Linux 2.6.18-rc6
[linux-2.6.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 #include "e1000.h"
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.1.9-k4"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x1049),
77         INTEL_E1000_ETHERNET_DEVICE(0x104A),
78         INTEL_E1000_ETHERNET_DEVICE(0x104B),
79         INTEL_E1000_ETHERNET_DEVICE(0x104C),
80         INTEL_E1000_ETHERNET_DEVICE(0x104D),
81         INTEL_E1000_ETHERNET_DEVICE(0x105E),
82         INTEL_E1000_ETHERNET_DEVICE(0x105F),
83         INTEL_E1000_ETHERNET_DEVICE(0x1060),
84         INTEL_E1000_ETHERNET_DEVICE(0x1075),
85         INTEL_E1000_ETHERNET_DEVICE(0x1076),
86         INTEL_E1000_ETHERNET_DEVICE(0x1077),
87         INTEL_E1000_ETHERNET_DEVICE(0x1078),
88         INTEL_E1000_ETHERNET_DEVICE(0x1079),
89         INTEL_E1000_ETHERNET_DEVICE(0x107A),
90         INTEL_E1000_ETHERNET_DEVICE(0x107B),
91         INTEL_E1000_ETHERNET_DEVICE(0x107C),
92         INTEL_E1000_ETHERNET_DEVICE(0x107D),
93         INTEL_E1000_ETHERNET_DEVICE(0x107E),
94         INTEL_E1000_ETHERNET_DEVICE(0x107F),
95         INTEL_E1000_ETHERNET_DEVICE(0x108A),
96         INTEL_E1000_ETHERNET_DEVICE(0x108B),
97         INTEL_E1000_ETHERNET_DEVICE(0x108C),
98         INTEL_E1000_ETHERNET_DEVICE(0x1096),
99         INTEL_E1000_ETHERNET_DEVICE(0x1098),
100         INTEL_E1000_ETHERNET_DEVICE(0x1099),
101         INTEL_E1000_ETHERNET_DEVICE(0x109A),
102         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106         /* required last entry */
107         {0,}
108 };
109
110 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
111
112 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
113                                     struct e1000_tx_ring *txdr);
114 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
115                                     struct e1000_rx_ring *rxdr);
116 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
117                                     struct e1000_tx_ring *tx_ring);
118 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
119                                     struct e1000_rx_ring *rx_ring);
120
121 /* Local Function Prototypes */
122
123 static int e1000_init_module(void);
124 static void e1000_exit_module(void);
125 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
126 static void __devexit e1000_remove(struct pci_dev *pdev);
127 static int e1000_alloc_queues(struct e1000_adapter *adapter);
128 static int e1000_sw_init(struct e1000_adapter *adapter);
129 static int e1000_open(struct net_device *netdev);
130 static int e1000_close(struct net_device *netdev);
131 static void e1000_configure_tx(struct e1000_adapter *adapter);
132 static void e1000_configure_rx(struct e1000_adapter *adapter);
133 static void e1000_setup_rctl(struct e1000_adapter *adapter);
134 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
135 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
136 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
137                                 struct e1000_tx_ring *tx_ring);
138 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
139                                 struct e1000_rx_ring *rx_ring);
140 static void e1000_set_multi(struct net_device *netdev);
141 static void e1000_update_phy_info(unsigned long data);
142 static void e1000_watchdog(unsigned long data);
143 static void e1000_82547_tx_fifo_stall(unsigned long data);
144 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
145 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
146 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
147 static int e1000_set_mac(struct net_device *netdev, void *p);
148 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
149 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
150                                     struct e1000_tx_ring *tx_ring);
151 #ifdef CONFIG_E1000_NAPI
152 static int e1000_clean(struct net_device *poll_dev, int *budget);
153 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
154                                     struct e1000_rx_ring *rx_ring,
155                                     int *work_done, int work_to_do);
156 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
157                                        struct e1000_rx_ring *rx_ring,
158                                        int *work_done, int work_to_do);
159 #else
160 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
161                                     struct e1000_rx_ring *rx_ring);
162 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
163                                        struct e1000_rx_ring *rx_ring);
164 #endif
165 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
166                                    struct e1000_rx_ring *rx_ring,
167                                    int cleaned_count);
168 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
169                                       struct e1000_rx_ring *rx_ring,
170                                       int cleaned_count);
171 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
172 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
173                            int cmd);
174 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
175 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
176 static void e1000_tx_timeout(struct net_device *dev);
177 static void e1000_reset_task(struct net_device *dev);
178 static void e1000_smartspeed(struct e1000_adapter *adapter);
179 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
180                                        struct sk_buff *skb);
181
182 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
183 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
184 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
185 static void e1000_restore_vlan(struct e1000_adapter *adapter);
186
187 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
188 #ifdef CONFIG_PM
189 static int e1000_resume(struct pci_dev *pdev);
190 #endif
191 static void e1000_shutdown(struct pci_dev *pdev);
192
193 #ifdef CONFIG_NET_POLL_CONTROLLER
194 /* for netdump / net console */
195 static void e1000_netpoll (struct net_device *netdev);
196 #endif
197
198 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
199                      pci_channel_state_t state);
200 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
201 static void e1000_io_resume(struct pci_dev *pdev);
202
203 static struct pci_error_handlers e1000_err_handler = {
204         .error_detected = e1000_io_error_detected,
205         .slot_reset = e1000_io_slot_reset,
206         .resume = e1000_io_resume,
207 };
208
209 static struct pci_driver e1000_driver = {
210         .name     = e1000_driver_name,
211         .id_table = e1000_pci_tbl,
212         .probe    = e1000_probe,
213         .remove   = __devexit_p(e1000_remove),
214         /* Power Managment Hooks */
215         .suspend  = e1000_suspend,
216 #ifdef CONFIG_PM
217         .resume   = e1000_resume,
218 #endif
219         .shutdown = e1000_shutdown,
220         .err_handler = &e1000_err_handler
221 };
222
223 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
224 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
225 MODULE_LICENSE("GPL");
226 MODULE_VERSION(DRV_VERSION);
227
228 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
229 module_param(debug, int, 0);
230 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231
232 /**
233  * e1000_init_module - Driver Registration Routine
234  *
235  * e1000_init_module is the first routine called when the driver is
236  * loaded. All it does is register with the PCI subsystem.
237  **/
238
239 static int __init
240 e1000_init_module(void)
241 {
242         int ret;
243         printk(KERN_INFO "%s - version %s\n",
244                e1000_driver_string, e1000_driver_version);
245
246         printk(KERN_INFO "%s\n", e1000_copyright);
247
248         ret = pci_module_init(&e1000_driver);
249
250         return ret;
251 }
252
253 module_init(e1000_init_module);
254
255 /**
256  * e1000_exit_module - Driver Exit Cleanup Routine
257  *
258  * e1000_exit_module is called just before the driver is removed
259  * from memory.
260  **/
261
262 static void __exit
263 e1000_exit_module(void)
264 {
265         pci_unregister_driver(&e1000_driver);
266 }
267
268 module_exit(e1000_exit_module);
269
270 static int e1000_request_irq(struct e1000_adapter *adapter)
271 {
272         struct net_device *netdev = adapter->netdev;
273         int flags, err = 0;
274
275         flags = IRQF_SHARED;
276 #ifdef CONFIG_PCI_MSI
277         if (adapter->hw.mac_type > e1000_82547_rev_2) {
278                 adapter->have_msi = TRUE;
279                 if ((err = pci_enable_msi(adapter->pdev))) {
280                         DPRINTK(PROBE, ERR,
281                          "Unable to allocate MSI interrupt Error: %d\n", err);
282                         adapter->have_msi = FALSE;
283                 }
284         }
285         if (adapter->have_msi)
286                 flags &= ~IRQF_SHARED;
287 #endif
288         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
289                                netdev->name, netdev)))
290                 DPRINTK(PROBE, ERR,
291                         "Unable to allocate interrupt Error: %d\n", err);
292
293         return err;
294 }
295
296 static void e1000_free_irq(struct e1000_adapter *adapter)
297 {
298         struct net_device *netdev = adapter->netdev;
299
300         free_irq(adapter->pdev->irq, netdev);
301
302 #ifdef CONFIG_PCI_MSI
303         if (adapter->have_msi)
304                 pci_disable_msi(adapter->pdev);
305 #endif
306 }
307
308 /**
309  * e1000_irq_disable - Mask off interrupt generation on the NIC
310  * @adapter: board private structure
311  **/
312
313 static void
314 e1000_irq_disable(struct e1000_adapter *adapter)
315 {
316         atomic_inc(&adapter->irq_sem);
317         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
318         E1000_WRITE_FLUSH(&adapter->hw);
319         synchronize_irq(adapter->pdev->irq);
320 }
321
322 /**
323  * e1000_irq_enable - Enable default interrupt generation settings
324  * @adapter: board private structure
325  **/
326
327 static void
328 e1000_irq_enable(struct e1000_adapter *adapter)
329 {
330         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
331                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
332                 E1000_WRITE_FLUSH(&adapter->hw);
333         }
334 }
335
336 static void
337 e1000_update_mng_vlan(struct e1000_adapter *adapter)
338 {
339         struct net_device *netdev = adapter->netdev;
340         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
341         uint16_t old_vid = adapter->mng_vlan_id;
342         if (adapter->vlgrp) {
343                 if (!adapter->vlgrp->vlan_devices[vid]) {
344                         if (adapter->hw.mng_cookie.status &
345                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
346                                 e1000_vlan_rx_add_vid(netdev, vid);
347                                 adapter->mng_vlan_id = vid;
348                         } else
349                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
350
351                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
352                                         (vid != old_vid) &&
353                                         !adapter->vlgrp->vlan_devices[old_vid])
354                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
355                 } else
356                         adapter->mng_vlan_id = vid;
357         }
358 }
359
360 /**
361  * e1000_release_hw_control - release control of the h/w to f/w
362  * @adapter: address of board private structure
363  *
364  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
365  * For ASF and Pass Through versions of f/w this means that the
366  * driver is no longer loaded. For AMT version (only with 82573) i
367  * of the f/w this means that the netowrk i/f is closed.
368  *
369  **/
370
371 static void
372 e1000_release_hw_control(struct e1000_adapter *adapter)
373 {
374         uint32_t ctrl_ext;
375         uint32_t swsm;
376         uint32_t extcnf;
377
378         /* Let firmware taken over control of h/w */
379         switch (adapter->hw.mac_type) {
380         case e1000_82571:
381         case e1000_82572:
382         case e1000_80003es2lan:
383                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
384                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
385                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
386                 break;
387         case e1000_82573:
388                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
389                 E1000_WRITE_REG(&adapter->hw, SWSM,
390                                 swsm & ~E1000_SWSM_DRV_LOAD);
391         case e1000_ich8lan:
392                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
393                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
394                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
395                 break;
396         default:
397                 break;
398         }
399 }
400
401 /**
402  * e1000_get_hw_control - get control of the h/w from f/w
403  * @adapter: address of board private structure
404  *
405  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
406  * For ASF and Pass Through versions of f/w this means that
407  * the driver is loaded. For AMT version (only with 82573)
408  * of the f/w this means that the netowrk i/f is open.
409  *
410  **/
411
412 static void
413 e1000_get_hw_control(struct e1000_adapter *adapter)
414 {
415         uint32_t ctrl_ext;
416         uint32_t swsm;
417         uint32_t extcnf;
418         /* Let firmware know the driver has taken over */
419         switch (adapter->hw.mac_type) {
420         case e1000_82571:
421         case e1000_82572:
422         case e1000_80003es2lan:
423                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
424                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
425                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
426                 break;
427         case e1000_82573:
428                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
429                 E1000_WRITE_REG(&adapter->hw, SWSM,
430                                 swsm | E1000_SWSM_DRV_LOAD);
431                 break;
432         case e1000_ich8lan:
433                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
434                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
435                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
436                 break;
437         default:
438                 break;
439         }
440 }
441
442 int
443 e1000_up(struct e1000_adapter *adapter)
444 {
445         struct net_device *netdev = adapter->netdev;
446         int i;
447
448         /* hardware has been reset, we need to reload some things */
449
450         e1000_set_multi(netdev);
451
452         e1000_restore_vlan(adapter);
453
454         e1000_configure_tx(adapter);
455         e1000_setup_rctl(adapter);
456         e1000_configure_rx(adapter);
457         /* call E1000_DESC_UNUSED which always leaves
458          * at least 1 descriptor unused to make sure
459          * next_to_use != next_to_clean */
460         for (i = 0; i < adapter->num_rx_queues; i++) {
461                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
462                 adapter->alloc_rx_buf(adapter, ring,
463                                       E1000_DESC_UNUSED(ring));
464         }
465
466         adapter->tx_queue_len = netdev->tx_queue_len;
467
468         mod_timer(&adapter->watchdog_timer, jiffies);
469
470 #ifdef CONFIG_E1000_NAPI
471         netif_poll_enable(netdev);
472 #endif
473         e1000_irq_enable(adapter);
474
475         return 0;
476 }
477
478 /**
479  * e1000_power_up_phy - restore link in case the phy was powered down
480  * @adapter: address of board private structure
481  *
482  * The phy may be powered down to save power and turn off link when the
483  * driver is unloaded and wake on lan is not enabled (among others)
484  * *** this routine MUST be followed by a call to e1000_reset ***
485  *
486  **/
487
488 static void e1000_power_up_phy(struct e1000_adapter *adapter)
489 {
490         uint16_t mii_reg = 0;
491
492         /* Just clear the power down bit to wake the phy back up */
493         if (adapter->hw.media_type == e1000_media_type_copper) {
494                 /* according to the manual, the phy will retain its
495                  * settings across a power-down/up cycle */
496                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
497                 mii_reg &= ~MII_CR_POWER_DOWN;
498                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
499         }
500 }
501
502 static void e1000_power_down_phy(struct e1000_adapter *adapter)
503 {
504         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
505                                       e1000_check_mng_mode(&adapter->hw);
506         /* Power down the PHY so no link is implied when interface is down
507          * The PHY cannot be powered down if any of the following is TRUE
508          * (a) WoL is enabled
509          * (b) AMT is active
510          * (c) SoL/IDER session is active */
511         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
512             adapter->hw.mac_type != e1000_ich8lan &&
513             adapter->hw.media_type == e1000_media_type_copper &&
514             !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
515             !mng_mode_enabled &&
516             !e1000_check_phy_reset_block(&adapter->hw)) {
517                 uint16_t mii_reg = 0;
518                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
519                 mii_reg |= MII_CR_POWER_DOWN;
520                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
521                 mdelay(1);
522         }
523 }
524
525 void
526 e1000_down(struct e1000_adapter *adapter)
527 {
528         struct net_device *netdev = adapter->netdev;
529
530         e1000_irq_disable(adapter);
531
532         del_timer_sync(&adapter->tx_fifo_stall_timer);
533         del_timer_sync(&adapter->watchdog_timer);
534         del_timer_sync(&adapter->phy_info_timer);
535
536 #ifdef CONFIG_E1000_NAPI
537         netif_poll_disable(netdev);
538 #endif
539         netdev->tx_queue_len = adapter->tx_queue_len;
540         adapter->link_speed = 0;
541         adapter->link_duplex = 0;
542         netif_carrier_off(netdev);
543         netif_stop_queue(netdev);
544
545         e1000_reset(adapter);
546         e1000_clean_all_tx_rings(adapter);
547         e1000_clean_all_rx_rings(adapter);
548 }
549
550 void
551 e1000_reinit_locked(struct e1000_adapter *adapter)
552 {
553         WARN_ON(in_interrupt());
554         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
555                 msleep(1);
556         e1000_down(adapter);
557         e1000_up(adapter);
558         clear_bit(__E1000_RESETTING, &adapter->flags);
559 }
560
561 void
562 e1000_reset(struct e1000_adapter *adapter)
563 {
564         uint32_t pba, manc;
565         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
566
567         /* Repartition Pba for greater than 9k mtu
568          * To take effect CTRL.RST is required.
569          */
570
571         switch (adapter->hw.mac_type) {
572         case e1000_82547:
573         case e1000_82547_rev_2:
574                 pba = E1000_PBA_30K;
575                 break;
576         case e1000_82571:
577         case e1000_82572:
578         case e1000_80003es2lan:
579                 pba = E1000_PBA_38K;
580                 break;
581         case e1000_82573:
582                 pba = E1000_PBA_12K;
583                 break;
584         case e1000_ich8lan:
585                 pba = E1000_PBA_8K;
586                 break;
587         default:
588                 pba = E1000_PBA_48K;
589                 break;
590         }
591
592         if ((adapter->hw.mac_type != e1000_82573) &&
593            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
594                 pba -= 8; /* allocate more FIFO for Tx */
595
596
597         if (adapter->hw.mac_type == e1000_82547) {
598                 adapter->tx_fifo_head = 0;
599                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
600                 adapter->tx_fifo_size =
601                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
602                 atomic_set(&adapter->tx_fifo_stall, 0);
603         }
604
605         E1000_WRITE_REG(&adapter->hw, PBA, pba);
606
607         /* flow control settings */
608         /* Set the FC high water mark to 90% of the FIFO size.
609          * Required to clear last 3 LSB */
610         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
611         /* We can't use 90% on small FIFOs because the remainder
612          * would be less than 1 full frame.  In this case, we size
613          * it to allow at least a full frame above the high water
614          *  mark. */
615         if (pba < E1000_PBA_16K)
616                 fc_high_water_mark = (pba * 1024) - 1600;
617
618         adapter->hw.fc_high_water = fc_high_water_mark;
619         adapter->hw.fc_low_water = fc_high_water_mark - 8;
620         if (adapter->hw.mac_type == e1000_80003es2lan)
621                 adapter->hw.fc_pause_time = 0xFFFF;
622         else
623                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
624         adapter->hw.fc_send_xon = 1;
625         adapter->hw.fc = adapter->hw.original_fc;
626
627         /* Allow time for pending master requests to run */
628         e1000_reset_hw(&adapter->hw);
629         if (adapter->hw.mac_type >= e1000_82544)
630                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
631         if (e1000_init_hw(&adapter->hw))
632                 DPRINTK(PROBE, ERR, "Hardware Error\n");
633         e1000_update_mng_vlan(adapter);
634         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
635         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
636
637         e1000_reset_adaptive(&adapter->hw);
638         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
639
640         if (!adapter->smart_power_down &&
641             (adapter->hw.mac_type == e1000_82571 ||
642              adapter->hw.mac_type == e1000_82572)) {
643                 uint16_t phy_data = 0;
644                 /* speed up time to link by disabling smart power down, ignore
645                  * the return value of this function because there is nothing
646                  * different we would do if it failed */
647                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
648                                    &phy_data);
649                 phy_data &= ~IGP02E1000_PM_SPD;
650                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
651                                     phy_data);
652         }
653
654         if (adapter->hw.mac_type < e1000_ich8lan)
655         /* FIXME: this code is duplicate and wrong for PCI Express */
656         if (adapter->en_mng_pt) {
657                 manc = E1000_READ_REG(&adapter->hw, MANC);
658                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
659                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
660         }
661 }
662
663 /**
664  * e1000_probe - Device Initialization Routine
665  * @pdev: PCI device information struct
666  * @ent: entry in e1000_pci_tbl
667  *
668  * Returns 0 on success, negative on failure
669  *
670  * e1000_probe initializes an adapter identified by a pci_dev structure.
