Merge branch 'upstream-fixes' of git://lost.foo-projects.org/~ahkok/git/netdev-2...
[linux-2.6.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 #include "e1000.h"
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.1.9-k6"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1049),
76         INTEL_E1000_ETHERNET_DEVICE(0x104A),
77         INTEL_E1000_ETHERNET_DEVICE(0x104B),
78         INTEL_E1000_ETHERNET_DEVICE(0x104C),
79         INTEL_E1000_ETHERNET_DEVICE(0x104D),
80         INTEL_E1000_ETHERNET_DEVICE(0x105E),
81         INTEL_E1000_ETHERNET_DEVICE(0x105F),
82         INTEL_E1000_ETHERNET_DEVICE(0x1060),
83         INTEL_E1000_ETHERNET_DEVICE(0x1075),
84         INTEL_E1000_ETHERNET_DEVICE(0x1076),
85         INTEL_E1000_ETHERNET_DEVICE(0x1077),
86         INTEL_E1000_ETHERNET_DEVICE(0x1078),
87         INTEL_E1000_ETHERNET_DEVICE(0x1079),
88         INTEL_E1000_ETHERNET_DEVICE(0x107A),
89         INTEL_E1000_ETHERNET_DEVICE(0x107B),
90         INTEL_E1000_ETHERNET_DEVICE(0x107C),
91         INTEL_E1000_ETHERNET_DEVICE(0x107D),
92         INTEL_E1000_ETHERNET_DEVICE(0x107E),
93         INTEL_E1000_ETHERNET_DEVICE(0x107F),
94         INTEL_E1000_ETHERNET_DEVICE(0x108A),
95         INTEL_E1000_ETHERNET_DEVICE(0x108B),
96         INTEL_E1000_ETHERNET_DEVICE(0x108C),
97         INTEL_E1000_ETHERNET_DEVICE(0x1096),
98         INTEL_E1000_ETHERNET_DEVICE(0x1098),
99         INTEL_E1000_ETHERNET_DEVICE(0x1099),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
102         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
103         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
104         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
105         /* required last entry */
106         {0,}
107 };
108
109 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
110
111 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
112                                     struct e1000_tx_ring *txdr);
113 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
114                                     struct e1000_rx_ring *rxdr);
115 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
116                                     struct e1000_tx_ring *tx_ring);
117 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
118                                     struct e1000_rx_ring *rx_ring);
119
120 /* Local Function Prototypes */
121
122 static int e1000_init_module(void);
123 static void e1000_exit_module(void);
124 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
125 static void __devexit e1000_remove(struct pci_dev *pdev);
126 static int e1000_alloc_queues(struct e1000_adapter *adapter);
127 static int e1000_sw_init(struct e1000_adapter *adapter);
128 static int e1000_open(struct net_device *netdev);
129 static int e1000_close(struct net_device *netdev);
130 static void e1000_configure_tx(struct e1000_adapter *adapter);
131 static void e1000_configure_rx(struct e1000_adapter *adapter);
132 static void e1000_setup_rctl(struct e1000_adapter *adapter);
133 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
134 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
135 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
136                                 struct e1000_tx_ring *tx_ring);
137 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
138                                 struct e1000_rx_ring *rx_ring);
139 static void e1000_set_multi(struct net_device *netdev);
140 static void e1000_update_phy_info(unsigned long data);
141 static void e1000_watchdog(unsigned long data);
142 static void e1000_82547_tx_fifo_stall(unsigned long data);
143 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
144 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
145 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
146 static int e1000_set_mac(struct net_device *netdev, void *p);
147 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
148 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
149                                     struct e1000_tx_ring *tx_ring);
150 #ifdef CONFIG_E1000_NAPI
151 static int e1000_clean(struct net_device *poll_dev, int *budget);
152 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
153                                     struct e1000_rx_ring *rx_ring,
154                                     int *work_done, int work_to_do);
155 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
156                                        struct e1000_rx_ring *rx_ring,
157                                        int *work_done, int work_to_do);
158 #else
159 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
160                                     struct e1000_rx_ring *rx_ring);
161 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
162                                        struct e1000_rx_ring *rx_ring);
163 #endif
164 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
165                                    struct e1000_rx_ring *rx_ring,
166                                    int cleaned_count);
167 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
168                                       struct e1000_rx_ring *rx_ring,
169                                       int cleaned_count);
170 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
171 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
172                            int cmd);
173 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
174 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
175 static void e1000_tx_timeout(struct net_device *dev);
176 static void e1000_reset_task(struct net_device *dev);
177 static void e1000_smartspeed(struct e1000_adapter *adapter);
178 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
179                                        struct sk_buff *skb);
180
181 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
182 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
183 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
184 static void e1000_restore_vlan(struct e1000_adapter *adapter);
185
186 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
187 #ifdef CONFIG_PM
188 static int e1000_resume(struct pci_dev *pdev);
189 #endif
190 static void e1000_shutdown(struct pci_dev *pdev);
191
192 #ifdef CONFIG_NET_POLL_CONTROLLER
193 /* for netdump / net console */
194 static void e1000_netpoll (struct net_device *netdev);
195 #endif
196
197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198                      pci_channel_state_t state);
199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200 static void e1000_io_resume(struct pci_dev *pdev);
201
202 static struct pci_error_handlers e1000_err_handler = {
203         .error_detected = e1000_io_error_detected,
204         .slot_reset = e1000_io_slot_reset,
205         .resume = e1000_io_resume,
206 };
207
208 static struct pci_driver e1000_driver = {
209         .name     = e1000_driver_name,
210         .id_table = e1000_pci_tbl,
211         .probe    = e1000_probe,
212         .remove   = __devexit_p(e1000_remove),
213         /* Power Managment Hooks */
214         .suspend  = e1000_suspend,
215 #ifdef CONFIG_PM
216         .resume   = e1000_resume,
217 #endif
218         .shutdown = e1000_shutdown,
219         .err_handler = &e1000_err_handler
220 };
221
222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(DRV_VERSION);
226
227 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
228 module_param(debug, int, 0);
229 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
230
231 /**
232  * e1000_init_module - Driver Registration Routine
233  *
234  * e1000_init_module is the first routine called when the driver is
235  * loaded. All it does is register with the PCI subsystem.
236  **/
237
238 static int __init
239 e1000_init_module(void)
240 {
241         int ret;
242         printk(KERN_INFO "%s - version %s\n",
243                e1000_driver_string, e1000_driver_version);
244
245         printk(KERN_INFO "%s\n", e1000_copyright);
246
247         ret = pci_register_driver(&e1000_driver);
248
249         return ret;
250 }
251
252 module_init(e1000_init_module);
253
254 /**
255  * e1000_exit_module - Driver Exit Cleanup Routine
256  *
257  * e1000_exit_module is called just before the driver is removed
258  * from memory.
259  **/
260
261 static void __exit
262 e1000_exit_module(void)
263 {
264         pci_unregister_driver(&e1000_driver);
265 }
266
267 module_exit(e1000_exit_module);
268
269 static int e1000_request_irq(struct e1000_adapter *adapter)
270 {
271         struct net_device *netdev = adapter->netdev;
272         int flags, err = 0;
273
274         flags = IRQF_SHARED;
275 #ifdef CONFIG_PCI_MSI
276         if (adapter->hw.mac_type > e1000_82547_rev_2) {
277                 adapter->have_msi = TRUE;
278                 if ((err = pci_enable_msi(adapter->pdev))) {
279                         DPRINTK(PROBE, ERR,
280                          "Unable to allocate MSI interrupt Error: %d\n", err);
281                         adapter->have_msi = FALSE;
282                 }
283         }
284         if (adapter->have_msi)
285                 flags &= ~IRQF_SHARED;
286 #endif
287         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
288                                netdev->name, netdev)))
289                 DPRINTK(PROBE, ERR,
290                         "Unable to allocate interrupt Error: %d\n", err);
291
292         return err;
293 }
294
295 static void e1000_free_irq(struct e1000_adapter *adapter)
296 {
297         struct net_device *netdev = adapter->netdev;
298
299         free_irq(adapter->pdev->irq, netdev);
300
301 #ifdef CONFIG_PCI_MSI
302         if (adapter->have_msi)
303                 pci_disable_msi(adapter->pdev);
304 #endif
305 }
306
307 /**
308  * e1000_irq_disable - Mask off interrupt generation on the NIC
309  * @adapter: board private structure
310  **/
311
312 static void
313 e1000_irq_disable(struct e1000_adapter *adapter)
314 {
315         atomic_inc(&adapter->irq_sem);
316         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
317         E1000_WRITE_FLUSH(&adapter->hw);
318         synchronize_irq(adapter->pdev->irq);
319 }
320
321 /**
322  * e1000_irq_enable - Enable default interrupt generation settings
323  * @adapter: board private structure
324  **/
325
326 static void
327 e1000_irq_enable(struct e1000_adapter *adapter)
328 {
329         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
330                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
331                 E1000_WRITE_FLUSH(&adapter->hw);
332         }
333 }
334
335 static void
336 e1000_update_mng_vlan(struct e1000_adapter *adapter)
337 {
338         struct net_device *netdev = adapter->netdev;
339         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
340         uint16_t old_vid = adapter->mng_vlan_id;
341         if (adapter->vlgrp) {
342                 if (!adapter->vlgrp->vlan_devices[vid]) {
343                         if (adapter->hw.mng_cookie.status &
344                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
345                                 e1000_vlan_rx_add_vid(netdev, vid);
346                                 adapter->mng_vlan_id = vid;
347                         } else
348                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
349
350                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
351                                         (vid != old_vid) &&
352                                         !adapter->vlgrp->vlan_devices[old_vid])
353                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
354                 } else
355                         adapter->mng_vlan_id = vid;
356         }
357 }
358
359 /**
360  * e1000_release_hw_control - release control of the h/w to f/w
361  * @adapter: address of board private structure
362  *
363  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
364  * For ASF and Pass Through versions of f/w this means that the
365  * driver is no longer loaded. For AMT version (only with 82573) i
366  * of the f/w this means that the netowrk i/f is closed.
367  *
368  **/
369
370 static void
371 e1000_release_hw_control(struct e1000_adapter *adapter)
372 {
373         uint32_t ctrl_ext;
374         uint32_t swsm;
375         uint32_t extcnf;
376
377         /* Let firmware taken over control of h/w */
378         switch (adapter->hw.mac_type) {
379         case e1000_82571:
380         case e1000_82572:
381         case e1000_80003es2lan:
382                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
383                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
384                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
385                 break;
386         case e1000_82573:
387                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
388                 E1000_WRITE_REG(&adapter->hw, SWSM,
389                                 swsm & ~E1000_SWSM_DRV_LOAD);
390         case e1000_ich8lan:
391                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
392                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
393                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
394                 break;
395         default:
396                 break;
397         }
398 }
399
400 /**
401  * e1000_get_hw_control - get control of the h/w from f/w
402  * @adapter: address of board private structure
403  *
404  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
405  * For ASF and Pass Through versions of f/w this means that
406  * the driver is loaded. For AMT version (only with 82573)
407  * of the f/w this means that the netowrk i/f is open.
408  *
409  **/
410
411 static void
412 e1000_get_hw_control(struct e1000_adapter *adapter)
413 {
414         uint32_t ctrl_ext;
415         uint32_t swsm;
416         uint32_t extcnf;
417         /* Let firmware know the driver has taken over */
418         switch (adapter->hw.mac_type) {
419         case e1000_82571:
420         case e1000_82572:
421         case e1000_80003es2lan:
422                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
423                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
424                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
425                 break;
426         case e1000_82573:
427                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
428                 E1000_WRITE_REG(&adapter->hw, SWSM,
429                                 swsm | E1000_SWSM_DRV_LOAD);
430                 break;
431         case e1000_ich8lan:
432                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
433                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
434                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
435                 break;
436         default:
437                 break;
438         }
439 }
440
441 int
442 e1000_up(struct e1000_adapter *adapter)
443 {
444         struct net_device *netdev = adapter->netdev;
445         int i;
446
447         /* hardware has been reset, we need to reload some things */
448
449         e1000_set_multi(netdev);
450
451         e1000_restore_vlan(adapter);
452
453         e1000_configure_tx(adapter);
454         e1000_setup_rctl(adapter);
455         e1000_configure_rx(adapter);
456         /* call E1000_DESC_UNUSED which always leaves
457          * at least 1 descriptor unused to make sure
458          * next_to_use != next_to_clean */
459         for (i = 0; i < adapter->num_rx_queues; i++) {
460                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
461                 adapter->alloc_rx_buf(adapter, ring,
462                                       E1000_DESC_UNUSED(ring));
463         }
464
465         adapter->tx_queue_len = netdev->tx_queue_len;
466
467         mod_timer(&adapter->watchdog_timer, jiffies);
468
469 #ifdef CONFIG_E1000_NAPI
470         netif_poll_enable(netdev);
471 #endif
472         e1000_irq_enable(adapter);
473
474         return 0;
475 }
476
477 /**
478  * e1000_power_up_phy - restore link in case the phy was powered down
479  * @adapter: address of board private structure
480  *
481  * The phy may be powered down to save power and turn off link when the
482  * driver is unloaded and wake on lan is not enabled (among others)
483  * *** this routine MUST be followed by a call to e1000_reset ***
484  *
485  **/
486
487 void e1000_power_up_phy(struct e1000_adapter *adapter)
488 {
489         uint16_t mii_reg = 0;
490
491         /* Just clear the power down bit to wake the phy back up */
492         if (adapter->hw.media_type == e1000_media_type_copper) {
493                 /* according to the manual, the phy will retain its
494                  * settings across a power-down/up cycle */
495                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
496                 mii_reg &= ~MII_CR_POWER_DOWN;
497                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
498         }
499 }
500
501 static void e1000_power_down_phy(struct e1000_adapter *adapter)
502 {
503         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
504                                       e1000_check_mng_mode(&adapter->hw);
505         /* Power down the PHY so no link is implied when interface is down
506          * The PHY cannot be powered down if any of the following is TRUE
507          * (a) WoL is enabled
508          * (b) AMT is active
509          * (c) SoL/IDER session is active */
510         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
511             adapter->hw.mac_type != e1000_ich8lan &&
512             adapter->hw.media_type == e1000_media_type_copper &&
513             !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
514             !mng_mode_enabled &&
515             !e1000_check_phy_reset_block(&adapter->hw)) {
516                 uint16_t mii_reg = 0;
517                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
518                 mii_reg |= MII_CR_POWER_DOWN;
519                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
520                 mdelay(1);
521         }
522 }
523
524 void
525 e1000_down(struct e1000_adapter *adapter)
526 {
527         struct net_device *netdev = adapter->netdev;
528
529         e1000_irq_disable(adapter);
530
531         del_timer_sync(&adapter->tx_fifo_stall_timer);
532         del_timer_sync(&adapter->watchdog_timer);
533         del_timer_sync(&adapter->phy_info_timer);
534
535 #ifdef CONFIG_E1000_NAPI
536         netif_poll_disable(netdev);
537 #endif
538         netdev->tx_queue_len = adapter->tx_queue_len;
539         adapter->link_speed = 0;
540         adapter->link_duplex = 0;
541         netif_carrier_off(netdev);
542         netif_stop_queue(netdev);
543
544         e1000_reset(adapter);
545         e1000_clean_all_tx_rings(adapter);
546         e1000_clean_all_rx_rings(adapter);
547 }
548
549 void
550 e1000_reinit_locked(struct e1000_adapter *adapter)
551 {
552         WARN_ON(in_interrupt());
553         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
554                 msleep(1);
555         e1000_down(adapter);
556         e1000_up(adapter);
557         clear_bit(__E1000_RESETTING, &adapter->flags);
558 }
559
560 void
561 e1000_reset(struct e1000_adapter *adapter)
562 {
563         uint32_t pba, manc;
564         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
565
566         /* Repartition Pba for greater than 9k mtu
567          * To take effect CTRL.RST is required.
568          */
569
570         switch (adapter->hw.mac_type) {
571         case e1000_82547:
572         case e1000_82547_rev_2:
573                 pba = E1000_PBA_30K;
574                 break;
575         case e1000_82571:
576         case e1000_82572:
577         case e1000_80003es2lan:
578                 pba = E1000_PBA_38K;
579                 break;
580         case e1000_82573:
581                 pba = E1000_PBA_12K;
582                 break;
583         case e1000_ich8lan:
584                 pba = E1000_PBA_8K;
585                 break;
586         default:
587                 pba = E1000_PBA_48K;
588                 break;
589         }
590
591         if ((adapter->hw.mac_type != e1000_82573) &&
592            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
593                 pba -= 8; /* allocate more FIFO for Tx */
594
595
596         if (adapter->hw.mac_type == e1000_82547) {
597                 adapter->tx_fifo_head = 0;
598                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
599                 adapter->tx_fifo_size =
600                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
601                 atomic_set(&adapter->tx_fifo_stall, 0);
602         }
603
604         E1000_WRITE_REG(&adapter->hw, PBA, pba);
605
606         /* flow control settings */
607         /* Set the FC high water mark to 90% of the FIFO size.
608          * Required to clear last 3 LSB */
609         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
610         /* We can't use 90% on small FIFOs because the remainder
611          * would be less than 1 full frame.  In this case, we size
612          * it to allow at least a full frame above the high water
613          *  mark. */
614         if (pba < E1000_PBA_16K)
615                 fc_high_water_mark = (pba * 1024) - 1600;
616
617         adapter->hw.fc_high_water = fc_high_water_mark;
618         adapter->hw.fc_low_water = fc_high_water_mark - 8;
619         if (adapter->hw.mac_type == e1000_80003es2lan)
620                 adapter->hw.fc_pause_time = 0xFFFF;
621         else
622                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
623         adapter->hw.fc_send_xon = 1;
624         adapter->hw.fc = adapter->hw.original_fc;
625
626         /* Allow time for pending master requests to run */
627         e1000_reset_hw(&adapter->hw);
628         if (adapter->hw.mac_type >= e1000_82544)
629                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
630         if (e1000_init_hw(&adapter->hw))
631                 DPRINTK(PROBE, ERR, "Hardware Error\n");
632         e1000_update_mng_vlan(adapter);
633         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
634         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
635
636         e1000_reset_adaptive(&adapter->hw);
637         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
638
639         if (!adapter->smart_power_down &&
640             (adapter->hw.mac_type == e1000_82571 ||
641              adapter->hw.mac_type == e1000_82572)) {
642                 uint16_t phy_data = 0;
643                 /* speed up time to link by disabling smart power down, ignore
644                  * the return value of this function because there is nothing
645                  * different we would do if it failed */
646                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
647                                    &phy_data);
648                 phy_data &= ~IGP02E1000_PM_SPD;
649                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
650                                     phy_data);
651         }
652
653         if (adapter->hw.mac_type < e1000_ich8lan)
654         /* FIXME: this code is duplicate and wrong for PCI Express */
655         if (adapter->en_mng_pt) {
656                 manc = E1000_READ_REG(&adapter->hw, MANC);
657                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
658                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
659         }
660 }
661
662 /**
663  * e1000_probe - Device Initialization Routine
664  * @pdev: PCI device information struct
665  * @ent: entry in e1000_pci_tbl
666  *
667  * Returns 0 on success, negative on failure
668  *
669  * e1000_probe initializes an adapter identified by a pci_dev structure.
