBUFFER_8192)
3543                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3544         else if (max_frame <= E1000_RXBUFFER_16384)
3545                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3546
3547         /* adjust allocation if LPE protects us, and we aren't using SBP */
3548         if (!adapter->hw.tbi_compatibility_on &&
3549             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3550              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3551                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3552
3553         netdev->mtu = new_mtu;
3554         adapter->hw.max_frame_size = max_frame;
3555
3556         if (netif_running(netdev))
3557                 e1000_reinit_locked(adapter);
3558
3559         return 0;
3560 }
3561
3562 /**
3563  * e1000_update_stats - Update the board statistics counters
3564  * @adapter: board private structure
3565  **/
3566
3567 void
3568 e1000_update_stats(struct e1000_adapter *adapter)
3569 {
3570         struct e1000_hw *hw = &adapter->hw;
3571         struct pci_dev *pdev = adapter->pdev;
3572         unsigned long flags;
3573         uint16_t phy_tmp;
3574
3575 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3576
3577         /*
3578          * Prevent stats update while adapter is being reset, or if the pci
3579          * connection is down.
3580          */
3581         if (adapter->link_speed == 0)
3582                 return;
3583         if (pci_channel_offline(pdev))
3584                 return;
3585
3586         spin_lock_irqsave(&adapter->stats_lock, flags);
3587
3588         /* these counters are modified from e1000_adjust_tbi_stats,
3589          * called from the interrupt context, so they must only
3590          * be written while holding adapter->stats_lock
3591          */
3592
3593         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3594         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3595         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3596         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3597         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3598         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3599         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3600
3601         if (adapter->hw.mac_type != e1000_ich8lan) {
3602                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3603                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3604                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3605                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3606                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3607                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3608         }
3609
3610         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3611         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3612         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3613         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3614         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3615         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3616         adapter->stats.dc += E1000_READ_REG(hw, DC);
3617         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3618         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3619         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3620         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3621         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3622         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3623         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3624         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3625         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3626         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3627         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3628         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3629         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3630         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3631         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3632         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3633         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3634         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3635         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3636
3637         if (adapter->hw.mac_type != e1000_ich8lan) {
3638                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3639                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3640                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3641                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3642                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3643                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3644         }
3645
3646         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3647         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3648
3649         /* used for adaptive IFS */
3650
3651         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3652         adapter->stats.tpt += hw->tx_packet_delta;
3653         hw->collision_delta = E1000_READ_REG(hw, COLC);
3654         adapter->stats.colc += hw->collision_delta;
3655
3656         if (hw->mac_type >= e1000_82543) {
3657                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3658                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3659                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3660                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3661                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3662                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3663         }
3664         if (hw->mac_type > e1000_82547_rev_2) {
3665                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3666                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3667
3668                 if (adapter->hw.mac_type != e1000_ich8lan) {
3669                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3670                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3671                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3672                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3673                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3674                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3675                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3676                 }
3677         }
3678
3679         /* Fill out the OS statistics structure */
3680         adapter->net_stats.rx_packets = adapter->stats.gprc;
3681         adapter->net_stats.tx_packets = adapter->stats.gptc;
3682         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3683         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3684         adapter->net_stats.multicast = adapter->stats.mprc;
3685         adapter->net_stats.collisions = adapter->stats.colc;
3686
3687         /* Rx Errors */
3688
3689         /* RLEC on some newer hardware can be incorrect so build
3690         * our own version based on RUC and ROC */
3691         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3692                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3693                 adapter->stats.ruc + adapter->stats.roc +
3694                 adapter->stats.cexterr;
3695         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3696         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3697         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3698         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3699         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3700
3701         /* Tx Errors */
3702         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3703         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3704         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3705         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3706         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3707         if (adapter->hw.bad_tx_carr_stats_fd &&
3708             adapter->link_duplex == FULL_DUPLEX) {
3709                 adapter->net_stats.tx_carrier_errors = 0;
3710                 adapter->stats.tncrs = 0;
3711         }
3712
3713         /* Tx Dropped needs to be maintained elsewhere */
3714
3715         /* Phy Stats */
3716         if (hw->media_type == e1000_media_type_copper) {
3717                 if ((adapter->link_speed == SPEED_1000) &&
3718                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3719                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3720                         adapter->phy_stats.idle_errors += phy_tmp;
3721                 }
3722
3723                 if ((hw->mac_type <= e1000_82546) &&
3724                    (hw->phy_type == e1000_phy_m88) &&
3725                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3726                         adapter->phy_stats.receive_errors += phy_tmp;
3727         }
3728
3729         /* Management Stats */
3730         if (adapter->hw.has_smbus) {
3731                 adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
3732                 adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
3733                 adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
3734         }
3735
3736         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3737 }
3738 #ifdef CONFIG_PCI_MSI
3739
3740 /**
3741  * e1000_intr_msi - Interrupt Handler
3742  * @irq: interrupt number
3743  * @data: pointer to a network interface device structure
3744  **/
3745
3746 static irqreturn_t
3747 e1000_intr_msi(int irq, void *data)
3748 {
3749         struct net_device *netdev = data;
3750         struct e1000_adapter *adapter = netdev_priv(netdev);
3751         struct e1000_hw *hw = &adapter->hw;
3752 #ifndef CONFIG_E1000_NAPI
3753         int i;
3754 #endif
3755         uint32_t icr = E1000_READ_REG(hw, ICR);
3756
3757 #ifdef CONFIG_E1000_NAPI
3758         /* read ICR disables interrupts using IAM, so keep up with our
3759          * enable/disable accounting */
3760         atomic_inc(&adapter->irq_sem);
3761 #endif
3762         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3763                 hw->get_link_status = 1;
3764                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3765                  * link down event; disable receives here in the ISR and reset
3766                  * adapter in watchdog */