671  * The OS initialization, configuring of the adapter private structure,
672  * and a hardware reset occur.
673  **/
674
675 static int __devinit
676 e1000_probe(struct pci_dev *pdev,
677             const struct pci_device_id *ent)
678 {
679         struct net_device *netdev;
680         struct e1000_adapter *adapter;
681         unsigned long mmio_start, mmio_len;
682         unsigned long flash_start, flash_len;
683
684         static int cards_found = 0;
685         static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
686         int i, err, pci_using_dac;
687         uint16_t eeprom_data;
688         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
689         if ((err = pci_enable_device(pdev)))
690                 return err;
691
692         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
693             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
694                 pci_using_dac = 1;
695         } else {
696                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
697                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
698                         E1000_ERR("No usable DMA configuration, aborting\n");
699                         return err;
700                 }
701                 pci_using_dac = 0;
702         }
703
704         if ((err = pci_request_regions(pdev, e1000_driver_name)))
705                 return err;
706
707         pci_set_master(pdev);
708
709         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
710         if (!netdev) {
711                 err = -ENOMEM;
712                 goto err_alloc_etherdev;
713         }
714
715         SET_MODULE_OWNER(netdev);
716         SET_NETDEV_DEV(netdev, &pdev->dev);
717
718         pci_set_drvdata(pdev, netdev);
719         adapter = netdev_priv(netdev);
720         adapter->netdev = netdev;
721         adapter->pdev = pdev;
722         adapter->hw.back = adapter;
723         adapter->msg_enable = (1 << debug) - 1;
724
725         mmio_start = pci_resource_start(pdev, BAR_0);
726         mmio_len = pci_resource_len(pdev, BAR_0);
727
728         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
729         if (!adapter->hw.hw_addr) {
730                 err = -EIO;
731                 goto err_ioremap;
732         }
733
734         for (i = BAR_1; i <= BAR_5; i++) {
735                 if (pci_resource_len(pdev, i) == 0)
736                         continue;
737                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
738                         adapter->hw.io_base = pci_resource_start(pdev, i);
739                         break;
740                 }
741         }
742
743         netdev->open = &e1000_open;
744         netdev->stop = &e1000_close;
745         netdev->hard_start_xmit = &e1000_xmit_frame;
746         netdev->get_stats = &e1000_get_stats;
747         netdev->set_multicast_list = &e1000_set_multi;
748         netdev->set_mac_address = &e1000_set_mac;
749         netdev->change_mtu = &e1000_change_mtu;
750         netdev->do_ioctl = &e1000_ioctl;
751         e1000_set_ethtool_ops(netdev);
752         netdev->tx_timeout = &e1000_tx_timeout;
753         netdev->watchdog_timeo = 5 * HZ;
754 #ifdef CONFIG_E1000_NAPI
755         netdev->poll = &e1000_clean;
756         netdev->weight = 64;
757 #endif
758         netdev->vlan_rx_register = e1000_vlan_rx_register;
759         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
760         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
761 #ifdef CONFIG_NET_POLL_CONTROLLER
762         netdev->poll_controller = e1000_netpoll;
763 #endif
764         strcpy(netdev->name, pci_name(pdev));
765
766         netdev->mem_start = mmio_start;
767         netdev->mem_end = mmio_start + mmio_len;
768         netdev->base_addr = adapter->hw.io_base;
769
770         adapter->bd_number = cards_found;
771
772         /* setup the private structure */
773
774         if ((err = e1000_sw_init(adapter)))
775                 goto err_sw_init;
776
777         /* Flash BAR mapping must happen after e1000_sw_init
778          * because it depends on mac_type */
779         if ((adapter->hw.mac_type == e1000_ich8lan) &&
780            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
781                 flash_start = pci_resource_start(pdev, 1);
782                 flash_len = pci_resource_len(pdev, 1);
783                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
784                 if (!adapter->hw.flash_address) {
785                         err = -EIO;
786                         goto err_flashmap;
787                 }
788         }
789
790         if ((err = e1000_check_phy_reset_block(&adapter->hw)))
791                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
792
793         /* if ksp3, indicate if it's port a being setup */
794         if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
795                         e1000_ksp3_port_a == 0)
796                 adapter->ksp3_port_a = 1;
797         e1000_ksp3_port_a++;
798         /* Reset for multiple KP3 adapters */
799         if (e1000_ksp3_port_a == 4)
800                 e1000_ksp3_port_a = 0;
801
802         if (adapter->hw.mac_type >= e1000_82543) {
803                 netdev->features = NETIF_F_SG |
804                                    NETIF_F_HW_CSUM |
805                                    NETIF_F_HW_VLAN_TX |
806                                    NETIF_F_HW_VLAN_RX |
807                                    NETIF_F_HW_VLAN_FILTER;
808                 if (adapter->hw.mac_type == e1000_ich8lan)
809                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
810         }
811
812 #ifdef NETIF_F_TSO
813         if ((adapter->hw.mac_type >= e1000_82544) &&
814            (adapter->hw.mac_type != e1000_82547))
815                 netdev->features |= NETIF_F_TSO;
816
817 #ifdef NETIF_F_TSO_IPV6
818         if (adapter->hw.mac_type > e1000_82547_rev_2)
819                 netdev->features |= NETIF_F_TSO_IPV6;
820 #endif
821 #endif
822         if (pci_using_dac)
823                 netdev->features |= NETIF_F_HIGHDMA;
824
825         netdev->features |= NETIF_F_LLTX;
826
827         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
828
829         /* initialize eeprom parameters */
830
831         if (e1000_init_eeprom_params(&adapter->hw)) {
832                 E1000_ERR("EEPROM initialization failed\n");
833                 return -EIO;
834         }
835
836         /* before reading the EEPROM, reset the controller to
837          * put the device in a known good starting state */
838
839         e1000_reset_hw(&adapter->hw);
840
841         /* make sure the EEPROM is good */
842
843         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
844                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
845                 err = -EIO;
846                 goto err_eeprom;
847         }
848
849         /* copy the MAC address out of the EEPROM */
850
851         if (e1000_read_mac_addr(&adapter->hw))
852                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
853         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
854         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
855
856         if (!is_valid_ether_addr(netdev->perm_addr)) {
857                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
858                 err = -EIO;
859                 goto err_eeprom;
860         }
861
862         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
863
864         e1000_get_bus_info(&adapter->hw);
865
866         init_timer(&adapter->tx_fifo_stall_timer);
867         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
868         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
869
870         init_timer(&adapter->watchdog_timer);
871         adapter->watchdog_timer.function = &e1000_watchdog;
872         adapter->watchdog_timer.data = (unsigned long) adapter;
873
874         init_timer(&adapter->phy_info_timer);
875         adapter->phy_info_timer.function = &e1000_update_phy_info;
876         adapter->phy_info_timer.data = (unsigned long) adapter;
877
878         INIT_WORK(&adapter->reset_task,
879                 (void (*)(void *))e1000_reset_task, netdev);
880
881         /* we're going to reset, so assume we have no link for now */
882
883         netif_carrier_off(netdev);
884         netif_stop_queue(netdev);
885
886         e1000_check_options(adapter);
887
888         /* Initial Wake on LAN setting
889          * If APM wake is enabled in the EEPROM,
890          * enable the ACPI Magic Packet filter
891          */
892
893         switch (adapter->hw.mac_type) {
894         case e1000_82542_rev2_0:
895         case e1000_82542_rev2_1:
896         case e1000_82543:
897                 break;
898         case e1000_82544:
899                 e1000_read_eeprom(&adapter->hw,
900                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
901                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
902                 break;
903         case e1000_ich8lan:
904                 e1000_read_eeprom(&adapter->hw,
905                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
906                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
907                 break;
908         case e1000_82546:
909         case e1000_82546_rev_3:
910         case e1000_82571:
911         case e1000_80003es2lan:
912                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
913                         e1000_read_eeprom(&adapter->hw,
914                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
915                         break;
916                 }
917                 /* Fall Through */
918         default:
919                 e1000_read_eeprom(&adapter->hw,
920                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
921                 break;
922         }
923         if (eeprom_data & eeprom_apme_mask)
924                 adapter->wol |= E1000_WUFC_MAG;
925
926         /* print bus type/speed/width info */
927         {
928         struct e1000_hw *hw = &adapter->hw;
929         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
930                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
931                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
932                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
933                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
934                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
935                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
936                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
937                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
938                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
939                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
940                  "32-bit"));
941         }
942
943         for (i = 0; i < 6; i++)
944                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
945
946         /* reset the hardware with the new settings */
947         e1000_reset(adapter);
948
949         /* If the controller is 82573 and f/w is AMT, do not set
950          * DRV_LOAD until the interface is up.  For all other cases,
951          * let the f/w know that the h/w is now under the control
952          * of the driver. */
953         if (adapter->hw.mac_type != e1000_82573 ||
954             !e1000_check_mng_mode(&adapter->hw))
955                 e1000_get_hw_control(adapter);
956
957         strcpy(netdev->name, "eth%d");
958         if ((err = register_netdev(netdev)))
959                 goto err_register;
960
961         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
962
963         cards_found++;
964         return 0;
965
966 err_register:
967         if (adapter->hw.flash_address)
968                 iounmap(adapter->hw.flash_address);
969 err_flashmap:
970 err_sw_init:
971 err_eeprom:
972         iounmap(adapter->hw.hw_addr);
973 err_ioremap:
974         free_netdev(netdev);
975 err_alloc_etherdev:
976         pci_release_regions(pdev);
977         return err;
978 }
979
980 /**
981  * e1000_remove - Device Removal Routine
982  * @pdev: PCI device information struct
983  *
984  * e1000_remove is called by the PCI subsystem to alert the driver
985  * that it should release a PCI device.  The could be caused by a
986  * Hot-Plug event, or because the driver is going to be removed from
987  * memory.
988  **/
989
990 static void __devexit
991 e1000_remove(struct pci_dev *pdev)
992 {
993         struct net_device *netdev = pci_get_drvdata(pdev);
994         struct e1000_adapter *adapter = netdev_priv(netdev);
995         uint32_t manc;
996 #ifdef CONFIG_E1000_NAPI
997         int i;
998 #endif
999
1000         flush_scheduled_work();
1001
1002         if (adapter->hw.mac_type >= e1000_82540 &&
1003            adapter->hw.mac_type != e1000_ich8lan &&
1004            adapter->hw.media_type == e1000_media_type_copper) {
1005                 manc = E1000_READ_REG(&adapter->hw, MANC);
1006                 if (manc & E1000_MANC_SMBUS_EN) {
1007                         manc |= E1000_MANC_ARP_EN;
1008                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1009                 }
1010         }
1011
1012         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1013          * would have already happened in close and is redundant. */
1014         e1000_release_hw_control(adapter);
1015
1016         unregister_netdev(netdev);
1017 #ifdef CONFIG_E1000_NAPI
1018         for (i = 0; i < adapter->num_rx_queues; i++)
1019                 dev_put(&adapter->polling_netdev[i]);
1020 #endif
1021
1022         if (!e1000_check_phy_reset_block(&adapter->hw))
1023                 e1000_phy_hw_reset(&adapter->hw);
1024
1025         kfree(adapter->tx_ring);
1026         kfree(adapter->rx_ring);
1027 #ifdef CONFIG_E1000_NAPI
1028         kfree(adapter->polling_netdev);
1029 #endif
1030
1031         iounmap(adapter->hw.hw_addr);
1032         if (adapter->hw.flash_address)
1033                 iounmap(adapter->hw.flash_address);
1034         pci_release_regions(pdev);
1035
1036         free_netdev(netdev);
1037
1038         pci_disable_device(pdev);
1039 }
1040
1041 /**
1042  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1043  * @adapter: board private structure to initialize
1044  *
1045  * e1000_sw_init initializes the Adapter private data structure.
1046  * Fields are initialized based on PCI device information and
1047  * OS network device settings (MTU size).
1048  **/
1049
1050 static int __devinit
1051 e1000_sw_init(struct e1000_adapter *adapter)
1052 {
1053         struct e1000_hw *hw = &adapter->hw;
1054         struct net_device *netdev = adapter->netdev;
1055         struct pci_dev *pdev = adapter->pdev;
1056 #ifdef CONFIG_E1000_NAPI
1057         int i;
1058 #endif
1059
1060         /* PCI config space info */
1061
1062         hw->vendor_id = pdev->vendor;
1063         hw->device_id = pdev->device;
1064         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1065         hw->subsystem_id = pdev->subsystem_device;
1066
1067         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1068
1069         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1070
1071         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1072         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1073         hw->max_frame_size = netdev->mtu +
1074                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1075         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1076
1077         /* identify the MAC */
1078
1079         if (e1000_set_mac_type(hw)) {
1080                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1081                 return -EIO;
1082         }
1083
1084         switch (hw->mac_type) {
1085         default:
1086                 break;
1087         case e1000_82541:
1088         case e1000_82547:
1089         case e1000_82541_rev_2:
1090         case e1000_82547_rev_2:
1091                 hw->phy_init_script = 1;
1092                 break;
1093         }
1094
1095         e1000_set_media_type(hw);
1096
1097         hw->wait_autoneg_complete = FALSE;
1098         hw->tbi_compatibility_en = TRUE;
1099         hw->adaptive_ifs = TRUE;
1100
1101         /* Copper options */
1102
1103         if (hw->media_type == e1000_media_type_copper) {
1104                 hw->mdix = AUTO_ALL_MODES;
1105                 hw->disable_polarity_correction = FALSE;
1106                 hw->master_slave = E1000_MASTER_SLAVE;
1107         }
1108
1109         adapter->num_tx_queues = 1;
1110         adapter->num_rx_queues = 1;
1111
1112         if (e1000_alloc_queues(adapter)) {
1113                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1114                 return -ENOMEM;
1115         }
1116
1117 #ifdef CONFIG_E1000_NAPI
1118         for (i = 0; i < adapter->num_rx_queues; i++) {
1119                 adapter->polling_netdev[i].priv = adapter;
1120                 adapter->polling_netdev[i].poll = &e1000_clean;
1121                 adapter->polling_netdev[i].weight = 64;
1122                 dev_hold(&adapter->polling_netdev[i]);
1123                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1124         }
1125         spin_lock_init(&adapter->tx_queue_lock);
1126 #endif
1127
1128         atomic_set(&adapter->irq_sem, 1);
1129         spin_lock_init(&adapter->stats_lock);
1130
1131         return 0;
1132 }
1133
1134 /**
1135  * e1000_alloc_queues - Allocate memory for all rings
1136  * @adapter: board private structure to initialize
1137  *
1138  * We allocate one ring per queue at run-time since we don't know the
1139  * number of queues at compile-time.  The polling_netdev array is
1140  * intended for Multiqueue, but should work fine with a single queue.
1141  **/
1142
1143 static int __devinit
1144 e1000_alloc_queues(struct e1000_adapter *adapter)
1145 {
1146         int size;
1147
1148         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1149         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1150         if (!adapter->tx_ring)
1151                 return -ENOMEM;
1152         memset(adapter->tx_ring, 0, size);
1153
1154         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1155         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1156         if (!adapter->rx_ring) {
1157                 kfree(adapter->tx_ring);
1158                 return -ENOMEM;
1159         }
1160         memset(adapter->rx_ring, 0, size);
1161
1162 #ifdef CONFIG_E1000_NAPI
1163         size = sizeof(struct net_device) * adapter->num_rx_queues;
1164         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1165         if (!adapter->polling_netdev) {
1166                 kfree(adapter->tx_ring);
1167                 kfree(adapter->rx_ring);
1168                 return -ENOMEM;
1169         }
1170         memset(adapter->polling_netdev, 0, size);
1171 #endif
1172
1173         return E1000_SUCCESS;
1174 }
1175
1176 /**
1177  * e1000_open - Called when a network interface is made active
1178  * @netdev: network interface device structure
1179  *
1180  * Returns 0 on success, negative value on failure
1181  *
1182  * The open entry point is called when a network interface is made
1183  * active by the system (IFF_UP).  At this point all resources needed
1184  * for transmit and receive operations are allocated, the interrupt
1185  * handler is registered with the OS, the watchdog timer is started,
1186  * and the stack is notified that the interface is ready.
1187  **/
1188
1189 static int
1190 e1000_open(struct net_device *netdev)
1191 {
1192         struct e1000_adapter *adapter = netdev_priv(netdev);
1193         int err;
1194
1195         /* disallow open during test */
1196         if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
1197                 return -EBUSY;
1198
1199         /* allocate transmit descriptors */
1200
1201         if ((err = e1000_setup_all_tx_resources(adapter)))
1202                 goto err_setup_tx;
1203
1204         /* allocate receive descriptors */
1205
1206         if ((err = e1000_setup_all_rx_resources(adapter)))
1207                 goto err_setup_rx;
1208
1209         err = e1000_request_irq(adapter);
1210         if (err)
1211                 goto err_up;
1212
1213         e1000_power_up_phy(adapter);
1214
1215         if ((err = e1000_up(adapter)))
1216                 goto err_up;
1217         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1218         if ((adapter->hw.mng_cookie.status &
1219                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1220                 e1000_update_mng_vlan(adapter);
1221         }
1222
1223         /* If AMT is enabled, let the firmware know that the network
1224          * interface is now open */
1225         if (adapter->hw.mac_type == e1000_82573 &&
1226             e1000_check_mng_mode(&adapter->hw))
1227                 e1000_get_hw_control(adapter);
1228
1229         return E1000_SUCCESS;
1230
1231 err_up:
1232         e1000_free_all_rx_resources(adapter);
1233 err_setup_rx:
1234         e1000_free_all_tx_resources(adapter);
1235 err_setup_tx:
1236         e1000_reset(adapter);
1237
1238         return err;
1239 }
1240
1241 /**
1242  * e1000_close - Disables a network interface
1243  * @netdev: network interface device structure
1244  *
1245  * Returns 0, this is not allowed to fail
1246  *
1247  * The close entry point is called when an interface is de-activated
1248  * by the OS.  The hardware is still under the drivers control, but
1249  * needs to be disabled.  A global MAC reset is issued to stop the
1250  * hardware, and all transmit and receive resources are freed.