670  * The OS initialization, configuring of the adapter private structure,
671  * and a hardware reset occur.
672  **/
673
674 static int __devinit
675 e1000_probe(struct pci_dev *pdev,
676             const struct pci_device_id *ent)
677 {
678         struct net_device *netdev;
679         struct e1000_adapter *adapter;
680         unsigned long mmio_start, mmio_len;
681         unsigned long flash_start, flash_len;
682
683         static int cards_found = 0;
684         static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
685         int i, err, pci_using_dac;
686         uint16_t eeprom_data;
687         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
688         if ((err = pci_enable_device(pdev)))
689                 return err;
690
691         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
692             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
693                 pci_using_dac = 1;
694         } else {
695                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
696                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
697                         E1000_ERR("No usable DMA configuration, aborting\n");
698                         return err;
699                 }
700                 pci_using_dac = 0;
701         }
702
703         if ((err = pci_request_regions(pdev, e1000_driver_name)))
704                 return err;
705
706         pci_set_master(pdev);
707
708         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
709         if (!netdev) {
710                 err = -ENOMEM;
711                 goto err_alloc_etherdev;
712         }
713
714         SET_MODULE_OWNER(netdev);
715         SET_NETDEV_DEV(netdev, &pdev->dev);
716
717         pci_set_drvdata(pdev, netdev);
718         adapter = netdev_priv(netdev);
719         adapter->netdev = netdev;
720         adapter->pdev = pdev;
721         adapter->hw.back = adapter;
722         adapter->msg_enable = (1 << debug) - 1;
723
724         mmio_start = pci_resource_start(pdev, BAR_0);
725         mmio_len = pci_resource_len(pdev, BAR_0);
726
727         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
728         if (!adapter->hw.hw_addr) {
729                 err = -EIO;
730                 goto err_ioremap;
731         }
732
733         for (i = BAR_1; i <= BAR_5; i++) {
734                 if (pci_resource_len(pdev, i) == 0)
735                         continue;
736                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
737                         adapter->hw.io_base = pci_resource_start(pdev, i);
738                         break;
739                 }
740         }
741
742         netdev->open = &e1000_open;
743         netdev->stop = &e1000_close;
744         netdev->hard_start_xmit = &e1000_xmit_frame;
745         netdev->get_stats = &e1000_get_stats;
746         netdev->set_multicast_list = &e1000_set_multi;
747         netdev->set_mac_address = &e1000_set_mac;
748         netdev->change_mtu = &e1000_change_mtu;
749         netdev->do_ioctl = &e1000_ioctl;
750         e1000_set_ethtool_ops(netdev);
751         netdev->tx_timeout = &e1000_tx_timeout;
752         netdev->watchdog_timeo = 5 * HZ;
753 #ifdef CONFIG_E1000_NAPI
754         netdev->poll = &e1000_clean;
755         netdev->weight = 64;
756 #endif
757         netdev->vlan_rx_register = e1000_vlan_rx_register;
758         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
759         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
760 #ifdef CONFIG_NET_POLL_CONTROLLER
761         netdev->poll_controller = e1000_netpoll;
762 #endif
763         strcpy(netdev->name, pci_name(pdev));
764
765         netdev->mem_start = mmio_start;
766         netdev->mem_end = mmio_start + mmio_len;
767         netdev->base_addr = adapter->hw.io_base;
768
769         adapter->bd_number = cards_found;
770
771         /* setup the private structure */
772
773         if ((err = e1000_sw_init(adapter)))
774                 goto err_sw_init;
775
776         /* Flash BAR mapping must happen after e1000_sw_init
777          * because it depends on mac_type */
778         if ((adapter->hw.mac_type == e1000_ich8lan) &&
779            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
780                 flash_start = pci_resource_start(pdev, 1);
781                 flash_len = pci_resource_len(pdev, 1);
782                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
783                 if (!adapter->hw.flash_address) {
784                         err = -EIO;
785                         goto err_flashmap;
786                 }
787         }
788
789         if ((err = e1000_check_phy_reset_block(&adapter->hw)))
790                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
791
792         /* if ksp3, indicate if it's port a being setup */
793         if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
794                         e1000_ksp3_port_a == 0)
795                 adapter->ksp3_port_a = 1;
796         e1000_ksp3_port_a++;
797         /* Reset for multiple KP3 adapters */
798         if (e1000_ksp3_port_a == 4)
799                 e1000_ksp3_port_a = 0;
800
801         if (adapter->hw.mac_type >= e1000_82543) {
802                 netdev->features = NETIF_F_SG |
803                                    NETIF_F_HW_CSUM |
804                                    NETIF_F_HW_VLAN_TX |
805                                    NETIF_F_HW_VLAN_RX |
806                                    NETIF_F_HW_VLAN_FILTER;
807                 if (adapter->hw.mac_type == e1000_ich8lan)
808                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
809         }
810
811 #ifdef NETIF_F_TSO
812         if ((adapter->hw.mac_type >= e1000_82544) &&
813            (adapter->hw.mac_type != e1000_82547))
814                 netdev->features |= NETIF_F_TSO;
815
816 #ifdef NETIF_F_TSO_IPV6
817         if (adapter->hw.mac_type > e1000_82547_rev_2)
818                 netdev->features |= NETIF_F_TSO_IPV6;
819 #endif
820 #endif
821         if (pci_using_dac)
822                 netdev->features |= NETIF_F_HIGHDMA;
823
824         netdev->features |= NETIF_F_LLTX;
825
826         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
827
828         /* initialize eeprom parameters */
829
830         if (e1000_init_eeprom_params(&adapter->hw)) {
831                 E1000_ERR("EEPROM initialization failed\n");
832                 return -EIO;
833         }
834
835         /* before reading the EEPROM, reset the controller to
836          * put the device in a known good starting state */
837
838         e1000_reset_hw(&adapter->hw);
839
840         /* make sure the EEPROM is good */
841
842         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
843                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
844                 err = -EIO;
845                 goto err_eeprom;
846         }
847
848         /* copy the MAC address out of the EEPROM */
849
850         if (e1000_read_mac_addr(&adapter->hw))
851                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
852         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
853         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
854
855         if (!is_valid_ether_addr(netdev->perm_addr)) {
856                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
857                 err = -EIO;
858                 goto err_eeprom;
859         }
860
861         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
862
863         e1000_get_bus_info(&adapter->hw);
864
865         init_timer(&adapter->tx_fifo_stall_timer);
866         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
867         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
868
869         init_timer(&adapter->watchdog_timer);
870         adapter->watchdog_timer.function = &e1000_watchdog;
871         adapter->watchdog_timer.data = (unsigned long) adapter;
872
873         init_timer(&adapter->phy_info_timer);
874         adapter->phy_info_timer.function = &e1000_update_phy_info;
875         adapter->phy_info_timer.data = (unsigned long) adapter;
876
877         INIT_WORK(&adapter->reset_task,
878                 (void (*)(void *))e1000_reset_task, netdev);
879
880         /* we're going to reset, so assume we have no link for now */
881
882         netif_carrier_off(netdev);
883         netif_stop_queue(netdev);
884
885         e1000_check_options(adapter);
886
887         /* Initial Wake on LAN setting
888          * If APM wake is enabled in the EEPROM,
889          * enable the ACPI Magic Packet filter
890          */
891
892         switch (adapter->hw.mac_type) {
893         case e1000_82542_rev2_0:
894         case e1000_82542_rev2_1:
895         case e1000_82543:
896                 break;
897         case e1000_82544:
898                 e1000_read_eeprom(&adapter->hw,
899                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
900                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
901                 break;
902         case e1000_ich8lan:
903                 e1000_read_eeprom(&adapter->hw,
904                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
905                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
906                 break;
907         case e1000_82546:
908         case e1000_82546_rev_3:
909         case e1000_82571:
910         case e1000_80003es2lan:
911                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
912                         e1000_read_eeprom(&adapter->hw,
913                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
914                         break;
915                 }
916                 /* Fall Through */
917         default:
918                 e1000_read_eeprom(&adapter->hw,
919                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
920                 break;
921         }
922         if (eeprom_data & eeprom_apme_mask)
923                 adapter->wol |= E1000_WUFC_MAG;
924
925         /* print bus type/speed/width info */
926         {
927         struct e1000_hw *hw = &adapter->hw;
928         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
929                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
930                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
931                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
932                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
933                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
934                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
935                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
936                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
937                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
938                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
939                  "32-bit"));
940         }
941
942         for (i = 0; i < 6; i++)
943                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
944
945         /* reset the hardware with the new settings */
946         e1000_reset(adapter);
947
948         /* If the controller is 82573 and f/w is AMT, do not set
949          * DRV_LOAD until the interface is up.  For all other cases,
950          * let the f/w know that the h/w is now under the control
951          * of the driver. */
952         if (adapter->hw.mac_type != e1000_82573 ||
953             !e1000_check_mng_mode(&adapter->hw))
954                 e1000_get_hw_control(adapter);
955
956         strcpy(netdev->name, "eth%d");
957         if ((err = register_netdev(netdev)))
958                 goto err_register;
959
960         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
961
962         cards_found++;
963         return 0;
964
965 err_register:
966         if (adapter->hw.flash_address)
967                 iounmap(adapter->hw.flash_address);
968 err_flashmap:
969 err_sw_init:
970 err_eeprom:
971         iounmap(adapter->hw.hw_addr);
972 err_ioremap:
973         free_netdev(netdev);
974 err_alloc_etherdev:
975         pci_release_regions(pdev);
976         return err;
977 }
978
979 /**
980  * e1000_remove - Device Removal Routine
981  * @pdev: PCI device information struct
982  *
983  * e1000_remove is called by the PCI subsystem to alert the driver
984  * that it should release a PCI device.  The could be caused by a
985  * Hot-Plug event, or because the driver is going to be removed from
986  * memory.
987  **/
988
989 static void __devexit
990 e1000_remove(struct pci_dev *pdev)
991 {
992         struct net_device *netdev = pci_get_drvdata(pdev);
993         struct e1000_adapter *adapter = netdev_priv(netdev);
994         uint32_t manc;
995 #ifdef CONFIG_E1000_NAPI
996         int i;
997 #endif
998
999         flush_scheduled_work();
1000
1001         if (adapter->hw.mac_type >= e1000_82540 &&
1002            adapter->hw.mac_type != e1000_ich8lan &&
1003            adapter->hw.media_type == e1000_media_type_copper) {
1004                 manc = E1000_READ_REG(&adapter->hw, MANC);
1005                 if (manc & E1000_MANC_SMBUS_EN) {
1006                         manc |= E1000_MANC_ARP_EN;
1007                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1008                 }
1009         }
1010
1011         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1012          * would have already happened in close and is redundant. */
1013         e1000_release_hw_control(adapter);
1014
1015         unregister_netdev(netdev);
1016 #ifdef CONFIG_E1000_NAPI
1017         for (i = 0; i < adapter->num_rx_queues; i++)
1018                 dev_put(&adapter->polling_netdev[i]);
1019 #endif
1020
1021         if (!e1000_check_phy_reset_block(&adapter->hw))
1022                 e1000_phy_hw_reset(&adapter->hw);
1023
1024         kfree(adapter->tx_ring);
1025         kfree(adapter->rx_ring);
1026 #ifdef CONFIG_E1000_NAPI
1027         kfree(adapter->polling_netdev);
1028 #endif
1029
1030         iounmap(adapter->hw.hw_addr);
1031         if (adapter->hw.flash_address)
1032                 iounmap(adapter->hw.flash_address);
1033         pci_release_regions(pdev);
1034
1035         free_netdev(netdev);
1036
1037         pci_disable_device(pdev);
1038 }
1039
1040 /**
1041  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1042  * @adapter: board private structure to initialize
1043  *
1044  * e1000_sw_init initializes the Adapter private data structure.
1045  * Fields are initialized based on PCI device information and
1046  * OS network device settings (MTU size).
1047  **/
1048
1049 static int __devinit
1050 e1000_sw_init(struct e1000_adapter *adapter)
1051 {
1052         struct e1000_hw *hw = &adapter->hw;
1053         struct net_device *netdev = adapter->netdev;
1054         struct pci_dev *pdev = adapter->pdev;
1055 #ifdef CONFIG_E1000_NAPI
1056         int i;
1057 #endif
1058
1059         /* PCI config space info */
1060
1061         hw->vendor_id = pdev->vendor;
1062         hw->device_id = pdev->device;
1063         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1064         hw->subsystem_id = pdev->subsystem_device;
1065
1066         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1067
1068         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1069
1070         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1071         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1072         hw->max_frame_size = netdev->mtu +
1073                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1074         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1075
1076         /* identify the MAC */
1077
1078         if (e1000_set_mac_type(hw)) {
1079                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1080                 return -EIO;
1081         }
1082
1083         switch (hw->mac_type) {
1084         default:
1085                 break;
1086         case e1000_82541:
1087         case e1000_82547:
1088         case e1000_82541_rev_2:
1089         case e1000_82547_rev_2:
1090                 hw->phy_init_script = 1;
1091                 break;
1092         }
1093
1094         e1000_set_media_type(hw);
1095
1096         hw->wait_autoneg_complete = FALSE;
1097         hw->tbi_compatibility_en = TRUE;
1098         hw->adaptive_ifs = TRUE;
1099
1100         /* Copper options */
1101
1102         if (hw->media_type == e1000_media_type_copper) {
1103                 hw->mdix = AUTO_ALL_MODES;
1104                 hw->disable_polarity_correction = FALSE;
1105                 hw->master_slave = E1000_MASTER_SLAVE;
1106         }
1107
1108         adapter->num_tx_queues = 1;
1109         adapter->num_rx_queues = 1;
1110
1111         if (e1000_alloc_queues(adapter)) {
1112                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1113                 return -ENOMEM;
1114         }
1115
1116 #ifdef CONFIG_E1000_NAPI
1117         for (i = 0; i < adapter->num_rx_queues; i++) {
1118                 adapter->polling_netdev[i].priv = adapter;
1119                 adapter->polling_netdev[i].poll = &e1000_clean;
1120                 adapter->polling_netdev[i].weight = 64;
1121                 dev_hold(&adapter->polling_netdev[i]);
1122                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1123         }
1124         spin_lock_init(&adapter->tx_queue_lock);
1125 #endif
1126
1127         atomic_set(&adapter->irq_sem, 1);
1128         spin_lock_init(&adapter->stats_lock);
1129
1130         return 0;
1131 }
1132
1133 /**
1134  * e1000_alloc_queues - Allocate memory for all rings
1135  * @adapter: board private structure to initialize
1136  *
1137  * We allocate one ring per queue at run-time since we don't know the
1138  * number of queues at compile-time.  The polling_netdev array is
1139  * intended for Multiqueue, but should work fine with a single queue.
1140  **/
1141
1142 static int __devinit
1143 e1000_alloc_queues(struct e1000_adapter *adapter)
1144 {
1145         int size;
1146
1147         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1148         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1149         if (!adapter->tx_ring)
1150                 return -ENOMEM;
1151         memset(adapter->tx_ring, 0, size);
1152
1153         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1154         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1155         if (!adapter->rx_ring) {
1156                 kfree(adapter->tx_ring);
1157                 return -ENOMEM;
1158         }
1159         memset(adapter->rx_ring, 0, size);
1160
1161 #ifdef CONFIG_E1000_NAPI
1162         size = sizeof(struct net_device) * adapter->num_rx_queues;
1163         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1164         if (!adapter->polling_netdev) {
1165                 kfree(adapter->tx_ring);
1166                 kfree(adapter->rx_ring);
1167                 return -ENOMEM;
1168         }
1169         memset(adapter->polling_netdev, 0, size);
1170 #endif
1171
1172         return E1000_SUCCESS;
1173 }
1174
1175 /**
1176  * e1000_open - Called when a network interface is made active
1177  * @netdev: network interface device structure
1178  *
1179  * Returns 0 on success, negative value on failure
1180  *
1181  * The open entry point is called when a network interface is made
1182  * active by the system (IFF_UP).  At this point all resources needed
1183  * for transmit and receive operations are allocated, the interrupt
1184  * handler is registered with the OS, the watchdog timer is started,
1185  * and the stack is notified that the interface is ready.
1186  **/
1187
1188 static int
1189 e1000_open(struct net_device *netdev)
1190 {
1191         struct e1000_adapter *adapter = netdev_priv(netdev);
1192         int err;
1193
1194         /* disallow open during test */
1195         if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
1196                 return -EBUSY;
1197
1198         /* allocate transmit descriptors */
1199
1200         if ((err = e1000_setup_all_tx_resources(adapter)))
1201                 goto err_setup_tx;
1202
1203         /* allocate receive descriptors */
1204
1205         if ((err = e1000_setup_all_rx_resources(adapter)))
1206                 goto err_setup_rx;
1207
1208         err = e1000_request_irq(adapter);
1209         if (err)
1210                 goto err_up;
1211
1212         e1000_power_up_phy(adapter);
1213
1214         if ((err = e1000_up(adapter)))
1215                 goto err_up;
1216         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1217         if ((adapter->hw.mng_cookie.status &
1218                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1219                 e1000_update_mng_vlan(adapter);
1220         }
1221
1222         /* If AMT is enabled, let the firmware know that the network
1223          * interface is now open */
1224         if (adapter->hw.mac_type == e1000_82573 &&
1225             e1000_check_mng_mode(&adapter->hw))
1226                 e1000_get_hw_control(adapter);
1227
1228         return E1000_SUCCESS;
1229
1230 err_up:
1231         e1000_free_all_rx_resources(adapter);
1232 err_setup_rx:
1233         e1000_free_all_tx_resources(adapter);
1234 err_setup_tx:
1235         e1000_reset(adapter);
1236
1237         return err;
1238 }
1239
1240 /**
1241  * e1000_close - Disables a network interface
1242  * @netdev: network interface device structure
1243  *
1244  * Returns 0, this is not allowed to fail
1245  *
1246  * The close entry point is called when an interface is de-activated
1247  * by the OS.  The hardware is still under the drivers control, but
1248  * needs to be disabled.  A global MAC reset is issued to stop the
1249  * hardware, and all transmit and receive resources are freed.