3767                 if (netif_carrier_ok(netdev) &&
3768                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3769                         /* disable receives */
3770                         uint32_t rctl = E1000_READ_REG(hw, RCTL);
3771                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3772                 }
3773                 /* guard against interrupt when we're going down */
3774                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3775                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3776         }
3777
3778 #ifdef CONFIG_E1000_NAPI
3779         if (likely(netif_rx_schedule_prep(netdev))) {
3780                 adapter->total_tx_bytes = 0;
3781                 adapter->total_tx_packets = 0;
3782                 adapter->total_rx_bytes = 0;
3783                 adapter->total_rx_packets = 0;
3784                 __netif_rx_schedule(netdev);
3785         } else
3786                 e1000_irq_enable(adapter);
3787 #else
3788         adapter->total_tx_bytes = 0;
3789         adapter->total_rx_bytes = 0;
3790         adapter->total_tx_packets = 0;
3791         adapter->total_rx_packets = 0;
3792
3793         for (i = 0; i < E1000_MAX_INTR; i++)
3794                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3795                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3796                         break;
3797
3798         if (likely(adapter->itr_setting & 3))
3799                 e1000_set_itr(adapter);
3800 #endif
3801
3802         return IRQ_HANDLED;
3803 }
3804 #endif
3805
3806 /**
3807  * e1000_intr - Interrupt Handler
3808  * @irq: interrupt number
3809  * @data: pointer to a network interface device structure
3810  **/
3811
3812 static irqreturn_t
3813 e1000_intr(int irq, void *data)
3814 {
3815         struct net_device *netdev = data;
3816         struct e1000_adapter *adapter = netdev_priv(netdev);
3817         struct e1000_hw *hw = &adapter->hw;
3818         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3819 #ifndef CONFIG_E1000_NAPI
3820         int i;
3821 #endif
3822         if (unlikely(!icr))
3823                 return IRQ_NONE;  /* Not our interrupt */
3824
3825 #ifdef CONFIG_E1000_NAPI
3826         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3827          * not set, then the adapter didn't send an interrupt */
3828         if (unlikely(hw->mac_type >= e1000_82571 &&
3829                      !(icr & E1000_ICR_INT_ASSERTED)))
3830                 return IRQ_NONE;
3831
3832         /* Interrupt Auto-Mask...upon reading ICR,
3833          * interrupts are masked.  No need for the
3834          * IMC write, but it does mean we should
3835          * account for it ASAP. */
3836         if (likely(hw->mac_type >= e1000_82571))
3837                 atomic_inc(&adapter->irq_sem);
3838 #endif
3839
3840         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3841                 hw->get_link_status = 1;
3842                 /* 80003ES2LAN workaround--
3843                  * For packet buffer work-around on link down event;
3844                  * disable receives here in the ISR and
3845                  * reset adapter in watchdog
3846                  */
3847                 if (netif_carrier_ok(netdev) &&
3848                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3849                         /* disable receives */
3850                         rctl = E1000_READ_REG(hw, RCTL);
3851                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3852                 }
3853                 /* guard against interrupt when we're going down */
3854                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3855                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3856         }
3857
3858 #ifdef CONFIG_E1000_NAPI
3859         if (unlikely(hw->mac_type < e1000_82571)) {
3860                 /* disable interrupts, without the synchronize_irq bit */
3861                 atomic_inc(&adapter->irq_sem);
3862                 E1000_WRITE_REG(hw, IMC, ~0);
3863                 E1000_WRITE_FLUSH(hw);
3864         }
3865         if (likely(netif_rx_schedule_prep(netdev))) {
3866                 adapter->total_tx_bytes = 0;
3867                 adapter->total_tx_packets = 0;
3868                 adapter->total_rx_bytes = 0;
3869                 adapter->total_rx_packets = 0;
3870                 __netif_rx_schedule(netdev);
3871         } else
3872                 /* this really should not happen! if it does it is basically a
3873                  * bug, but not a hard error, so enable ints and continue */
3874                 e1000_irq_enable(adapter);
3875 #else
3876         /* Writing IMC and IMS is needed for 82547.
3877          * Due to Hub Link bus being occupied, an interrupt
3878          * de-assertion message is not able to be sent.
3879          * When an interrupt assertion message is generated later,
3880          * two messages are re-ordered and sent out.
3881          * That causes APIC to think 82547 is in de-assertion
3882          * state, while 82547 is in assertion state, resulting
3883          * in dead lock. Writing IMC forces 82547 into
3884          * de-assertion state.
3885          */
3886         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3887                 atomic_inc(&adapter->irq_sem);
3888                 E1000_WRITE_REG(hw, IMC, ~0);
3889         }
3890
3891         adapter->total_tx_bytes = 0;
3892         adapter->total_rx_bytes = 0;
3893         adapter->total_tx_packets = 0;
3894         adapter->total_rx_packets = 0;
3895
3896         for (i = 0; i < E1000_MAX_INTR; i++)
3897                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3898                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3899                         break;
3900
3901         if (likely(adapter->itr_setting & 3))
3902                 e1000_set_itr(adapter);
3903
3904         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3905                 e1000_irq_enable(adapter);
3906
3907 #endif
3908         return IRQ_HANDLED;
3909 }
3910
3911 #ifdef CONFIG_E1000_NAPI
3912 /**
3913  * e1000_clean - NAPI Rx polling callback
3914  * @adapter: board private structure
3915  **/
3916
3917 static int
3918 e1000_clean(struct net_device *poll_dev, int *budget)
3919 {
3920         struct e1000_adapter *adapter;
3921         int work_to_do = min(*budget, poll_dev->quota);
3922         int tx_cleaned = 0, work_done = 0;
3923
3924         /* Must NOT use netdev_priv macro here. */
3925         adapter = poll_dev->priv;
3926
3927         /* Keep link state information with original netdev */
3928         if (!netif_carrier_ok(poll_dev))
3929                 goto quit_polling;
3930
3931         /* e1000_clean is called per-cpu.  This lock protects
3932          * tx_ring[0] from being cleaned by multiple cpus
3933          * simultaneously.  A failure obtaining the lock means
3934          * tx_ring[0] is currently being cleaned anyway. */
3935         if (spin_trylock(&adapter->tx_queue_lock)) {
3936                 tx_cleaned = e1000_clean_tx_irq(adapter,
3937                                                 &adapter->tx_ring[0]);
3938                 spin_unlock(&adapter->tx_queue_lock);
3939         }
3940
3941         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3942                           &work_done, work_to_do);
3943
3944         *budget -= work_done;
3945         poll_dev->quota -= work_done;
3946
3947         /* If no Tx and not enough Rx work done, exit the polling mode */
3948         if ((!tx_cleaned && (work_done == 0)) ||
3949            !netif_running(poll_dev)) {
3950 quit_polling:
3951                 if (likely(adapter->itr_setting & 3))
3952                         e1000_set_itr(adapter);
3953                 netif_rx_complete(poll_dev);
3954                 e1000_irq_enable(adapter);
3955                 return 0;
3956         }
3957
3958         return 1;
3959 }
3960
3961 #endif
3962 /**
3963  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3964  * @adapter: board private structure
3965  **/
3966
3967 static boolean_t
3968 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3969                    struct e1000_tx_ring *tx_ring)
3970 {
3971         struct net_device *netdev = adapter->netdev;
3972         struct e1000_tx_desc *tx_desc, *eop_desc;
3973         struct e1000_buffer *buffer_info;
3974         unsigned int i, eop;
3975 #ifdef CONFIG_E1000_NAPI
3976         unsigned int count = 0;
3977 #endif
3978         boolean_t cleaned = FALSE;
3979         unsigned int total_tx_bytes=0, total_tx_packets=0;
3980
3981         i = tx_ring->next_to_clean;
3982         eop = tx_ring->buffer_info[i].next_to_watch;
3983         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3984
3985         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3986                 for (cleaned = FALSE; !cleaned; ) {
3987                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3988                         buffer_info = &tx_ring->buffer_info[i];
3989                         cleaned = (i == eop);
3990
3991                         if (cleaned) {
3992                                 struct sk_buff *skb = buffer_info->skb;
3993                                 unsigned int segs, bytecount;
3994                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3995                                 /* multiply data chunks by size of headers */
3996                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3997                                             skb->len;
3998                                 total_tx_packets += segs;
3999                                 total_tx_bytes += bytecount;
4000                         }
4001                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
4002                         tx_desc->upper.data = 0;
4003
4004                         if (unlikely(++i == tx_ring->count)) i = 0;
4005                 }
4006
4007                 eop = tx_ring->buffer_info[i].next_to_watch;
4008                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
4009 #ifdef CONFIG_E1000_NAPI
4010 #define E1000_TX_WEIGHT 64
4011                 /* weight of a sort for tx, to avoid endless transmit cleanup */
4012                 if (count++ == E1000_TX_WEIGHT) break;
4013 #endif
4014         }
4015
4016         tx_ring->next_to_clean = i;
4017
4018 #define TX_WAKE_THRESHOLD 32
4019         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
4020                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
4021                 /* Make sure that anybody stopping the queue after this
4022                  * sees the new next_to_clean.