1251  **/
1252
1253 static int
1254 e1000_close(struct net_device *netdev)
1255 {
1256         struct e1000_adapter *adapter = netdev_priv(netdev);
1257
1258         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1259         e1000_down(adapter);
1260         e1000_power_down_phy(adapter);
1261         e1000_free_irq(adapter);
1262
1263         e1000_free_all_tx_resources(adapter);
1264         e1000_free_all_rx_resources(adapter);
1265
1266         if ((adapter->hw.mng_cookie.status &
1267                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1268                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1269         }
1270
1271         /* If AMT is enabled, let the firmware know that the network
1272          * interface is now closed */
1273         if (adapter->hw.mac_type == e1000_82573 &&
1274             e1000_check_mng_mode(&adapter->hw))
1275                 e1000_release_hw_control(adapter);
1276
1277         return 0;
1278 }
1279
1280 /**
1281  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1282  * @adapter: address of board private structure
1283  * @start: address of beginning of memory
1284  * @len: length of memory
1285  **/
1286 static boolean_t
1287 e1000_check_64k_bound(struct e1000_adapter *adapter,
1288                       void *start, unsigned long len)
1289 {
1290         unsigned long begin = (unsigned long) start;
1291         unsigned long end = begin + len;
1292
1293         /* First rev 82545 and 82546 need to not allow any memory
1294          * write location to cross 64k boundary due to errata 23 */
1295         if (adapter->hw.mac_type == e1000_82545 ||
1296             adapter->hw.mac_type == e1000_82546) {
1297                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1298         }
1299
1300         return TRUE;
1301 }
1302
1303 /**
1304  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1305  * @adapter: board private structure
1306  * @txdr:    tx descriptor ring (for a specific queue) to setup
1307  *
1308  * Return 0 on success, negative on failure
1309  **/
1310
1311 static int
1312 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1313                          struct e1000_tx_ring *txdr)
1314 {
1315         struct pci_dev *pdev = adapter->pdev;
1316         int size;
1317
1318         size = sizeof(struct e1000_buffer) * txdr->count;
1319         txdr->buffer_info = vmalloc(size);
1320         if (!txdr->buffer_info) {
1321                 DPRINTK(PROBE, ERR,
1322                 "Unable to allocate memory for the transmit descriptor ring\n");
1323                 return -ENOMEM;
1324         }
1325         memset(txdr->buffer_info, 0, size);
1326
1327         /* round up to nearest 4K */
1328
1329         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1330         E1000_ROUNDUP(txdr->size, 4096);
1331
1332         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1333         if (!txdr->desc) {
1334 setup_tx_desc_die:
1335                 vfree(txdr->buffer_info);
1336                 DPRINTK(PROBE, ERR,
1337                 "Unable to allocate memory for the transmit descriptor ring\n");
1338                 return -ENOMEM;
1339         }
1340
1341         /* Fix for errata 23, can't cross 64kB boundary */
1342         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1343                 void *olddesc = txdr->desc;
1344                 dma_addr_t olddma = txdr->dma;
1345                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1346                                      "at %p\n", txdr->size, txdr->desc);
1347                 /* Try again, without freeing the previous */
1348                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1349                 /* Failed allocation, critical failure */
1350                 if (!txdr->desc) {
1351                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1352                         goto setup_tx_desc_die;
1353                 }
1354
1355                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1356                         /* give up */
1357                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1358                                             txdr->dma);
1359                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1360                         DPRINTK(PROBE, ERR,
1361                                 "Unable to allocate aligned memory "
1362                                 "for the transmit descriptor ring\n");
1363                         vfree(txdr->buffer_info);
1364                         return -ENOMEM;
1365                 } else {
1366                         /* Free old allocation, new allocation was successful */
1367                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1368                 }
1369         }
1370         memset(txdr->desc, 0, txdr->size);
1371
1372         txdr->next_to_use = 0;
1373         txdr->next_to_clean = 0;
1374         spin_lock_init(&txdr->tx_lock);
1375
1376         return 0;
1377 }
1378
1379 /**
1380  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1381  *                                (Descriptors) for all queues
1382  * @adapter: board private structure
1383  *
1384  * If this function returns with an error, then it's possible one or
1385  * more of the rings is populated (while the rest are not).  It is the
1386  * callers duty to clean those orphaned rings.
1387  *
1388  * Return 0 on success, negative on failure
1389  **/
1390
1391 int
1392 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1393 {
1394         int i, err = 0;
1395
1396         for (i = 0; i < adapter->num_tx_queues; i++) {
1397                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1398                 if (err) {
1399                         DPRINTK(PROBE, ERR,
1400                                 "Allocation for Tx Queue %u failed\n", i);
1401                         break;
1402                 }
1403         }
1404
1405         return err;
1406 }
1407
1408 /**
1409  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1410  * @adapter: board private structure
1411  *
1412  * Configure the Tx unit of the MAC after a reset.
1413  **/
1414
1415 static void
1416 e1000_configure_tx(struct e1000_adapter *adapter)
1417 {
1418         uint64_t tdba;
1419         struct e1000_hw *hw = &adapter->hw;
1420         uint32_t tdlen, tctl, tipg, tarc;
1421         uint32_t ipgr1, ipgr2;
1422
1423         /* Setup the HW Tx Head and Tail descriptor pointers */
1424
1425         switch (adapter->num_tx_queues) {
1426         case 1:
1427         default:
1428                 tdba = adapter->tx_ring[0].dma;
1429                 tdlen = adapter->tx_ring[0].count *
1430                         sizeof(struct e1000_tx_desc);
1431                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1432                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1433                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1434                 E1000_WRITE_REG(hw, TDT, 0);
1435                 E1000_WRITE_REG(hw, TDH, 0);
1436                 adapter->tx_ring[0].tdh = E1000_TDH;
1437                 adapter->tx_ring[0].tdt = E1000_TDT;
1438                 break;
1439         }
1440
1441         /* Set the default values for the Tx Inter Packet Gap timer */
1442
1443         if (hw->media_type == e1000_media_type_fiber ||
1444             hw->media_type == e1000_media_type_internal_serdes)
1445                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1446         else
1447                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1448
1449         switch (hw->mac_type) {
1450         case e1000_82542_rev2_0:
1451         case e1000_82542_rev2_1:
1452                 tipg = DEFAULT_82542_TIPG_IPGT;
1453                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1454                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1455                 break;
1456         case e1000_80003es2lan:
1457                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1458                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1459                 break;
1460         default:
1461                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1462                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1463                 break;
1464         }
1465         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1466         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1467         E1000_WRITE_REG(hw, TIPG, tipg);
1468
1469         /* Set the Tx Interrupt Delay register */
1470
1471         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1472         if (hw->mac_type >= e1000_82540)
1473                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1474
1475         /* Program the Transmit Control Register */
1476
1477         tctl = E1000_READ_REG(hw, TCTL);
1478
1479         tctl &= ~E1000_TCTL_CT;
1480         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1481                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1482
1483 #ifdef DISABLE_MULR
1484         /* disable Multiple Reads for debugging */
1485         tctl &= ~E1000_TCTL_MULR;
1486 #endif
1487
1488         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1489                 tarc = E1000_READ_REG(hw, TARC0);
1490                 tarc |= ((1 << 25) | (1 << 21));
1491                 E1000_WRITE_REG(hw, TARC0, tarc);
1492                 tarc = E1000_READ_REG(hw, TARC1);
1493                 tarc |= (1 << 25);
1494                 if (tctl & E1000_TCTL_MULR)
1495                         tarc &= ~(1 << 28);
1496                 else
1497                         tarc |= (1 << 28);
1498                 E1000_WRITE_REG(hw, TARC1, tarc);
1499         } else if (hw->mac_type == e1000_80003es2lan) {
1500                 tarc = E1000_READ_REG(hw, TARC0);
1501                 tarc |= 1;
1502                 if (hw->media_type == e1000_media_type_internal_serdes)
1503                         tarc |= (1 << 20);
1504                 E1000_WRITE_REG(hw, TARC0, tarc);
1505                 tarc = E1000_READ_REG(hw, TARC1);
1506                 tarc |= 1;
1507                 E1000_WRITE_REG(hw, TARC1, tarc);
1508         }
1509
1510         e1000_config_collision_dist(hw);
1511
1512         /* Setup Transmit Descriptor Settings for eop descriptor */
1513         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1514                 E1000_TXD_CMD_IFCS;
1515
1516         if (hw->mac_type < e1000_82543)
1517                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1518         else
1519                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1520
1521         /* Cache if we're 82544 running in PCI-X because we'll
1522          * need this to apply a workaround later in the send path. */
1523         if (hw->mac_type == e1000_82544 &&
1524             hw->bus_type == e1000_bus_type_pcix)
1525                 adapter->pcix_82544 = 1;
1526
1527         E1000_WRITE_REG(hw, TCTL, tctl);
1528
1529 }
1530
1531 /**
1532  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1533  * @adapter: board private structure
1534  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1535  *
1536  * Returns 0 on success, negative on failure
1537  **/
1538
1539 static int
1540 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1541                          struct e1000_rx_ring *rxdr)
1542 {
1543         struct pci_dev *pdev = adapter->pdev;
1544         int size, desc_len;
1545
1546         size = sizeof(struct e1000_buffer) * rxdr->count;
1547         rxdr->buffer_info = vmalloc(size);
1548         if (!rxdr->buffer_info) {
1549                 DPRINTK(PROBE, ERR,
1550                 "Unable to allocate memory for the receive descriptor ring\n");
1551                 return -ENOMEM;
1552         }
1553         memset(rxdr->buffer_info, 0, size);
1554
1555         size = sizeof(struct e1000_ps_page) * rxdr->count;
1556         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1557         if (!rxdr->ps_page) {
1558                 vfree(rxdr->buffer_info);
1559                 DPRINTK(PROBE, ERR,
1560                 "Unable to allocate memory for the receive descriptor ring\n");
1561                 return -ENOMEM;
1562         }
1563         memset(rxdr->ps_page, 0, size);
1564
1565         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1566         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1567         if (!rxdr->ps_page_dma) {
1568                 vfree(rxdr->buffer_info);
1569                 kfree(rxdr->ps_page);
1570                 DPRINTK(PROBE, ERR,
1571                 "Unable to allocate memory for the receive descriptor ring\n");
1572                 return -ENOMEM;
1573         }
1574         memset(rxdr->ps_page_dma, 0, size);
1575
1576         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1577                 desc_len = sizeof(struct e1000_rx_desc);
1578         else
1579                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1580
1581         /* Round up to nearest 4K */
1582
1583         rxdr->size = rxdr->count * desc_len;
1584         E1000_ROUNDUP(rxdr->size, 4096);
1585
1586         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1587
1588         if (!rxdr->desc) {
1589                 DPRINTK(PROBE, ERR,
1590                 "Unable to allocate memory for the receive descriptor ring\n");
1591 setup_rx_desc_die:
1592                 vfree(rxdr->buffer_info);
1593                 kfree(rxdr->ps_page);
1594                 kfree(rxdr->ps_page_dma);
1595                 return -ENOMEM;
1596         }
1597
1598         /* Fix for errata 23, can't cross 64kB boundary */
1599         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1600                 void *olddesc = rxdr->desc;
1601                 dma_addr_t olddma = rxdr->dma;
1602                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1603                                      "at %p\n", rxdr->size, rxdr->desc);
1604                 /* Try again, without freeing the previous */
1605                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1606                 /* Failed allocation, critical failure */
1607                 if (!rxdr->desc) {
1608                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1609                         DPRINTK(PROBE, ERR,
1610                                 "Unable to allocate memory "
1611                                 "for the receive descriptor ring\n");
1612                         goto setup_rx_desc_die;
1613                 }
1614
1615                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1616                         /* give up */
1617                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1618                                             rxdr->dma);
1619                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1620                         DPRINTK(PROBE, ERR,
1621                                 "Unable to allocate aligned memory "
1622                                 "for the receive descriptor ring\n");
1623                         goto setup_rx_desc_die;
1624                 } else {
1625                         /* Free old allocation, new allocation was successful */
1626                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1627                 }
1628         }
1629         memset(rxdr->desc, 0, rxdr->size);
1630
1631         rxdr->next_to_clean = 0;
1632         rxdr->next_to_use = 0;
1633
1634         return 0;
1635 }
1636
1637 /**
1638  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1639  *                                (Descriptors) for all queues
1640  * @adapter: board private structure
1641  *
1642  * If this function returns with an error, then it's possible one or
1643  * more of the rings is populated (while the rest are not).  It is the
1644  * callers duty to clean those orphaned rings.
1645  *
1646  * Return 0 on success, negative on failure
1647  **/
1648
1649 int
1650 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1651 {
1652         int i, err = 0;
1653
1654         for (i = 0; i < adapter->num_rx_queues; i++) {
1655                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1656                 if (err) {
1657                         DPRINTK(PROBE, ERR,
1658                                 "Allocation for Rx Queue %u failed\n", i);
1659                         break;
1660                 }
1661         }
1662
1663         return err;
1664 }
1665
1666 /**
1667  * e1000_setup_rctl - configure the receive control registers
1668  * @adapter: Board private structure
1669  **/
1670 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1671                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1672 static void
1673 e1000_setup_rctl(struct e1000_adapter *adapter)
1674 {
1675         uint32_t rctl, rfctl;
1676         uint32_t psrctl = 0;
1677 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1678         uint32_t pages = 0;
1679 #endif
1680
1681         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1682
1683         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1684
1685         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1686                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1687                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1688
1689         if (adapter->hw.tbi_compatibility_on == 1)
1690                 rctl |= E1000_RCTL_SBP;
1691         else
1692                 rctl &= ~E1000_RCTL_SBP;
1693
1694         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1695                 rctl &= ~E1000_RCTL_LPE;
1696         else
1697                 rctl |= E1000_RCTL_LPE;
1698
1699         /* Setup buffer sizes */
1700         rctl &= ~E1000_RCTL_SZ_4096;
1701         rctl |= E1000_RCTL_BSEX;
1702         switch (adapter->rx_buffer_len) {
1703                 case E1000_RXBUFFER_256:
1704                         rctl |= E1000_RCTL_SZ_256;
1705                         rctl &= ~E1000_RCTL_BSEX;
1706                         break;
1707                 case E1000_RXBUFFER_512:
1708                         rctl |= E1000_RCTL_SZ_512;
1709                         rctl &= ~E1000_RCTL_BSEX;
1710                         break;
1711                 case E1000_RXBUFFER_1024:
1712                         rctl |= E1000_RCTL_SZ_1024;
1713                         rctl &= ~E1000_RCTL_BSEX;
1714                         break;
1715                 case E1000_RXBUFFER_2048:
1716                 default:
1717                         rctl |= E1000_RCTL_SZ_2048;
1718                         rctl &= ~E1000_RCTL_BSEX;
1719                         break;
1720                 case E1000_RXBUFFER_4096:
1721                         rctl |= E1000_RCTL_SZ_4096;
1722                         break;
1723                 case E1000_RXBUFFER_8192:
1724                         rctl |= E1000_RCTL_SZ_8192;
1725                         break;
1726                 case E1000_RXBUFFER_16384:
1727                         rctl |= E1000_RCTL_SZ_16384;
1728                         break;
1729         }
1730
1731 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1732         /* 82571 and greater support packet-split where the protocol
1733          * header is placed in skb->data and the packet data is
1734          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1735          * In the case of a non-split, skb->data is linearly filled,
1736          * followed by the page buffers.  Therefore, skb->data is
1737          * sized to hold the largest protocol header.
1738          */
1739         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1740         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1741             PAGE_SIZE <= 16384)
1742                 adapter->rx_ps_pages = pages;
1743         else
1744                 adapter->rx_ps_pages = 0;
1745 #endif
1746         if (adapter->rx_ps_pages) {
1747                 /* Configure extra packet-split registers */
1748                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1749                 rfctl |= E1000_RFCTL_EXTEN;
1750                 /* disable IPv6 packet split support */
1751                 rfctl |= E1000_RFCTL_IPV6_DIS;
1752                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1753
1754                 rctl |= E1000_RCTL_DTYP_PS;
1755
1756                 psrctl |= adapter->rx_ps_bsize0 >>
1757                         E1000_PSRCTL_BSIZE0_SHIFT;
1758
1759                 switch (adapter->rx_ps_pages) {
1760                 case 3:
1761                         psrctl |= PAGE_SIZE <<
1762                                 E1000_PSRCTL_BSIZE3_SHIFT;
1763                 case 2:
1764                         psrctl |= PAGE_SIZE <<
1765                                 E1000_PSRCTL_BSIZE2_SHIFT;
1766                 case 1:
1767                         psrctl |= PAGE_SIZE >>
1768                                 E1000_PSRCTL_BSIZE1_SHIFT;
1769                         break;
1770                 }
1771
1772                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1773         }
1774
1775         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1776 }
1777
1778 /**
1779  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1780  * @adapter: board private structure
1781  *
1782  * Configure the Rx unit of the MAC after a reset.