1250  **/
1251
1252 static int
1253 e1000_close(struct net_device *netdev)
1254 {
1255         struct e1000_adapter *adapter = netdev_priv(netdev);
1256
1257         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1258         e1000_down(adapter);
1259         e1000_power_down_phy(adapter);
1260         e1000_free_irq(adapter);
1261
1262         e1000_free_all_tx_resources(adapter);
1263         e1000_free_all_rx_resources(adapter);
1264
1265         if ((adapter->hw.mng_cookie.status &
1266                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1267                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1268         }
1269
1270         /* If AMT is enabled, let the firmware know that the network
1271          * interface is now closed */
1272         if (adapter->hw.mac_type == e1000_82573 &&
1273             e1000_check_mng_mode(&adapter->hw))
1274                 e1000_release_hw_control(adapter);
1275
1276         return 0;
1277 }
1278
1279 /**
1280  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1281  * @adapter: address of board private structure
1282  * @start: address of beginning of memory
1283  * @len: length of memory
1284  **/
1285 static boolean_t
1286 e1000_check_64k_bound(struct e1000_adapter *adapter,
1287                       void *start, unsigned long len)
1288 {
1289         unsigned long begin = (unsigned long) start;
1290         unsigned long end = begin + len;
1291
1292         /* First rev 82545 and 82546 need to not allow any memory
1293          * write location to cross 64k boundary due to errata 23 */
1294         if (adapter->hw.mac_type == e1000_82545 ||
1295             adapter->hw.mac_type == e1000_82546) {
1296                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1297         }
1298
1299         return TRUE;
1300 }
1301
1302 /**
1303  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1304  * @adapter: board private structure
1305  * @txdr:    tx descriptor ring (for a specific queue) to setup
1306  *
1307  * Return 0 on success, negative on failure
1308  **/
1309
1310 static int
1311 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1312                          struct e1000_tx_ring *txdr)
1313 {
1314         struct pci_dev *pdev = adapter->pdev;
1315         int size;
1316
1317         size = sizeof(struct e1000_buffer) * txdr->count;
1318         txdr->buffer_info = vmalloc(size);
1319         if (!txdr->buffer_info) {
1320                 DPRINTK(PROBE, ERR,
1321                 "Unable to allocate memory for the transmit descriptor ring\n");
1322                 return -ENOMEM;
1323         }
1324         memset(txdr->buffer_info, 0, size);
1325
1326         /* round up to nearest 4K */
1327
1328         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1329         E1000_ROUNDUP(txdr->size, 4096);
1330
1331         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1332         if (!txdr->desc) {
1333 setup_tx_desc_die:
1334                 vfree(txdr->buffer_info);
1335                 DPRINTK(PROBE, ERR,
1336                 "Unable to allocate memory for the transmit descriptor ring\n");
1337                 return -ENOMEM;
1338         }
1339
1340         /* Fix for errata 23, can't cross 64kB boundary */
1341         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1342                 void *olddesc = txdr->desc;
1343                 dma_addr_t olddma = txdr->dma;
1344                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1345                                      "at %p\n", txdr->size, txdr->desc);
1346                 /* Try again, without freeing the previous */
1347                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1348                 /* Failed allocation, critical failure */
1349                 if (!txdr->desc) {
1350                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1351                         goto setup_tx_desc_die;
1352                 }
1353
1354                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1355                         /* give up */
1356                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1357                                             txdr->dma);
1358                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1359                         DPRINTK(PROBE, ERR,
1360                                 "Unable to allocate aligned memory "
1361                                 "for the transmit descriptor ring\n");
1362                         vfree(txdr->buffer_info);
1363                         return -ENOMEM;
1364                 } else {
1365                         /* Free old allocation, new allocation was successful */
1366                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1367                 }
1368         }
1369         memset(txdr->desc, 0, txdr->size);
1370
1371         txdr->next_to_use = 0;
1372         txdr->next_to_clean = 0;
1373         spin_lock_init(&txdr->tx_lock);
1374
1375         return 0;
1376 }
1377
1378 /**
1379  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1380  *                                (Descriptors) for all queues
1381  * @adapter: board private structure
1382  *
1383  * If this function returns with an error, then it's possible one or
1384  * more of the rings is populated (while the rest are not).  It is the
1385  * callers duty to clean those orphaned rings.
1386  *
1387  * Return 0 on success, negative on failure
1388  **/
1389
1390 int
1391 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1392 {
1393         int i, err = 0;
1394
1395         for (i = 0; i < adapter->num_tx_queues; i++) {
1396                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1397                 if (err) {
1398                         DPRINTK(PROBE, ERR,
1399                                 "Allocation for Tx Queue %u failed\n", i);
1400                         break;
1401                 }
1402         }
1403
1404         return err;
1405 }
1406
1407 /**
1408  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1409  * @adapter: board private structure
1410  *
1411  * Configure the Tx unit of the MAC after a reset.
1412  **/
1413
1414 static void
1415 e1000_configure_tx(struct e1000_adapter *adapter)
1416 {
1417         uint64_t tdba;
1418         struct e1000_hw *hw = &adapter->hw;
1419         uint32_t tdlen, tctl, tipg, tarc;
1420         uint32_t ipgr1, ipgr2;
1421
1422         /* Setup the HW Tx Head and Tail descriptor pointers */
1423
1424         switch (adapter->num_tx_queues) {
1425         case 1:
1426         default:
1427                 tdba = adapter->tx_ring[0].dma;
1428                 tdlen = adapter->tx_ring[0].count *
1429                         sizeof(struct e1000_tx_desc);
1430                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1431                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1432                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1433                 E1000_WRITE_REG(hw, TDT, 0);
1434                 E1000_WRITE_REG(hw, TDH, 0);
1435                 adapter->tx_ring[0].tdh = E1000_TDH;
1436                 adapter->tx_ring[0].tdt = E1000_TDT;
1437                 break;
1438         }
1439
1440         /* Set the default values for the Tx Inter Packet Gap timer */
1441
1442         if (hw->media_type == e1000_media_type_fiber ||
1443             hw->media_type == e1000_media_type_internal_serdes)
1444                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1445         else
1446                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1447
1448         switch (hw->mac_type) {
1449         case e1000_82542_rev2_0:
1450         case e1000_82542_rev2_1:
1451                 tipg = DEFAULT_82542_TIPG_IPGT;
1452                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1453                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1454                 break;
1455         case e1000_80003es2lan:
1456                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1457                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1458                 break;
1459         default:
1460                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1461                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1462                 break;
1463         }
1464         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1465         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1466         E1000_WRITE_REG(hw, TIPG, tipg);
1467
1468         /* Set the Tx Interrupt Delay register */
1469
1470         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1471         if (hw->mac_type >= e1000_82540)
1472                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1473
1474         /* Program the Transmit Control Register */
1475
1476         tctl = E1000_READ_REG(hw, TCTL);
1477
1478         tctl &= ~E1000_TCTL_CT;
1479         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1480                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1481
1482 #ifdef DISABLE_MULR
1483         /* disable Multiple Reads for debugging */
1484         tctl &= ~E1000_TCTL_MULR;
1485 #endif
1486
1487         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1488                 tarc = E1000_READ_REG(hw, TARC0);
1489                 tarc |= ((1 << 25) | (1 << 21));
1490                 E1000_WRITE_REG(hw, TARC0, tarc);
1491                 tarc = E1000_READ_REG(hw, TARC1);
1492                 tarc |= (1 << 25);
1493                 if (tctl & E1000_TCTL_MULR)
1494                         tarc &= ~(1 << 28);
1495                 else
1496                         tarc |= (1 << 28);
1497                 E1000_WRITE_REG(hw, TARC1, tarc);
1498         } else if (hw->mac_type == e1000_80003es2lan) {
1499                 tarc = E1000_READ_REG(hw, TARC0);
1500                 tarc |= 1;
1501                 E1000_WRITE_REG(hw, TARC0, tarc);
1502                 tarc = E1000_READ_REG(hw, TARC1);
1503                 tarc |= 1;
1504                 E1000_WRITE_REG(hw, TARC1, tarc);
1505         }
1506
1507         e1000_config_collision_dist(hw);
1508
1509         /* Setup Transmit Descriptor Settings for eop descriptor */
1510         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1511                 E1000_TXD_CMD_IFCS;
1512
1513         if (hw->mac_type < e1000_82543)
1514                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1515         else
1516                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1517
1518         /* Cache if we're 82544 running in PCI-X because we'll
1519          * need this to apply a workaround later in the send path. */
1520         if (hw->mac_type == e1000_82544 &&
1521             hw->bus_type == e1000_bus_type_pcix)
1522                 adapter->pcix_82544 = 1;
1523
1524         E1000_WRITE_REG(hw, TCTL, tctl);
1525
1526 }
1527
1528 /**
1529  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1530  * @adapter: board private structure
1531  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1532  *
1533  * Returns 0 on success, negative on failure
1534  **/
1535
1536 static int
1537 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1538                          struct e1000_rx_ring *rxdr)
1539 {
1540         struct pci_dev *pdev = adapter->pdev;
1541         int size, desc_len;
1542
1543         size = sizeof(struct e1000_buffer) * rxdr->count;
1544         rxdr->buffer_info = vmalloc(size);
1545         if (!rxdr->buffer_info) {
1546                 DPRINTK(PROBE, ERR,
1547                 "Unable to allocate memory for the receive descriptor ring\n");
1548                 return -ENOMEM;
1549         }
1550         memset(rxdr->buffer_info, 0, size);
1551
1552         size = sizeof(struct e1000_ps_page) * rxdr->count;
1553         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1554         if (!rxdr->ps_page) {
1555                 vfree(rxdr->buffer_info);
1556                 DPRINTK(PROBE, ERR,
1557                 "Unable to allocate memory for the receive descriptor ring\n");
1558                 return -ENOMEM;
1559         }
1560         memset(rxdr->ps_page, 0, size);
1561
1562         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1563         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1564         if (!rxdr->ps_page_dma) {
1565                 vfree(rxdr->buffer_info);
1566                 kfree(rxdr->ps_page);
1567                 DPRINTK(PROBE, ERR,
1568                 "Unable to allocate memory for the receive descriptor ring\n");
1569                 return -ENOMEM;
1570         }
1571         memset(rxdr->ps_page_dma, 0, size);
1572
1573         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1574                 desc_len = sizeof(struct e1000_rx_desc);
1575         else
1576                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1577
1578         /* Round up to nearest 4K */
1579
1580         rxdr->size = rxdr->count * desc_len;
1581         E1000_ROUNDUP(rxdr->size, 4096);
1582
1583         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1584
1585         if (!rxdr->desc) {
1586                 DPRINTK(PROBE, ERR,
1587                 "Unable to allocate memory for the receive descriptor ring\n");
1588 setup_rx_desc_die:
1589                 vfree(rxdr->buffer_info);
1590                 kfree(rxdr->ps_page);
1591                 kfree(rxdr->ps_page_dma);
1592                 return -ENOMEM;
1593         }
1594
1595         /* Fix for errata 23, can't cross 64kB boundary */
1596         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1597                 void *olddesc = rxdr->desc;
1598                 dma_addr_t olddma = rxdr->dma;
1599                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1600                                      "at %p\n", rxdr->size, rxdr->desc);
1601                 /* Try again, without freeing the previous */
1602                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1603                 /* Failed allocation, critical failure */
1604                 if (!rxdr->desc) {
1605                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1606                         DPRINTK(PROBE, ERR,
1607                                 "Unable to allocate memory "
1608                                 "for the receive descriptor ring\n");
1609                         goto setup_rx_desc_die;
1610                 }
1611
1612                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1613                         /* give up */
1614                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1615                                             rxdr->dma);
1616                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1617                         DPRINTK(PROBE, ERR,
1618                                 "Unable to allocate aligned memory "
1619                                 "for the receive descriptor ring\n");
1620                         goto setup_rx_desc_die;
1621                 } else {
1622                         /* Free old allocation, new allocation was successful */
1623                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1624                 }
1625         }
1626         memset(rxdr->desc, 0, rxdr->size);
1627
1628         rxdr->next_to_clean = 0;
1629         rxdr->next_to_use = 0;
1630
1631         return 0;
1632 }
1633
1634 /**
1635  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1636  *                                (Descriptors) for all queues
1637  * @adapter: board private structure
1638  *
1639  * If this function returns with an error, then it's possible one or
1640  * more of the rings is populated (while the rest are not).  It is the
1641  * callers duty to clean those orphaned rings.
1642  *
1643  * Return 0 on success, negative on failure
1644  **/
1645
1646 int
1647 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1648 {
1649         int i, err = 0;
1650
1651         for (i = 0; i < adapter->num_rx_queues; i++) {
1652                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1653                 if (err) {
1654                         DPRINTK(PROBE, ERR,
1655                                 "Allocation for Rx Queue %u failed\n", i);
1656                         break;
1657                 }
1658         }
1659
1660         return err;
1661 }
1662
1663 /**
1664  * e1000_setup_rctl - configure the receive control registers
1665  * @adapter: Board private structure
1666  **/
1667 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1668                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1669 static void
1670 e1000_setup_rctl(struct e1000_adapter *adapter)
1671 {
1672         uint32_t rctl, rfctl;
1673         uint32_t psrctl = 0;
1674 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1675         uint32_t pages = 0;
1676 #endif
1677
1678         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1679
1680         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1681
1682         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1683                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1684                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1685
1686         if (adapter->hw.tbi_compatibility_on == 1)
1687                 rctl |= E1000_RCTL_SBP;
1688         else
1689                 rctl &= ~E1000_RCTL_SBP;
1690
1691         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1692                 rctl &= ~E1000_RCTL_LPE;
1693         else
1694                 rctl |= E1000_RCTL_LPE;
1695
1696         /* Setup buffer sizes */
1697         rctl &= ~E1000_RCTL_SZ_4096;
1698         rctl |= E1000_RCTL_BSEX;
1699         switch (adapter->rx_buffer_len) {
1700                 case E1000_RXBUFFER_256:
1701                         rctl |= E1000_RCTL_SZ_256;
1702                         rctl &= ~E1000_RCTL_BSEX;
1703                         break;
1704                 case E1000_RXBUFFER_512:
1705                         rctl |= E1000_RCTL_SZ_512;
1706                         rctl &= ~E1000_RCTL_BSEX;
1707                         break;
1708                 case E1000_RXBUFFER_1024:
1709                         rctl |= E1000_RCTL_SZ_1024;
1710                         rctl &= ~E1000_RCTL_BSEX;
1711                         break;
1712                 case E1000_RXBUFFER_2048:
1713                 default:
1714                         rctl |= E1000_RCTL_SZ_2048;
1715                         rctl &= ~E1000_RCTL_BSEX;
1716                         break;
1717                 case E1000_RXBUFFER_4096:
1718                         rctl |= E1000_RCTL_SZ_4096;
1719                         break;
1720                 case E1000_RXBUFFER_8192:
1721                         rctl |= E1000_RCTL_SZ_8192;
1722                         break;
1723                 case E1000_RXBUFFER_16384:
1724                         rctl |= E1000_RCTL_SZ_16384;
1725                         break;
1726         }
1727
1728 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1729         /* 82571 and greater support packet-split where the protocol
1730          * header is placed in skb->data and the packet data is
1731          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1732          * In the case of a non-split, skb->data is linearly filled,
1733          * followed by the page buffers.  Therefore, skb->data is
1734          * sized to hold the largest protocol header.
1735          */
1736         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1737         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1738             PAGE_SIZE <= 16384)
1739                 adapter->rx_ps_pages = pages;
1740         else
1741                 adapter->rx_ps_pages = 0;
1742 #endif
1743         if (adapter->rx_ps_pages) {
1744                 /* Configure extra packet-split registers */
1745                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1746                 rfctl |= E1000_RFCTL_EXTEN;
1747                 /* disable IPv6 packet split support */
1748                 rfctl |= E1000_RFCTL_IPV6_DIS;
1749                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1750
1751                 rctl |= E1000_RCTL_DTYP_PS;
1752
1753                 psrctl |= adapter->rx_ps_bsize0 >>
1754                         E1000_PSRCTL_BSIZE0_SHIFT;
1755
1756                 switch (adapter->rx_ps_pages) {
1757                 case 3:
1758                         psrctl |= PAGE_SIZE <<
1759                                 E1000_PSRCTL_BSIZE3_SHIFT;
1760                 case 2:
1761                         psrctl |= PAGE_SIZE <<
1762                                 E1000_PSRCTL_BSIZE2_SHIFT;
1763                 case 1:
1764                         psrctl |= PAGE_SIZE >>
1765                                 E1000_PSRCTL_BSIZE1_SHIFT;
1766                         break;
1767                 }
1768
1769                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1770         }
1771
1772         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1773 }
1774
1775 /**
1776  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1777  * @adapter: board private structure
1778  *
1779  * Configure the Rx unit of the MAC after a reset.