4023                  */
4024                 smp_mb();
4025                 if (netif_queue_stopped(netdev)) {
4026                         netif_wake_queue(netdev);
4027                         ++adapter->restart_queue;
4028                 }
4029         }
4030
4031         if (adapter->detect_tx_hung) {
4032                 /* Detect a transmit hang in hardware, this serializes the
4033                  * check with the clearing of time_stamp and movement of i */
4034                 adapter->detect_tx_hung = FALSE;
4035                 if (tx_ring->buffer_info[eop].dma &&
4036                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4037                                (adapter->tx_timeout_factor * HZ))
4038                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
4039                          E1000_STATUS_TXOFF)) {
4040
4041                         /* detected Tx unit hang */
4042                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4043                                         "  Tx Queue             <%lu>\n"
4044                                         "  TDH                  <%x>\n"
4045                                         "  TDT                  <%x>\n"
4046                                         "  next_to_use          <%x>\n"
4047                                         "  next_to_clean        <%x>\n"
4048                                         "buffer_info[next_to_clean]\n"
4049                                         "  time_stamp           <%lx>\n"
4050                                         "  next_to_watch        <%x>\n"
4051                                         "  jiffies              <%lx>\n"
4052                                         "  next_to_watch.status <%x>\n",
4053                                 (unsigned long)((tx_ring - adapter->tx_ring) /
4054                                         sizeof(struct e1000_tx_ring)),
4055                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
4056                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
4057                                 tx_ring->next_to_use,
4058                                 tx_ring->next_to_clean,
4059                                 tx_ring->buffer_info[eop].time_stamp,
4060                                 eop,
4061                                 jiffies,
4062                                 eop_desc->upper.fields.status);
4063                         netif_stop_queue(netdev);
4064                 }
4065         }
4066         adapter->total_tx_bytes += total_tx_bytes;
4067         adapter->total_tx_packets += total_tx_packets;
4068         return cleaned;
4069 }
4070
4071 /**
4072  * e1000_rx_checksum - Receive Checksum Offload for 82543
4073  * @adapter:     board private structure
4074  * @status_err:  receive descriptor status and error fields
4075  * @csum:        receive descriptor csum field
4076  * @sk_buff:     socket buffer with received data
4077  **/
4078
4079 static void
4080 e1000_rx_checksum(struct e1000_adapter *adapter,
4081                   uint32_t status_err, uint32_t csum,
4082                   struct sk_buff *skb)
4083 {
4084         uint16_t status = (uint16_t)status_err;
4085         uint8_t errors = (uint8_t)(status_err >> 24);
4086         skb->ip_summed = CHECKSUM_NONE;
4087
4088         /* 82543 or newer only */
4089         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4090         /* Ignore Checksum bit is set */
4091         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4092         /* TCP/UDP checksum error bit is set */
4093         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4094                 /* let the stack verify checksum errors */
4095                 adapter->hw_csum_err++;
4096                 return;
4097         }
4098         /* TCP/UDP Checksum has not been calculated */
4099         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4100                 if (!(status & E1000_RXD_STAT_TCPCS))
4101                         return;
4102         } else {
4103                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4104                         return;
4105         }
4106         /* It must be a TCP or UDP packet with a valid checksum */
4107         if (likely(status & E1000_RXD_STAT_TCPCS)) {
4108                 /* TCP checksum is good */
4109                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4110         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4111                 /* IP fragment with UDP payload */
4112                 /* Hardware complements the payload checksum, so we undo it
4113                  * and then put the value in host order for further stack use.
4114                  */
4115                 csum = ntohl(csum ^ 0xFFFF);
4116                 skb->csum = csum;
4117                 skb->ip_summed = CHECKSUM_COMPLETE;
4118         }
4119         adapter->hw_csum_good++;
4120 }
4121
4122 /**
4123  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4124  * @adapter: board private structure
4125  **/
4126
4127 static boolean_t
4128 #ifdef CONFIG_E1000_NAPI
4129 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4130                    struct e1000_rx_ring *rx_ring,
4131                    int *work_done, int work_to_do)
4132 #else
4133 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4134                    struct e1000_rx_ring *rx_ring)
4135 #endif
4136 {
4137         struct net_device *netdev = adapter->netdev;
4138         struct pci_dev *pdev = adapter->pdev;
4139         struct e1000_rx_desc *rx_desc, *next_rxd;
4140         struct e1000_buffer *buffer_info, *next_buffer;
4141         unsigned long flags;
4142         uint32_t length;
4143         uint8_t last_byte;
4144         unsigned int i;
4145         int cleaned_count = 0;
4146         boolean_t cleaned = FALSE;
4147         unsigned int total_rx_bytes=0, total_rx_packets=0;
4148
4149         i = rx_ring->next_to_clean;
4150         rx_desc = E1000_RX_DESC(*rx_ring, i);
4151         buffer_info = &rx_ring->buffer_info[i];
4152
4153         while (rx_desc->status & E1000_RXD_STAT_DD) {
4154                 struct sk_buff *skb;
4155                 u8 status;
4156
4157 #ifdef CONFIG_E1000_NAPI
4158                 if (*work_done >= work_to_do)
4159                         break;
4160                 (*work_done)++;
4161 #endif
4162                 status = rx_desc->status;
4163                 skb = buffer_info->skb;
4164                 buffer_info->skb = NULL;
4165
4166                 prefetch(skb->data - NET_IP_ALIGN);
4167
4168                 if (++i == rx_ring->count) i = 0;
4169                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4170                 prefetch(next_rxd);
4171
4172                 next_buffer = &rx_ring->buffer_info[i];
4173
4174                 cleaned = TRUE;
4175                 cleaned_count++;
4176                 pci_unmap_single(pdev,
4177                                  buffer_info->dma,
4178                                  buffer_info->length,
4179                                  PCI_DMA_FROMDEVICE);
4180
4181                 length = le16_to_cpu(rx_desc->length);
4182
4183                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4184                         /* All receives must fit into a single buffer */
4185                         E1000_DBG("%s: Receive packet consumed multiple"
4186                                   " buffers\n", netdev->name);
4187                         /* recycle */
4188                         buffer_info->skb = skb;
4189                         goto next_desc;
4190                 }
4191
4192                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4193                         last_byte = *(skb->data + length - 1);
4194                         if (TBI_ACCEPT(&adapter->hw, status,
4195                                       rx_desc->errors, length, last_byte)) {
4196                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4197                                 e1000_tbi_adjust_stats(&adapter->hw,
4198                                                        &adapter->stats,
4199                                                        length, skb->data);
4200                                 spin_unlock_irqrestore(&adapter->stats_lock,
4201                                                        flags);
4202                                 length--;
4203                         } else {
4204                                 /* recycle */
4205                                 buffer_info->skb = skb;
4206                                 goto next_desc;
4207                         }
4208                 }
4209
4210                 /* adjust length to remove Ethernet CRC, this must be
4211                  * done after the TBI_ACCEPT workaround above */
4212                 length -= 4;
4213
4214                 /* probably a little skewed due to removing CRC */
4215                 total_rx_bytes += length;
4216                 total_rx_packets++;
4217
4218                 /* code added for copybreak, this should improve
4219                  * performance for small packets with large amounts
4220                  * of reassembly being done in the stack */
4221                 if (length < copybreak) {
4222                         struct sk_buff *new_skb =
4223                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4224                         if (new_skb) {