1783  **/
1784
1785 static void
1786 e1000_configure_rx(struct e1000_adapter *adapter)
1787 {
1788         uint64_t rdba;
1789         struct e1000_hw *hw = &adapter->hw;
1790         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1791
1792         if (adapter->rx_ps_pages) {
1793                 /* this is a 32 byte descriptor */
1794                 rdlen = adapter->rx_ring[0].count *
1795                         sizeof(union e1000_rx_desc_packet_split);
1796                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1797                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1798         } else {
1799                 rdlen = adapter->rx_ring[0].count *
1800                         sizeof(struct e1000_rx_desc);
1801                 adapter->clean_rx = e1000_clean_rx_irq;
1802                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1803         }
1804
1805         /* disable receives while setting up the descriptors */
1806         rctl = E1000_READ_REG(hw, RCTL);
1807         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1808
1809         /* set the Receive Delay Timer Register */
1810         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1811
1812         if (hw->mac_type >= e1000_82540) {
1813                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1814                 if (adapter->itr > 1)
1815                         E1000_WRITE_REG(hw, ITR,
1816                                 1000000000 / (adapter->itr * 256));
1817         }
1818
1819         if (hw->mac_type >= e1000_82571) {
1820                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1821                 /* Reset delay timers after every interrupt */
1822                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1823 #ifdef CONFIG_E1000_NAPI
1824                 /* Auto-Mask interrupts upon ICR read. */
1825                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1826 #endif
1827                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1828                 E1000_WRITE_REG(hw, IAM, ~0);
1829                 E1000_WRITE_FLUSH(hw);
1830         }
1831
1832         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1833          * the Base and Length of the Rx Descriptor Ring */
1834         switch (adapter->num_rx_queues) {
1835         case 1:
1836         default:
1837                 rdba = adapter->rx_ring[0].dma;
1838                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1839                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1840                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1841                 E1000_WRITE_REG(hw, RDT, 0);
1842                 E1000_WRITE_REG(hw, RDH, 0);
1843                 adapter->rx_ring[0].rdh = E1000_RDH;
1844                 adapter->rx_ring[0].rdt = E1000_RDT;
1845                 break;
1846         }
1847
1848         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1849         if (hw->mac_type >= e1000_82543) {
1850                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1851                 if (adapter->rx_csum == TRUE) {
1852                         rxcsum |= E1000_RXCSUM_TUOFL;
1853
1854                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1855                          * Must be used in conjunction with packet-split. */
1856                         if ((hw->mac_type >= e1000_82571) &&
1857                             (adapter->rx_ps_pages)) {
1858                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1859                         }
1860                 } else {
1861                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1862                         /* don't need to clear IPPCSE as it defaults to 0 */
1863                 }
1864                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1865         }
1866
1867         /* Enable Receives */
1868         E1000_WRITE_REG(hw, RCTL, rctl);
1869 }
1870
1871 /**
1872  * e1000_free_tx_resources - Free Tx Resources per Queue
1873  * @adapter: board private structure
1874  * @tx_ring: Tx descriptor ring for a specific queue
1875  *
1876  * Free all transmit software resources
1877  **/
1878
1879 static void
1880 e1000_free_tx_resources(struct e1000_adapter *adapter,
1881                         struct e1000_tx_ring *tx_ring)
1882 {
1883         struct pci_dev *pdev = adapter->pdev;
1884
1885         e1000_clean_tx_ring(adapter, tx_ring);
1886
1887         vfree(tx_ring->buffer_info);
1888         tx_ring->buffer_info = NULL;
1889
1890         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1891
1892         tx_ring->desc = NULL;
1893 }
1894
1895 /**
1896  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1897  * @adapter: board private structure
1898  *
1899  * Free all transmit software resources
1900  **/
1901
1902 void
1903 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1904 {
1905         int i;
1906
1907         for (i = 0; i < adapter->num_tx_queues; i++)
1908                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1909 }
1910
1911 static void
1912 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1913                         struct e1000_buffer *buffer_info)
1914 {
1915         if (buffer_info->dma) {
1916                 pci_unmap_page(adapter->pdev,
1917                                 buffer_info->dma,
1918                                 buffer_info->length,
1919                                 PCI_DMA_TODEVICE);
1920         }
1921         if (buffer_info->skb)
1922                 dev_kfree_skb_any(buffer_info->skb);
1923         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1924 }
1925
1926 /**
1927  * e1000_clean_tx_ring - Free Tx Buffers
1928  * @adapter: board private structure
1929  * @tx_ring: ring to be cleaned
1930  **/
1931
1932 static void
1933 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1934                     struct e1000_tx_ring *tx_ring)
1935 {
1936         struct e1000_buffer *buffer_info;
1937         unsigned long size;
1938         unsigned int i;
1939
1940         /* Free all the Tx ring sk_buffs */
1941
1942         for (i = 0; i < tx_ring->count; i++) {
1943                 buffer_info = &tx_ring->buffer_info[i];
1944                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1945         }
1946
1947         size = sizeof(struct e1000_buffer) * tx_ring->count;
1948         memset(tx_ring->buffer_info, 0, size);
1949
1950         /* Zero out the descriptor ring */
1951
1952         memset(tx_ring->desc, 0, tx_ring->size);
1953
1954         tx_ring->next_to_use = 0;
1955         tx_ring->next_to_clean = 0;
1956         tx_ring->last_tx_tso = 0;
1957
1958         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1959         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1960 }
1961
1962 /**
1963  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1964  * @adapter: board private structure
1965  **/
1966
1967 static void
1968 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1969 {
1970         int i;
1971
1972         for (i = 0; i < adapter->num_tx_queues; i++)
1973                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1974 }
1975
1976 /**
1977  * e1000_free_rx_resources - Free Rx Resources
1978  * @adapter: board private structure
1979  * @rx_ring: ring to clean the resources from
1980  *
1981  * Free all receive software resources
1982  **/
1983
1984 static void
1985 e1000_free_rx_resources(struct e1000_adapter *adapter,
1986                         struct e1000_rx_ring *rx_ring)
1987 {
1988         struct pci_dev *pdev = adapter->pdev;
1989
1990         e1000_clean_rx_ring(adapter, rx_ring);
1991
1992         vfree(rx_ring->buffer_info);
1993         rx_ring->buffer_info = NULL;
1994         kfree(rx_ring->ps_page);
1995         rx_ring->ps_page = NULL;
1996         kfree(rx_ring->ps_page_dma);
1997         rx_ring->ps_page_dma = NULL;
1998
1999         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2000
2001         rx_ring->desc = NULL;
2002 }
2003
2004 /**
2005  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2006  * @adapter: board private structure
2007  *
2008  * Free all receive software resources
2009  **/
2010
2011 void
2012 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2013 {
2014         int i;
2015
2016         for (i = 0; i < adapter->num_rx_queues; i++)
2017                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2018 }
2019
2020 /**
2021  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2022  * @adapter: board private structure
2023  * @rx_ring: ring to free buffers from
2024  **/
2025
2026 static void
2027 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2028                     struct e1000_rx_ring *rx_ring)
2029 {
2030         struct e1000_buffer *buffer_info;
2031         struct e1000_ps_page *ps_page;
2032         struct e1000_ps_page_dma *ps_page_dma;
2033         struct pci_dev *pdev = adapter->pdev;
2034         unsigned long size;
2035         unsigned int i, j;
2036
2037         /* Free all the Rx ring sk_buffs */
2038         for (i = 0; i < rx_ring->count; i++) {
2039                 buffer_info = &rx_ring->buffer_info[i];
2040                 if (buffer_info->skb) {
2041                         pci_unmap_single(pdev,
2042                                          buffer_info->dma,
2043                                          buffer_info->length,
2044                                          PCI_DMA_FROMDEVICE);
2045
2046                         dev_kfree_skb(buffer_info->skb);
2047                         buffer_info->skb = NULL;
2048                 }
2049                 ps_page = &rx_ring->ps_page[i];
2050                 ps_page_dma = &rx_ring->ps_page_dma[i];
2051                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2052                         if (!ps_page->ps_page[j]) break;
2053                         pci_unmap_page(pdev,
2054                                        ps_page_dma->ps_page_dma[j],
2055                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2056                         ps_page_dma->ps_page_dma[j] = 0;
2057                         put_page(ps_page->ps_page[j]);
2058                         ps_page->ps_page[j] = NULL;
2059                 }
2060         }
2061
2062         size = sizeof(struct e1000_buffer) * rx_ring->count;
2063         memset(rx_ring->buffer_info, 0, size);
2064         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2065         memset(rx_ring->ps_page, 0, size);
2066         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2067         memset(rx_ring->ps_page_dma, 0, size);
2068
2069         /* Zero out the descriptor ring */
2070
2071         memset(rx_ring->desc, 0, rx_ring->size);
2072
2073         rx_ring->next_to_clean = 0;
2074         rx_ring->next_to_use = 0;
2075
2076         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2077         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2078 }
2079
2080 /**
2081  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2082  * @adapter: board private structure
2083  **/
2084
2085 static void
2086 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2087 {
2088         int i;
2089
2090         for (i = 0; i < adapter->num_rx_queues; i++)
2091                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2092 }
2093
2094 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2095  * and memory write and invalidate disabled for certain operations
2096  */
2097 static void
2098 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2099 {
2100         struct net_device *netdev = adapter->netdev;
2101         uint32_t rctl;
2102
2103         e1000_pci_clear_mwi(&adapter->hw);
2104
2105         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2106         rctl |= E1000_RCTL_RST;
2107         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2108         E1000_WRITE_FLUSH(&adapter->hw);
2109         mdelay(5);
2110
2111         if (netif_running(netdev))
2112                 e1000_clean_all_rx_rings(adapter);
2113 }
2114
2115 static void
2116 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2117 {
2118         struct net_device *netdev = adapter->netdev;
2119         uint32_t rctl;
2120
2121         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2122         rctl &= ~E1000_RCTL_RST;
2123         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2124         E1000_WRITE_FLUSH(&adapter->hw);
2125         mdelay(5);
2126
2127         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2128                 e1000_pci_set_mwi(&adapter->hw);
2129
2130         if (netif_running(netdev)) {
2131                 /* No need to loop, because 82542 supports only 1 queue */
2132                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2133                 e1000_configure_rx(adapter);
2134                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2135         }
2136 }
2137
2138 /**
2139  * e1000_set_mac - Change the Ethernet Address of the NIC
2140  * @netdev: network interface device structure
2141  * @p: pointer to an address structure
2142  *
2143  * Returns 0 on success, negative on failure
2144  **/
2145
2146 static int
2147 e1000_set_mac(struct net_device *netdev, void *p)
2148 {
2149         struct e1000_adapter *adapter = netdev_priv(netdev);
2150         struct sockaddr *addr = p;
2151
2152         if (!is_valid_ether_addr(addr->sa_data))
2153                 return -EADDRNOTAVAIL;
2154
2155         /* 82542 2.0 needs to be in reset to write receive address registers */
2156
2157         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2158                 e1000_enter_82542_rst(adapter);
2159
2160         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2161         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2162
2163         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2164
2165         /* With 82571 controllers, LAA may be overwritten (with the default)
2166          * due to controller reset from the other port. */
2167         if (adapter->hw.mac_type == e1000_82571) {
2168                 /* activate the work around */
2169                 adapter->hw.laa_is_present = 1;
2170
2171                 /* Hold a copy of the LAA in RAR[14] This is done so that
2172                  * between the time RAR[0] gets clobbered  and the time it
2173                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2174                  * of the RARs and no incoming packets directed to this port
2175                  * are dropped. Eventaully the LAA will be in RAR[0] and
2176                  * RAR[14] */
2177                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2178                                         E1000_RAR_ENTRIES - 1);
2179         }
2180
2181         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2182                 e1000_leave_82542_rst(adapter);
2183
2184         return 0;
2185 }
2186
2187 /**
2188  * e1000_set_multi - Multicast and Promiscuous mode set
2189  * @netdev: network interface device structure
2190  *
2191  * The set_multi entry point is called whenever the multicast address
2192  * list or the network interface flags are updated.  This routine is
2193  * responsible for configuring the hardware for proper multicast,
2194  * promiscuous mode, and all-multi behavior.
2195  **/
2196
2197 static void
2198 e1000_set_multi(struct net_device *netdev)
2199 {
2200         struct e1000_adapter *adapter = netdev_priv(netdev);
2201         struct e1000_hw *hw = &adapter->hw;
2202         struct dev_mc_list *mc_ptr;
2203         uint32_t rctl;
2204         uint32_t hash_value;
2205         int i, rar_entries = E1000_RAR_ENTRIES;
2206         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2207                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2208                                 E1000_NUM_MTA_REGISTERS;
2209
2210         if (adapter->hw.mac_type == e1000_ich8lan)
2211                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2212
2213         /* reserve RAR[14] for LAA over-write work-around */
2214         if (adapter->hw.mac_type == e1000_82571)
2215                 rar_entries--;
2216
2217         /* Check for Promiscuous and All Multicast modes */
2218
2219         rctl = E1000_READ_REG(hw, RCTL);
2220
2221         if (netdev->flags & IFF_PROMISC) {
2222                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2223         } else if (netdev->flags & IFF_ALLMULTI) {
2224                 rctl |= E1000_RCTL_MPE;
2225                 rctl &= ~E1000_RCTL_UPE;
2226         } else {
2227                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2228         }
2229
2230         E1000_WRITE_REG(hw, RCTL, rctl);
2231
2232         /* 82542 2.0 needs to be in reset to write receive address registers */
2233
2234         if (hw->mac_type == e1000_82542_rev2_0)
2235                 e1000_enter_82542_rst(adapter);
2236
2237         /* load the first 14 multicast address into the exact filters 1-14
2238          * RAR 0 is used for the station MAC adddress
2239          * if there are not 14 addresses, go ahead and clear the filters
2240          * -- with 82571 controllers only 0-13 entries are filled here
2241          */
2242         mc_ptr = netdev->mc_list;
2243
2244         for (i = 1; i < rar_entries; i++) {
2245                 if (mc_ptr) {
2246                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2247                         mc_ptr = mc_ptr->next;
2248                 } else {
2249                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2250                         E1000_WRITE_FLUSH(hw);
2251                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2252                         E1000_WRITE_FLUSH(hw);
2253                 }
2254         }
2255
2256         /* clear the old settings from the multicast hash table */
2257
2258         for (i = 0; i < mta_reg_count; i++) {
2259                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2260                 E1000_WRITE_FLUSH(hw);
2261         }
2262
2263         /* load any remaining addresses into the hash table */
2264
2265         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2266                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2267                 e1000_mta_set(hw, hash_value);
2268         }
2269
2270         if (hw->mac_type == e1000_82542_rev2_0)
2271                 e1000_leave_82542_rst(adapter);
2272 }
2273
2274 /* Need to wait a few seconds after link up to get diagnostic information from
2275  * the phy */
2276
2277 static void
2278 e1000_update_phy_info(unsigned long data)
2279 {
2280         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2281         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2282 }
2283
2284 /**
2285  * e1000_82547_tx_fifo_stall - Timer Call-back
2286  * @data: pointer to adapter cast into an unsigned long
2287  **/
2288
2289 static void
2290 e1000_82547_tx_fifo_stall(unsigned long data)
2291 {
2292         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2293         struct net_device *netdev = adapter->netdev;
2294         uint32_t tctl;
2295
2296         if (atomic_read(&adapter->tx_fifo_stall)) {
2297                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2298                     E1000_READ_REG(&adapter->hw, TDH)) &&
2299                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2300                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2301                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2302                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2303                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2304                         E1000_WRITE_REG(&adapter->hw, TCTL,
2305                                         tctl & ~E1000_TCTL_EN);
2306                         E1000_WRITE_REG(&adapter->hw, TDFT,
2307                                         adapter->tx_head_addr);
2308                         E1000_WRITE_REG(&adapter->hw, TDFH,
2309                                         adapter->tx_head_addr);
2310                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2311                                         adapter->tx_head_addr);
2312                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2313                                         adapter->tx_head_addr);
2314                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2315                         E1000_WRITE_FLUSH(&adapter->hw);
2316
2317                         adapter->tx_fifo_head = 0;
2318                         atomic_set(&adapter->tx_fifo_stall, 0);
2319                         netif_wake_queue(netdev);
2320                 } else {
2321                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2322                 }
2323         }
2324 }
2325
2326 /**
2327  * e1000_watchdog - Timer Call-back
2328  * @data: pointer to adapter cast into an unsigned long
2329  **/
2330 static void
2331 e1000_watchdog(unsigned long data)
2332 {
2333         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2334         struct net_device *netdev = adapter->netdev;
2335         struct e1000_tx_ring *txdr = adapter->tx_ring;
2336         uint32_t link, tctl;
2337         int32_t ret_val;
2338
2339         ret_val = e1000_check_for_link(&adapter->hw);
2340         if ((ret_val == E1000_ERR_PHY) &&
2341             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2342             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2343                 /* See e1000_kumeran_lock_loss_workaround() */
2344                 DPRINTK(LINK, INFO,
2345                         "Gigabit has been disabled, downgrading speed\n");
2346         }
2347         if (adapter->hw.mac_type == e1000_82573) {
2348                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2349                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2350                         e1000_update_mng_vlan(adapter);
2351         }
2352
2353         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2354            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2355                 link = !adapter->hw.serdes_link_down;
2356         else
2357                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2358
2359         if (link) {
2360                 if (!netif_carrier_ok(netdev)) {
2361                         boolean_t txb2b = 1;
2362                         e1000_get_speed_and_duplex(&adapter->hw,
2363                                                    &adapter->link_speed,
2364                                                    &adapter->link_duplex);
2365
2366                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2367                                adapter->link_speed,
2368                                adapter->link_duplex == FULL_DUPLEX ?
2369                                "Full Duplex" : "Half Duplex");
2370
2371                         /* tweak tx_queue_len according to speed/duplex
2372                          * and adjust the timeout factor */
2373                         netdev->tx_queue_len = adapter->tx_queue_len;
2374                         adapter->tx_timeout_factor = 1;
2375                         switch (adapter->link_speed) {
2376                         case SPEED_10:
2377                                 txb2b = 0;
2378                                 netdev->tx_queue_len = 10;
2379                                 adapter->tx_timeout_factor = 8;
2380                                 break;
2381                         case SPEED_100:
2382                                 txb2b = 0;
2383                                 netdev->tx_queue_len = 100;
2384                                 /* maybe add some timeout factor ? */
2385                                 break;
2386                         }
2387
2388                         if ((adapter->hw.mac_type == e1000_82571 ||
2389                              adapter->hw.mac_type == e1000_82572) &&
2390                             txb2b == 0) {
2391 #define SPEED_MODE_BIT (1 << 21)
2392                                 uint32_t tarc0;
2393                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2394                                 tarc0 &= ~SPEED_MODE_BIT;
2395                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2396                         }
2397                                 
2398 #ifdef NETIF_F_TSO
2399                         /* disable TSO for pcie and 10/100 speeds, to avoid
2400                          * some hardware issues */
2401                         if (!adapter->tso_force &&
2402                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2403                                 switch (adapter->link_speed) {
2404                                 case SPEED_10:
2405                                 case SPEED_100:
2406                                         DPRINTK(PROBE,INFO,
2407                                         "10/100 speed: disabling TSO\n");
2408                                         netdev->features &= ~NETIF_F_TSO;
2409                                         break;
2410                                 case SPEED_1000:
2411                                         netdev->features |= NETIF_F_TSO;
2412                                         break;
2413                                 default:
2414                                         /* oops */
2415                                         break;
2416                                 }
2417                         }
2418 #endif
2419
2420                         /* enable transmits in the hardware, need to do this
2421                          * after setting TARC0 */
2422                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2423                         tctl |= E1000_TCTL_EN;
2424                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2425
2426                         netif_carrier_on(netdev);
2427                         netif_wake_queue(netdev);
2428                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2429                         adapter->smartspeed = 0;
2430                 }
2431         } else {
2432                 if (netif_carrier_ok(netdev)) {
2433                         adapter->link_speed = 0;
2434                         adapter->link_duplex = 0;
2435                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2436                         netif_carrier_off(netdev);
2437                         netif_stop_queue(netdev);
2438                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2439
2440                         /* 80003ES2LAN workaround--
2441                          * For packet buffer work-around on link down event;
2442                          * disable receives in the ISR and
2443                          * reset device here in the watchdog
2444                          */
2445                         if (adapter->hw.mac_type == e1000_80003es2lan) {
2446                                 /* reset device */
2447                                 schedule_work(&adapter->reset_task);
2448                         }
2449                 }
2450
2451                 e1000_smartspeed(adapter);
2452         }
2453
2454         e1000_update_stats(adapter);
2455
2456         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2457         adapter->tpt_old = adapter->stats.tpt;
2458         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2459         adapter->colc_old = adapter->stats.colc;
2460
2461         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2462         adapter->gorcl_old = adapter->stats.gorcl;
2463         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2464         adapter->gotcl_old = adapter->stats.gotcl;
2465
2466         e1000_update_adaptive(&adapter->hw);
2467
2468         if (!netif_carrier_ok(netdev)) {
2469                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2470                         /* We've lost link, so the controller stops DMA,
2471                          * but we've got queued Tx work that's never going
2472                          * to get done, so reset controller to flush Tx.