1780  **/
1781
1782 static void
1783 e1000_configure_rx(struct e1000_adapter *adapter)
1784 {
1785         uint64_t rdba;
1786         struct e1000_hw *hw = &adapter->hw;
1787         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1788
1789         if (adapter->rx_ps_pages) {
1790                 /* this is a 32 byte descriptor */
1791                 rdlen = adapter->rx_ring[0].count *
1792                         sizeof(union e1000_rx_desc_packet_split);
1793                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1794                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1795         } else {
1796                 rdlen = adapter->rx_ring[0].count *
1797                         sizeof(struct e1000_rx_desc);
1798                 adapter->clean_rx = e1000_clean_rx_irq;
1799                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1800         }
1801
1802         /* disable receives while setting up the descriptors */
1803         rctl = E1000_READ_REG(hw, RCTL);
1804         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1805
1806         /* set the Receive Delay Timer Register */
1807         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1808
1809         if (hw->mac_type >= e1000_82540) {
1810                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1811                 if (adapter->itr > 1)
1812                         E1000_WRITE_REG(hw, ITR,
1813                                 1000000000 / (adapter->itr * 256));
1814         }
1815
1816         if (hw->mac_type >= e1000_82571) {
1817                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1818                 /* Reset delay timers after every interrupt */
1819                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1820 #ifdef CONFIG_E1000_NAPI
1821                 /* Auto-Mask interrupts upon ICR read. */
1822                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1823 #endif
1824                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1825                 E1000_WRITE_REG(hw, IAM, ~0);
1826                 E1000_WRITE_FLUSH(hw);
1827         }
1828
1829         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1830          * the Base and Length of the Rx Descriptor Ring */
1831         switch (adapter->num_rx_queues) {
1832         case 1:
1833         default:
1834                 rdba = adapter->rx_ring[0].dma;
1835                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1836                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1837                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1838                 E1000_WRITE_REG(hw, RDT, 0);
1839                 E1000_WRITE_REG(hw, RDH, 0);
1840                 adapter->rx_ring[0].rdh = E1000_RDH;
1841                 adapter->rx_ring[0].rdt = E1000_RDT;
1842                 break;
1843         }
1844
1845         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1846         if (hw->mac_type >= e1000_82543) {
1847                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1848                 if (adapter->rx_csum == TRUE) {
1849                         rxcsum |= E1000_RXCSUM_TUOFL;
1850
1851                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1852                          * Must be used in conjunction with packet-split. */
1853                         if ((hw->mac_type >= e1000_82571) &&
1854                             (adapter->rx_ps_pages)) {
1855                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1856                         }
1857                 } else {
1858                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1859                         /* don't need to clear IPPCSE as it defaults to 0 */
1860                 }
1861                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1862         }
1863
1864         /* Enable Receives */
1865         E1000_WRITE_REG(hw, RCTL, rctl);
1866 }
1867
1868 /**
1869  * e1000_free_tx_resources - Free Tx Resources per Queue
1870  * @adapter: board private structure
1871  * @tx_ring: Tx descriptor ring for a specific queue
1872  *
1873  * Free all transmit software resources
1874  **/
1875
1876 static void
1877 e1000_free_tx_resources(struct e1000_adapter *adapter,
1878                         struct e1000_tx_ring *tx_ring)
1879 {
1880         struct pci_dev *pdev = adapter->pdev;
1881
1882         e1000_clean_tx_ring(adapter, tx_ring);
1883
1884         vfree(tx_ring->buffer_info);
1885         tx_ring->buffer_info = NULL;
1886
1887         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1888
1889         tx_ring->desc = NULL;
1890 }
1891
1892 /**
1893  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1894  * @adapter: board private structure
1895  *
1896  * Free all transmit software resources
1897  **/
1898
1899 void
1900 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1901 {
1902         int i;
1903
1904         for (i = 0; i < adapter->num_tx_queues; i++)
1905                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1906 }
1907
1908 static void
1909 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1910                         struct e1000_buffer *buffer_info)
1911 {
1912         if (buffer_info->dma) {
1913                 pci_unmap_page(adapter->pdev,
1914                                 buffer_info->dma,
1915                                 buffer_info->length,
1916                                 PCI_DMA_TODEVICE);
1917         }
1918         if (buffer_info->skb)
1919                 dev_kfree_skb_any(buffer_info->skb);
1920         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1921 }
1922
1923 /**
1924  * e1000_clean_tx_ring - Free Tx Buffers
1925  * @adapter: board private structure
1926  * @tx_ring: ring to be cleaned
1927  **/
1928
1929 static void
1930 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1931                     struct e1000_tx_ring *tx_ring)
1932 {
1933         struct e1000_buffer *buffer_info;
1934         unsigned long size;
1935         unsigned int i;
1936
1937         /* Free all the Tx ring sk_buffs */
1938
1939         for (i = 0; i < tx_ring->count; i++) {
1940                 buffer_info = &tx_ring->buffer_info[i];
1941                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1942         }
1943
1944         size = sizeof(struct e1000_buffer) * tx_ring->count;
1945         memset(tx_ring->buffer_info, 0, size);
1946
1947         /* Zero out the descriptor ring */
1948
1949         memset(tx_ring->desc, 0, tx_ring->size);
1950
1951         tx_ring->next_to_use = 0;
1952         tx_ring->next_to_clean = 0;
1953         tx_ring->last_tx_tso = 0;
1954
1955         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1956         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1957 }
1958
1959 /**
1960  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1961  * @adapter: board private structure
1962  **/
1963
1964 static void
1965 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1966 {
1967         int i;
1968
1969         for (i = 0; i < adapter->num_tx_queues; i++)
1970                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1971 }
1972
1973 /**
1974  * e1000_free_rx_resources - Free Rx Resources
1975  * @adapter: board private structure
1976  * @rx_ring: ring to clean the resources from
1977  *
1978  * Free all receive software resources
1979  **/
1980
1981 static void
1982 e1000_free_rx_resources(struct e1000_adapter *adapter,
1983                         struct e1000_rx_ring *rx_ring)
1984 {
1985         struct pci_dev *pdev = adapter->pdev;
1986
1987         e1000_clean_rx_ring(adapter, rx_ring);
1988
1989         vfree(rx_ring->buffer_info);
1990         rx_ring->buffer_info = NULL;
1991         kfree(rx_ring->ps_page);
1992         rx_ring->ps_page = NULL;
1993         kfree(rx_ring->ps_page_dma);
1994         rx_ring->ps_page_dma = NULL;
1995
1996         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1997
1998         rx_ring->desc = NULL;
1999 }
2000
2001 /**
2002  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2003  * @adapter: board private structure
2004  *
2005  * Free all receive software resources
2006  **/
2007
2008 void
2009 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2010 {
2011         int i;
2012
2013         for (i = 0; i < adapter->num_rx_queues; i++)
2014                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2015 }
2016
2017 /**
2018  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2019  * @adapter: board private structure
2020  * @rx_ring: ring to free buffers from
2021  **/
2022
2023 static void
2024 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2025                     struct e1000_rx_ring *rx_ring)
2026 {
2027         struct e1000_buffer *buffer_info;
2028         struct e1000_ps_page *ps_page;
2029         struct e1000_ps_page_dma *ps_page_dma;
2030         struct pci_dev *pdev = adapter->pdev;
2031         unsigned long size;
2032         unsigned int i, j;
2033
2034         /* Free all the Rx ring sk_buffs */
2035         for (i = 0; i < rx_ring->count; i++) {
2036                 buffer_info = &rx_ring->buffer_info[i];
2037                 if (buffer_info->skb) {
2038                         pci_unmap_single(pdev,
2039                                          buffer_info->dma,
2040                                          buffer_info->length,
2041                                          PCI_DMA_FROMDEVICE);
2042
2043                         dev_kfree_skb(buffer_info->skb);
2044                         buffer_info->skb = NULL;
2045                 }
2046                 ps_page = &rx_ring->ps_page[i];
2047                 ps_page_dma = &rx_ring->ps_page_dma[i];
2048                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2049                         if (!ps_page->ps_page[j]) break;
2050                         pci_unmap_page(pdev,
2051                                        ps_page_dma->ps_page_dma[j],
2052                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2053                         ps_page_dma->ps_page_dma[j] = 0;
2054                         put_page(ps_page->ps_page[j]);
2055                         ps_page->ps_page[j] = NULL;
2056                 }
2057         }
2058
2059         size = sizeof(struct e1000_buffer) * rx_ring->count;
2060         memset(rx_ring->buffer_info, 0, size);
2061         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2062         memset(rx_ring->ps_page, 0, size);
2063         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2064         memset(rx_ring->ps_page_dma, 0, size);
2065
2066         /* Zero out the descriptor ring */
2067
2068         memset(rx_ring->desc, 0, rx_ring->size);
2069
2070         rx_ring->next_to_clean = 0;
2071         rx_ring->next_to_use = 0;
2072
2073         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2074         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2075 }
2076
2077 /**
2078  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2079  * @adapter: board private structure
2080  **/
2081
2082 static void
2083 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2084 {
2085         int i;
2086
2087         for (i = 0; i < adapter->num_rx_queues; i++)
2088                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2089 }
2090
2091 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2092  * and memory write and invalidate disabled for certain operations
2093  */
2094 static void
2095 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2096 {
2097         struct net_device *netdev = adapter->netdev;
2098         uint32_t rctl;
2099
2100         e1000_pci_clear_mwi(&adapter->hw);
2101
2102         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2103         rctl |= E1000_RCTL_RST;
2104         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2105         E1000_WRITE_FLUSH(&adapter->hw);
2106         mdelay(5);
2107
2108         if (netif_running(netdev))
2109                 e1000_clean_all_rx_rings(adapter);
2110 }
2111
2112 static void
2113 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2114 {
2115         struct net_device *netdev = adapter->netdev;
2116         uint32_t rctl;
2117
2118         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2119         rctl &= ~E1000_RCTL_RST;
2120         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2121         E1000_WRITE_FLUSH(&adapter->hw);
2122         mdelay(5);
2123
2124         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2125                 e1000_pci_set_mwi(&adapter->hw);
2126
2127         if (netif_running(netdev)) {
2128                 /* No need to loop, because 82542 supports only 1 queue */
2129                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2130                 e1000_configure_rx(adapter);
2131                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2132         }
2133 }
2134
2135 /**
2136  * e1000_set_mac - Change the Ethernet Address of the NIC
2137  * @netdev: network interface device structure
2138  * @p: pointer to an address structure
2139  *
2140  * Returns 0 on success, negative on failure
2141  **/
2142
2143 static int
2144 e1000_set_mac(struct net_device *netdev, void *p)
2145 {
2146         struct e1000_adapter *adapter = netdev_priv(netdev);
2147         struct sockaddr *addr = p;
2148
2149         if (!is_valid_ether_addr(addr->sa_data))
2150                 return -EADDRNOTAVAIL;
2151
2152         /* 82542 2.0 needs to be in reset to write receive address registers */
2153
2154         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2155                 e1000_enter_82542_rst(adapter);
2156
2157         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2158         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2159
2160         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2161
2162         /* With 82571 controllers, LAA may be overwritten (with the default)
2163          * due to controller reset from the other port. */
2164         if (adapter->hw.mac_type == e1000_82571) {
2165                 /* activate the work around */
2166                 adapter->hw.laa_is_present = 1;
2167
2168                 /* Hold a copy of the LAA in RAR[14] This is done so that
2169                  * between the time RAR[0] gets clobbered  and the time it
2170                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2171                  * of the RARs and no incoming packets directed to this port
2172                  * are dropped. Eventaully the LAA will be in RAR[0] and
2173                  * RAR[14] */
2174                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2175                                         E1000_RAR_ENTRIES - 1);
2176         }
2177
2178         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2179                 e1000_leave_82542_rst(adapter);
2180
2181         return 0;
2182 }
2183
2184 /**
2185  * e1000_set_multi - Multicast and Promiscuous mode set
2186  * @netdev: network interface device structure
2187  *
2188  * The set_multi entry point is called whenever the multicast address
2189  * list or the network interface flags are updated.  This routine is
2190  * responsible for configuring the hardware for proper multicast,
2191  * promiscuous mode, and all-multi behavior.
2192  **/
2193
2194 static void
2195 e1000_set_multi(struct net_device *netdev)
2196 {
2197         struct e1000_adapter *adapter = netdev_priv(netdev);
2198         struct e1000_hw *hw = &adapter->hw;
2199         struct dev_mc_list *mc_ptr;
2200         uint32_t rctl;
2201         uint32_t hash_value;
2202         int i, rar_entries = E1000_RAR_ENTRIES;
2203         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2204                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2205                                 E1000_NUM_MTA_REGISTERS;
2206
2207         if (adapter->hw.mac_type == e1000_ich8lan)
2208                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2209
2210         /* reserve RAR[14] for LAA over-write work-around */
2211         if (adapter->hw.mac_type == e1000_82571)
2212                 rar_entries--;
2213
2214         /* Check for Promiscuous and All Multicast modes */
2215
2216         rctl = E1000_READ_REG(hw, RCTL);
2217
2218         if (netdev->flags & IFF_PROMISC) {
2219                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2220         } else if (netdev->flags & IFF_ALLMULTI) {
2221                 rctl |= E1000_RCTL_MPE;
2222                 rctl &= ~E1000_RCTL_UPE;
2223         } else {
2224                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2225         }
2226
2227         E1000_WRITE_REG(hw, RCTL, rctl);
2228
2229         /* 82542 2.0 needs to be in reset to write receive address registers */
2230
2231         if (hw->mac_type == e1000_82542_rev2_0)
2232                 e1000_enter_82542_rst(adapter);
2233
2234         /* load the first 14 multicast address into the exact filters 1-14
2235          * RAR 0 is used for the station MAC adddress
2236          * if there are not 14 addresses, go ahead and clear the filters
2237          * -- with 82571 controllers only 0-13 entries are filled here
2238          */
2239         mc_ptr = netdev->mc_list;
2240
2241         for (i = 1; i < rar_entries; i++) {
2242                 if (mc_ptr) {
2243                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2244                         mc_ptr = mc_ptr->next;
2245                 } else {
2246                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2247                         E1000_WRITE_FLUSH(hw);
2248                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2249                         E1000_WRITE_FLUSH(hw);
2250                 }
2251         }
2252
2253         /* clear the old settings from the multicast hash table */
2254
2255         for (i = 0; i < mta_reg_count; i++) {
2256                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2257                 E1000_WRITE_FLUSH(hw);
2258         }
2259
2260         /* load any remaining addresses into the hash table */
2261
2262         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2263                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2264                 e1000_mta_set(hw, hash_value);
2265         }
2266
2267         if (hw->mac_type == e1000_82542_rev2_0)
2268                 e1000_leave_82542_rst(adapter);
2269 }
2270
2271 /* Need to wait a few seconds after link up to get diagnostic information from
2272  * the phy */
2273
2274 static void
2275 e1000_update_phy_info(unsigned long data)
2276 {
2277         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2278         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2279 }
2280
2281 /**
2282  * e1000_82547_tx_fifo_stall - Timer Call-back
2283  * @data: pointer to adapter cast into an unsigned long
2284  **/
2285
2286 static void
2287 e1000_82547_tx_fifo_stall(unsigned long data)
2288 {
2289         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2290         struct net_device *netdev = adapter->netdev;
2291         uint32_t tctl;
2292
2293         if (atomic_read(&adapter->tx_fifo_stall)) {
2294                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2295                     E1000_READ_REG(&adapter->hw, TDH)) &&
2296                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2297                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2298                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2299                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2300                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2301                         E1000_WRITE_REG(&adapter->hw, TCTL,
2302                                         tctl & ~E1000_TCTL_EN);
2303                         E1000_WRITE_REG(&adapter->hw, TDFT,
2304                                         adapter->tx_head_addr);
2305                         E1000_WRITE_REG(&adapter->hw, TDFH,
2306                                         adapter->tx_head_addr);
2307                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2308                                         adapter->tx_head_addr);
2309                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2310                                         adapter->tx_head_addr);
2311                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2312                         E1000_WRITE_FLUSH(&adapter->hw);
2313
2314                         adapter->tx_fifo_head = 0;
2315                         atomic_set(&adapter->tx_fifo_stall, 0);
2316                         netif_wake_queue(netdev);
2317                 } else {
2318                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2319                 }
2320         }
2321 }
2322
2323 /**
2324  * e1000_watchdog - Timer Call-back
2325  * @data: pointer to adapter cast into an unsigned long
2326  **/
2327 static void
2328 e1000_watchdog(unsigned long data)
2329 {
2330         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2331         struct net_device *netdev = adapter->netdev;
2332         struct e1000_tx_ring *txdr = adapter->tx_ring;
2333         uint32_t link, tctl;
2334         int32_t ret_val;
2335
2336         ret_val = e1000_check_for_link(&adapter->hw);
2337         if ((ret_val == E1000_ERR_PHY) &&
2338             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2339             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2340                 /* See e1000_kumeran_lock_loss_workaround() */
2341                 DPRINTK(LINK, INFO,
2342                         "Gigabit has been disabled, downgrading speed\n");
2343         }
2344         if (adapter->hw.mac_type == e1000_82573) {
2345                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2346                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2347                         e1000_update_mng_vlan(adapter);
2348         }
2349
2350         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2351            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2352                 link = !adapter->hw.serdes_link_down;
2353         else
2354                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2355
2356         if (link) {
2357                 if (!netif_carrier_ok(netdev)) {
2358                         boolean_t txb2b = 1;
2359                         e1000_get_speed_and_duplex(&adapter->hw,
2360                                                    &adapter->link_speed,
2361                                                    &adapter->link_duplex);
2362
2363                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2364                                adapter->link_speed,
2365                                adapter->link_duplex == FULL_DUPLEX ?
2366                                "Full Duplex" : "Half Duplex");
2367
2368                         /* tweak tx_queue_len according to speed/duplex
2369                          * and adjust the timeout factor */
2370                         netdev->tx_queue_len = adapter->tx_queue_len;
2371                         adapter->tx_timeout_factor = 1;
2372                         switch (adapter->link_speed) {
2373                         case SPEED_10:
2374                                 txb2b = 0;
2375                                 netdev->tx_queue_len = 10;
2376                                 adapter->tx_timeout_factor = 8;
2377                                 break;
2378                         case SPEED_100:
2379                                 txb2b = 0;
2380                                 netdev->tx_queue_len = 100;
2381                                 /* maybe add some timeout factor ? */
2382                                 break;
2383                         }
2384
2385                         if ((adapter->hw.mac_type == e1000_82571 ||
2386                              adapter->hw.mac_type == e1000_82572) &&
2387                             txb2b == 0) {
2388 #define SPEED_MODE_BIT (1 << 21)
2389                                 uint32_t tarc0;
2390                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2391                                 tarc0 &= ~SPEED_MODE_BIT;
2392                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2393                         }
2394                                 
2395 #ifdef NETIF_F_TSO
2396                         /* disable TSO for pcie and 10/100 speeds, to avoid
2397                          * some hardware issues */
2398                         if (!adapter->tso_force &&
2399                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2400                                 switch (adapter->link_speed) {
2401                                 case SPEED_10:
2402                                 case SPEED_100:
2403                                         DPRINTK(PROBE,INFO,
2404                                         "10/100 speed: disabling TSO\n");
2405                                         netdev->features &= ~NETIF_F_TSO;
2406                                         break;
2407                                 case SPEED_1000:
2408                                         netdev->features |= NETIF_F_TSO;
2409                                         break;
2410                                 default:
2411                                         /* oops */
2412                                         break;
2413                                 }
2414                         }
2415 #endif
2416
2417                         /* enable transmits in the hardware, need to do this
2418                          * after setting TARC0 */
2419                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2420                         tctl |= E1000_TCTL_EN;
2421                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2422
2423                         netif_carrier_on(netdev);
2424                         netif_wake_queue(netdev);
2425                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2426                         adapter->smartspeed = 0;
2427                 }
2428         } else {
2429                 if (netif_carrier_ok(netdev)) {
2430                         adapter->link_speed = 0;
2431                         adapter->link_duplex = 0;
2432                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2433                         netif_carrier_off(netdev);
2434                         netif_stop_queue(netdev);
2435                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2436
2437                         /* 80003ES2LAN workaround--
2438                          * For packet buffer work-around on link down event;
2439                          * disable receives in the ISR and
2440                          * reset device here in the watchdog
2441                          */
2442                         if (adapter->hw.mac_type == e1000_80003es2lan) {
2443                                 /* reset device */
2444                                 schedule_work(&adapter->reset_task);
2445                         }
2446                 }
2447
2448                 e1000_smartspeed(adapter);
2449         }
2450
2451         e1000_update_stats(adapter);
2452
2453         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2454         adapter->tpt_old = adapter->stats.tpt;
2455         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2456         adapter->colc_old = adapter->stats.colc;
2457
2458         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2459         adapter->gorcl_old = adapter->stats.gorcl;
2460         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2461         adapter->gotcl_old = adapter->stats.gotcl;
2462
2463         e1000_update_adaptive(&adapter->hw);
2464
2465         if (!netif_carrier_ok(netdev)) {
2466                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2467                         /* We've lost link, so the controller stops DMA,
2468                          * but we've got queued Tx work that's never going
2469                          * to get done, so reset controller to flush Tx.