4225                                 skb_reserve(new_skb, NET_IP_ALIGN);
4226                                 memcpy(new_skb->data - NET_IP_ALIGN,
4227                                        skb->data - NET_IP_ALIGN,
4228                                        length + NET_IP_ALIGN);
4229                                 /* save the skb in buffer_info as good */
4230                                 buffer_info->skb = skb;
4231                                 skb = new_skb;
4232                         }
4233                         /* else just continue with the old one */
4234                 }
4235                 /* end copybreak code */
4236                 skb_put(skb, length);
4237
4238                 /* Receive Checksum Offload */
4239                 e1000_rx_checksum(adapter,
4240                                   (uint32_t)(status) |
4241                                   ((uint32_t)(rx_desc->errors) << 24),
4242                                   le16_to_cpu(rx_desc->csum), skb);
4243
4244                 skb->protocol = eth_type_trans(skb, netdev);
4245 #ifdef CONFIG_E1000_NAPI
4246                 if (unlikely(adapter->vlgrp &&
4247                             (status & E1000_RXD_STAT_VP))) {
4248                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4249                                                  le16_to_cpu(rx_desc->special) &
4250                                                  E1000_RXD_SPC_VLAN_MASK);
4251                 } else {
4252                         netif_receive_skb(skb);
4253                 }
4254 #else /* CONFIG_E1000_NAPI */
4255                 if (unlikely(adapter->vlgrp &&
4256                             (status & E1000_RXD_STAT_VP))) {
4257                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4258                                         le16_to_cpu(rx_desc->special) &
4259                                         E1000_RXD_SPC_VLAN_MASK);
4260                 } else {
4261                         netif_rx(skb);
4262                 }
4263 #endif /* CONFIG_E1000_NAPI */
4264                 netdev->last_rx = jiffies;
4265
4266 next_desc:
4267                 rx_desc->status = 0;
4268
4269                 /* return some buffers to hardware, one at a time is too slow */
4270                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4271                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4272                         cleaned_count = 0;
4273                 }
4274
4275                 /* use prefetched values */
4276                 rx_desc = next_rxd;
4277                 buffer_info = next_buffer;
4278         }
4279         rx_ring->next_to_clean = i;
4280
4281         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4282         if (cleaned_count)
4283                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4284
4285         adapter->total_rx_packets += total_rx_packets;
4286         adapter->total_rx_bytes += total_rx_bytes;
4287         return cleaned;
4288 }
4289
4290 /**
4291  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4292  * @adapter: board private structure
4293  **/
4294
4295 static boolean_t
4296 #ifdef CONFIG_E1000_NAPI
4297 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4298                       struct e1000_rx_ring *rx_ring,
4299                       int *work_done, int work_to_do)
4300 #else
4301 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4302                       struct e1000_rx_ring *rx_ring)
4303 #endif
4304 {
4305         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4306         struct net_device *netdev = adapter->netdev;
4307         struct pci_dev *pdev = adapter->pdev;
4308         struct e1000_buffer *buffer_info, *next_buffer;
4309         struct e1000_ps_page *ps_page;
4310         struct e1000_ps_page_dma *ps_page_dma;
4311         struct sk_buff *skb;
4312         unsigned int i, j;
4313         uint32_t length, staterr;
4314         int cleaned_count = 0;
4315         boolean_t cleaned = FALSE;
4316         unsigned int total_rx_bytes=0, total_rx_packets=0;
4317
4318         i = rx_ring->next_to_clean;
4319         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4320         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4321         buffer_info = &rx_ring->buffer_info[i];
4322
4323         while (staterr & E1000_RXD_STAT_DD) {
4324                 ps_page = &rx_ring->ps_page[i];
4325                 ps_page_dma = &rx_ring->ps_page_dma[i];
4326 #ifdef CONFIG_E1000_NAPI
4327                 if (unlikely(*work_done >= work_to_do))
4328                         break;
4329                 (*work_done)++;
4330 #endif
4331                 skb = buffer_info->skb;
4332
4333                 /* in the packet split case this is header only */
4334                 prefetch(skb->data - NET_IP_ALIGN);
4335
4336                 if (++i == rx_ring->count) i = 0;
4337                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4338                 prefetch(next_rxd);
4339
4340                 next_buffer = &rx_ring->buffer_info[i];
4341
4342                 cleaned = TRUE;
4343                 cleaned_count++;
4344                 pci_unmap_single(pdev, buffer_info->dma,
4345                                  buffer_info->length,
4346                                  PCI_DMA_FROMDEVICE);
4347
4348                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4349                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4350                                   " the full packet\n", netdev->name);
4351                         dev_kfree_skb_irq(skb);
4352                         goto next_desc;
4353                 }
4354
4355                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4356                         dev_kfree_skb_irq(skb);
4357                         goto next_desc;
4358                 }
4359
4360                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4361
4362                 if (unlikely(!length)) {
4363                         E1000_DBG("%s: Last part of the packet spanning"
4364                                   " multiple descriptors\n", netdev->name);
4365                         dev_kfree_skb_irq(skb);
4366                         goto next_desc;
4367                 }
4368
4369                 /* Good Receive */
4370                 skb_put(skb, length);
4371
4372                 {
4373                 /* this looks ugly, but it seems compiler issues make it
4374                    more efficient than reusing j */
4375                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4376
4377                 /* page alloc/put takes too long and effects small packet
4378                  * throughput, so unsplit small packets and save the alloc/put*/
4379                 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4380                         u8 *vaddr;
4381                         /* there is no documentation about how to call
4382                          * kmap_atomic, so we can't hold the mapping
4383                          * very long */
4384                         pci_dma_sync_single_for_cpu(pdev,
4385                                 ps_page_dma->ps_page_dma[0],
4386                                 PAGE_SIZE,
4387                                 PCI_DMA_FROMDEVICE);
4388                         vaddr = kmap_atomic(ps_page->ps_page[0],
4389                                             KM_SKB_DATA_SOFTIRQ);
4390                         memcpy(skb->tail, vaddr, l1);
4391                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4392                         pci_dma_sync_single_for_device(pdev,
4393                                 ps_page_dma->ps_page_dma[0],
4394                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4395                         /* remove the CRC */
4396                         l1 -= 4;
4397                         skb_put(skb, l1);
4398                         goto copydone;
4399                 } /* if */
4400                 }
4401
4402                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4403                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4404                                 break;
4405                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4406                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4407                         ps_page_dma->ps_page_dma[j] = 0;
4408                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4409                                            length);
4410                         ps_page->ps_page[j] = NULL;
4411                         skb->len += length;
4412                         skb->data_len += length;
4413                         skb->truesize += length;
4414                 }
4415
4416                 /* strip the ethernet crc, problem is we're using pages now so
4417                  * this whole operation can get a little cpu intensive */
4418                 pskb_trim(skb, skb->len - 4);
4419
4420 copydone:
4421                 total_rx_bytes += skb->len;
4422                 total_rx_packets++;
4423
4424                 e1000_rx_checksum(adapter, staterr,
4425                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4426                 skb->protocol = eth_type_trans(skb, netdev);
4427
4428                 if (likely(rx_desc->wb.upper.header_status &