2473                          * (Do the reset outside of interrupt context). */
2474                         adapter->tx_timeout_count++;
2475                         schedule_work(&adapter->reset_task);
2476                 }
2477         }
2478
2479         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2480         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2481                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2482                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2483                  * else is between 2000-8000. */
2484                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2485                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2486                         adapter->gotcl - adapter->gorcl :
2487                         adapter->gorcl - adapter->gotcl) / 10000;
2488                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2489                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2490         }
2491
2492         /* Cause software interrupt to ensure rx ring is cleaned */
2493         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2494
2495         /* Force detection of hung controller every watchdog period */
2496         adapter->detect_tx_hung = TRUE;
2497
2498         /* With 82571 controllers, LAA may be overwritten due to controller
2499          * reset from the other port. Set the appropriate LAA in RAR[0] */
2500         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2501                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2502
2503         /* Reset the timer */
2504         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2505 }
2506
2507 #define E1000_TX_FLAGS_CSUM             0x00000001
2508 #define E1000_TX_FLAGS_VLAN             0x00000002
2509 #define E1000_TX_FLAGS_TSO              0x00000004
2510 #define E1000_TX_FLAGS_IPV4             0x00000008
2511 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2512 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2513
2514 static int
2515 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2516           struct sk_buff *skb)
2517 {
2518 #ifdef NETIF_F_TSO
2519         struct e1000_context_desc *context_desc;
2520         struct e1000_buffer *buffer_info;
2521         unsigned int i;
2522         uint32_t cmd_length = 0;
2523         uint16_t ipcse = 0, tucse, mss;
2524         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2525         int err;
2526
2527         if (skb_is_gso(skb)) {
2528                 if (skb_header_cloned(skb)) {
2529                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2530                         if (err)
2531                                 return err;
2532                 }
2533
2534                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2535                 mss = skb_shinfo(skb)->gso_size;
2536                 if (skb->protocol == htons(ETH_P_IP)) {
2537                         skb->nh.iph->tot_len = 0;
2538                         skb->nh.iph->check = 0;
2539                         skb->h.th->check =
2540                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2541                                                    skb->nh.iph->daddr,
2542                                                    0,
2543                                                    IPPROTO_TCP,
2544                                                    0);
2545                         cmd_length = E1000_TXD_CMD_IP;
2546                         ipcse = skb->h.raw - skb->data - 1;
2547 #ifdef NETIF_F_TSO_IPV6
2548                 } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
2549                         skb->nh.ipv6h->payload_len = 0;
2550                         skb->h.th->check =
2551                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2552                                                  &skb->nh.ipv6h->daddr,
2553                                                  0,
2554                                                  IPPROTO_TCP,
2555                                                  0);
2556                         ipcse = 0;
2557 #endif
2558                 }
2559                 ipcss = skb->nh.raw - skb->data;
2560                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2561                 tucss = skb->h.raw - skb->data;
2562                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2563                 tucse = 0;
2564
2565                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2566                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2567
2568                 i = tx_ring->next_to_use;
2569                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2570                 buffer_info = &tx_ring->buffer_info[i];
2571
2572                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2573                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2574                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2575                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2576                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2577                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2578                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2579                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2580                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2581
2582                 buffer_info->time_stamp = jiffies;
2583
2584                 if (++i == tx_ring->count) i = 0;
2585                 tx_ring->next_to_use = i;
2586
2587                 return TRUE;
2588         }
2589 #endif
2590
2591         return FALSE;
2592 }
2593
2594 static boolean_t
2595 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2596               struct sk_buff *skb)
2597 {
2598         struct e1000_context_desc *context_desc;
2599         struct e1000_buffer *buffer_info;
2600         unsigned int i;
2601         uint8_t css;
2602
2603         if (likely(skb->ip_summed == CHECKSUM_HW)) {
2604                 css = skb->h.raw - skb->data;
2605
2606                 i = tx_ring->next_to_use;
2607                 buffer_info = &tx_ring->buffer_info[i];
2608                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2609
2610                 context_desc->upper_setup.tcp_fields.tucss = css;
2611                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2612                 context_desc->upper_setup.tcp_fields.tucse = 0;
2613                 context_desc->tcp_seg_setup.data = 0;
2614                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2615
2616                 buffer_info->time_stamp = jiffies;
2617
2618                 if (unlikely(++i == tx_ring->count)) i = 0;
2619                 tx_ring->next_to_use = i;
2620
2621                 return TRUE;
2622         }
2623
2624         return FALSE;
2625 }
2626
2627 #define E1000_MAX_TXD_PWR       12
2628 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2629
2630 static int
2631 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2632              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2633              unsigned int nr_frags, unsigned int mss)
2634 {
2635         struct e1000_buffer *buffer_info;
2636         unsigned int len = skb->len;
2637         unsigned int offset = 0, size, count = 0, i;
2638         unsigned int f;
2639         len -= skb->data_len;
2640
2641         i = tx_ring->next_to_use;
2642
2643         while (len) {
2644                 buffer_info = &tx_ring->buffer_info[i];
2645                 size = min(len, max_per_txd);
2646 #ifdef NETIF_F_TSO
2647                 /* Workaround for Controller erratum --
2648                  * descriptor for non-tso packet in a linear SKB that follows a
2649                  * tso gets written back prematurely before the data is fully
2650                  * DMA'd to the controller */
2651                 if (!skb->data_len && tx_ring->last_tx_tso &&
2652                     !skb_is_gso(skb)) {
2653                         tx_ring->last_tx_tso = 0;
2654                         size -= 4;
2655                 }
2656
2657                 /* Workaround for premature desc write-backs
2658                  * in TSO mode.  Append 4-byte sentinel desc */
2659                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2660                         size -= 4;
2661 #endif
2662                 /* work-around for errata 10 and it applies
2663                  * to all controllers in PCI-X mode
2664                  * The fix is to make sure that the first descriptor of a
2665                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2666                  */
2667                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2668                                 (size > 2015) && count == 0))
2669                         size = 2015;
2670
2671                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2672                  * terminating buffers within evenly-aligned dwords. */
2673                 if (unlikely(adapter->pcix_82544 &&
2674                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2675                    size > 4))
2676                         size -= 4;
2677
2678                 buffer_info->length = size;
2679                 buffer_info->dma =
2680                         pci_map_single(adapter->pdev,
2681                                 skb->data + offset,
2682                                 size,
2683                                 PCI_DMA_TODEVICE);
2684                 buffer_info->time_stamp = jiffies;
2685
2686                 len -= size;
2687                 offset += size;
2688                 count++;
2689                 if (unlikely(++i == tx_ring->count)) i = 0;
2690         }
2691
2692         for (f = 0; f < nr_frags; f++) {
2693                 struct skb_frag_struct *frag;
2694
2695                 frag = &skb_shinfo(skb)->frags[f];
2696                 len = frag->size;
2697                 offset = frag->page_offset;
2698
2699                 while (len) {
2700                         buffer_info = &tx_ring->buffer_info[i];
2701                         size = min(len, max_per_txd);
2702 #ifdef NETIF_F_TSO
2703                         /* Workaround for premature desc write-backs
2704                          * in TSO mode.  Append 4-byte sentinel desc */
2705                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2706                                 size -= 4;
2707 #endif
2708                         /* Workaround for potential 82544 hang in PCI-X.
2709                          * Avoid terminating buffers within evenly-aligned
2710                          * dwords. */
2711                         if (unlikely(adapter->pcix_82544 &&
2712                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2713                            size > 4))
2714                                 size -= 4;
2715
2716                         buffer_info->length = size;
2717                         buffer_info->dma =
2718                                 pci_map_page(adapter->pdev,
2719                                         frag->page,
2720                                         offset,
2721                                         size,
2722                                         PCI_DMA_TODEVICE);
2723                         buffer_info->time_stamp = jiffies;
2724
2725                         len -= size;
2726                         offset += size;
2727                         count++;
2728                         if (unlikely(++i == tx_ring->count)) i = 0;
2729                 }
2730         }
2731
2732         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2733         tx_ring->buffer_info[i].skb = skb;
2734         tx_ring->buffer_info[first].next_to_watch = i;
2735
2736         return count;
2737 }
2738
2739 static void
2740 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2741                int tx_flags, int count)
2742 {
2743         struct e1000_tx_desc *tx_desc = NULL;
2744         struct e1000_buffer *buffer_info;
2745         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2746         unsigned int i;
2747
2748         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2749                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2750                              E1000_TXD_CMD_TSE;
2751                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2752
2753                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2754                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2755         }
2756
2757         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2758                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2759                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2760         }
2761
2762         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2763                 txd_lower |= E1000_TXD_CMD_VLE;
2764                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2765         }
2766
2767         i = tx_ring->next_to_use;
2768
2769         while (count--) {
2770                 buffer_info = &tx_ring->buffer_info[i];
2771                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2772                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2773                 tx_desc->lower.data =
2774                         cpu_to_le32(txd_lower | buffer_info->length);
2775                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2776                 if (unlikely(++i == tx_ring->count)) i = 0;
2777         }
2778
2779         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2780
2781         /* Force memory writes to complete before letting h/w
2782          * know there are new descriptors to fetch.  (Only
2783          * applicable for weak-ordered memory model archs,
2784          * such as IA-64). */
2785         wmb();
2786
2787         tx_ring->next_to_use = i;
2788         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2789 }
2790
2791 /**
2792  * 82547 workaround to avoid controller hang in half-duplex environment.
2793  * The workaround is to avoid queuing a large packet that would span
2794  * the internal Tx FIFO ring boundary by notifying the stack to resend
2795  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2796  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2797  * to the beginning of the Tx FIFO.
2798  **/
2799
2800 #define E1000_FIFO_HDR                  0x10
2801 #define E1000_82547_PAD_LEN             0x3E0
2802
2803 static int
2804 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2805 {
2806         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2807         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2808
2809         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2810
2811         if (adapter->link_duplex != HALF_DUPLEX)
2812                 goto no_fifo_stall_required;
2813
2814         if (atomic_read(&adapter->tx_fifo_stall))
2815                 return 1;
2816
2817         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2818                 atomic_set(&adapter->tx_fifo_stall, 1);
2819                 return 1;
2820         }
2821
2822 no_fifo_stall_required:
2823         adapter->tx_fifo_head += skb_fifo_len;
2824         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2825                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2826         return 0;
2827 }
2828
2829 #define MINIMUM_DHCP_PACKET_SIZE 282
2830 static int
2831 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2832 {
2833         struct e1000_hw *hw =  &adapter->hw;
2834         uint16_t length, offset;
2835         if (vlan_tx_tag_present(skb)) {
2836                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2837                         ( adapter->hw.mng_cookie.status &
2838                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2839                         return 0;
2840         }
2841         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2842                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2843                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2844                         const struct iphdr *ip =
2845                                 (struct iphdr *)((uint8_t *)skb->data+14);
2846                         if (IPPROTO_UDP == ip->protocol) {
2847                                 struct udphdr *udp =
2848                                         (struct udphdr *)((uint8_t *)ip +
2849                                                 (ip->ihl << 2));
2850                                 if (ntohs(udp->dest) == 67) {
2851                                         offset = (uint8_t *)udp + 8 - skb->data;
2852                                         length = skb->len - offset;
2853
2854                                         return e1000_mng_write_dhcp_info(hw,
2855                                                         (uint8_t *)udp + 8,
2856                                                         length);
2857                                 }
2858                         }
2859                 }
2860         }
2861         return 0;
2862 }
2863
2864 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2865 static int
2866 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2867 {
2868         struct e1000_adapter *adapter = netdev_priv(netdev);
2869         struct e1000_tx_ring *tx_ring;
2870         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2871         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2872         unsigned int tx_flags = 0;
2873         unsigned int len = skb->len;
2874         unsigned long flags;
2875         unsigned int nr_frags = 0;
2876         unsigned int mss = 0;
2877         int count = 0;
2878         int tso;
2879         unsigned int f;
2880         len -= skb->data_len;
2881
2882         tx_ring = adapter->tx_ring;
2883
2884         if (unlikely(skb->len <= 0)) {
2885                 dev_kfree_skb_any(skb);
2886                 return NETDEV_TX_OK;
2887         }
2888
2889 #ifdef NETIF_F_TSO
2890         mss = skb_shinfo(skb)->gso_size;
2891         /* The controller does a simple calculation to
2892          * make sure there is enough room in the FIFO before
2893          * initiating the DMA for each buffer.  The calc is:
2894          * 4 = ceil(buffer len/mss).  To make sure we don't
2895          * overrun the FIFO, adjust the max buffer len if mss
2896          * drops. */
2897         if (mss) {
2898                 uint8_t hdr_len;
2899                 max_per_txd = min(mss << 2, max_per_txd);
2900                 max_txd_pwr = fls(max_per_txd) - 1;
2901
2902         /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2903          * points to just header, pull a few bytes of payload from
2904          * frags into skb->data */
2905                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2906                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2907                         switch (adapter->hw.mac_type) {
2908                                 unsigned int pull_size;
2909                         case e1000_82571:
2910                         case e1000_82572:
2911                         case e1000_82573:
2912                         case e1000_ich8lan:
2913                                 pull_size = min((unsigned int)4, skb->data_len);
2914                                 if (!__pskb_pull_tail(skb, pull_size)) {
2915                                         DPRINTK(DRV, ERR,
2916                                                 "__pskb_pull_tail failed.\n");
2917                                         dev_kfree_skb_any(skb);
2918                                         return NETDEV_TX_OK;
2919                                 }
2920                                 len = skb->len - skb->data_len;
2921                                 break;
2922                         default:
2923                                 /* do nothing */
2924                                 break;
2925                         }
2926                 }
2927         }
2928
2929         /* reserve a descriptor for the offload context */
2930         if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2931                 count++;
2932         count++;
2933 #else
2934         if (skb->ip_summed == CHECKSUM_HW)
2935                 count++;
2936 #endif
2937
2938 #ifdef NETIF_F_TSO
2939         /* Controller Erratum workaround */
2940         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
2941                 count++;
2942 #endif
2943
2944         count += TXD_USE_COUNT(len, max_txd_pwr);
2945
2946         if (adapter->pcix_82544)
2947                 count++;
2948
2949         /* work-around for errata 10 and it applies to all controllers
2950          * in PCI-X mode, so add one more descriptor to the count
2951          */
2952         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2953                         (len > 2015)))
2954                 count++;
2955
2956         nr_frags = skb_shinfo(skb)->nr_frags;
2957         for (f = 0; f < nr_frags; f++)
2958                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2959                                        max_txd_pwr);
2960         if (adapter->pcix_82544)
2961                 count += nr_frags;
2962
2963
2964         if (adapter->hw.tx_pkt_filtering &&
2965             (adapter->hw.mac_type == e1000_82573))
2966                 e1000_transfer_dhcp_info(adapter, skb);
2967
2968         local_irq_save(flags);
2969         if (!spin_trylock(&tx_ring->tx_lock)) {
2970                 /* Collision - tell upper layer to requeue */
2971                 local_irq_restore(flags);
2972                 return NETDEV_TX_LOCKED;
2973         }
2974
2975         /* need: count + 2 desc gap to keep tail from touching
2976          * head, otherwise try next time */
2977         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2978                 netif_stop_queue(netdev);
2979                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2980                 return NETDEV_TX_BUSY;
2981         }
2982
2983         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2984                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2985                         netif_stop_queue(netdev);
2986                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2987                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2988                         return NETDEV_TX_BUSY;
2989                 }
2990         }
2991
2992         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2993                 tx_flags |= E1000_TX_FLAGS_VLAN;
2994                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2995         }
2996
2997         first = tx_ring->next_to_use;
2998
2999         tso = e1000_tso(adapter, tx_ring, skb);
3000         if (tso < 0) {
3001                 dev_kfree_skb_any(skb);
3002                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3003                 return NETDEV_TX_OK;
3004         }
3005
3006         if (likely(tso)) {
3007                 tx_ring->last_tx_tso = 1;
3008                 tx_flags |= E1000_TX_FLAGS_TSO;
3009         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3010                 tx_flags |= E1000_TX_FLAGS_CSUM;
3011
3012         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3013          * 82571 hardware supports TSO capabilities for IPv6 as well...
3014          * no longer assume, we must. */
3015         if (likely(skb->protocol == htons(ETH_P_IP)))
3016                 tx_flags |= E1000_TX_FLAGS_IPV4;
3017
3018         e1000_tx_queue(adapter, tx_ring, tx_flags,
3019                        e1000_tx_map(adapter, tx_ring, skb, first,
3020                                     max_per_txd, nr_frags, mss));
3021
3022         netdev->trans_start = jiffies;
3023
3024         /* Make sure there is space in the ring for the next send. */
3025         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
3026                 netif_stop_queue(netdev);
3027
3028         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3029         return NETDEV_TX_OK;
3030 }
3031
3032 /**
3033  * e1000_tx_timeout - Respond to a Tx Hang
3034  * @netdev: network interface device structure
3035  **/
3036
3037 static void
3038 e1000_tx_timeout(struct net_device *netdev)
3039 {
3040         struct e1000_adapter *adapter = netdev_priv(netdev);
3041
3042         /* Do the reset outside of interrupt context */
3043         adapter->tx_timeout_count++;
3044         schedule_work(&adapter->reset_task);
3045 }
3046
3047 static void
3048 e1000_reset_task(struct net_device *netdev)
3049 {
3050         struct e1000_adapter *adapter = netdev_priv(netdev);
3051
3052         e1000_reinit_locked(adapter);
3053 }
3054
3055 /**
3056  * e1000_get_stats - Get System Network Statistics
3057  * @netdev: network interface device structure
3058  *
3059  * Returns the address of the device statistics structure.
3060  * The statistics are actually updated from the timer callback.