2470                          * (Do the reset outside of interrupt context). */
2471                         adapter->tx_timeout_count++;
2472                         schedule_work(&adapter->reset_task);
2473                 }
2474         }
2475
2476         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2477         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2478                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2479                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2480                  * else is between 2000-8000. */
2481                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2482                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2483                         adapter->gotcl - adapter->gorcl :
2484                         adapter->gorcl - adapter->gotcl) / 10000;
2485                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2486                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2487         }
2488
2489         /* Cause software interrupt to ensure rx ring is cleaned */
2490         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2491
2492         /* Force detection of hung controller every watchdog period */
2493         adapter->detect_tx_hung = TRUE;
2494
2495         /* With 82571 controllers, LAA may be overwritten due to controller
2496          * reset from the other port. Set the appropriate LAA in RAR[0] */
2497         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2498                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2499
2500         /* Reset the timer */
2501         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2502 }
2503
2504 #define E1000_TX_FLAGS_CSUM             0x00000001
2505 #define E1000_TX_FLAGS_VLAN             0x00000002
2506 #define E1000_TX_FLAGS_TSO              0x00000004
2507 #define E1000_TX_FLAGS_IPV4             0x00000008
2508 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2509 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2510
2511 static int
2512 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2513           struct sk_buff *skb)
2514 {
2515 #ifdef NETIF_F_TSO
2516         struct e1000_context_desc *context_desc;
2517         struct e1000_buffer *buffer_info;
2518         unsigned int i;
2519         uint32_t cmd_length = 0;
2520         uint16_t ipcse = 0, tucse, mss;
2521         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2522         int err;
2523
2524         if (skb_is_gso(skb)) {
2525                 if (skb_header_cloned(skb)) {
2526                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2527                         if (err)
2528                                 return err;
2529                 }
2530
2531                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2532                 mss = skb_shinfo(skb)->gso_size;
2533                 if (skb->protocol == htons(ETH_P_IP)) {
2534                         skb->nh.iph->tot_len = 0;
2535                         skb->nh.iph->check = 0;
2536                         skb->h.th->check =
2537                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2538                                                    skb->nh.iph->daddr,
2539                                                    0,
2540                                                    IPPROTO_TCP,
2541                                                    0);
2542                         cmd_length = E1000_TXD_CMD_IP;
2543                         ipcse = skb->h.raw - skb->data - 1;
2544 #ifdef NETIF_F_TSO_IPV6
2545                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2546                         skb->nh.ipv6h->payload_len = 0;
2547                         skb->h.th->check =
2548                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2549                                                  &skb->nh.ipv6h->daddr,
2550                                                  0,
2551                                                  IPPROTO_TCP,
2552                                                  0);
2553                         ipcse = 0;
2554 #endif
2555                 }
2556                 ipcss = skb->nh.raw - skb->data;
2557                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2558                 tucss = skb->h.raw - skb->data;
2559                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2560                 tucse = 0;
2561
2562                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2563                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2564
2565                 i = tx_ring->next_to_use;
2566                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2567                 buffer_info = &tx_ring->buffer_info[i];
2568
2569                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2570                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2571                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2572                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2573                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2574                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2575                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2576                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2577                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2578
2579                 buffer_info->time_stamp = jiffies;
2580
2581                 if (++i == tx_ring->count) i = 0;
2582                 tx_ring->next_to_use = i;
2583
2584                 return TRUE;
2585         }
2586 #endif
2587
2588         return FALSE;
2589 }
2590
2591 static boolean_t
2592 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2593               struct sk_buff *skb)
2594 {
2595         struct e1000_context_desc *context_desc;
2596         struct e1000_buffer *buffer_info;
2597         unsigned int i;
2598         uint8_t css;
2599
2600         if (likely(skb->ip_summed == CHECKSUM_HW)) {
2601                 css = skb->h.raw - skb->data;
2602
2603                 i = tx_ring->next_to_use;
2604                 buffer_info = &tx_ring->buffer_info[i];
2605                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2606
2607                 context_desc->upper_setup.tcp_fields.tucss = css;
2608                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2609                 context_desc->upper_setup.tcp_fields.tucse = 0;
2610                 context_desc->tcp_seg_setup.data = 0;
2611                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2612
2613                 buffer_info->time_stamp = jiffies;
2614
2615                 if (unlikely(++i == tx_ring->count)) i = 0;
2616                 tx_ring->next_to_use = i;
2617
2618                 return TRUE;
2619         }
2620
2621         return FALSE;
2622 }
2623
2624 #define E1000_MAX_TXD_PWR       12
2625 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2626
2627 static int
2628 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2629              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2630              unsigned int nr_frags, unsigned int mss)
2631 {
2632         struct e1000_buffer *buffer_info;
2633         unsigned int len = skb->len;
2634         unsigned int offset = 0, size, count = 0, i;
2635         unsigned int f;
2636         len -= skb->data_len;
2637
2638         i = tx_ring->next_to_use;
2639
2640         while (len) {
2641                 buffer_info = &tx_ring->buffer_info[i];
2642                 size = min(len, max_per_txd);
2643 #ifdef NETIF_F_TSO
2644                 /* Workaround for Controller erratum --
2645                  * descriptor for non-tso packet in a linear SKB that follows a
2646                  * tso gets written back prematurely before the data is fully
2647                  * DMA'd to the controller */
2648                 if (!skb->data_len && tx_ring->last_tx_tso &&
2649                     !skb_is_gso(skb)) {
2650                         tx_ring->last_tx_tso = 0;
2651                         size -= 4;
2652                 }
2653
2654                 /* Workaround for premature desc write-backs
2655                  * in TSO mode.  Append 4-byte sentinel desc */
2656                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2657                         size -= 4;
2658 #endif
2659                 /* work-around for errata 10 and it applies
2660                  * to all controllers in PCI-X mode
2661                  * The fix is to make sure that the first descriptor of a
2662                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2663                  */
2664                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2665                                 (size > 2015) && count == 0))
2666                         size = 2015;
2667
2668                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2669                  * terminating buffers within evenly-aligned dwords. */
2670                 if (unlikely(adapter->pcix_82544 &&
2671                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2672                    size > 4))
2673                         size -= 4;
2674
2675                 buffer_info->length = size;
2676                 buffer_info->dma =
2677                         pci_map_single(adapter->pdev,
2678                                 skb->data + offset,
2679                                 size,
2680                                 PCI_DMA_TODEVICE);
2681                 buffer_info->time_stamp = jiffies;
2682
2683                 len -= size;
2684                 offset += size;
2685                 count++;
2686                 if (unlikely(++i == tx_ring->count)) i = 0;
2687         }
2688
2689         for (f = 0; f < nr_frags; f++) {
2690                 struct skb_frag_struct *frag;
2691
2692                 frag = &skb_shinfo(skb)->frags[f];
2693                 len = frag->size;
2694                 offset = frag->page_offset;
2695
2696                 while (len) {
2697                         buffer_info = &tx_ring->buffer_info[i];
2698                         size = min(len, max_per_txd);
2699 #ifdef NETIF_F_TSO
2700                         /* Workaround for premature desc write-backs
2701                          * in TSO mode.  Append 4-byte sentinel desc */
2702                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2703                                 size -= 4;
2704 #endif
2705                         /* Workaround for potential 82544 hang in PCI-X.
2706                          * Avoid terminating buffers within evenly-aligned
2707                          * dwords. */
2708                         if (unlikely(adapter->pcix_82544 &&
2709                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2710                            size > 4))
2711                                 size -= 4;
2712
2713                         buffer_info->length = size;
2714                         buffer_info->dma =
2715                                 pci_map_page(adapter->pdev,
2716                                         frag->page,
2717                                         offset,
2718                                         size,
2719                                         PCI_DMA_TODEVICE);
2720                         buffer_info->time_stamp = jiffies;
2721
2722                         len -= size;
2723                         offset += size;
2724                         count++;
2725                         if (unlikely(++i == tx_ring->count)) i = 0;
2726                 }
2727         }
2728
2729         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2730         tx_ring->buffer_info[i].skb = skb;
2731         tx_ring->buffer_info[first].next_to_watch = i;
2732
2733         return count;
2734 }
2735
2736 static void
2737 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2738                int tx_flags, int count)
2739 {
2740         struct e1000_tx_desc *tx_desc = NULL;
2741         struct e1000_buffer *buffer_info;
2742         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2743         unsigned int i;
2744
2745         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2746                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2747                              E1000_TXD_CMD_TSE;
2748                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2749
2750                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2751                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2752         }
2753
2754         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2755                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2756                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2757         }
2758
2759         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2760                 txd_lower |= E1000_TXD_CMD_VLE;
2761                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2762         }
2763
2764         i = tx_ring->next_to_use;
2765
2766         while (count--) {
2767                 buffer_info = &tx_ring->buffer_info[i];
2768                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2769                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2770                 tx_desc->lower.data =
2771                         cpu_to_le32(txd_lower | buffer_info->length);
2772                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2773                 if (unlikely(++i == tx_ring->count)) i = 0;
2774         }
2775
2776         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2777
2778         /* Force memory writes to complete before letting h/w
2779          * know there are new descriptors to fetch.  (Only
2780          * applicable for weak-ordered memory model archs,
2781          * such as IA-64). */
2782         wmb();
2783
2784         tx_ring->next_to_use = i;
2785         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2786 }
2787
2788 /**
2789  * 82547 workaround to avoid controller hang in half-duplex environment.
2790  * The workaround is to avoid queuing a large packet that would span
2791  * the internal Tx FIFO ring boundary by notifying the stack to resend
2792  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2793  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2794  * to the beginning of the Tx FIFO.
2795  **/
2796
2797 #define E1000_FIFO_HDR                  0x10
2798 #define E1000_82547_PAD_LEN             0x3E0
2799
2800 static int
2801 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2802 {
2803         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2804         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2805
2806         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2807
2808         if (adapter->link_duplex != HALF_DUPLEX)
2809                 goto no_fifo_stall_required;
2810
2811         if (atomic_read(&adapter->tx_fifo_stall))
2812                 return 1;
2813
2814         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2815                 atomic_set(&adapter->tx_fifo_stall, 1);
2816                 return 1;
2817         }
2818
2819 no_fifo_stall_required:
2820         adapter->tx_fifo_head += skb_fifo_len;
2821         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2822                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2823         return 0;
2824 }
2825
2826 #define MINIMUM_DHCP_PACKET_SIZE 282
2827 static int
2828 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2829 {
2830         struct e1000_hw *hw =  &adapter->hw;
2831         uint16_t length, offset;
2832         if (vlan_tx_tag_present(skb)) {
2833                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2834                         ( adapter->hw.mng_cookie.status &
2835                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2836                         return 0;
2837         }
2838         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2839                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2840                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2841                         const struct iphdr *ip =
2842                                 (struct iphdr *)((uint8_t *)skb->data+14);
2843                         if (IPPROTO_UDP == ip->protocol) {
2844                                 struct udphdr *udp =
2845                                         (struct udphdr *)((uint8_t *)ip +
2846                                                 (ip->ihl << 2));
2847                                 if (ntohs(udp->dest) == 67) {
2848                                         offset = (uint8_t *)udp + 8 - skb->data;
2849                                         length = skb->len - offset;
2850
2851                                         return e1000_mng_write_dhcp_info(hw,
2852                                                         (uint8_t *)udp + 8,
2853                                                         length);
2854                                 }
2855                         }
2856                 }
2857         }
2858         return 0;
2859 }
2860
2861 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2862 static int
2863 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2864 {
2865         struct e1000_adapter *adapter = netdev_priv(netdev);
2866         struct e1000_tx_ring *tx_ring;
2867         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2868         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2869         unsigned int tx_flags = 0;
2870         unsigned int len = skb->len;
2871         unsigned long flags;
2872         unsigned int nr_frags = 0;
2873         unsigned int mss = 0;
2874         int count = 0;
2875         int tso;
2876         unsigned int f;
2877         len -= skb->data_len;
2878
2879         tx_ring = adapter->tx_ring;
2880
2881         if (unlikely(skb->len <= 0)) {
2882                 dev_kfree_skb_any(skb);
2883                 return NETDEV_TX_OK;
2884         }
2885
2886 #ifdef NETIF_F_TSO
2887         mss = skb_shinfo(skb)->gso_size;
2888         /* The controller does a simple calculation to
2889          * make sure there is enough room in the FIFO before
2890          * initiating the DMA for each buffer.  The calc is:
2891          * 4 = ceil(buffer len/mss).  To make sure we don't
2892          * overrun the FIFO, adjust the max buffer len if mss
2893          * drops. */
2894         if (mss) {
2895                 uint8_t hdr_len;
2896                 max_per_txd = min(mss << 2, max_per_txd);
2897                 max_txd_pwr = fls(max_per_txd) - 1;
2898
2899         /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2900          * points to just header, pull a few bytes of payload from
2901          * frags into skb->data */
2902                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2903                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2904                         switch (adapter->hw.mac_type) {
2905                                 unsigned int pull_size;
2906                         case e1000_82571:
2907                         case e1000_82572:
2908                         case e1000_82573:
2909                         case e1000_ich8lan:
2910                                 pull_size = min((unsigned int)4, skb->data_len);
2911                                 if (!__pskb_pull_tail(skb, pull_size)) {
2912                                         DPRINTK(DRV, ERR,
2913                                                 "__pskb_pull_tail failed.\n");
2914                                         dev_kfree_skb_any(skb);
2915                                         return NETDEV_TX_OK;
2916                                 }
2917                                 len = skb->len - skb->data_len;
2918                                 break;
2919                         default:
2920                                 /* do nothing */
2921                                 break;
2922                         }
2923                 }
2924         }
2925
2926         /* reserve a descriptor for the offload context */
2927         if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2928                 count++;
2929         count++;
2930 #else
2931         if (skb->ip_summed == CHECKSUM_HW)
2932                 count++;
2933 #endif
2934
2935 #ifdef NETIF_F_TSO
2936         /* Controller Erratum workaround */
2937         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
2938                 count++;
2939 #endif
2940
2941         count += TXD_USE_COUNT(len, max_txd_pwr);
2942
2943         if (adapter->pcix_82544)
2944                 count++;
2945
2946         /* work-around for errata 10 and it applies to all controllers
2947          * in PCI-X mode, so add one more descriptor to the count
2948          */
2949         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2950                         (len > 2015)))
2951                 count++;
2952
2953         nr_frags = skb_shinfo(skb)->nr_frags;
2954         for (f = 0; f < nr_frags; f++)
2955                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2956                                        max_txd_pwr);
2957         if (adapter->pcix_82544)
2958                 count += nr_frags;
2959
2960
2961         if (adapter->hw.tx_pkt_filtering &&
2962             (adapter->hw.mac_type == e1000_82573))
2963                 e1000_transfer_dhcp_info(adapter, skb);
2964
2965         local_irq_save(flags);
2966         if (!spin_trylock(&tx_ring->tx_lock)) {
2967                 /* Collision - tell upper layer to requeue */
2968                 local_irq_restore(flags);
2969                 return NETDEV_TX_LOCKED;
2970         }
2971
2972         /* need: count + 2 desc gap to keep tail from touching
2973          * head, otherwise try next time */
2974         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2975                 netif_stop_queue(netdev);
2976                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2977                 return NETDEV_TX_BUSY;
2978         }
2979
2980         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2981                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2982                         netif_stop_queue(netdev);
2983                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2984                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2985                         return NETDEV_TX_BUSY;
2986                 }
2987         }
2988
2989         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2990                 tx_flags |= E1000_TX_FLAGS_VLAN;
2991                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2992         }
2993
2994         first = tx_ring->next_to_use;
2995
2996         tso = e1000_tso(adapter, tx_ring, skb);
2997         if (tso < 0) {
2998                 dev_kfree_skb_any(skb);
2999                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3000                 return NETDEV_TX_OK;
3001         }
3002
3003         if (likely(tso)) {
3004                 tx_ring->last_tx_tso = 1;
3005                 tx_flags |= E1000_TX_FLAGS_TSO;
3006         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3007                 tx_flags |= E1000_TX_FLAGS_CSUM;
3008
3009         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3010          * 82571 hardware supports TSO capabilities for IPv6 as well...
3011          * no longer assume, we must. */
3012         if (likely(skb->protocol == htons(ETH_P_IP)))
3013                 tx_flags |= E1000_TX_FLAGS_IPV4;
3014
3015         e1000_tx_queue(adapter, tx_ring, tx_flags,
3016                        e1000_tx_map(adapter, tx_ring, skb, first,
3017                                     max_per_txd, nr_frags, mss));
3018
3019         netdev->trans_start = jiffies;
3020
3021         /* Make sure there is space in the ring for the next send. */
3022         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
3023                 netif_stop_queue(netdev);
3024
3025         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3026         return NETDEV_TX_OK;
3027 }
3028
3029 /**
3030  * e1000_tx_timeout - Respond to a Tx Hang
3031  * @netdev: network interface device structure
3032  **/
3033
3034 static void
3035 e1000_tx_timeout(struct net_device *netdev)
3036 {
3037         struct e1000_adapter *adapter = netdev_priv(netdev);
3038
3039         /* Do the reset outside of interrupt context */
3040         adapter->tx_timeout_count++;
3041         schedule_work(&adapter->reset_task);
3042 }
3043
3044 static void
3045 e1000_reset_task(struct net_device *netdev)
3046 {
3047         struct e1000_adapter *adapter = netdev_priv(netdev);
3048
3049         e1000_reinit_locked(adapter);
3050 }
3051
3052 /**
3053  * e1000_get_stats - Get System Network Statistics
3054  * @netdev: network interface device structure
3055  *
3056  * Returns the address of the device statistics structure.
3057  * The statistics are actually updated from the timer callback.