4429                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4430                         adapter->rx_hdr_split++;
4431 #ifdef CONFIG_E1000_NAPI
4432                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4433                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4434                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4435                                 E1000_RXD_SPC_VLAN_MASK);
4436                 } else {
4437                         netif_receive_skb(skb);
4438                 }
4439 #else /* CONFIG_E1000_NAPI */
4440                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4441                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4442                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4443                                 E1000_RXD_SPC_VLAN_MASK);
4444                 } else {
4445                         netif_rx(skb);
4446                 }
4447 #endif /* CONFIG_E1000_NAPI */
4448                 netdev->last_rx = jiffies;
4449
4450 next_desc:
4451                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4452                 buffer_info->skb = NULL;
4453
4454                 /* return some buffers to hardware, one at a time is too slow */
4455                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4456                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4457                         cleaned_count = 0;
4458                 }
4459
4460                 /* use prefetched values */
4461                 rx_desc = next_rxd;
4462                 buffer_info = next_buffer;
4463
4464                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4465         }
4466         rx_ring->next_to_clean = i;
4467
4468         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4469         if (cleaned_count)
4470                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4471
4472         adapter->total_rx_packets += total_rx_packets;
4473         adapter->total_rx_bytes += total_rx_bytes;
4474         return cleaned;
4475 }
4476
4477 /**
4478  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4479  * @adapter: address of board private structure
4480  **/
4481
4482 static void
4483 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4484                        struct e1000_rx_ring *rx_ring,
4485                        int cleaned_count)
4486 {
4487         struct net_device *netdev = adapter->netdev;
4488         struct pci_dev *pdev = adapter->pdev;
4489         struct e1000_rx_desc *rx_desc;
4490         struct e1000_buffer *buffer_info;
4491         struct sk_buff *skb;
4492         unsigned int i;
4493         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4494
4495         i = rx_ring->next_to_use;
4496         buffer_info = &rx_ring->buffer_info[i];
4497
4498         while (cleaned_count--) {
4499                 skb = buffer_info->skb;
4500                 if (skb) {
4501                         skb_trim(skb, 0);
4502                         goto map_skb;
4503                 }
4504
4505                 skb = netdev_alloc_skb(netdev, bufsz);
4506                 if (unlikely(!skb)) {
4507                         /* Better luck next round */
4508                         adapter->alloc_rx_buff_failed++;
4509                         break;
4510                 }
4511
4512                 /* Fix for errata 23, can't cross 64kB boundary */
4513                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4514                         struct sk_buff *oldskb = skb;
4515                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4516                                              "at %p\n", bufsz, skb->data);
4517                         /* Try again, without freeing the previous */
4518                         skb = netdev_alloc_skb(netdev, bufsz);
4519                         /* Failed allocation, critical failure */
4520                         if (!skb) {
4521                                 dev_kfree_skb(oldskb);
4522                                 break;
4523                         }
4524
4525                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4526                                 /* give up */
4527                                 dev_kfree_skb(skb);
4528                                 dev_kfree_skb(oldskb);
4529                                 break; /* while !buffer_info->skb */
4530                         }
4531
4532                         /* Use new allocation */
4533                         dev_kfree_skb(oldskb);
4534                 }
4535                 /* Make buffer alignment 2 beyond a 16 byte boundary
4536                  * this will result in a 16 byte aligned IP header after
4537                  * the 14 byte MAC header is removed
4538                  */
4539                 skb_reserve(skb, NET_IP_ALIGN);
4540
4541                 buffer_info->skb = skb;
4542                 buffer_info->length = adapter->rx_buffer_len;
4543 map_skb:
4544                 buffer_info->dma = pci_map_single(pdev,
4545                                                   skb->data,
4546                                                   adapter->rx_buffer_len,
4547                                                   PCI_DMA_FROMDEVICE);
4548
4549                 /* Fix for errata 23, can't cross 64kB boundary */
4550                 if (!e1000_check_64k_bound(adapter,
4551                                         (void *)(unsigned long)buffer_info->dma,
4552                                         adapter->rx_buffer_len)) {
4553                         DPRINTK(RX_ERR, ERR,
4554                                 "dma align check failed: %u bytes at %p\n",
4555                                 adapter->rx_buffer_len,
4556                                 (void *)(unsigned long)buffer_info->dma);
4557                         dev_kfree_skb(skb);
4558                         buffer_info->skb = NULL;
4559
4560                         pci_unmap_single(pdev, buffer_info->dma,
4561                                          adapter->rx_buffer_len,
4562                                          PCI_DMA_FROMDEVICE);
4563
4564                         break; /* while !buffer_info->skb */
4565                 }
4566                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4567                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4568
4569                 if (unlikely(++i == rx_ring->count))
4570                         i = 0;
4571                 buffer_info = &rx_ring->buffer_info[i];
4572         }
4573
4574         if (likely(rx_ring->next_to_use != i)) {
4575                 rx_ring->next_to_use = i;
4576                 if (unlikely(i-- == 0))
4577                         i = (rx_ring->count - 1);
4578
4579                 /* Force memory writes to complete before letting h/w
4580                  * know there are new descriptors to fetch.  (Only
4581                  * applicable for weak-ordered memory model archs,
4582                  * such as IA-64). */
4583                 wmb();
4584                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4585         }
4586 }
4587
4588 /**
4589  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4590  * @adapter: address of board private structure
4591  **/
4592
4593 static void
4594 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4595                           struct e1000_rx_ring *rx_ring,
4596                           int cleaned_count)
4597 {
4598         struct net_device *netdev = adapter->netdev;
4599         struct pci_dev *pdev = adapter->pdev;
4600         union e1000_rx_desc_packet_split *rx_desc;
4601         struct e1000_buffer *buffer_info;
4602         struct e1000_ps_page *ps_page;
4603         struct e1000_ps_page_dma *ps_page_dma;
4604         struct sk_buff *skb;
4605         unsigned int i, j;
4606
4607         i = rx_ring->next_to_use;
4608         buffer_info = &rx_ring->buffer_info[i];
4609         ps_page = &rx_ring->ps_page[i];
4610         ps_page_dma = &rx_ring->ps_page_dma[i];
4611
4612         while (cleaned_count--) {
4613                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4614
4615                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4616                         if (j < adapter->rx_ps_pages) {
4617                                 if (likely(!ps_page->ps_page[j])) {
4618                                         ps_page->ps_page[j] =
4619                                                 alloc_page(GFP_ATOMIC);
4620                                         if (unlikely(!ps_page->ps_page[j])) {
4621                                                 adapter->alloc_rx_buff_failed++;
4622                                                 goto no_buffers;
4623                                         }
4624                                         ps_page_dma->ps_page_dma[j] =
4625                                                 pci_map_page(pdev,
4626                                                             ps_page->ps_page[j],
4627                                                             0, PAGE_SIZE,
4628                                                             PCI_DMA_FROMDEVICE);
4629                                 }
4630                                 /* Refresh the desc even if buffer_addrs didn't
4631                                  * change because each write-back erases
4632                                  * this info.