3061  **/
3062
3063 static struct net_device_stats *
3064 e1000_get_stats(struct net_device *netdev)
3065 {
3066         struct e1000_adapter *adapter = netdev_priv(netdev);
3067
3068         /* only return the current stats */
3069         return &adapter->net_stats;
3070 }
3071
3072 /**
3073  * e1000_change_mtu - Change the Maximum Transfer Unit
3074  * @netdev: network interface device structure
3075  * @new_mtu: new value for maximum frame size
3076  *
3077  * Returns 0 on success, negative on failure
3078  **/
3079
3080 static int
3081 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3082 {
3083         struct e1000_adapter *adapter = netdev_priv(netdev);
3084         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3085         uint16_t eeprom_data = 0;
3086
3087         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3088             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3089                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3090                 return -EINVAL;
3091         }
3092
3093         /* Adapter-specific max frame size limits. */
3094         switch (adapter->hw.mac_type) {
3095         case e1000_undefined ... e1000_82542_rev2_1:
3096         case e1000_ich8lan:
3097                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3098                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3099                         return -EINVAL;
3100                 }
3101                 break;
3102         case e1000_82573:
3103                 /* only enable jumbo frames if ASPM is disabled completely
3104                  * this means both bits must be zero in 0x1A bits 3:2 */
3105                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3106                                   &eeprom_data);
3107                 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
3108                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3109                                 DPRINTK(PROBE, ERR,
3110                                         "Jumbo Frames not supported.\n");
3111                                 return -EINVAL;
3112                         }
3113                         break;
3114                 }
3115                 /* fall through to get support */
3116         case e1000_82571:
3117         case e1000_82572:
3118         case e1000_80003es2lan:
3119 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3120                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3121                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3122                         return -EINVAL;
3123                 }
3124                 break;
3125         default:
3126                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3127                 break;
3128         }
3129
3130         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3131          * means we reserve 2 more, this pushes us to allocate from the next
3132          * larger slab size
3133          * i.e. RXBUFFER_2048 --> size-4096 slab */
3134
3135         if (max_frame <= E1000_RXBUFFER_256)
3136                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3137         else if (max_frame <= E1000_RXBUFFER_512)
3138                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3139         else if (max_frame <= E1000_RXBUFFER_1024)
3140                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3141         else if (max_frame <= E1000_RXBUFFER_2048)
3142                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3143         else if (max_frame <= E1000_RXBUFFER_4096)
3144                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3145         else if (max_frame <= E1000_RXBUFFER_8192)
3146                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3147         else if (max_frame <= E1000_RXBUFFER_16384)
3148                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3149
3150         /* adjust allocation if LPE protects us, and we aren't using SBP */
3151         if (!adapter->hw.tbi_compatibility_on &&
3152             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3153              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3154                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3155
3156         netdev->mtu = new_mtu;
3157
3158         if (netif_running(netdev))
3159                 e1000_reinit_locked(adapter);
3160
3161         adapter->hw.max_frame_size = max_frame;
3162
3163         return 0;
3164 }
3165
3166 /**
3167  * e1000_update_stats - Update the board statistics counters
3168  * @adapter: board private structure
3169  **/
3170
3171 void
3172 e1000_update_stats(struct e1000_adapter *adapter)
3173 {
3174         struct e1000_hw *hw = &adapter->hw;
3175         struct pci_dev *pdev = adapter->pdev;
3176         unsigned long flags;
3177         uint16_t phy_tmp;
3178
3179 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3180
3181         /*
3182          * Prevent stats update while adapter is being reset, or if the pci
3183          * connection is down.
3184          */
3185         if (adapter->link_speed == 0)
3186                 return;
3187         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3188                 return;
3189
3190         spin_lock_irqsave(&adapter->stats_lock, flags);
3191
3192         /* these counters are modified from e1000_adjust_tbi_stats,
3193          * called from the interrupt context, so they must only
3194          * be written while holding adapter->stats_lock
3195          */
3196
3197         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3198         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3199         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3200         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3201         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3202         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3203         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3204
3205         if (adapter->hw.mac_type != e1000_ich8lan) {
3206         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3207         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3208         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3209         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3210         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3211         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3212         }
3213
3214         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3215         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3216         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3217         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3218         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3219         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3220         adapter->stats.dc += E1000_READ_REG(hw, DC);
3221         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3222         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3223         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3224         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3225         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3226         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3227         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3228         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3229         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3230         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3231         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3232         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3233         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3234         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3235         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3236         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3237         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3238         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3239         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3240
3241         if (adapter->hw.mac_type != e1000_ich8lan) {
3242         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3243         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3244         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3245         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3246         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3247         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3248         }
3249
3250         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3251         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3252
3253         /* used for adaptive IFS */
3254
3255         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3256         adapter->stats.tpt += hw->tx_packet_delta;
3257         hw->collision_delta = E1000_READ_REG(hw, COLC);
3258         adapter->stats.colc += hw->collision_delta;
3259
3260         if (hw->mac_type >= e1000_82543) {
3261                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3262                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3263                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3264                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3265                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3266                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3267         }
3268         if (hw->mac_type > e1000_82547_rev_2) {
3269                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3270                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3271
3272                 if (adapter->hw.mac_type != e1000_ich8lan) {
3273                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3274                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3275                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3276                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3277                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3278                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3279                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3280                 }
3281         }
3282
3283         /* Fill out the OS statistics structure */
3284
3285         adapter->net_stats.rx_packets = adapter->stats.gprc;
3286         adapter->net_stats.tx_packets = adapter->stats.gptc;
3287         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3288         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3289         adapter->net_stats.multicast = adapter->stats.mprc;
3290         adapter->net_stats.collisions = adapter->stats.colc;
3291
3292         /* Rx Errors */
3293
3294         /* RLEC on some newer hardware can be incorrect so build
3295         * our own version based on RUC and ROC */
3296         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3297                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3298                 adapter->stats.ruc + adapter->stats.roc +
3299                 adapter->stats.cexterr;
3300         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3301                                               adapter->stats.roc;
3302         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3303         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3304         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3305
3306         /* Tx Errors */
3307
3308         adapter->net_stats.tx_errors = adapter->stats.ecol +
3309                                        adapter->stats.latecol;
3310         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3311         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3312         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3313
3314         /* Tx Dropped needs to be maintained elsewhere */
3315
3316         /* Phy Stats */
3317
3318         if (hw->media_type == e1000_media_type_copper) {
3319                 if ((adapter->link_speed == SPEED_1000) &&
3320                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3321                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3322                         adapter->phy_stats.idle_errors += phy_tmp;
3323                 }
3324
3325                 if ((hw->mac_type <= e1000_82546) &&
3326                    (hw->phy_type == e1000_phy_m88) &&
3327                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3328                         adapter->phy_stats.receive_errors += phy_tmp;
3329         }
3330
3331         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3332 }
3333
3334 /**
3335  * e1000_intr - Interrupt Handler
3336  * @irq: interrupt number
3337  * @data: pointer to a network interface device structure
3338  * @pt_regs: CPU registers structure
3339  **/
3340
3341 static irqreturn_t
3342 e1000_intr(int irq, void *data, struct pt_regs *regs)
3343 {
3344         struct net_device *netdev = data;
3345         struct e1000_adapter *adapter = netdev_priv(netdev);
3346         struct e1000_hw *hw = &adapter->hw;
3347         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3348 #ifndef CONFIG_E1000_NAPI
3349         int i;
3350 #else
3351         /* Interrupt Auto-Mask...upon reading ICR,
3352          * interrupts are masked.  No need for the
3353          * IMC write, but it does mean we should
3354          * account for it ASAP. */
3355         if (likely(hw->mac_type >= e1000_82571))
3356                 atomic_inc(&adapter->irq_sem);
3357 #endif
3358
3359         if (unlikely(!icr)) {
3360 #ifdef CONFIG_E1000_NAPI
3361                 if (hw->mac_type >= e1000_82571)
3362                         e1000_irq_enable(adapter);
3363 #endif
3364                 return IRQ_NONE;  /* Not our interrupt */
3365         }
3366
3367         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3368                 hw->get_link_status = 1;
3369                 /* 80003ES2LAN workaround--
3370                  * For packet buffer work-around on link down event;
3371                  * disable receives here in the ISR and
3372                  * reset adapter in watchdog
3373                  */
3374                 if (netif_carrier_ok(netdev) &&
3375                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3376                         /* disable receives */
3377                         rctl = E1000_READ_REG(hw, RCTL);
3378                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3379                 }
3380                 mod_timer(&adapter->watchdog_timer, jiffies);
3381         }
3382
3383 #ifdef CONFIG_E1000_NAPI
3384         if (unlikely(hw->mac_type < e1000_82571)) {
3385                 atomic_inc(&adapter->irq_sem);
3386                 E1000_WRITE_REG(hw, IMC, ~0);
3387                 E1000_WRITE_FLUSH(hw);
3388         }
3389         if (likely(netif_rx_schedule_prep(netdev)))
3390                 __netif_rx_schedule(netdev);
3391         else
3392                 e1000_irq_enable(adapter);
3393 #else
3394         /* Writing IMC and IMS is needed for 82547.
3395          * Due to Hub Link bus being occupied, an interrupt
3396          * de-assertion message is not able to be sent.
3397          * When an interrupt assertion message is generated later,
3398          * two messages are re-ordered and sent out.
3399          * That causes APIC to think 82547 is in de-assertion
3400          * state, while 82547 is in assertion state, resulting
3401          * in dead lock. Writing IMC forces 82547 into
3402          * de-assertion state.
3403          */
3404         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3405                 atomic_inc(&adapter->irq_sem);
3406                 E1000_WRITE_REG(hw, IMC, ~0);
3407         }
3408
3409         for (i = 0; i < E1000_MAX_INTR; i++)
3410                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3411                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3412                         break;
3413
3414         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3415                 e1000_irq_enable(adapter);
3416
3417 #endif
3418
3419         return IRQ_HANDLED;
3420 }
3421
3422 #ifdef CONFIG_E1000_NAPI
3423 /**
3424  * e1000_clean - NAPI Rx polling callback
3425  * @adapter: board private structure
3426  **/
3427
3428 static int
3429 e1000_clean(struct net_device *poll_dev, int *budget)
3430 {
3431         struct e1000_adapter *adapter;
3432         int work_to_do = min(*budget, poll_dev->quota);
3433         int tx_cleaned = 0, work_done = 0;
3434
3435         /* Must NOT use netdev_priv macro here. */
3436         adapter = poll_dev->priv;
3437
3438         /* Keep link state information with original netdev */
3439         if (!netif_carrier_ok(poll_dev))
3440                 goto quit_polling;
3441
3442         /* e1000_clean is called per-cpu.  This lock protects
3443          * tx_ring[0] from being cleaned by multiple cpus
3444          * simultaneously.  A failure obtaining the lock means
3445          * tx_ring[0] is currently being cleaned anyway. */
3446         if (spin_trylock(&adapter->tx_queue_lock)) {
3447                 tx_cleaned = e1000_clean_tx_irq(adapter,
3448                                                 &adapter->tx_ring[0]);
3449                 spin_unlock(&adapter->tx_queue_lock);
3450         }
3451
3452         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3453                           &work_done, work_to_do);
3454
3455         *budget -= work_done;
3456         poll_dev->quota -= work_done;
3457
3458         /* If no Tx and not enough Rx work done, exit the polling mode */
3459         if ((!tx_cleaned && (work_done == 0)) ||
3460            !netif_running(poll_dev)) {
3461 quit_polling:
3462                 netif_rx_complete(poll_dev);
3463                 e1000_irq_enable(adapter);
3464                 return 0;
3465         }
3466
3467         return 1;
3468 }
3469
3470 #endif
3471 /**
3472  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3473  * @adapter: board private structure
3474  **/
3475
3476 static boolean_t
3477 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3478                    struct e1000_tx_ring *tx_ring)
3479 {
3480         struct net_device *netdev = adapter->netdev;
3481         struct e1000_tx_desc *tx_desc, *eop_desc;
3482         struct e1000_buffer *buffer_info;
3483         unsigned int i, eop;
3484 #ifdef CONFIG_E1000_NAPI
3485         unsigned int count = 0;
3486 #endif
3487         boolean_t cleaned = FALSE;
3488
3489         i = tx_ring->next_to_clean;
3490         eop = tx_ring->buffer_info[i].next_to_watch;
3491         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3492
3493         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3494                 for (cleaned = FALSE; !cleaned; ) {
3495                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3496                         buffer_info = &tx_ring->buffer_info[i];
3497                         cleaned = (i == eop);
3498
3499                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3500                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3501
3502                         if (unlikely(++i == tx_ring->count)) i = 0;
3503                 }
3504
3505
3506                 eop = tx_ring->buffer_info[i].next_to_watch;
3507                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3508 #ifdef CONFIG_E1000_NAPI
3509 #define E1000_TX_WEIGHT 64
3510                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3511                 if (count++ == E1000_TX_WEIGHT) break;
3512 #endif
3513         }
3514
3515         tx_ring->next_to_clean = i;
3516
3517 #define TX_WAKE_THRESHOLD 32
3518         if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3519                      netif_carrier_ok(netdev))) {
3520                 spin_lock(&tx_ring->tx_lock);
3521                 if (netif_queue_stopped(netdev) &&
3522                     (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3523                         netif_wake_queue(netdev);
3524                 spin_unlock(&tx_ring->tx_lock);
3525         }
3526
3527         if (adapter->detect_tx_hung) {
3528                 /* Detect a transmit hang in hardware, this serializes the
3529                  * check with the clearing of time_stamp and movement of i */
3530                 adapter->detect_tx_hung = FALSE;
3531                 if (tx_ring->buffer_info[eop].dma &&
3532                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3533                                (adapter->tx_timeout_factor * HZ))
3534                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3535                          E1000_STATUS_TXOFF)) {
3536
3537                         /* detected Tx unit hang */
3538                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3539                                         "  Tx Queue             <%lu>\n"
3540                                         "  TDH                  <%x>\n"
3541                                         "  TDT                  <%x>\n"
3542                                         "  next_to_use          <%x>\n"
3543                                         "  next_to_clean        <%x>\n"
3544                                         "buffer_info[next_to_clean]\n"
3545                                         "  time_stamp           <%lx>\n"
3546                                         "  next_to_watch        <%x>\n"
3547                                         "  jiffies              <%lx>\n"
3548                                         "  next_to_watch.status <%x>\n",
3549                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3550                                         sizeof(struct e1000_tx_ring)),
3551                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3552                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3553                                 tx_ring->next_to_use,
3554                                 tx_ring->next_to_clean,
3555                                 tx_ring->buffer_info[eop].time_stamp,
3556                                 eop,
3557                                 jiffies,
3558                                 eop_desc->upper.fields.status);
3559                         netif_stop_queue(netdev);
3560                 }
3561         }
3562         return cleaned;
3563 }
3564
3565 /**
3566  * e1000_rx_checksum - Receive Checksum Offload for 82543
3567  * @adapter:     board private structure
3568  * @status_err:  receive descriptor status and error fields
3569  * @csum:        receive descriptor csum field
3570  * @sk_buff:     socket buffer with received data
3571  **/
3572
3573 static void
3574 e1000_rx_checksum(struct e1000_adapter *adapter,
3575                   uint32_t status_err, uint32_t csum,
3576                   struct sk_buff *skb)
3577 {
3578         uint16_t status = (uint16_t)status_err;
3579         uint8_t errors = (uint8_t)(status_err >> 24);
3580         skb->ip_summed = CHECKSUM_NONE;
3581
3582         /* 82543 or newer only */
3583         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3584         /* Ignore Checksum bit is set */
3585         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3586         /* TCP/UDP checksum error bit is set */
3587         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3588                 /* let the stack verify checksum errors */
3589                 adapter->hw_csum_err++;
3590                 return;
3591         }
3592         /* TCP/UDP Checksum has not been calculated */
3593         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3594                 if (!(status & E1000_RXD_STAT_TCPCS))
3595                         return;
3596         } else {
3597                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3598                         return;
3599         }
3600         /* It must be a TCP or UDP packet with a valid checksum */
3601         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3602                 /* TCP checksum is good */
3603                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3604         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3605                 /* IP fragment with UDP payload */
3606                 /* Hardware complements the payload checksum, so we undo it
3607                  * and then put the value in host order for further stack use.