3058  **/
3059
3060 static struct net_device_stats *
3061 e1000_get_stats(struct net_device *netdev)
3062 {
3063         struct e1000_adapter *adapter = netdev_priv(netdev);
3064
3065         /* only return the current stats */
3066         return &adapter->net_stats;
3067 }
3068
3069 /**
3070  * e1000_change_mtu - Change the Maximum Transfer Unit
3071  * @netdev: network interface device structure
3072  * @new_mtu: new value for maximum frame size
3073  *
3074  * Returns 0 on success, negative on failure
3075  **/
3076
3077 static int
3078 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3079 {
3080         struct e1000_adapter *adapter = netdev_priv(netdev);
3081         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3082         uint16_t eeprom_data = 0;
3083
3084         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3085             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3086                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3087                 return -EINVAL;
3088         }
3089
3090         /* Adapter-specific max frame size limits. */
3091         switch (adapter->hw.mac_type) {
3092         case e1000_undefined ... e1000_82542_rev2_1:
3093         case e1000_ich8lan:
3094                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3095                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3096                         return -EINVAL;
3097                 }
3098                 break;
3099         case e1000_82573:
3100                 /* only enable jumbo frames if ASPM is disabled completely
3101                  * this means both bits must be zero in 0x1A bits 3:2 */
3102                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3103                                   &eeprom_data);
3104                 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
3105                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3106                                 DPRINTK(PROBE, ERR,
3107                                         "Jumbo Frames not supported.\n");
3108                                 return -EINVAL;
3109                         }
3110                         break;
3111                 }
3112                 /* fall through to get support */
3113         case e1000_82571:
3114         case e1000_82572:
3115         case e1000_80003es2lan:
3116 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3117                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3118                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3119                         return -EINVAL;
3120                 }
3121                 break;
3122         default:
3123                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3124                 break;
3125         }
3126
3127         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3128          * means we reserve 2 more, this pushes us to allocate from the next
3129          * larger slab size
3130          * i.e. RXBUFFER_2048 --> size-4096 slab */
3131
3132         if (max_frame <= E1000_RXBUFFER_256)
3133                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3134         else if (max_frame <= E1000_RXBUFFER_512)
3135                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3136         else if (max_frame <= E1000_RXBUFFER_1024)
3137                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3138         else if (max_frame <= E1000_RXBUFFER_2048)
3139                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3140         else if (max_frame <= E1000_RXBUFFER_4096)
3141                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3142         else if (max_frame <= E1000_RXBUFFER_8192)
3143                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3144         else if (max_frame <= E1000_RXBUFFER_16384)
3145                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3146
3147         /* adjust allocation if LPE protects us, and we aren't using SBP */
3148         if (!adapter->hw.tbi_compatibility_on &&
3149             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3150              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3151                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3152
3153         netdev->mtu = new_mtu;
3154
3155         if (netif_running(netdev))
3156                 e1000_reinit_locked(adapter);
3157
3158         adapter->hw.max_frame_size = max_frame;
3159
3160         return 0;
3161 }
3162
3163 /**
3164  * e1000_update_stats - Update the board statistics counters
3165  * @adapter: board private structure
3166  **/
3167
3168 void
3169 e1000_update_stats(struct e1000_adapter *adapter)
3170 {
3171         struct e1000_hw *hw = &adapter->hw;
3172         struct pci_dev *pdev = adapter->pdev;
3173         unsigned long flags;
3174         uint16_t phy_tmp;
3175
3176 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3177
3178         /*
3179          * Prevent stats update while adapter is being reset, or if the pci
3180          * connection is down.
3181          */
3182         if (adapter->link_speed == 0)
3183                 return;
3184         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3185                 return;
3186
3187         spin_lock_irqsave(&adapter->stats_lock, flags);
3188
3189         /* these counters are modified from e1000_adjust_tbi_stats,
3190          * called from the interrupt context, so they must only
3191          * be written while holding adapter->stats_lock
3192          */
3193
3194         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3195         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3196         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3197         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3198         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3199         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3200         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3201
3202         if (adapter->hw.mac_type != e1000_ich8lan) {
3203         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3204         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3205         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3206         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3207         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3208         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3209         }
3210
3211         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3212         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3213         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3214         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3215         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3216         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3217         adapter->stats.dc += E1000_READ_REG(hw, DC);
3218         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3219         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3220         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3221         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3222         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3223         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3224         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3225         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3226         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3227         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3228         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3229         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3230         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3231         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3232         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3233         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3234         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3235         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3236         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3237
3238         if (adapter->hw.mac_type != e1000_ich8lan) {
3239         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3240         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3241         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3242         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3243         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3244         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3245         }
3246
3247         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3248         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3249
3250         /* used for adaptive IFS */
3251
3252         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3253         adapter->stats.tpt += hw->tx_packet_delta;
3254         hw->collision_delta = E1000_READ_REG(hw, COLC);
3255         adapter->stats.colc += hw->collision_delta;
3256
3257         if (hw->mac_type >= e1000_82543) {
3258                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3259                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3260                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3261                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3262                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3263                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3264         }
3265         if (hw->mac_type > e1000_82547_rev_2) {
3266                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3267                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3268
3269                 if (adapter->hw.mac_type != e1000_ich8lan) {
3270                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3271                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3272                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3273                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3274                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3275                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3276                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3277                 }
3278         }
3279
3280         /* Fill out the OS statistics structure */
3281
3282         adapter->net_stats.rx_packets = adapter->stats.gprc;
3283         adapter->net_stats.tx_packets = adapter->stats.gptc;
3284         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3285         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3286         adapter->net_stats.multicast = adapter->stats.mprc;
3287         adapter->net_stats.collisions = adapter->stats.colc;
3288
3289         /* Rx Errors */
3290
3291         /* RLEC on some newer hardware can be incorrect so build
3292         * our own version based on RUC and ROC */
3293         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3294                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3295                 adapter->stats.ruc + adapter->stats.roc +
3296                 adapter->stats.cexterr;
3297         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3298                                               adapter->stats.roc;
3299         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3300         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3301         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3302
3303         /* Tx Errors */
3304
3305         adapter->net_stats.tx_errors = adapter->stats.ecol +
3306                                        adapter->stats.latecol;
3307         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3308         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3309         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3310
3311         /* Tx Dropped needs to be maintained elsewhere */
3312
3313         /* Phy Stats */
3314
3315         if (hw->media_type == e1000_media_type_copper) {
3316                 if ((adapter->link_speed == SPEED_1000) &&
3317                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3318                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3319                         adapter->phy_stats.idle_errors += phy_tmp;
3320                 }
3321
3322                 if ((hw->mac_type <= e1000_82546) &&
3323                    (hw->phy_type == e1000_phy_m88) &&
3324                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3325                         adapter->phy_stats.receive_errors += phy_tmp;
3326         }
3327
3328         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3329 }
3330
3331 /**
3332  * e1000_intr - Interrupt Handler
3333  * @irq: interrupt number
3334  * @data: pointer to a network interface device structure
3335  * @pt_regs: CPU registers structure
3336  **/
3337
3338 static irqreturn_t
3339 e1000_intr(int irq, void *data, struct pt_regs *regs)
3340 {
3341         struct net_device *netdev = data;
3342         struct e1000_adapter *adapter = netdev_priv(netdev);
3343         struct e1000_hw *hw = &adapter->hw;
3344         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3345 #ifndef CONFIG_E1000_NAPI
3346         int i;
3347 #else
3348         /* Interrupt Auto-Mask...upon reading ICR,
3349          * interrupts are masked.  No need for the
3350          * IMC write, but it does mean we should
3351          * account for it ASAP. */
3352         if (likely(hw->mac_type >= e1000_82571))
3353                 atomic_inc(&adapter->irq_sem);
3354 #endif
3355
3356         if (unlikely(!icr)) {
3357 #ifdef CONFIG_E1000_NAPI
3358                 if (hw->mac_type >= e1000_82571)
3359                         e1000_irq_enable(adapter);
3360 #endif
3361                 return IRQ_NONE;  /* Not our interrupt */
3362         }
3363
3364         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3365                 hw->get_link_status = 1;
3366                 /* 80003ES2LAN workaround--
3367                  * For packet buffer work-around on link down event;
3368                  * disable receives here in the ISR and
3369                  * reset adapter in watchdog
3370                  */
3371                 if (netif_carrier_ok(netdev) &&
3372                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3373                         /* disable receives */
3374                         rctl = E1000_READ_REG(hw, RCTL);
3375                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3376                 }
3377                 mod_timer(&adapter->watchdog_timer, jiffies);
3378         }
3379
3380 #ifdef CONFIG_E1000_NAPI
3381         if (unlikely(hw->mac_type < e1000_82571)) {
3382                 atomic_inc(&adapter->irq_sem);
3383                 E1000_WRITE_REG(hw, IMC, ~0);
3384                 E1000_WRITE_FLUSH(hw);
3385         }
3386         if (likely(netif_rx_schedule_prep(netdev)))
3387                 __netif_rx_schedule(netdev);
3388         else
3389                 e1000_irq_enable(adapter);
3390 #else
3391         /* Writing IMC and IMS is needed for 82547.
3392          * Due to Hub Link bus being occupied, an interrupt
3393          * de-assertion message is not able to be sent.
3394          * When an interrupt assertion message is generated later,
3395          * two messages are re-ordered and sent out.
3396          * That causes APIC to think 82547 is in de-assertion
3397          * state, while 82547 is in assertion state, resulting
3398          * in dead lock. Writing IMC forces 82547 into
3399          * de-assertion state.
3400          */
3401         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3402                 atomic_inc(&adapter->irq_sem);
3403                 E1000_WRITE_REG(hw, IMC, ~0);
3404         }
3405
3406         for (i = 0; i < E1000_MAX_INTR; i++)
3407                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3408                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3409                         break;
3410
3411         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3412                 e1000_irq_enable(adapter);
3413
3414 #endif
3415
3416         return IRQ_HANDLED;
3417 }
3418
3419 #ifdef CONFIG_E1000_NAPI
3420 /**
3421  * e1000_clean - NAPI Rx polling callback
3422  * @adapter: board private structure
3423  **/
3424
3425 static int
3426 e1000_clean(struct net_device *poll_dev, int *budget)
3427 {
3428         struct e1000_adapter *adapter;
3429         int work_to_do = min(*budget, poll_dev->quota);
3430         int tx_cleaned = 0, work_done = 0;
3431
3432         /* Must NOT use netdev_priv macro here. */
3433         adapter = poll_dev->priv;
3434
3435         /* Keep link state information with original netdev */
3436         if (!netif_carrier_ok(poll_dev))
3437                 goto quit_polling;
3438
3439         /* e1000_clean is called per-cpu.  This lock protects
3440          * tx_ring[0] from being cleaned by multiple cpus
3441          * simultaneously.  A failure obtaining the lock means
3442          * tx_ring[0] is currently being cleaned anyway. */
3443         if (spin_trylock(&adapter->tx_queue_lock)) {
3444                 tx_cleaned = e1000_clean_tx_irq(adapter,
3445                                                 &adapter->tx_ring[0]);
3446                 spin_unlock(&adapter->tx_queue_lock);
3447         }
3448
3449         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3450                           &work_done, work_to_do);
3451
3452         *budget -= work_done;
3453         poll_dev->quota -= work_done;
3454
3455         /* If no Tx and not enough Rx work done, exit the polling mode */
3456         if ((!tx_cleaned && (work_done == 0)) ||
3457            !netif_running(poll_dev)) {
3458 quit_polling:
3459                 netif_rx_complete(poll_dev);
3460                 e1000_irq_enable(adapter);
3461                 return 0;
3462         }
3463
3464         return 1;
3465 }
3466
3467 #endif
3468 /**
3469  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3470  * @adapter: board private structure
3471  **/
3472
3473 static boolean_t
3474 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3475                    struct e1000_tx_ring *tx_ring)
3476 {
3477         struct net_device *netdev = adapter->netdev;
3478         struct e1000_tx_desc *tx_desc, *eop_desc;
3479         struct e1000_buffer *buffer_info;
3480         unsigned int i, eop;
3481 #ifdef CONFIG_E1000_NAPI
3482         unsigned int count = 0;
3483 #endif
3484         boolean_t cleaned = FALSE;
3485
3486         i = tx_ring->next_to_clean;
3487         eop = tx_ring->buffer_info[i].next_to_watch;
3488         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3489
3490         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3491                 for (cleaned = FALSE; !cleaned; ) {
3492                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3493                         buffer_info = &tx_ring->buffer_info[i];
3494                         cleaned = (i == eop);
3495
3496                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3497                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3498
3499                         if (unlikely(++i == tx_ring->count)) i = 0;
3500                 }
3501
3502
3503                 eop = tx_ring->buffer_info[i].next_to_watch;
3504                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3505 #ifdef CONFIG_E1000_NAPI
3506 #define E1000_TX_WEIGHT 64
3507                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3508                 if (count++ == E1000_TX_WEIGHT) break;
3509 #endif
3510         }
3511
3512         tx_ring->next_to_clean = i;
3513
3514 #define TX_WAKE_THRESHOLD 32
3515         if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3516                      netif_carrier_ok(netdev))) {
3517                 spin_lock(&tx_ring->tx_lock);
3518                 if (netif_queue_stopped(netdev) &&
3519                     (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3520                         netif_wake_queue(netdev);
3521                 spin_unlock(&tx_ring->tx_lock);
3522         }
3523
3524         if (adapter->detect_tx_hung) {
3525                 /* Detect a transmit hang in hardware, this serializes the
3526                  * check with the clearing of time_stamp and movement of i */
3527                 adapter->detect_tx_hung = FALSE;
3528                 if (tx_ring->buffer_info[eop].dma &&
3529                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3530                                (adapter->tx_timeout_factor * HZ))
3531                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3532                          E1000_STATUS_TXOFF)) {
3533
3534                         /* detected Tx unit hang */
3535                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3536                                         "  Tx Queue             <%lu>\n"
3537                                         "  TDH                  <%x>\n"
3538                                         "  TDT                  <%x>\n"
3539                                         "  next_to_use          <%x>\n"
3540                                         "  next_to_clean        <%x>\n"
3541                                         "buffer_info[next_to_clean]\n"
3542                                         "  time_stamp           <%lx>\n"
3543                                         "  next_to_watch        <%x>\n"
3544                                         "  jiffies              <%lx>\n"
3545                                         "  next_to_watch.status <%x>\n",
3546                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3547                                         sizeof(struct e1000_tx_ring)),
3548                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3549                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3550                                 tx_ring->next_to_use,
3551                                 tx_ring->next_to_clean,
3552                                 tx_ring->buffer_info[eop].time_stamp,
3553                                 eop,
3554                                 jiffies,
3555                                 eop_desc->upper.fields.status);
3556                         netif_stop_queue(netdev);
3557                 }
3558         }
3559         return cleaned;
3560 }
3561
3562 /**
3563  * e1000_rx_checksum - Receive Checksum Offload for 82543
3564  * @adapter:     board private structure
3565  * @status_err:  receive descriptor status and error fields
3566  * @csum:        receive descriptor csum field
3567  * @sk_buff:     socket buffer with received data
3568  **/
3569
3570 static void
3571 e1000_rx_checksum(struct e1000_adapter *adapter,
3572                   uint32_t status_err, uint32_t csum,
3573                   struct sk_buff *skb)
3574 {
3575         uint16_t status = (uint16_t)status_err;
3576         uint8_t errors = (uint8_t)(status_err >> 24);
3577         skb->ip_summed = CHECKSUM_NONE;
3578
3579         /* 82543 or newer only */
3580         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3581         /* Ignore Checksum bit is set */
3582         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3583         /* TCP/UDP checksum error bit is set */
3584         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3585                 /* let the stack verify checksum errors */
3586                 adapter->hw_csum_err++;
3587                 return;
3588         }
3589         /* TCP/UDP Checksum has not been calculated */
3590         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3591                 if (!(status & E1000_RXD_STAT_TCPCS))
3592                         return;
3593         } else {
3594                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3595                         return;
3596         }
3597         /* It must be a TCP or UDP packet with a valid checksum */
3598         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3599                 /* TCP checksum is good */
3600                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3601         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3602                 /* IP fragment with UDP payload */
3603                 /* Hardware complements the payload checksum, so we undo it
3604                  * and then put the value in host order for further stack use.