4633                                  */
4634                                 rx_desc->read.buffer_addr[j+1] =
4635                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4636                         } else
4637                                 rx_desc->read.buffer_addr[j+1] = ~0;
4638                 }
4639
4640                 skb = netdev_alloc_skb(netdev,
4641                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4642
4643                 if (unlikely(!skb)) {
4644                         adapter->alloc_rx_buff_failed++;
4645                         break;
4646                 }
4647
4648                 /* Make buffer alignment 2 beyond a 16 byte boundary
4649                  * this will result in a 16 byte aligned IP header after
4650                  * the 14 byte MAC header is removed
4651                  */
4652                 skb_reserve(skb, NET_IP_ALIGN);
4653
4654                 buffer_info->skb = skb;
4655                 buffer_info->length = adapter->rx_ps_bsize0;
4656                 buffer_info->dma = pci_map_single(pdev, skb->data,
4657                                                   adapter->rx_ps_bsize0,
4658                                                   PCI_DMA_FROMDEVICE);
4659
4660                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4661
4662                 if (unlikely(++i == rx_ring->count)) i = 0;
4663                 buffer_info = &rx_ring->buffer_info[i];
4664                 ps_page = &rx_ring->ps_page[i];
4665                 ps_page_dma = &rx_ring->ps_page_dma[i];
4666         }
4667
4668 no_buffers:
4669         if (likely(rx_ring->next_to_use != i)) {
4670                 rx_ring->next_to_use = i;
4671                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4672
4673                 /* Force memory writes to complete before letting h/w
4674                  * know there are new descriptors to fetch.  (Only
4675                  * applicable for weak-ordered memory model archs,
4676                  * such as IA-64). */
4677                 wmb();
4678                 /* Hardware increments by 16 bytes, but packet split
4679                  * descriptors are 32 bytes...so we increment tail
4680                  * twice as much.
4681                  */
4682                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4683         }
4684 }
4685
4686 /**
4687  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4688  * @adapter:
4689  **/
4690
4691 static void
4692 e1000_smartspeed(struct e1000_adapter *adapter)
4693 {
4694         uint16_t phy_status;
4695         uint16_t phy_ctrl;
4696
4697         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4698            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4699                 return;
4700
4701         if (adapter->smartspeed == 0) {
4702                 /* If Master/Slave config fault is asserted twice,
4703                  * we assume back-to-back */
4704                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4705                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4706                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4707                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4708                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4709                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4710                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4711                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4712                                             phy_ctrl);
4713                         adapter->smartspeed++;
4714                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4715                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4716                                                &phy_ctrl)) {
4717                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4718                                              MII_CR_RESTART_AUTO_NEG);
4719                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4720                                                     phy_ctrl);
4721                         }
4722                 }
4723                 return;
4724         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4725                 /* If still no link, perhaps using 2/3 pair cable */
4726                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4727                 phy_ctrl |= CR_1000T_MS_ENABLE;
4728                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4729                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4730                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4731                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4732                                      MII_CR_RESTART_AUTO_NEG);
4733                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4734                 }
4735         }
4736         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4737         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4738                 adapter->smartspeed = 0;
4739 }
4740
4741 /**
4742  * e1000_ioctl -
4743  * @netdev:
4744  * @ifreq:
4745  * @cmd:
4746  **/
4747
4748 static int
4749 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4750 {
4751         switch (cmd) {
4752         case SIOCGMIIPHY:
4753         case SIOCGMIIREG:
4754         case SIOCSMIIREG:
4755                 return e1000_mii_ioctl(netdev, ifr, cmd);
4756         default:
4757                 return -EOPNOTSUPP;
4758         }
4759 }
4760
4761 /**
4762  * e1000_mii_ioctl -
4763  * @netdev:
4764  * @ifreq:
4765  * @cmd:
4766  **/
4767
4768 static int
4769 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4770 {
4771         struct e1000_adapter *adapter = netdev_priv(netdev);
4772         struct mii_ioctl_data *data = if_mii(ifr);
4773         int retval;
4774         uint16_t mii_reg;
4775         uint16_t spddplx;
4776         unsigned long flags;
4777
4778         if (adapter->hw.media_type != e1000_media_type_copper)
4779                 return -EOPNOTSUPP;
4780
4781         switch (cmd) {
4782         case SIOCGMIIPHY:
4783                 data->phy_id = adapter->hw.phy_addr;
4784                 break;
4785         case SIOCGMIIREG:
4786                 if (!capable(CAP_NET_ADMIN))
4787                         return -EPERM;
4788                 spin_lock_irqsave(&adapter->stats_lock, flags);
4789                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4790                                    &data->val_out)) {
4791                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4792                         return -EIO;
4793                 }
4794                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4795                 break;
4796         case SIOCSMIIREG:
4797                 if (!capable(CAP_NET_ADMIN))
4798                         return -EPERM;
4799                 if (data->reg_num & ~(0x1F))
4800                         return -EFAULT;
4801                 mii_reg = data->val_in;
4802                 spin_lock_irqsave(&adapter->stats_lock, flags);
4803                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4804                                         mii_reg)) {
4805                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4806                         return -EIO;
4807                 }
4808                 if (adapter->hw.media_type == e1000_media_type_copper) {
4809                         switch (data->reg_num) {
4810                         case PHY_CTRL:
4811                                 if (mii_reg & MII_CR_POWER_DOWN)
4812                                         break;
4813                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4814                                         adapter->hw.autoneg = 1;
4815                                         adapter->hw.autoneg_advertised = 0x2F;
4816                                 } else {
4817                                         if (mii_reg & 0x40)
4818                                                 spddplx = SPEED_1000;
4819                                         else if (mii_reg & 0x2000)
4820                                                 spddplx = SPEED_100;
4821                                         else
4822                                                 spddplx = SPEED_10;
4823                                         spddplx += (mii_reg & 0x100)
4824                                                    ? DUPLEX_FULL :
4825                                                    DUPLEX_HALF;
4826                                         retval = e1000_set_spd_dplx(adapter,
4827                                                                     spddplx);
4828                                         if (retval) {
4829                                                 spin_unlock_irqrestore(
4830                                                         &adapter->stats_lock,
4831                                                         flags);
4832                                                 return retval;