3608                  */
3609                 csum = ntohl(csum ^ 0xFFFF);
3610                 skb->csum = csum;
3611                 skb->ip_summed = CHECKSUM_HW;
3612         }
3613         adapter->hw_csum_good++;
3614 }
3615
3616 /**
3617  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3618  * @adapter: board private structure
3619  **/
3620
3621 static boolean_t
3622 #ifdef CONFIG_E1000_NAPI
3623 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3624                    struct e1000_rx_ring *rx_ring,
3625                    int *work_done, int work_to_do)
3626 #else
3627 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3628                    struct e1000_rx_ring *rx_ring)
3629 #endif
3630 {
3631         struct net_device *netdev = adapter->netdev;
3632         struct pci_dev *pdev = adapter->pdev;
3633         struct e1000_rx_desc *rx_desc, *next_rxd;
3634         struct e1000_buffer *buffer_info, *next_buffer;
3635         unsigned long flags;
3636         uint32_t length;
3637         uint8_t last_byte;
3638         unsigned int i;
3639         int cleaned_count = 0;
3640         boolean_t cleaned = FALSE;
3641
3642         i = rx_ring->next_to_clean;
3643         rx_desc = E1000_RX_DESC(*rx_ring, i);
3644         buffer_info = &rx_ring->buffer_info[i];
3645
3646         while (rx_desc->status & E1000_RXD_STAT_DD) {
3647                 struct sk_buff *skb;
3648                 u8 status;
3649 #ifdef CONFIG_E1000_NAPI
3650                 if (*work_done >= work_to_do)
3651                         break;
3652                 (*work_done)++;
3653 #endif
3654                 status = rx_desc->status;
3655                 skb = buffer_info->skb;
3656                 buffer_info->skb = NULL;
3657
3658                 prefetch(skb->data - NET_IP_ALIGN);
3659
3660                 if (++i == rx_ring->count) i = 0;
3661                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3662                 prefetch(next_rxd);
3663
3664                 next_buffer = &rx_ring->buffer_info[i];
3665
3666                 cleaned = TRUE;
3667                 cleaned_count++;
3668                 pci_unmap_single(pdev,
3669                                  buffer_info->dma,
3670                                  buffer_info->length,
3671                                  PCI_DMA_FROMDEVICE);
3672
3673                 length = le16_to_cpu(rx_desc->length);
3674
3675                 /* adjust length to remove Ethernet CRC */
3676                 length -= 4;
3677
3678                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3679                         /* All receives must fit into a single buffer */
3680                         E1000_DBG("%s: Receive packet consumed multiple"
3681                                   " buffers\n", netdev->name);
3682                         /* recycle */
3683                         buffer_info-> skb = skb;
3684                         goto next_desc;
3685                 }
3686
3687                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3688                         last_byte = *(skb->data + length - 1);
3689                         if (TBI_ACCEPT(&adapter->hw, status,
3690                                       rx_desc->errors, length, last_byte)) {
3691                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3692                                 e1000_tbi_adjust_stats(&adapter->hw,
3693                                                        &adapter->stats,
3694                                                        length, skb->data);
3695                                 spin_unlock_irqrestore(&adapter->stats_lock,
3696                                                        flags);
3697                                 length--;
3698                         } else {
3699                                 /* recycle */
3700                                 buffer_info->skb = skb;
3701                                 goto next_desc;
3702                         }
3703                 }
3704
3705                 /* code added for copybreak, this should improve
3706                  * performance for small packets with large amounts
3707                  * of reassembly being done in the stack */
3708 #define E1000_CB_LENGTH 256
3709                 if (length < E1000_CB_LENGTH) {
3710                         struct sk_buff *new_skb =
3711                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3712                         if (new_skb) {
3713                                 skb_reserve(new_skb, NET_IP_ALIGN);
3714                                 new_skb->dev = netdev;
3715                                 memcpy(new_skb->data - NET_IP_ALIGN,
3716                                        skb->data - NET_IP_ALIGN,
3717                                        length + NET_IP_ALIGN);
3718                                 /* save the skb in buffer_info as good */
3719                                 buffer_info->skb = skb;
3720                                 skb = new_skb;
3721                                 skb_put(skb, length);
3722                         }
3723                 } else
3724                         skb_put(skb, length);
3725
3726                 /* end copybreak code */
3727
3728                 /* Receive Checksum Offload */
3729                 e1000_rx_checksum(adapter,
3730                                   (uint32_t)(status) |
3731                                   ((uint32_t)(rx_desc->errors) << 24),
3732                                   le16_to_cpu(rx_desc->csum), skb);
3733
3734                 skb->protocol = eth_type_trans(skb, netdev);
3735 #ifdef CONFIG_E1000_NAPI
3736                 if (unlikely(adapter->vlgrp &&
3737                             (status & E1000_RXD_STAT_VP))) {
3738                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3739                                                  le16_to_cpu(rx_desc->special) &
3740                                                  E1000_RXD_SPC_VLAN_MASK);
3741                 } else {
3742                         netif_receive_skb(skb);
3743                 }
3744 #else /* CONFIG_E1000_NAPI */
3745                 if (unlikely(adapter->vlgrp &&
3746                             (status & E1000_RXD_STAT_VP))) {
3747                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3748                                         le16_to_cpu(rx_desc->special) &
3749                                         E1000_RXD_SPC_VLAN_MASK);
3750                 } else {
3751                         netif_rx(skb);
3752                 }
3753 #endif /* CONFIG_E1000_NAPI */
3754                 netdev->last_rx = jiffies;
3755
3756 next_desc:
3757                 rx_desc->status = 0;
3758
3759                 /* return some buffers to hardware, one at a time is too slow */
3760                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3761                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3762                         cleaned_count = 0;
3763                 }
3764
3765                 /* use prefetched values */
3766                 rx_desc = next_rxd;
3767                 buffer_info = next_buffer;
3768         }
3769         rx_ring->next_to_clean = i;
3770
3771         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3772         if (cleaned_count)
3773                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3774
3775         return cleaned;
3776 }
3777
3778 /**
3779  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3780  * @adapter: board private structure
3781  **/
3782
3783 static boolean_t
3784 #ifdef CONFIG_E1000_NAPI
3785 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3786                       struct e1000_rx_ring *rx_ring,
3787                       int *work_done, int work_to_do)
3788 #else
3789 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3790                       struct e1000_rx_ring *rx_ring)
3791 #endif
3792 {
3793         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3794         struct net_device *netdev = adapter->netdev;
3795         struct pci_dev *pdev = adapter->pdev;
3796         struct e1000_buffer *buffer_info, *next_buffer;
3797         struct e1000_ps_page *ps_page;
3798         struct e1000_ps_page_dma *ps_page_dma;
3799         struct sk_buff *skb;
3800         unsigned int i, j;
3801         uint32_t length, staterr;
3802         int cleaned_count = 0;
3803         boolean_t cleaned = FALSE;
3804
3805         i = rx_ring->next_to_clean;
3806         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3807         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3808         buffer_info = &rx_ring->buffer_info[i];
3809
3810         while (staterr & E1000_RXD_STAT_DD) {
3811                 ps_page = &rx_ring->ps_page[i];
3812                 ps_page_dma = &rx_ring->ps_page_dma[i];
3813 #ifdef CONFIG_E1000_NAPI
3814                 if (unlikely(*work_done >= work_to_do))
3815                         break;
3816                 (*work_done)++;
3817 #endif
3818                 skb = buffer_info->skb;
3819
3820                 /* in the packet split case this is header only */
3821                 prefetch(skb->data - NET_IP_ALIGN);
3822
3823                 if (++i == rx_ring->count) i = 0;
3824                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3825                 prefetch(next_rxd);
3826
3827                 next_buffer = &rx_ring->buffer_info[i];
3828
3829                 cleaned = TRUE;
3830                 cleaned_count++;
3831                 pci_unmap_single(pdev, buffer_info->dma,
3832                                  buffer_info->length,
3833                                  PCI_DMA_FROMDEVICE);
3834
3835                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3836                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3837                                   " the full packet\n", netdev->name);
3838                         dev_kfree_skb_irq(skb);
3839                         goto next_desc;
3840                 }
3841
3842                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3843                         dev_kfree_skb_irq(skb);
3844                         goto next_desc;
3845                 }
3846
3847                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3848
3849                 if (unlikely(!length)) {
3850                         E1000_DBG("%s: Last part of the packet spanning"
3851                                   " multiple descriptors\n", netdev->name);
3852                         dev_kfree_skb_irq(skb);
3853                         goto next_desc;
3854                 }
3855
3856                 /* Good Receive */
3857                 skb_put(skb, length);
3858
3859                 {
3860                 /* this looks ugly, but it seems compiler issues make it
3861                    more efficient than reusing j */
3862                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3863
3864                 /* page alloc/put takes too long and effects small packet
3865                  * throughput, so unsplit small packets and save the alloc/put*/
3866                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3867                         u8 *vaddr;
3868                         /* there is no documentation about how to call
3869                          * kmap_atomic, so we can't hold the mapping
3870                          * very long */
3871                         pci_dma_sync_single_for_cpu(pdev,
3872                                 ps_page_dma->ps_page_dma[0],
3873                                 PAGE_SIZE,
3874                                 PCI_DMA_FROMDEVICE);
3875                         vaddr = kmap_atomic(ps_page->ps_page[0],
3876                                             KM_SKB_DATA_SOFTIRQ);
3877                         memcpy(skb->tail, vaddr, l1);
3878                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3879                         pci_dma_sync_single_for_device(pdev,
3880                                 ps_page_dma->ps_page_dma[0],
3881                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3882                         /* remove the CRC */
3883                         l1 -= 4;
3884                         skb_put(skb, l1);
3885                         goto copydone;
3886                 } /* if */
3887                 }
3888                 
3889                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3890                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3891                                 break;
3892                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3893                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3894                         ps_page_dma->ps_page_dma[j] = 0;
3895                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3896                                            length);
3897                         ps_page->ps_page[j] = NULL;
3898                         skb->len += length;
3899                         skb->data_len += length;
3900                         skb->truesize += length;
3901                 }
3902
3903                 /* strip the ethernet crc, problem is we're using pages now so
3904                  * this whole operation can get a little cpu intensive */
3905                 pskb_trim(skb, skb->len - 4);
3906
3907 copydone:
3908                 e1000_rx_checksum(adapter, staterr,
3909                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3910                 skb->protocol = eth_type_trans(skb, netdev);
3911
3912                 if (likely(rx_desc->wb.upper.header_status &
3913                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3914                         adapter->rx_hdr_split++;
3915 #ifdef CONFIG_E1000_NAPI
3916                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3917                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3918                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3919                                 E1000_RXD_SPC_VLAN_MASK);
3920                 } else {
3921                         netif_receive_skb(skb);
3922                 }
3923 #else /* CONFIG_E1000_NAPI */
3924                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3925                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3926                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3927                                 E1000_RXD_SPC_VLAN_MASK);
3928                 } else {
3929                         netif_rx(skb);
3930                 }
3931 #endif /* CONFIG_E1000_NAPI */
3932                 netdev->last_rx = jiffies;
3933
3934 next_desc:
3935                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3936                 buffer_info->skb = NULL;
3937
3938                 /* return some buffers to hardware, one at a time is too slow */
3939                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3940                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3941                         cleaned_count = 0;
3942                 }
3943
3944                 /* use prefetched values */
3945                 rx_desc = next_rxd;
3946                 buffer_info = next_buffer;
3947
3948                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3949         }
3950         rx_ring->next_to_clean = i;
3951
3952         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3953         if (cleaned_count)
3954                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3955
3956         return cleaned;
3957 }
3958
3959 /**
3960  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3961  * @adapter: address of board private structure
3962  **/
3963
3964 static void
3965 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3966                        struct e1000_rx_ring *rx_ring,
3967                        int cleaned_count)
3968 {
3969         struct net_device *netdev = adapter->netdev;
3970         struct pci_dev *pdev = adapter->pdev;
3971         struct e1000_rx_desc *rx_desc;
3972         struct e1000_buffer *buffer_info;
3973         struct sk_buff *skb;
3974         unsigned int i;
3975         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3976
3977         i = rx_ring->next_to_use;
3978         buffer_info = &rx_ring->buffer_info[i];
3979
3980         while (cleaned_count--) {
3981                 if (!(skb = buffer_info->skb))
3982                         skb = netdev_alloc_skb(netdev, bufsz);
3983                 else {
3984                         skb_trim(skb, 0);
3985                         goto map_skb;
3986                 }
3987
3988                 if (unlikely(!skb)) {
3989                         /* Better luck next round */
3990                         adapter->alloc_rx_buff_failed++;
3991                         break;
3992                 }
3993
3994                 /* Fix for errata 23, can't cross 64kB boundary */
3995                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3996                         struct sk_buff *oldskb = skb;
3997                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3998                                              "at %p\n", bufsz, skb->data);
3999                         /* Try again, without freeing the previous */
4000                         skb = netdev_alloc_skb(netdev, bufsz);
4001                         /* Failed allocation, critical failure */
4002                         if (!skb) {
4003                                 dev_kfree_skb(oldskb);
4004                                 break;
4005                         }
4006
4007                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4008                                 /* give up */
4009                                 dev_kfree_skb(skb);
4010                                 dev_kfree_skb(oldskb);
4011                                 break; /* while !buffer_info->skb */
4012                         } else {
4013                                 /* Use new allocation */
4014                                 dev_kfree_skb(oldskb);
4015                         }
4016                 }
4017                 /* Make buffer alignment 2 beyond a 16 byte boundary
4018                  * this will result in a 16 byte aligned IP header after
4019                  * the 14 byte MAC header is removed
4020                  */
4021                 skb_reserve(skb, NET_IP_ALIGN);
4022
4023                 skb->dev = netdev;
4024
4025                 buffer_info->skb = skb;
4026                 buffer_info->length = adapter->rx_buffer_len;
4027 map_skb:
4028                 buffer_info->dma = pci_map_single(pdev,
4029                                                   skb->data,
4030                                                   adapter->rx_buffer_len,
4031                                                   PCI_DMA_FROMDEVICE);
4032
4033                 /* Fix for errata 23, can't cross 64kB boundary */
4034                 if (!e1000_check_64k_bound(adapter,
4035                                         (void *)(unsigned long)buffer_info->dma,
4036                                         adapter->rx_buffer_len)) {
4037                         DPRINTK(RX_ERR, ERR,
4038                                 "dma align check failed: %u bytes at %p\n",
4039                                 adapter->rx_buffer_len,
4040                                 (void *)(unsigned long)buffer_info->dma);
4041                         dev_kfree_skb(skb);
4042                         buffer_info->skb = NULL;
4043
4044                         pci_unmap_single(pdev, buffer_info->dma,
4045                                          adapter->rx_buffer_len,
4046                                          PCI_DMA_FROMDEVICE);
4047
4048                         break; /* while !buffer_info->skb */
4049                 }
4050                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4051                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4052
4053                 if (unlikely(++i == rx_ring->count))
4054                         i = 0;
4055                 buffer_info = &rx_ring->buffer_info[i];
4056         }
4057
4058         if (likely(rx_ring->next_to_use != i)) {
4059                 rx_ring->next_to_use = i;
4060                 if (unlikely(i-- == 0))
4061                         i = (rx_ring->count - 1);
4062
4063                 /* Force memory writes to complete before letting h/w
4064                  * know there are new descriptors to fetch.  (Only
4065                  * applicable for weak-ordered memory model archs,
4066                  * such as IA-64). */
4067                 wmb();
4068                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4069         }
4070 }
4071
4072 /**
4073  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4074  * @adapter: address of board private structure
4075  **/
4076
4077 static void
4078 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4079                           struct e1000_rx_ring *rx_ring,
4080                           int cleaned_count)
4081 {
4082         struct net_device *netdev = adapter->netdev;
4083         struct pci_dev *pdev = adapter->pdev;
4084         union e1000_rx_desc_packet_split *rx_desc;
4085         struct e1000_buffer *buffer_info;
4086         struct e1000_ps_page *ps_page;
4087         struct e1000_ps_page_dma *ps_page_dma;
4088         struct sk_buff *skb;
4089         unsigned int i, j;
4090
4091         i = rx_ring->next_to_use;
4092         buffer_info = &rx_ring->buffer_info[i];
4093         ps_page = &rx_ring->ps_page[i];
4094         ps_page_dma = &rx_ring->ps_page_dma[i];
4095
4096         while (cleaned_count--) {
4097                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4098
4099                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4100                         if (j < adapter->rx_ps_pages) {
4101                                 if (likely(!ps_page->ps_page[j])) {
4102                                         ps_page->ps_page[j] =
4103                                                 alloc_page(GFP_ATOMIC);
4104                                         if (unlikely(!ps_page->ps_page[j])) {
4105                                                 adapter->alloc_rx_buff_failed++;
4106                                                 goto no_buffers;
4107                                         }
4108                                         ps_page_dma->ps_page_dma[j] =
4109                                                 pci_map_page(pdev,
4110                                                             ps_page->ps_page[j],
4111                                                             0, PAGE_SIZE,
4112                                                             PCI_DMA_FROMDEVICE);
4113                                 }
4114                                 /* Refresh the desc even if buffer_addrs didn't
4115                                  * change because each write-back erases
4116                                  * this info.
4117                                  */
4118                                 rx_desc->read.buffer_addr[j+1] =
4119                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4120                         } else
4121                                 rx_desc->read.buffer_addr[j+1] = ~0;
4122                 }
4123
4124                 skb = netdev_alloc_skb(netdev,
4125                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4126
4127                 if (unlikely(!skb)) {
4128                         adapter->alloc_rx_buff_failed++;
4129                         break;
4130                 }
4131
4132                 /* Make buffer alignment 2 beyond a 16 byte boundary
4133                  * this will result in a 16 byte aligned IP header after
4134                  * the 14 byte MAC header is removed
4135                  */
4136                 skb_reserve(skb, NET_IP_ALIGN);
4137
4138                 skb->dev = netdev;
4139
4140                 buffer_info->skb = skb;
4141                 buffer_info->length = adapter->rx_ps_bsize0;
4142                 buffer_info->dma = pci_map_single(pdev, skb->data,
4143                                                   adapter->rx_ps_bsize0,
4144                                                   PCI_DMA_FROMDEVICE);
4145
4146                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4147
4148                 if (unlikely(++i == rx_ring->count)) i = 0;
4149                 buffer_info = &rx_ring->buffer_info[i];
4150                 ps_page = &rx_ring->ps_page[i];
4151                 ps_page_dma = &rx_ring->ps_page_dma[i];
4152         }
4153
4154 no_buffers:
4155         if (likely(rx_ring->next_to_use != i)) {
4156                 rx_ring->next_to_use = i;
4157                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4158
4159                 /* Force memory writes to complete before letting h/w
4160                  * know there are new descriptors to fetch.  (Only
4161                  * applicable for weak-ordered memory model archs,
4162                  * such as IA-64). */
4163                 wmb();
4164                 /* Hardware increments by 16 bytes, but packet split
4165                  * descriptors are 32 bytes...so we increment tail
4166                  * twice as much.