3605                  */
3606                 csum = ntohl(csum ^ 0xFFFF);
3607                 skb->csum = csum;
3608                 skb->ip_summed = CHECKSUM_HW;
3609         }
3610         adapter->hw_csum_good++;
3611 }
3612
3613 /**
3614  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3615  * @adapter: board private structure
3616  **/
3617
3618 static boolean_t
3619 #ifdef CONFIG_E1000_NAPI
3620 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3621                    struct e1000_rx_ring *rx_ring,
3622                    int *work_done, int work_to_do)
3623 #else
3624 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3625                    struct e1000_rx_ring *rx_ring)
3626 #endif
3627 {
3628         struct net_device *netdev = adapter->netdev;
3629         struct pci_dev *pdev = adapter->pdev;
3630         struct e1000_rx_desc *rx_desc, *next_rxd;
3631         struct e1000_buffer *buffer_info, *next_buffer;
3632         unsigned long flags;
3633         uint32_t length;
3634         uint8_t last_byte;
3635         unsigned int i;
3636         int cleaned_count = 0;
3637         boolean_t cleaned = FALSE;
3638
3639         i = rx_ring->next_to_clean;
3640         rx_desc = E1000_RX_DESC(*rx_ring, i);
3641         buffer_info = &rx_ring->buffer_info[i];
3642
3643         while (rx_desc->status & E1000_RXD_STAT_DD) {
3644                 struct sk_buff *skb;
3645                 u8 status;
3646 #ifdef CONFIG_E1000_NAPI
3647                 if (*work_done >= work_to_do)
3648                         break;
3649                 (*work_done)++;
3650 #endif
3651                 status = rx_desc->status;
3652                 skb = buffer_info->skb;
3653                 buffer_info->skb = NULL;
3654
3655                 prefetch(skb->data - NET_IP_ALIGN);
3656
3657                 if (++i == rx_ring->count) i = 0;
3658                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3659                 prefetch(next_rxd);
3660
3661                 next_buffer = &rx_ring->buffer_info[i];
3662
3663                 cleaned = TRUE;
3664                 cleaned_count++;
3665                 pci_unmap_single(pdev,
3666                                  buffer_info->dma,
3667                                  buffer_info->length,
3668                                  PCI_DMA_FROMDEVICE);
3669
3670                 length = le16_to_cpu(rx_desc->length);
3671
3672                 /* adjust length to remove Ethernet CRC */
3673                 length -= 4;
3674
3675                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3676                         /* All receives must fit into a single buffer */
3677                         E1000_DBG("%s: Receive packet consumed multiple"
3678                                   " buffers\n", netdev->name);
3679                         /* recycle */
3680                         buffer_info-> skb = skb;
3681                         goto next_desc;
3682                 }
3683
3684                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3685                         last_byte = *(skb->data + length - 1);
3686                         if (TBI_ACCEPT(&adapter->hw, status,
3687                                       rx_desc->errors, length, last_byte)) {
3688                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3689                                 e1000_tbi_adjust_stats(&adapter->hw,
3690                                                        &adapter->stats,
3691                                                        length, skb->data);
3692                                 spin_unlock_irqrestore(&adapter->stats_lock,
3693                                                        flags);
3694                                 length--;
3695                         } else {
3696                                 /* recycle */
3697                                 buffer_info->skb = skb;
3698                                 goto next_desc;
3699                         }
3700                 }
3701
3702                 /* code added for copybreak, this should improve
3703                  * performance for small packets with large amounts
3704                  * of reassembly being done in the stack */
3705 #define E1000_CB_LENGTH 256
3706                 if (length < E1000_CB_LENGTH) {
3707                         struct sk_buff *new_skb =
3708                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3709                         if (new_skb) {
3710                                 skb_reserve(new_skb, NET_IP_ALIGN);
3711                                 new_skb->dev = netdev;
3712                                 memcpy(new_skb->data - NET_IP_ALIGN,
3713                                        skb->data - NET_IP_ALIGN,
3714                                        length + NET_IP_ALIGN);
3715                                 /* save the skb in buffer_info as good */
3716                                 buffer_info->skb = skb;
3717                                 skb = new_skb;
3718                                 skb_put(skb, length);
3719                         }
3720                 } else
3721                         skb_put(skb, length);
3722
3723                 /* end copybreak code */
3724
3725                 /* Receive Checksum Offload */
3726                 e1000_rx_checksum(adapter,
3727                                   (uint32_t)(status) |
3728                                   ((uint32_t)(rx_desc->errors) << 24),
3729                                   le16_to_cpu(rx_desc->csum), skb);
3730
3731                 skb->protocol = eth_type_trans(skb, netdev);
3732 #ifdef CONFIG_E1000_NAPI
3733                 if (unlikely(adapter->vlgrp &&
3734                             (status & E1000_RXD_STAT_VP))) {
3735                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3736                                                  le16_to_cpu(rx_desc->special) &
3737                                                  E1000_RXD_SPC_VLAN_MASK);
3738                 } else {
3739                         netif_receive_skb(skb);
3740                 }
3741 #else /* CONFIG_E1000_NAPI */
3742                 if (unlikely(adapter->vlgrp &&
3743                             (status & E1000_RXD_STAT_VP))) {
3744                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3745                                         le16_to_cpu(rx_desc->special) &
3746                                         E1000_RXD_SPC_VLAN_MASK);
3747                 } else {
3748                         netif_rx(skb);
3749                 }
3750 #endif /* CONFIG_E1000_NAPI */
3751                 netdev->last_rx = jiffies;
3752
3753 next_desc:
3754                 rx_desc->status = 0;
3755
3756                 /* return some buffers to hardware, one at a time is too slow */
3757                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3758                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3759                         cleaned_count = 0;
3760                 }
3761
3762                 /* use prefetched values */
3763                 rx_desc = next_rxd;
3764                 buffer_info = next_buffer;
3765         }
3766         rx_ring->next_to_clean = i;
3767
3768         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3769         if (cleaned_count)
3770                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3771
3772         return cleaned;
3773 }
3774
3775 /**
3776  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3777  * @adapter: board private structure
3778  **/
3779
3780 static boolean_t
3781 #ifdef CONFIG_E1000_NAPI
3782 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3783                       struct e1000_rx_ring *rx_ring,
3784                       int *work_done, int work_to_do)
3785 #else
3786 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3787                       struct e1000_rx_ring *rx_ring)
3788 #endif
3789 {
3790         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3791         struct net_device *netdev = adapter->netdev;
3792         struct pci_dev *pdev = adapter->pdev;
3793         struct e1000_buffer *buffer_info, *next_buffer;
3794         struct e1000_ps_page *ps_page;
3795         struct e1000_ps_page_dma *ps_page_dma;
3796         struct sk_buff *skb;
3797         unsigned int i, j;
3798         uint32_t length, staterr;
3799         int cleaned_count = 0;
3800         boolean_t cleaned = FALSE;
3801
3802         i = rx_ring->next_to_clean;
3803         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3804         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3805         buffer_info = &rx_ring->buffer_info[i];
3806
3807         while (staterr & E1000_RXD_STAT_DD) {
3808                 ps_page = &rx_ring->ps_page[i];
3809                 ps_page_dma = &rx_ring->ps_page_dma[i];
3810 #ifdef CONFIG_E1000_NAPI
3811                 if (unlikely(*work_done >= work_to_do))
3812                         break;
3813                 (*work_done)++;
3814 #endif
3815                 skb = buffer_info->skb;
3816
3817                 /* in the packet split case this is header only */
3818                 prefetch(skb->data - NET_IP_ALIGN);
3819
3820                 if (++i == rx_ring->count) i = 0;
3821                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3822                 prefetch(next_rxd);
3823
3824                 next_buffer = &rx_ring->buffer_info[i];
3825
3826                 cleaned = TRUE;
3827                 cleaned_count++;
3828                 pci_unmap_single(pdev, buffer_info->dma,
3829                                  buffer_info->length,
3830                                  PCI_DMA_FROMDEVICE);
3831
3832                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3833                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3834                                   " the full packet\n", netdev->name);
3835                         dev_kfree_skb_irq(skb);
3836                         goto next_desc;
3837                 }
3838
3839                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3840                         dev_kfree_skb_irq(skb);
3841                         goto next_desc;
3842                 }
3843
3844                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3845
3846                 if (unlikely(!length)) {
3847                         E1000_DBG("%s: Last part of the packet spanning"
3848                                   " multiple descriptors\n", netdev->name);
3849                         dev_kfree_skb_irq(skb);
3850                         goto next_desc;
3851                 }
3852
3853                 /* Good Receive */
3854                 skb_put(skb, length);
3855
3856                 {
3857                 /* this looks ugly, but it seems compiler issues make it
3858                    more efficient than reusing j */
3859                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3860
3861                 /* page alloc/put takes too long and effects small packet
3862                  * throughput, so unsplit small packets and save the alloc/put*/
3863                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3864                         u8 *vaddr;
3865                         /* there is no documentation about how to call
3866                          * kmap_atomic, so we can't hold the mapping
3867                          * very long */
3868                         pci_dma_sync_single_for_cpu(pdev,
3869                                 ps_page_dma->ps_page_dma[0],
3870                                 PAGE_SIZE,
3871                                 PCI_DMA_FROMDEVICE);
3872                         vaddr = kmap_atomic(ps_page->ps_page[0],
3873                                             KM_SKB_DATA_SOFTIRQ);
3874                         memcpy(skb->tail, vaddr, l1);
3875                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3876                         pci_dma_sync_single_for_device(pdev,
3877                                 ps_page_dma->ps_page_dma[0],
3878                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3879                         /* remove the CRC */
3880                         l1 -= 4;
3881                         skb_put(skb, l1);
3882                         goto copydone;
3883                 } /* if */
3884                 }
3885                 
3886                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3887                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3888                                 break;
3889                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3890                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3891                         ps_page_dma->ps_page_dma[j] = 0;
3892                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3893                                            length);
3894                         ps_page->ps_page[j] = NULL;
3895                         skb->len += length;
3896                         skb->data_len += length;
3897                         skb->truesize += length;
3898                 }
3899
3900                 /* strip the ethernet crc, problem is we're using pages now so
3901                  * this whole operation can get a little cpu intensive */
3902                 pskb_trim(skb, skb->len - 4);
3903
3904 copydone:
3905                 e1000_rx_checksum(adapter, staterr,
3906                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3907                 skb->protocol = eth_type_trans(skb, netdev);
3908
3909                 if (likely(rx_desc->wb.upper.header_status &
3910                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3911                         adapter->rx_hdr_split++;
3912 #ifdef CONFIG_E1000_NAPI
3913                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3914                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3915                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3916                                 E1000_RXD_SPC_VLAN_MASK);
3917                 } else {
3918                         netif_receive_skb(skb);
3919                 }
3920 #else /* CONFIG_E1000_NAPI */
3921                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3922                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3923                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3924                                 E1000_RXD_SPC_VLAN_MASK);
3925                 } else {
3926                         netif_rx(skb);
3927                 }
3928 #endif /* CONFIG_E1000_NAPI */
3929                 netdev->last_rx = jiffies;
3930
3931 next_desc:
3932                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3933                 buffer_info->skb = NULL;
3934
3935                 /* return some buffers to hardware, one at a time is too slow */
3936                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3937                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3938                         cleaned_count = 0;
3939                 }
3940
3941                 /* use prefetched values */
3942                 rx_desc = next_rxd;
3943                 buffer_info = next_buffer;
3944
3945                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3946         }
3947         rx_ring->next_to_clean = i;
3948
3949         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3950         if (cleaned_count)
3951                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3952
3953         return cleaned;
3954 }
3955
3956 /**
3957  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3958  * @adapter: address of board private structure
3959  **/
3960
3961 static void
3962 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3963                        struct e1000_rx_ring *rx_ring,
3964                        int cleaned_count)
3965 {
3966         struct net_device *netdev = adapter->netdev;
3967         struct pci_dev *pdev = adapter->pdev;
3968         struct e1000_rx_desc *rx_desc;
3969         struct e1000_buffer *buffer_info;
3970         struct sk_buff *skb;
3971         unsigned int i;
3972         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3973
3974         i = rx_ring->next_to_use;
3975         buffer_info = &rx_ring->buffer_info[i];
3976
3977         while (cleaned_count--) {
3978                 if (!(skb = buffer_info->skb))
3979                         skb = netdev_alloc_skb(netdev, bufsz);
3980                 else {
3981                         skb_trim(skb, 0);
3982                         goto map_skb;
3983                 }
3984
3985                 if (unlikely(!skb)) {
3986                         /* Better luck next round */
3987                         adapter->alloc_rx_buff_failed++;
3988                         break;
3989                 }
3990
3991                 /* Fix for errata 23, can't cross 64kB boundary */
3992                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3993                         struct sk_buff *oldskb = skb;
3994                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3995                                              "at %p\n", bufsz, skb->data);
3996                         /* Try again, without freeing the previous */
3997                         skb = netdev_alloc_skb(netdev, bufsz);
3998                         /* Failed allocation, critical failure */
3999                         if (!skb) {
4000                                 dev_kfree_skb(oldskb);
4001                                 break;
4002                         }
4003
4004                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4005                                 /* give up */
4006                                 dev_kfree_skb(skb);
4007                                 dev_kfree_skb(oldskb);
4008                                 break; /* while !buffer_info->skb */
4009                         } else {
4010                                 /* Use new allocation */
4011                                 dev_kfree_skb(oldskb);
4012                         }
4013                 }
4014                 /* Make buffer alignment 2 beyond a 16 byte boundary
4015                  * this will result in a 16 byte aligned IP header after
4016                  * the 14 byte MAC header is removed
4017                  */
4018                 skb_reserve(skb, NET_IP_ALIGN);
4019
4020                 skb->dev = netdev;
4021
4022                 buffer_info->skb = skb;
4023                 buffer_info->length = adapter->rx_buffer_len;
4024 map_skb:
4025                 buffer_info->dma = pci_map_single(pdev,
4026                                                   skb->data,
4027                                                   adapter->rx_buffer_len,
4028                                                   PCI_DMA_FROMDEVICE);
4029
4030                 /* Fix for errata 23, can't cross 64kB boundary */
4031                 if (!e1000_check_64k_bound(adapter,
4032                                         (void *)(unsigned long)buffer_info->dma,
4033                                         adapter->rx_buffer_len)) {
4034                         DPRINTK(RX_ERR, ERR,
4035                                 "dma align check failed: %u bytes at %p\n",
4036                                 adapter->rx_buffer_len,
4037                                 (void *)(unsigned long)buffer_info->dma);
4038                         dev_kfree_skb(skb);
4039                         buffer_info->skb = NULL;
4040
4041                         pci_unmap_single(pdev, buffer_info->dma,
4042                                          adapter->rx_buffer_len,
4043                                          PCI_DMA_FROMDEVICE);
4044
4045                         break; /* while !buffer_info->skb */
4046                 }
4047                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4048                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4049
4050                 if (unlikely(++i == rx_ring->count))
4051                         i = 0;
4052                 buffer_info = &rx_ring->buffer_info[i];
4053         }
4054
4055         if (likely(rx_ring->next_to_use != i)) {
4056                 rx_ring->next_to_use = i;
4057                 if (unlikely(i-- == 0))
4058                         i = (rx_ring->count - 1);
4059
4060                 /* Force memory writes to complete before letting h/w
4061                  * know there are new descriptors to fetch.  (Only
4062                  * applicable for weak-ordered memory model archs,
4063                  * such as IA-64). */
4064                 wmb();
4065                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4066         }
4067 }
4068
4069 /**
4070  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4071  * @adapter: address of board private structure
4072  **/
4073
4074 static void
4075 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4076                           struct e1000_rx_ring *rx_ring,
4077                           int cleaned_count)
4078 {
4079         struct net_device *netdev = adapter->netdev;
4080         struct pci_dev *pdev = adapter->pdev;
4081         union e1000_rx_desc_packet_split *rx_desc;
4082         struct e1000_buffer *buffer_info;
4083         struct e1000_ps_page *ps_page;
4084         struct e1000_ps_page_dma *ps_page_dma;
4085         struct sk_buff *skb;
4086         unsigned int i, j;
4087
4088         i = rx_ring->next_to_use;
4089         buffer_info = &rx_ring->buffer_info[i];
4090         ps_page = &rx_ring->ps_page[i];
4091         ps_page_dma = &rx_ring->ps_page_dma[i];
4092
4093         while (cleaned_count--) {
4094                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4095
4096                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4097                         if (j < adapter->rx_ps_pages) {
4098                                 if (likely(!ps_page->ps_page[j])) {
4099                                         ps_page->ps_page[j] =
4100                                                 alloc_page(GFP_ATOMIC);
4101                                         if (unlikely(!ps_page->ps_page[j])) {
4102                                                 adapter->alloc_rx_buff_failed++;
4103                                                 goto no_buffers;
4104                                         }
4105                                         ps_page_dma->ps_page_dma[j] =
4106                                                 pci_map_page(pdev,
4107                                                             ps_page->ps_page[j],
4108                                                             0, PAGE_SIZE,
4109                                                             PCI_DMA_FROMDEVICE);
4110                                 }
4111                                 /* Refresh the desc even if buffer_addrs didn't
4112                                  * change because each write-back erases
4113                                  * this info.
4114                                  */
4115                                 rx_desc->read.buffer_addr[j+1] =
4116                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4117                         } else
4118                                 rx_desc->read.buffer_addr[j+1] = ~0;
4119                 }
4120
4121                 skb = netdev_alloc_skb(netdev,
4122                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4123
4124                 if (unlikely(!skb)) {
4125                         adapter->alloc_rx_buff_failed++;
4126                         break;
4127                 }
4128
4129                 /* Make buffer alignment 2 beyond a 16 byte boundary
4130                  * this will result in a 16 byte aligned IP header after
4131                  * the 14 byte MAC header is removed
4132                  */
4133                 skb_reserve(skb, NET_IP_ALIGN);
4134
4135                 skb->dev = netdev;
4136
4137                 buffer_info->skb = skb;
4138                 buffer_info->length = adapter->rx_ps_bsize0;
4139                 buffer_info->dma = pci_map_single(pdev, skb->data,
4140                                                   adapter->rx_ps_bsize0,
4141                                                   PCI_DMA_FROMDEVICE);
4142
4143                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4144
4145                 if (unlikely(++i == rx_ring->count)) i = 0;
4146                 buffer_info = &rx_ring->buffer_info[i];
4147                 ps_page = &rx_ring->ps_page[i];
4148                 ps_page_dma = &rx_ring->ps_page_dma[i];
4149         }
4150
4151 no_buffers:
4152         if (likely(rx_ring->next_to_use != i)) {
4153                 rx_ring->next_to_use = i;
4154                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4155
4156                 /* Force memory writes to complete before letting h/w
4157                  * know there are new descriptors to fetch.  (Only
4158                  * applicable for weak-ordered memory model archs,
4159                  * such as IA-64). */
4160                 wmb();
4161                 /* Hardware increments by 16 bytes, but packet split
4162                  * descriptors are 32 bytes...so we increment tail
4163                  * twice as much.