4833                                         }
4834                                 }
4835                                 if (netif_running(adapter->netdev))
4836                                         e1000_reinit_locked(adapter);
4837                                 else
4838                                         e1000_reset(adapter);
4839                                 break;
4840                         case M88E1000_PHY_SPEC_CTRL:
4841                         case M88E1000_EXT_PHY_SPEC_CTRL:
4842                                 if (e1000_phy_reset(&adapter->hw)) {
4843                                         spin_unlock_irqrestore(
4844                                                 &adapter->stats_lock, flags);
4845                                         return -EIO;
4846                                 }
4847                                 break;
4848                         }
4849                 } else {
4850                         switch (data->reg_num) {
4851                         case PHY_CTRL:
4852                                 if (mii_reg & MII_CR_POWER_DOWN)
4853                                         break;
4854                                 if (netif_running(adapter->netdev))
4855                                         e1000_reinit_locked(adapter);
4856                                 else
4857                                         e1000_reset(adapter);
4858                                 break;
4859                         }
4860                 }
4861                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4862                 break;
4863         default:
4864                 return -EOPNOTSUPP;
4865         }
4866         return E1000_SUCCESS;
4867 }
4868
4869 void
4870 e1000_pci_set_mwi(struct e1000_hw *hw)
4871 {
4872         struct e1000_adapter *adapter = hw->back;
4873         int ret_val = pci_set_mwi(adapter->pdev);
4874
4875         if (ret_val)
4876                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4877 }
4878
4879 void
4880 e1000_pci_clear_mwi(struct e1000_hw *hw)
4881 {
4882         struct e1000_adapter *adapter = hw->back;
4883
4884         pci_clear_mwi(adapter->pdev);
4885 }
4886
4887 void
4888 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4889 {
4890         struct e1000_adapter *adapter = hw->back;
4891
4892         pci_read_config_word(adapter->pdev, reg, value);
4893 }
4894
4895 void
4896 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4897 {
4898         struct e1000_adapter *adapter = hw->back;
4899
4900         pci_write_config_word(adapter->pdev, reg, *value);
4901 }
4902
4903 int32_t
4904 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4905 {
4906     struct e1000_adapter *adapter = hw->back;
4907     uint16_t cap_offset;
4908
4909     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4910     if (!cap_offset)
4911         return -E1000_ERR_CONFIG;
4912
4913     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4914
4915     return E1000_SUCCESS;
4916 }
4917
4918 void
4919 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4920 {
4921         outl(value, port);
4922 }
4923
4924 static void
4925 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4926 {
4927         struct e1000_adapter *adapter = netdev_priv(netdev);
4928         uint32_t ctrl, rctl;
4929
4930         e1000_irq_disable(adapter);
4931         adapter->vlgrp = grp;
4932
4933         if (grp) {
4934                 /* enable VLAN tag insert/strip */
4935                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4936                 ctrl |= E1000_CTRL_VME;
4937                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4938
4939                 if (adapter->hw.mac_type != e1000_ich8lan) {
4940                         /* enable VLAN receive filtering */
4941                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4942                         rctl |= E1000_RCTL_VFE;
4943                         rctl &= ~E1000_RCTL_CFIEN;
4944                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4945                         e1000_update_mng_vlan(adapter);
4946                 }
4947         } else {
4948                 /* disable VLAN tag insert/strip */
4949                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4950                 ctrl &= ~E1000_CTRL_VME;
4951                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4952
4953                 if (adapter->hw.mac_type != e1000_ich8lan) {
4954                         /* disable VLAN filtering */
4955                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4956                         rctl &= ~E1000_RCTL_VFE;
4957                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4958                         if (adapter->mng_vlan_id !=
4959                             (uint16_t)E1000_MNG_VLAN_NONE) {
4960                                 e1000_vlan_rx_kill_vid(netdev,
4961                                                        adapter->mng_vlan_id);
4962                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4963                         }
4964                 }
4965         }
4966
4967         e1000_irq_enable(adapter);
4968 }
4969
4970 static void
4971 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4972 {
4973         struct e1000_adapter *adapter = netdev_priv(netdev);
4974         uint32_t vfta, index;
4975
4976         if ((adapter->hw.mng_cookie.status &
4977              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4978             (vid == adapter->mng_vlan_id))
4979                 return;
4980         /* add VID to filter table */
4981         index = (vid >> 5) & 0x7F;
4982         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4983         vfta |= (1 << (vid & 0x1F));
4984         e1000_write_vfta(&adapter->hw, index, vfta);
4985 }
4986
4987 static void
4988 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4989 {
4990         struct e1000_adapter *adapter = netdev_priv(netdev);
4991         uint32_t vfta, index;
4992
4993         e1000_irq_disable(adapter);
4994         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4995         e1000_irq_enable(adapter);
4996
4997         if ((adapter->hw.mng_cookie.status &
4998              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4999             (vid == adapter->mng_vlan_id)) {
5000                 /* release control to f/w */
5001                 e1000_release_hw_control(adapter);
5002                 return;
5003         }
5004
5005         /* remove VID from filter table */
5006         index = (vid >> 5) & 0x7F;
5007         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5008         vfta &= ~(1 << (vid & 0x1F));
5009         e1000_write_vfta(&adapter->hw, index, vfta);
5010 }
5011
5012 static void
5013 e1000_restore_vlan(struct e1000_adapter *adapter)
5014 {
5015         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5016
5017         if (adapter->vlgrp) {
5018                 uint16_t vid;
5019                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5020                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5021                                 continue;
5022                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
5023                 }
5024         }
5025 }
5026
5027 int
5028 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
5029 {
5030         adapter->hw.autoneg = 0;
5031
5032         /* Fiber NICs only allow 1000 gbps Full duplex */
5033         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
5034                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5035                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5036                 return -EINVAL;
5037         }
5038
5039         switch (spddplx) {
5040         case SPEED_10 + DUPLEX_HALF:
5041                 adapter->hw.forced_speed_duplex = e1000_10_half;
5042                 break;
5043         case SPEED_10 + DUPLEX_FULL:
5044                 adapter->hw.forced_speed_duplex = e1000_10_full;
5045                 break;
5046         case SPEED_100 + DUPLEX_HALF:
5047                 adapter->hw.forced_speed_duplex = e1000_100_half;
5048                 break;
5049         case SPEED_100 + DUPLEX_FULL:
5050                 adapter->hw.forced_speed_duplex = e1000_100_full;
5051                 break;
5052         case SPEED_1000 + DUPLEX_FULL:
5053                 adapter->hw.autoneg = 1;
5054                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5055                 break;
5056         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5057         default:
5058                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5059                 return -EINVAL;
5060         }
5061         return 0;
5062 }
5063
5064 static int
5065 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5066 {
5067         struct net_device *netdev = pci_get_drvdata(pdev);
5068         struct e1000_adapter *adapter = netdev_priv(netdev);
5069         uint32_t ctrl, ctrl_ext, rctl, status;
5070         uint32_t wufc = adapter->wol;
5071 #ifdef CONFIG_PM