4167                  */
4168                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4169         }
4170 }
4171
4172 /**
4173  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4174  * @adapter:
4175  **/
4176
4177 static void
4178 e1000_smartspeed(struct e1000_adapter *adapter)
4179 {
4180         uint16_t phy_status;
4181         uint16_t phy_ctrl;
4182
4183         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4184            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4185                 return;
4186
4187         if (adapter->smartspeed == 0) {
4188                 /* If Master/Slave config fault is asserted twice,
4189                  * we assume back-to-back */
4190                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4191                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4192                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4193                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4194                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4195                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4196                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4197                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4198                                             phy_ctrl);
4199                         adapter->smartspeed++;
4200                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4201                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4202                                                &phy_ctrl)) {
4203                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4204                                              MII_CR_RESTART_AUTO_NEG);
4205                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4206                                                     phy_ctrl);
4207                         }
4208                 }
4209                 return;
4210         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4211                 /* If still no link, perhaps using 2/3 pair cable */
4212                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4213                 phy_ctrl |= CR_1000T_MS_ENABLE;
4214                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4215                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4216                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4217                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4218                                      MII_CR_RESTART_AUTO_NEG);
4219                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4220                 }
4221         }
4222         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4223         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4224                 adapter->smartspeed = 0;
4225 }
4226
4227 /**
4228  * e1000_ioctl -
4229  * @netdev:
4230  * @ifreq:
4231  * @cmd:
4232  **/
4233
4234 static int
4235 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4236 {
4237         switch (cmd) {
4238         case SIOCGMIIPHY:
4239         case SIOCGMIIREG:
4240         case SIOCSMIIREG:
4241                 return e1000_mii_ioctl(netdev, ifr, cmd);
4242         default:
4243                 return -EOPNOTSUPP;
4244         }
4245 }
4246
4247 /**
4248  * e1000_mii_ioctl -
4249  * @netdev:
4250  * @ifreq:
4251  * @cmd:
4252  **/
4253
4254 static int
4255 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4256 {
4257         struct e1000_adapter *adapter = netdev_priv(netdev);
4258         struct mii_ioctl_data *data = if_mii(ifr);
4259         int retval;
4260         uint16_t mii_reg;
4261         uint16_t spddplx;
4262         unsigned long flags;
4263
4264         if (adapter->hw.media_type != e1000_media_type_copper)
4265                 return -EOPNOTSUPP;
4266
4267         switch (cmd) {
4268         case SIOCGMIIPHY:
4269                 data->phy_id = adapter->hw.phy_addr;
4270                 break;
4271         case SIOCGMIIREG:
4272                 if (!capable(CAP_NET_ADMIN))
4273                         return -EPERM;
4274                 spin_lock_irqsave(&adapter->stats_lock, flags);
4275                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4276                                    &data->val_out)) {
4277                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4278                         return -EIO;
4279                 }
4280                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4281                 break;
4282         case SIOCSMIIREG:
4283                 if (!capable(CAP_NET_ADMIN))
4284                         return -EPERM;
4285                 if (data->reg_num & ~(0x1F))
4286                         return -EFAULT;
4287                 mii_reg = data->val_in;
4288                 spin_lock_irqsave(&adapter->stats_lock, flags);
4289                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4290                                         mii_reg)) {
4291                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4292                         return -EIO;
4293                 }
4294                 if (adapter->hw.media_type == e1000_media_type_copper) {
4295                         switch (data->reg_num) {
4296                         case PHY_CTRL:
4297                                 if (mii_reg & MII_CR_POWER_DOWN)
4298                                         break;
4299                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4300                                         adapter->hw.autoneg = 1;
4301                                         adapter->hw.autoneg_advertised = 0x2F;
4302                                 } else {
4303                                         if (mii_reg & 0x40)
4304                                                 spddplx = SPEED_1000;
4305                                         else if (mii_reg & 0x2000)
4306                                                 spddplx = SPEED_100;
4307                                         else
4308                                                 spddplx = SPEED_10;
4309                                         spddplx += (mii_reg & 0x100)
4310                                                    ? DUPLEX_FULL :
4311                                                    DUPLEX_HALF;
4312                                         retval = e1000_set_spd_dplx(adapter,
4313                                                                     spddplx);
4314                                         if (retval) {
4315                                                 spin_unlock_irqrestore(
4316                                                         &adapter->stats_lock,
4317                                                         flags);
4318                                                 return retval;
4319                                         }
4320                                 }
4321                                 if (netif_running(adapter->netdev))
4322                                         e1000_reinit_locked(adapter);
4323                                 else
4324                                         e1000_reset(adapter);
4325                                 break;
4326                         case M88E1000_PHY_SPEC_CTRL:
4327                         case M88E1000_EXT_PHY_SPEC_CTRL:
4328                                 if (e1000_phy_reset(&adapter->hw)) {
4329                                         spin_unlock_irqrestore(
4330                                                 &adapter->stats_lock, flags);
4331                                         return -EIO;
4332                                 }
4333                                 break;
4334                         }
4335                 } else {
4336                         switch (data->reg_num) {
4337                         case PHY_CTRL:
4338                                 if (mii_reg & MII_CR_POWER_DOWN)
4339                                         break;
4340                                 if (netif_running(adapter->netdev))
4341                                         e1000_reinit_locked(adapter);
4342                                 else
4343                                         e1000_reset(adapter);
4344                                 break;
4345                         }
4346                 }
4347                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4348                 break;
4349         default:
4350                 return -EOPNOTSUPP;
4351         }
4352         return E1000_SUCCESS;
4353 }
4354
4355 void
4356 e1000_pci_set_mwi(struct e1000_hw *hw)
4357 {
4358         struct e1000_adapter *adapter = hw->back;
4359         int ret_val = pci_set_mwi(adapter->pdev);
4360
4361         if (ret_val)
4362                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4363 }
4364
4365 void
4366 e1000_pci_clear_mwi(struct e1000_hw *hw)
4367 {
4368         struct e1000_adapter *adapter = hw->back;
4369
4370         pci_clear_mwi(adapter->pdev);
4371 }
4372
4373 void
4374 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4375 {
4376         struct e1000_adapter *adapter = hw->back;
4377
4378         pci_read_config_word(adapter->pdev, reg, value);
4379 }
4380
4381 void
4382 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4383 {
4384         struct e1000_adapter *adapter = hw->back;
4385
4386         pci_write_config_word(adapter->pdev, reg, *value);
4387 }
4388
4389 #if 0
4390 uint32_t
4391 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4392 {
4393         return inl(port);
4394 }
4395 #endif  /*  0  */
4396
4397 void
4398 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4399 {
4400         outl(value, port);
4401 }
4402
4403 static void
4404 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4405 {
4406         struct e1000_adapter *adapter = netdev_priv(netdev);
4407         uint32_t ctrl, rctl;
4408
4409         e1000_irq_disable(adapter);
4410         adapter->vlgrp = grp;
4411
4412         if (grp) {
4413                 /* enable VLAN tag insert/strip */
4414                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4415                 ctrl |= E1000_CTRL_VME;
4416                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4417
4418                 if (adapter->hw.mac_type != e1000_ich8lan) {
4419                 /* enable VLAN receive filtering */
4420                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4421                 rctl |= E1000_RCTL_VFE;
4422                 rctl &= ~E1000_RCTL_CFIEN;
4423                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4424                 e1000_update_mng_vlan(adapter);
4425                 }
4426         } else {
4427                 /* disable VLAN tag insert/strip */
4428                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4429                 ctrl &= ~E1000_CTRL_VME;
4430                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4431
4432                 if (adapter->hw.mac_type != e1000_ich8lan) {
4433                 /* disable VLAN filtering */
4434                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4435                 rctl &= ~E1000_RCTL_VFE;
4436                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4437                 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4438                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4439                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4440                 }
4441                 }
4442         }
4443
4444         e1000_irq_enable(adapter);
4445 }
4446
4447 static void
4448 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4449 {
4450         struct e1000_adapter *adapter = netdev_priv(netdev);
4451         uint32_t vfta, index;
4452
4453         if ((adapter->hw.mng_cookie.status &
4454              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4455             (vid == adapter->mng_vlan_id))
4456                 return;
4457         /* add VID to filter table */
4458         index = (vid >> 5) & 0x7F;
4459         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4460         vfta |= (1 << (vid & 0x1F));
4461         e1000_write_vfta(&adapter->hw, index, vfta);
4462 }
4463
4464 static void
4465 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4466 {
4467         struct e1000_adapter *adapter = netdev_priv(netdev);
4468         uint32_t vfta, index;
4469
4470         e1000_irq_disable(adapter);
4471
4472         if (adapter->vlgrp)
4473                 adapter->vlgrp->vlan_devices[vid] = NULL;
4474
4475         e1000_irq_enable(adapter);
4476
4477         if ((adapter->hw.mng_cookie.status &
4478              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4479             (vid == adapter->mng_vlan_id)) {
4480                 /* release control to f/w */
4481                 e1000_release_hw_control(adapter);
4482                 return;
4483         }
4484
4485         /* remove VID from filter table */
4486         index = (vid >> 5) & 0x7F;
4487         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4488         vfta &= ~(1 << (vid & 0x1F));
4489         e1000_write_vfta(&adapter->hw, index, vfta);
4490 }
4491
4492 static void
4493 e1000_restore_vlan(struct e1000_adapter *adapter)
4494 {
4495         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4496
4497         if (adapter->vlgrp) {
4498                 uint16_t vid;
4499                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4500                         if (!adapter->vlgrp->vlan_devices[vid])
4501                                 continue;
4502                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4503                 }
4504         }
4505 }
4506
4507 int
4508 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4509 {
4510         adapter->hw.autoneg = 0;
4511
4512         /* Fiber NICs only allow 1000 gbps Full duplex */
4513         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4514                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4515                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4516                 return -EINVAL;
4517         }
4518
4519         switch (spddplx) {
4520         case SPEED_10 + DUPLEX_HALF:
4521                 adapter->hw.forced_speed_duplex = e1000_10_half;
4522                 break;
4523         case SPEED_10 + DUPLEX_FULL:
4524                 adapter->hw.forced_speed_duplex = e1000_10_full;
4525                 break;
4526         case SPEED_100 + DUPLEX_HALF:
4527                 adapter->hw.forced_speed_duplex = e1000_100_half;
4528                 break;
4529         case SPEED_100 + DUPLEX_FULL:
4530                 adapter->hw.forced_speed_duplex = e1000_100_full;
4531                 break;
4532         case SPEED_1000 + DUPLEX_FULL:
4533                 adapter->hw.autoneg = 1;
4534                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4535                 break;
4536         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4537         default:
4538                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4539                 return -EINVAL;
4540         }
4541         return 0;
4542 }
4543
4544 #ifdef CONFIG_PM
4545 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4546  * bus we're on (PCI(X) vs. PCI-E)
4547  */
4548 #define PCIE_CONFIG_SPACE_LEN 256
4549 #define PCI_CONFIG_SPACE_LEN 64
4550 static int
4551 e1000_pci_save_state(struct e1000_adapter *adapter)
4552 {
4553         struct pci_dev *dev = adapter->pdev;
4554         int size;
4555         int i;
4556
4557         if (adapter->hw.mac_type >= e1000_82571)
4558                 size = PCIE_CONFIG_SPACE_LEN;
4559         else
4560                 size = PCI_CONFIG_SPACE_LEN;
4561
4562         WARN_ON(adapter->config_space != NULL);
4563
4564         adapter->config_space = kmalloc(size, GFP_KERNEL);
4565         if (!adapter->config_space) {
4566                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4567                 return -ENOMEM;
4568         }
4569         for (i = 0; i < (size / 4); i++)
4570                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4571         return 0;
4572 }
4573
4574 static void
4575 e1000_pci_restore_state(struct e1000_adapter *adapter)
4576 {
4577         struct pci_dev *dev = adapter->pdev;
4578         int size;
4579         int i;
4580
4581         if (adapter->config_space == NULL)
4582                 return;
4583
4584         if (adapter->hw.mac_type >= e1000_82571)
4585                 size = PCIE_CONFIG_SPACE_LEN;
4586         else
4587                 size = PCI_CONFIG_SPACE_LEN;
4588         for (i = 0; i < (size / 4); i++)
4589                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4590         kfree(adapter->config_space);
4591         adapter->config_space = NULL;
4592         return;
4593 }
4594 #endif /* CONFIG_PM */
4595
4596 static int
4597 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4598 {
4599         struct net_device *netdev = pci_get_drvdata(pdev);
4600         struct e1000_adapter *adapter = netdev_priv(netdev);
4601         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4602         uint32_t wufc = adapter->wol;
4603 #ifdef CONFIG_PM
4604         int retval = 0;
4605 #endif
4606
4607         netif_device_detach(netdev);
4608
4609         if (netif_running(netdev)) {
4610                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4611                 e1000_down(adapter);
4612         }
4613
4614 #ifdef CONFIG_PM
4615         /* Implement our own version of pci_save_state(pdev) because pci-
4616          * express adapters have 256-byte config spaces. */
4617         retval = e1000_pci_save_state(adapter);
4618         if (retval)
4619                 return retval;
4620 #endif
4621
4622         status = E1000_READ_REG(&adapter->hw, STATUS);
4623         if (status & E1000_STATUS_LU)
4624                 wufc &= ~E1000_WUFC_LNKC;
4625
4626         if (wufc) {
4627                 e1000_setup_rctl(adapter);
4628                 e1000_set_multi(netdev);
4629
4630                 /* turn on all-multi mode if wake on multicast is enabled */
4631                 if (adapter->wol & E1000_WUFC_MC) {
4632                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4633                         rctl |= E1000_RCTL_MPE;
4634                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4635                 }
4636
4637                 if (adapter->hw.mac_type >= e1000_82540) {
4638                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4639                         /* advertise wake from D3Cold */
4640                         #define E1000_CTRL_ADVD3WUC 0x00100000
4641                         /* phy power management enable */
4642                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4643                         ctrl |= E1000_CTRL_ADVD3WUC |
4644                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4645                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4646                 }
4647
4648                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4649                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4650                         /* keep the laser running in D3 */
4651                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4652                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4653                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4654                 }
4655
4656                 /* Allow time for pending master requests to run */
4657                 e1000_disable_pciex_master(&adapter->hw);
4658
4659                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4660                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4661                 pci_enable_wake(pdev, PCI_D3hot, 1);
4662                 pci_enable_wake(pdev, PCI_D3cold, 1);
4663         } else {
4664                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4665                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4666                 pci_enable_wake(pdev, PCI_D3hot, 0);
4667                 pci_enable_wake(pdev, PCI_D3cold, 0);
4668         }
4669
4670         /* FIXME: this code is incorrect for PCI Express */
4671         if (adapter->hw.mac_type >= e1000_82540 &&
4672            adapter->hw.mac_type != e1000_ich8lan &&
4673            adapter->hw.media_type == e1000_media_type_copper) {
4674                 manc = E1000_READ_REG(&adapter->hw, MANC);
4675                 if (manc & E1000_MANC_SMBUS_EN) {
4676                         manc |= E1000_MANC_ARP_EN;
4677                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4678                         pci_enable_wake(pdev, PCI_D3hot, 1);
4679                         pci_enable_wake(pdev, PCI_D3cold, 1);
4680                 }
4681         }
4682
4683         if (adapter->hw.phy_type == e1000_phy_igp_3)
4684                 e1000_phy_powerdown_workaround(&adapter->hw);
4685
4686         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4687          * would have already happened in close and is redundant. */
4688         e1000_release_hw_control(adapter);
4689
4690         pci_disable_device(pdev);
4691
4692         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4693
4694         return 0;
4695 }
4696
4697 #ifdef CONFIG_PM
4698 static int
4699 e1000_resume(struct pci_dev *pdev)
4700 {
4701         struct net_device *netdev = pci_get_drvdata(pdev);
4702         struct e1000_adapter *adapter = netdev_priv(netdev);
4703         uint32_t manc, ret_val;
4704
4705         pci_set_power_state(pdev, PCI_D0);
4706         e1000_pci_restore_state(adapter);
4707         ret_val = pci_enable_device(pdev);
4708         pci_set_master(pdev);
4709
4710         pci_enable_wake(pdev, PCI_D3hot, 0);
4711         pci_enable_wake(pdev, PCI_D3cold, 0);
4712
4713         e1000_reset(adapter);
4714         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4715
4716         if (netif_running(netdev))
4717                 e1000_up(adapter);
4718
4719         netif_device_attach(netdev);
4720
4721         /* FIXME: this code is incorrect for PCI Express */
4722         if (adapter->hw.mac_type >= e1000_82540 &&
4723            adapter->hw.mac_type != e1000_ich8lan &&
4724            adapter->hw.media_type == e1000_media_type_copper) {
4725                 manc = E1000_READ_REG(&adapter->hw, MANC);
4726                 manc &= ~(E1000_MANC_ARP_EN);
4727                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4728         }
4729
4730         /* If the controller is 82573 and f/w is AMT, do not set
4731          * DRV_LOAD until the interface is up.  For all other cases,
4732          * let the f/w know that the h/w is now under the control
4733          * of the driver. */
4734         if (adapter->hw.mac_type != e1000_82573 ||
4735             !e1000_check_mng_mode(&adapter->hw))
4736                 e1000_get_hw_control(adapter);
4737
4738         return 0;
4739 }
4740 #endif
4741
4742 static void e1000_shutdown(struct pci_dev *pdev)
4743 {
4744         e1000_suspend(pdev, PMSG_SUSPEND);
4745 }
4746
4747 #ifdef CONFIG_NET_POLL_CONTROLLER
4748 /*
4749  * Polling 'interrupt' - used by things like netconsole to send skbs
4750  * without having to re-enable interrupts. It's not called while
4751  * the interrupt routine is executing.
4752  */
4753 static void
4754 e1000_netpoll(struct net_device *netdev)
4755 {
4756         struct e1000_adapter *adapter = netdev_priv(netdev);
4757
4758         disable_irq(adapter->pdev->irq);
4759         e1000_intr(adapter->pdev->irq, netdev, NULL);
4760         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4761 #ifndef CONFIG_E1000_NAPI
4762         adapter->clean_rx(adapter, adapter->rx_ring);
4763 #endif
4764         enable_irq(adapter->pdev->irq);
4765 }
4766 #endif
4767
4768 /**
4769  * e1000_io_error_detected - called when PCI error is detected
4770  * @pdev: Pointer to PCI device
4771  * @state: The current pci conneection state
4772  *
4773  * This function is called after a PCI bus error affecting
4774  * this device has been detected.
4775  */
4776 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4777 {
4778         struct net_device *netdev = pci_get_drvdata(pdev);
4779         struct e1000_adapter *adapter = netdev->priv;
4780
4781         netif_device_detach(netdev);
4782
4783         if (netif_running(netdev))
4784                 e1000_down(adapter);
4785
4786         /* Request a slot slot reset. */
4787         return PCI_ERS_RESULT_NEED_RESET;
4788 }
4789
4790 /**
4791  * e1000_io_slot_reset - called after the pci bus has been reset.
4792  * @pdev: Pointer to PCI device
4793  *
4794  * Restart the card from scratch, as if from a cold-boot. Implementation
4795  * resembles the first-half of the e1000_resume routine.
4796  */
4797 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4798 {
4799         struct net_device *netdev = pci_get_drvdata(pdev);
4800         struct e1000_adapter *adapter = netdev->priv;
4801
4802         if (pci_enable_device(pdev)) {
4803                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4804                 return PCI_ERS_RESULT_DISCONNECT;
4805         }
4806         pci_set_master(pdev);
4807
4808         pci_enable_wake(pdev, 3, 0);
4809         pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4810
4811         /* Perform card reset only on one instance of the card */
4812         if (PCI_FUNC (pdev->devfn) != 0)
4813                 return PCI_ERS_RESULT_RECOVERED;
4814
4815         e1000_reset(adapter);
4816         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4817
4818         return PCI_ERS_RESULT_RECOVERED;
4819 }
4820
4821 /**
4822  * e1000_io_resume - called when traffic can start flowing again.
4823  * @pdev: Pointer to PCI device
4824  *
4825  * This callback is called when the error recovery driver tells us that
4826  * its OK to resume normal operation. Implementation resembles the
4827  * second-half of the e1000_resume routine.
4828  */
4829 static void e1000_io_resume(struct pci_dev *pdev)
4830 {
4831         struct net_device *netdev = pci_get_drvdata(pdev);
4832         struct e1000_adapter *adapter = netdev->priv;
4833         uint32_t manc, swsm;
4834
4835         if (netif_running(netdev)) {
4836                 if (e1000_up(adapter)) {
4837                         printk("e1000: can't bring device back up after reset\n");
4838                         return;
4839                 }
4840         }
4841
4842         netif_device_attach(netdev);
4843
4844         if (adapter->hw.mac_type >= e1000_82540 &&
4845             adapter->hw.media_type == e1000_media_type_copper) {
4846                 manc = E1000_READ_REG(&adapter->hw, MANC);
4847                 manc &= ~(E1000_MANC_ARP_EN);
4848                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4849         }
4850
4851         switch (adapter->hw.mac_type) {
4852         case e1000_82573:
4853                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4854                 E1000_WRITE_REG(&adapter->hw, SWSM,
4855                                 swsm | E1000_SWSM_DRV_LOAD);
4856                 break;
4857         default:
4858                 break;
4859         }
4860
4861         if (netif_running(netdev))
4862                 mod_timer(&adapter->watchdog_timer, jiffies);
4863 }
4864
4865 /* e1000_main.c */