4164                  */
4165                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4166         }
4167 }
4168
4169 /**
4170  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4171  * @adapter:
4172  **/
4173
4174 static void
4175 e1000_smartspeed(struct e1000_adapter *adapter)
4176 {
4177         uint16_t phy_status;
4178         uint16_t phy_ctrl;
4179
4180         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4181            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4182                 return;
4183
4184         if (adapter->smartspeed == 0) {
4185                 /* If Master/Slave config fault is asserted twice,
4186                  * we assume back-to-back */
4187                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4188                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4189                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4190                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4191                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4192                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4193                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4194                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4195                                             phy_ctrl);
4196                         adapter->smartspeed++;
4197                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4198                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4199                                                &phy_ctrl)) {
4200                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4201                                              MII_CR_RESTART_AUTO_NEG);
4202                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4203                                                     phy_ctrl);
4204                         }
4205                 }
4206                 return;
4207         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4208                 /* If still no link, perhaps using 2/3 pair cable */
4209                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4210                 phy_ctrl |= CR_1000T_MS_ENABLE;
4211                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4212                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4213                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4214                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4215                                      MII_CR_RESTART_AUTO_NEG);
4216                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4217                 }
4218         }
4219         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4220         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4221                 adapter->smartspeed = 0;
4222 }
4223
4224 /**
4225  * e1000_ioctl -
4226  * @netdev:
4227  * @ifreq:
4228  * @cmd:
4229  **/
4230
4231 static int
4232 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4233 {
4234         switch (cmd) {
4235         case SIOCGMIIPHY:
4236         case SIOCGMIIREG:
4237         case SIOCSMIIREG:
4238                 return e1000_mii_ioctl(netdev, ifr, cmd);
4239         default:
4240                 return -EOPNOTSUPP;
4241         }
4242 }
4243
4244 /**
4245  * e1000_mii_ioctl -
4246  * @netdev:
4247  * @ifreq:
4248  * @cmd:
4249  **/
4250
4251 static int
4252 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4253 {
4254         struct e1000_adapter *adapter = netdev_priv(netdev);
4255         struct mii_ioctl_data *data = if_mii(ifr);
4256         int retval;
4257         uint16_t mii_reg;
4258         uint16_t spddplx;
4259         unsigned long flags;
4260
4261         if (adapter->hw.media_type != e1000_media_type_copper)
4262                 return -EOPNOTSUPP;
4263
4264         switch (cmd) {
4265         case SIOCGMIIPHY:
4266                 data->phy_id = adapter->hw.phy_addr;
4267                 break;
4268         case SIOCGMIIREG:
4269                 if (!capable(CAP_NET_ADMIN))
4270                         return -EPERM;
4271                 spin_lock_irqsave(&adapter->stats_lock, flags);
4272                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4273                                    &data->val_out)) {
4274                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4275                         return -EIO;
4276                 }
4277                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4278                 break;
4279         case SIOCSMIIREG:
4280                 if (!capable(CAP_NET_ADMIN))
4281                         return -EPERM;
4282                 if (data->reg_num & ~(0x1F))
4283                         return -EFAULT;
4284                 mii_reg = data->val_in;
4285                 spin_lock_irqsave(&adapter->stats_lock, flags);
4286                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4287                                         mii_reg)) {
4288                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4289                         return -EIO;
4290                 }
4291                 if (adapter->hw.media_type == e1000_media_type_copper) {
4292                         switch (data->reg_num) {
4293                         case PHY_CTRL:
4294                                 if (mii_reg & MII_CR_POWER_DOWN)
4295                                         break;
4296                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4297                                         adapter->hw.autoneg = 1;
4298                                         adapter->hw.autoneg_advertised = 0x2F;
4299                                 } else {
4300                                         if (mii_reg & 0x40)
4301                                                 spddplx = SPEED_1000;
4302                                         else if (mii_reg & 0x2000)
4303                                                 spddplx = SPEED_100;
4304                                         else
4305                                                 spddplx = SPEED_10;
4306                                         spddplx += (mii_reg & 0x100)
4307                                                    ? DUPLEX_FULL :
4308                                                    DUPLEX_HALF;
4309                                         retval = e1000_set_spd_dplx(adapter,
4310                                                                     spddplx);
4311                                         if (retval) {
4312                                                 spin_unlock_irqrestore(
4313                                                         &adapter->stats_lock,
4314                                                         flags);
4315                                                 return retval;
4316                                         }
4317                                 }
4318                                 if (netif_running(adapter->netdev))
4319                                         e1000_reinit_locked(adapter);
4320                                 else
4321                                         e1000_reset(adapter);
4322                                 break;
4323                         case M88E1000_PHY_SPEC_CTRL:
4324                         case M88E1000_EXT_PHY_SPEC_CTRL:
4325                                 if (e1000_phy_reset(&adapter->hw)) {
4326                                         spin_unlock_irqrestore(
4327                                                 &adapter->stats_lock, flags);
4328                                         return -EIO;
4329                                 }
4330                                 break;
4331                         }
4332                 } else {
4333                         switch (data->reg_num) {
4334                         case PHY_CTRL:
4335                                 if (mii_reg & MII_CR_POWER_DOWN)
4336                                         break;
4337                                 if (netif_running(adapter->netdev))
4338                                         e1000_reinit_locked(adapter);
4339                                 else
4340                                         e1000_reset(adapter);
4341                                 break;
4342                         }
4343                 }
4344                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4345                 break;
4346         default:
4347                 return -EOPNOTSUPP;
4348         }
4349         return E1000_SUCCESS;
4350 }
4351
4352 void
4353 e1000_pci_set_mwi(struct e1000_hw *hw)
4354 {
4355         struct e1000_adapter *adapter = hw->back;
4356         int ret_val = pci_set_mwi(adapter->pdev);
4357
4358         if (ret_val)
4359                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4360 }
4361
4362 void
4363 e1000_pci_clear_mwi(struct e1000_hw *hw)
4364 {
4365         struct e1000_adapter *adapter = hw->back;
4366
4367         pci_clear_mwi(adapter->pdev);
4368 }
4369
4370 void
4371 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4372 {
4373         struct e1000_adapter *adapter = hw->back;
4374
4375         pci_read_config_word(adapter->pdev, reg, value);
4376 }
4377
4378 void
4379 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4380 {
4381         struct e1000_adapter *adapter = hw->back;
4382
4383         pci_write_config_word(adapter->pdev, reg, *value);
4384 }
4385
4386 #if 0
4387 uint32_t
4388 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4389 {
4390         return inl(port);
4391 }
4392 #endif  /*  0  */
4393
4394 void
4395 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4396 {
4397         outl(value, port);
4398 }
4399
4400 static void
4401 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4402 {
4403         struct e1000_adapter *adapter = netdev_priv(netdev);
4404         uint32_t ctrl, rctl;
4405
4406         e1000_irq_disable(adapter);
4407         adapter->vlgrp = grp;
4408
4409         if (grp) {
4410                 /* enable VLAN tag insert/strip */
4411                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4412                 ctrl |= E1000_CTRL_VME;
4413                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4414
4415                 if (adapter->hw.mac_type != e1000_ich8lan) {
4416                 /* enable VLAN receive filtering */
4417                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4418                 rctl |= E1000_RCTL_VFE;
4419                 rctl &= ~E1000_RCTL_CFIEN;
4420                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4421                 e1000_update_mng_vlan(adapter);
4422                 }
4423         } else {
4424                 /* disable VLAN tag insert/strip */
4425                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4426                 ctrl &= ~E1000_CTRL_VME;
4427                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4428
4429                 if (adapter->hw.mac_type != e1000_ich8lan) {
4430                 /* disable VLAN filtering */
4431                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4432                 rctl &= ~E1000_RCTL_VFE;
4433                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4434                 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4435                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4436                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4437                 }
4438                 }
4439         }
4440
4441         e1000_irq_enable(adapter);
4442 }
4443
4444 static void
4445 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4446 {
4447         struct e1000_adapter *adapter = netdev_priv(netdev);
4448         uint32_t vfta, index;
4449
4450         if ((adapter->hw.mng_cookie.status &
4451              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4452             (vid == adapter->mng_vlan_id))
4453                 return;
4454         /* add VID to filter table */
4455         index = (vid >> 5) & 0x7F;
4456         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4457         vfta |= (1 << (vid & 0x1F));
4458         e1000_write_vfta(&adapter->hw, index, vfta);
4459 }
4460
4461 static void
4462 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4463 {
4464         struct e1000_adapter *adapter = netdev_priv(netdev);
4465         uint32_t vfta, index;
4466
4467         e1000_irq_disable(adapter);
4468
4469         if (adapter->vlgrp)
4470                 adapter->vlgrp->vlan_devices[vid] = NULL;
4471
4472         e1000_irq_enable(adapter);
4473
4474         if ((adapter->hw.mng_cookie.status &
4475              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4476             (vid == adapter->mng_vlan_id)) {
4477                 /* release control to f/w */
4478                 e1000_release_hw_control(adapter);
4479                 return;
4480         }
4481
4482         /* remove VID from filter table */
4483         index = (vid >> 5) & 0x7F;
4484         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4485         vfta &= ~(1 << (vid & 0x1F));
4486         e1000_write_vfta(&adapter->hw, index, vfta);
4487 }
4488
4489 static void
4490 e1000_restore_vlan(struct e1000_adapter *adapter)
4491 {
4492         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4493
4494         if (adapter->vlgrp) {
4495                 uint16_t vid;
4496                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4497                         if (!adapter->vlgrp->vlan_devices[vid])
4498                                 continue;
4499                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4500                 }
4501         }
4502 }
4503
4504 int
4505 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4506 {
4507         adapter->hw.autoneg = 0;
4508
4509         /* Fiber NICs only allow 1000 gbps Full duplex */
4510         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4511                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4512                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4513                 return -EINVAL;
4514         }
4515
4516         switch (spddplx) {
4517         case SPEED_10 + DUPLEX_HALF:
4518                 adapter->hw.forced_speed_duplex = e1000_10_half;
4519                 break;
4520         case SPEED_10 + DUPLEX_FULL:
4521                 adapter->hw.forced_speed_duplex = e1000_10_full;
4522                 break;
4523         case SPEED_100 + DUPLEX_HALF:
4524                 adapter->hw.forced_speed_duplex = e1000_100_half;
4525                 break;
4526         case SPEED_100 + DUPLEX_FULL:
4527                 adapter->hw.forced_speed_duplex = e1000_100_full;
4528                 break;
4529         case SPEED_1000 + DUPLEX_FULL:
4530                 adapter->hw.autoneg = 1;
4531                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4532                 break;
4533         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4534         default:
4535                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4536                 return -EINVAL;
4537         }
4538         return 0;
4539 }
4540
4541 #ifdef CONFIG_PM
4542 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4543  * bus we're on (PCI(X) vs. PCI-E)
4544  */
4545 #define PCIE_CONFIG_SPACE_LEN 256
4546 #define PCI_CONFIG_SPACE_LEN 64
4547 static int
4548 e1000_pci_save_state(struct e1000_adapter *adapter)
4549 {
4550         struct pci_dev *dev = adapter->pdev;
4551         int size;
4552         int i;
4553
4554         if (adapter->hw.mac_type >= e1000_82571)
4555                 size = PCIE_CONFIG_SPACE_LEN;
4556         else
4557                 size = PCI_CONFIG_SPACE_LEN;
4558
4559         WARN_ON(adapter->config_space != NULL);
4560
4561         adapter->config_space = kmalloc(size, GFP_KERNEL);
4562         if (!adapter->config_space) {
4563                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4564                 return -ENOMEM;
4565         }
4566         for (i = 0; i < (size / 4); i++)
4567                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4568         return 0;
4569 }
4570
4571 static void
4572 e1000_pci_restore_state(struct e1000_adapter *adapter)
4573 {
4574         struct pci_dev *dev = adapter->pdev;
4575         int size;
4576         int i;
4577
4578         if (adapter->config_space == NULL)
4579                 return;
4580
4581         if (adapter->hw.mac_type >= e1000_82571)
4582                 size = PCIE_CONFIG_SPACE_LEN;
4583         else
4584                 size = PCI_CONFIG_SPACE_LEN;
4585         for (i = 0; i < (size / 4); i++)
4586                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4587         kfree(adapter->config_space);
4588         adapter->config_space = NULL;
4589         return;
4590 }
4591 #endif /* CONFIG_PM */
4592
4593 static int
4594 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4595 {
4596         struct net_device *netdev = pci_get_drvdata(pdev);
4597         struct e1000_adapter *adapter = netdev_priv(netdev);
4598         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4599         uint32_t wufc = adapter->wol;
4600 #ifdef CONFIG_PM
4601         int retval = 0;
4602 #endif
4603
4604         netif_device_detach(netdev);
4605
4606         if (netif_running(netdev)) {
4607                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4608                 e1000_down(adapter);
4609         }
4610
4611 #ifdef CONFIG_PM
4612         /* Implement our own version of pci_save_state(pdev) because pci-
4613          * express adapters have 256-byte config spaces. */
4614         retval = e1000_pci_save_state(adapter);
4615         if (retval)
4616                 return retval;
4617 #endif
4618
4619         status = E1000_READ_REG(&adapter->hw, STATUS);
4620         if (status & E1000_STATUS_LU)
4621                 wufc &= ~E1000_WUFC_LNKC;
4622
4623         if (wufc) {
4624                 e1000_setup_rctl(adapter);
4625                 e1000_set_multi(netdev);
4626
4627                 /* turn on all-multi mode if wake on multicast is enabled */
4628                 if (adapter->wol & E1000_WUFC_MC) {
4629                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4630                         rctl |= E1000_RCTL_MPE;
4631                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4632                 }
4633
4634                 if (adapter->hw.mac_type >= e1000_82540) {
4635                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4636                         /* advertise wake from D3Cold */
4637                         #define E1000_CTRL_ADVD3WUC 0x00100000
4638                         /* phy power management enable */
4639                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4640                         ctrl |= E1000_CTRL_ADVD3WUC |
4641                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4642                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4643                 }
4644
4645                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4646                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4647                         /* keep the laser running in D3 */
4648                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4649                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4650                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4651                 }
4652
4653                 /* Allow time for pending master requests to run */
4654                 e1000_disable_pciex_master(&adapter->hw);
4655
4656                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4657                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4658                 pci_enable_wake(pdev, PCI_D3hot, 1);
4659                 pci_enable_wake(pdev, PCI_D3cold, 1);
4660         } else {
4661                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4662                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4663                 pci_enable_wake(pdev, PCI_D3hot, 0);
4664                 pci_enable_wake(pdev, PCI_D3cold, 0);
4665         }
4666
4667         /* FIXME: this code is incorrect for PCI Express */
4668         if (adapter->hw.mac_type >= e1000_82540 &&
4669            adapter->hw.mac_type != e1000_ich8lan &&
4670            adapter->hw.media_type == e1000_media_type_copper) {
4671                 manc = E1000_READ_REG(&adapter->hw, MANC);
4672                 if (manc & E1000_MANC_SMBUS_EN) {
4673                         manc |= E1000_MANC_ARP_EN;
4674                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4675                         pci_enable_wake(pdev, PCI_D3hot, 1);
4676                         pci_enable_wake(pdev, PCI_D3cold, 1);
4677                 }
4678         }
4679
4680         if (adapter->hw.phy_type == e1000_phy_igp_3)
4681                 e1000_phy_powerdown_workaround(&adapter->hw);
4682
4683         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4684          * would have already happened in close and is redundant. */
4685         e1000_release_hw_control(adapter);
4686
4687         pci_disable_device(pdev);
4688
4689         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4690
4691         return 0;
4692 }
4693
4694 #ifdef CONFIG_PM
4695 static int
4696 e1000_resume(struct pci_dev *pdev)
4697 {
4698         struct net_device *netdev = pci_get_drvdata(pdev);
4699         struct e1000_adapter *adapter = netdev_priv(netdev);
4700         uint32_t manc, ret_val;
4701
4702         pci_set_power_state(pdev, PCI_D0);
4703         e1000_pci_restore_state(adapter);
4704         ret_val = pci_enable_device(pdev);
4705         pci_set_master(pdev);
4706
4707         pci_enable_wake(pdev, PCI_D3hot, 0);
4708         pci_enable_wake(pdev, PCI_D3cold, 0);
4709
4710         e1000_reset(adapter);
4711         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4712
4713         if (netif_running(netdev))
4714                 e1000_up(adapter);
4715
4716         netif_device_attach(netdev);
4717
4718         /* FIXME: this code is incorrect for PCI Express */
4719         if (adapter->hw.mac_type >= e1000_82540 &&
4720            adapter->hw.mac_type != e1000_ich8lan &&
4721            adapter->hw.media_type == e1000_media_type_copper) {
4722                 manc = E1000_READ_REG(&adapter->hw, MANC);
4723                 manc &= ~(E1000_MANC_ARP_EN);
4724                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4725         }
4726
4727         /* If the controller is 82573 and f/w is AMT, do not set
4728          * DRV_LOAD until the interface is up.  For all other cases,
4729          * let the f/w know that the h/w is now under the control
4730          * of the driver. */
4731         if (adapter->hw.mac_type != e1000_82573 ||
4732             !e1000_check_mng_mode(&adapter->hw))
4733                 e1000_get_hw_control(adapter);
4734
4735         return 0;
4736 }
4737 #endif
4738
4739 static void e1000_shutdown(struct pci_dev *pdev)
4740 {
4741         e1000_suspend(pdev, PMSG_SUSPEND);
4742 }
4743
4744 #ifdef CONFIG_NET_POLL_CONTROLLER
4745 /*
4746  * Polling 'interrupt' - used by things like netconsole to send skbs
4747  * without having to re-enable interrupts. It's not called while
4748  * the interrupt routine is executing.
4749  */
4750 static void
4751 e1000_netpoll(struct net_device *netdev)
4752 {
4753         struct e1000_adapter *adapter = netdev_priv(netdev);
4754
4755         disable_irq(adapter->pdev->irq);
4756         e1000_intr(adapter->pdev->irq, netdev, NULL);
4757         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4758 #ifndef CONFIG_E1000_NAPI
4759         adapter->clean_rx(adapter, adapter->rx_ring);
4760 #endif
4761         enable_irq(adapter->pdev->irq);
4762 }
4763 #endif
4764
4765 /**
4766  * e1000_io_error_detected - called when PCI error is detected
4767  * @pdev: Pointer to PCI device
4768  * @state: The current pci conneection state
4769  *
4770  * This function is called after a PCI bus error affecting
4771  * this device has been detected.
4772  */
4773 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4774 {
4775         struct net_device *netdev = pci_get_drvdata(pdev);
4776         struct e1000_adapter *adapter = netdev->priv;
4777
4778         netif_device_detach(netdev);
4779
4780         if (netif_running(netdev))
4781                 e1000_down(adapter);
4782
4783         /* Request a slot slot reset. */
4784         return PCI_ERS_RESULT_NEED_RESET;
4785 }
4786
4787 /**
4788  * e1000_io_slot_reset - called after the pci bus has been reset.
4789  * @pdev: Pointer to PCI device
4790  *
4791  * Restart the card from scratch, as if from a cold-boot. Implementation
4792  * resembles the first-half of the e1000_resume routine.
4793  */
4794 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4795 {
4796         struct net_device *netdev = pci_get_drvdata(pdev);
4797         struct e1000_adapter *adapter = netdev->priv;
4798
4799         if (pci_enable_device(pdev)) {
4800                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4801                 return PCI_ERS_RESULT_DISCONNECT;
4802         }
4803         pci_set_master(pdev);
4804
4805         pci_enable_wake(pdev, 3, 0);
4806         pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4807
4808         /* Perform card reset only on one instance of the card */
4809         if (PCI_FUNC (pdev->devfn) != 0)
4810                 return PCI_ERS_RESULT_RECOVERED;
4811
4812         e1000_reset(adapter);
4813         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4814
4815         return PCI_ERS_RESULT_RECOVERED;
4816 }
4817
4818 /**
4819  * e1000_io_resume - called when traffic can start flowing again.
4820  * @pdev: Pointer to PCI device
4821  *
4822  * This callback is called when the error recovery driver tells us that
4823  * its OK to resume normal operation. Implementation resembles the
4824  * second-half of the e1000_resume routine.
4825  */
4826 static void e1000_io_resume(struct pci_dev *pdev)
4827 {
4828         struct net_device *netdev = pci_get_drvdata(pdev);
4829         struct e1000_adapter *adapter = netdev->priv;
4830         uint32_t manc, swsm;
4831
4832         if (netif_running(netdev)) {
4833                 if (e1000_up(adapter)) {
4834                         printk("e1000: can't bring device back up after reset\n");
4835                         return;
4836                 }
4837         }
4838
4839         netif_device_attach(netdev);
4840
4841         if (adapter->hw.mac_type >= e1000_82540 &&
4842             adapter->hw.media_type == e1000_media_type_copper) {
4843                 manc = E1000_READ_REG(&adapter->hw, MANC);
4844                 manc &= ~(E1000_MANC_ARP_EN);
4845                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4846         }
4847
4848         switch (adapter->hw.mac_type) {
4849         case e1000_82573:
4850                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4851                 E1000_WRITE_REG(&adapter->hw, SWSM,
4852                                 swsm | E1000_SWSM_DRV_LOAD);
4853                 break;
4854         default:
4855                 break;
4856         }
4857
4858         if (netif_running(netdev))
4859                 mod_timer(&adapter->watchdog_timer, jiffies);
4860 }
4861
4862 /* e1000_main.c */