5072         int retval = 0;
5073 #endif
5074
5075         netif_device_detach(netdev);
5076
5077         if (netif_running(netdev)) {
5078                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5079                 e1000_down(adapter);
5080         }
5081
5082 #ifdef CONFIG_PM
5083         retval = pci_save_state(pdev);
5084         if (retval)
5085                 return retval;
5086 #endif
5087
5088         status = E1000_READ_REG(&adapter->hw, STATUS);
5089         if (status & E1000_STATUS_LU)
5090                 wufc &= ~E1000_WUFC_LNKC;
5091
5092         if (wufc) {
5093                 e1000_setup_rctl(adapter);
5094                 e1000_set_multi(netdev);
5095
5096                 /* turn on all-multi mode if wake on multicast is enabled */
5097                 if (wufc & E1000_WUFC_MC) {
5098                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5099                         rctl |= E1000_RCTL_MPE;
5100                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5101                 }
5102
5103                 if (adapter->hw.mac_type >= e1000_82540) {
5104                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5105                         /* advertise wake from D3Cold */
5106                         #define E1000_CTRL_ADVD3WUC 0x00100000
5107                         /* phy power management enable */
5108                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5109                         ctrl |= E1000_CTRL_ADVD3WUC |
5110                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5111                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5112                 }
5113
5114                 if (adapter->hw.media_type == e1000_media_type_fiber ||
5115                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
5116                         /* keep the laser running in D3 */
5117                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5118                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5119                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5120                 }
5121
5122                 /* Allow time for pending master requests to run */
5123                 e1000_disable_pciex_master(&adapter->hw);
5124
5125                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5126                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5127                 pci_enable_wake(pdev, PCI_D3hot, 1);
5128                 pci_enable_wake(pdev, PCI_D3cold, 1);
5129         } else {
5130                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5131                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5132                 pci_enable_wake(pdev, PCI_D3hot, 0);
5133                 pci_enable_wake(pdev, PCI_D3cold, 0);
5134         }
5135
5136         e1000_release_manageability(adapter);
5137
5138         /* make sure adapter isn't asleep if manageability is enabled */
5139         if (adapter->en_mng_pt) {
5140                 pci_enable_wake(pdev, PCI_D3hot, 1);
5141                 pci_enable_wake(pdev, PCI_D3cold, 1);
5142         }
5143
5144         if (adapter->hw.phy_type == e1000_phy_igp_3)
5145                 e1000_phy_powerdown_workaround(&adapter->hw);
5146
5147         if (netif_running(netdev))
5148                 e1000_free_irq(adapter);
5149
5150         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5151          * would have already happened in close and is redundant. */
5152         e1000_release_hw_control(adapter);
5153
5154         pci_disable_device(pdev);
5155
5156         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5157
5158         return 0;
5159 }
5160
5161 #ifdef CONFIG_PM
5162 static int
5163 e1000_resume(struct pci_dev *pdev)
5164 {
5165         struct net_device *netdev = pci_get_drvdata(pdev);
5166         struct e1000_adapter *adapter = netdev_priv(netdev);
5167         uint32_t err;
5168
5169         pci_set_power_state(pdev, PCI_D0);
5170         pci_restore_state(pdev);
5171         if ((err = pci_enable_device(pdev))) {
5172                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5173                 return err;
5174         }
5175         pci_set_master(pdev);
5176
5177         pci_enable_wake(pdev, PCI_D3hot, 0);
5178         pci_enable_wake(pdev, PCI_D3cold, 0);
5179
5180         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5181                 return err;
5182
5183         e1000_power_up_phy(adapter);
5184         e1000_reset(adapter);
5185         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5186
5187         e1000_init_manageability(adapter);
5188
5189         if (netif_running(netdev))
5190                 e1000_up(adapter);
5191
5192         netif_device_attach(netdev);
5193
5194         /* If the controller is 82573 and f/w is AMT, do not set
5195          * DRV_LOAD until the interface is up.  For all other cases,
5196          * let the f/w know that the h/w is now under the control
5197          * of the driver. */
5198         if (adapter->hw.mac_type != e1000_82573 ||
5199             !e1000_check_mng_mode(&adapter->hw))
5200                 e1000_get_hw_control(adapter);
5201
5202         return 0;
5203 }
5204 #endif
5205
5206 static void e1000_shutdown(struct pci_dev *pdev)
5207 {
5208         e1000_suspend(pdev, PMSG_SUSPEND);
5209 }
5210
5211 #ifdef CONFIG_NET_POLL_CONTROLLER
5212 /*
5213  * Polling 'interrupt' - used by things like netconsole to send skbs
5214  * without having to re-enable interrupts. It's not called while
5215  * the interrupt routine is executing.
5216  */
5217 static void
5218 e1000_netpoll(struct net_device *netdev)
5219 {
5220         struct e1000_adapter *adapter = netdev_priv(netdev);
5221
5222         disable_irq(adapter->pdev->irq);
5223         e1000_intr(adapter->pdev->irq, netdev);
5224         e1000_clean_tx_irq(adapter, adapter->tx_ring);
5225 #ifndef CONFIG_E1000_NAPI
5226         adapter->clean_rx(adapter, adapter->rx_ring);
5227 #endif
5228         enable_irq(adapter->pdev->irq);
5229 }
5230 #endif
5231
5232 /**
5233  * e1000_io_error_detected - called when PCI error is detected
5234  * @pdev: Pointer to PCI device
5235  * @state: The current pci conneection state
5236  *
5237  * This function is called after a PCI bus error affecting
5238  * this device has been detected.
5239  */
5240 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5241 {
5242         struct net_device *netdev = pci_get_drvdata(pdev);
5243         struct e1000_adapter *adapter = netdev->priv;
5244
5245         netif_device_detach(netdev);
5246
5247         if (netif_running(netdev))
5248                 e1000_down(adapter);
5249         pci_disable_device(pdev);
5250
5251         /* Request a slot slot reset. */
5252         return PCI_ERS_RESULT_NEED_RESET;
5253 }
5254
5255 /**
5256  * e1000_io_slot_reset - called after the pci bus has been reset.
5257  * @pdev: Pointer to PCI device
5258  *
5259  * Restart the card from scratch, as if from a cold-boot. Implementation
5260  * resembles the first-half of the e1000_resume routine.
5261  */
5262 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5263 {
5264         struct net_device *netdev = pci_get_drvdata(pdev);
5265         struct e1000_adapter *adapter = netdev->priv;
5266
5267         if (pci_enable_device(pdev)) {
5268                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5269                 return PCI_ERS_RESULT_DISCONNECT;
5270         }
5271         pci_set_master(pdev);
5272
5273         pci_enable_wake(pdev, PCI_D3hot, 0);
5274         pci_enable_wake(pdev, PCI_D3cold, 0);
5275
5276         e1000_reset(adapter);
5277         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5278
5279         return PCI_ERS_RESULT_RECOVERED;
5280 }
5281
5282 /**
5283  * e1000_io_resume - called when traffic can start flowing again.
5284  * @pdev: Pointer to PCI device
5285  *
5286  * This callback is called when the error recovery driver tells us that
5287  * its OK to resume normal operation. Implementation resembles the
5288  * second-half of the e1000_resume routine.
5289  */
5290 static void e1000_io_resume(struct pci_dev *pdev)
5291 {
5292         struct net_device *netdev = pci_get_drvdata(pdev);
5293         struct e1000_adapter *adapter = netdev->priv;
5294
5295         e1000_init_manageability(adapter);
5296
5297         if (netif_running(netdev)) {
5298                 if (e1000_up(adapter)) {
5299                         printk("e1000: can't bring device back up after reset\n");
5300                         return;
5301                 }
5302         }
5303
5304         netif_device_attach(netdev);
5305
5306         /* If the controller is 82573 and f/w is AMT, do not set
5307          * DRV_LOAD until the interface is up.  For all other cases,
5308          * let the f/w know that the h/w is now under the control
5309          * of the driver. */
5310         if (adapter->hw.mac_type != e1000_82573 ||
5311             !e1000_check_mng_mode(&adapter->hw))
5312                 e1000_get_hw_control(adapter);
5313
5314 }
5315
5316 /* e1000_main.c */