6984a921b59be3edccc5101700f7e9819f4ff23e
[linux-2.6.git] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- Ethernet driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /* This driver intends to support RFC 2734, which describes a method for
26  * transporting IPv4 datagrams over IEEE-1394 serial busses. This driver
27  * will ultimately support that method, but currently falls short in
28  * several areas.
29  *
30  * TODO:
31  * RFC 2734 related:
32  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33  *
34  * Non-RFC 2734 related:
35  * - Handle fragmented skb's coming from the networking layer.
36  * - Move generic GASP reception to core 1394 code
37  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
38  * - Stability improvements
39  * - Performance enhancements
40  * - Consider garbage collecting old partial datagrams after X amount of time
41  */
42
43
44 #include <linux/module.h>
45
46 #include <linux/sched.h>
47 #include <linux/kernel.h>
48 #include <linux/slab.h>
49 #include <linux/errno.h>
50 #include <linux/types.h>
51 #include <linux/delay.h>
52 #include <linux/init.h>
53
54 #include <linux/netdevice.h>
55 #include <linux/inetdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/if_arp.h>
58 #include <linux/if_ether.h>
59 #include <linux/ip.h>
60 #include <linux/in.h>
61 #include <linux/tcp.h>
62 #include <linux/skbuff.h>
63 #include <linux/bitops.h>
64 #include <linux/ethtool.h>
65 #include <asm/uaccess.h>
66 #include <asm/delay.h>
67 #include <asm/semaphore.h>
68 #include <net/arp.h>
69
70 #include "csr1212.h"
71 #include "ieee1394_types.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_transactions.h"
74 #include "ieee1394.h"
75 #include "highlevel.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78 #include "eth1394.h"
79 #include "config_roms.h"
80
81 #define ETH1394_PRINT_G(level, fmt, args...) \
82         printk(level "%s: " fmt, driver_name, ## args)
83
84 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
85         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
86
87 #define DEBUG(fmt, args...) \
88         printk(KERN_ERR "%s:%s[%d]: " fmt "\n", driver_name, __FUNCTION__, __LINE__, ## args)
89 #define TRACE() printk(KERN_ERR "%s:%s[%d] ---- TRACE\n", driver_name, __FUNCTION__, __LINE__)
90
91 struct fragment_info {
92         struct list_head list;
93         int offset;
94         int len;
95 };
96
97 struct partial_datagram {
98         struct list_head list;
99         u16 dgl;
100         u16 dg_size;
101         u16 ether_type;
102         struct sk_buff *skb;
103         char *pbuf;
104         struct list_head frag_info;
105 };
106
107 struct pdg_list {
108         struct list_head list;          /* partial datagram list per node       */
109         unsigned int sz;                /* partial datagram list size per node  */
110         spinlock_t lock;                /* partial datagram lock                */
111 };
112
113 struct eth1394_host_info {
114         struct hpsb_host *host;
115         struct net_device *dev;
116 };
117
118 struct eth1394_node_ref {
119         struct unit_directory *ud;
120         struct list_head list;
121 };
122
123 struct eth1394_node_info {
124         u16 maxpayload;                 /* Max payload                  */
125         u8 sspd;                        /* Max speed                    */
126         u64 fifo;                       /* FIFO address                 */
127         struct pdg_list pdg;            /* partial RX datagram lists    */
128         int dgl;                        /* Outgoing datagram label      */
129 };
130
131 /* Our ieee1394 highlevel driver */
132 #define ETH1394_DRIVER_NAME "eth1394"
133 static const char driver_name[] = ETH1394_DRIVER_NAME;
134
135 static kmem_cache_t *packet_task_cache;
136
137 static struct hpsb_highlevel eth1394_highlevel;
138
139 /* Use common.lf to determine header len */
140 static const int hdr_type_len[] = {
141         sizeof (struct eth1394_uf_hdr),
142         sizeof (struct eth1394_ff_hdr),
143         sizeof (struct eth1394_sf_hdr),
144         sizeof (struct eth1394_sf_hdr)
145 };
146
147 /* Change this to IEEE1394_SPEED_S100 to make testing easier */
148 #define ETH1394_SPEED_DEF       IEEE1394_SPEED_MAX
149
150 /* For now, this needs to be 1500, so that XP works with us */
151 #define ETH1394_DATA_LEN        ETH_DATA_LEN
152
153 static const u16 eth1394_speedto_maxpayload[] = {
154 /*     S100, S200, S400, S800, S1600, S3200 */
155         512, 1024, 2048, 4096,  4096,  4096
156 };
157
158 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
159 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
160 MODULE_LICENSE("GPL");
161
162 /* The max_partial_datagrams parameter is the maximum number of fragmented
163  * datagrams per node that eth1394 will keep in memory.  Providing an upper
164  * bound allows us to limit the amount of memory that partial datagrams
165  * consume in the event that some partial datagrams are never completed.
166  */
167 static int max_partial_datagrams = 25;
168 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
169 MODULE_PARM_DESC(max_partial_datagrams,
170                  "Maximum number of partially received fragmented datagrams "
171                  "(default = 25).");
172
173
174 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
175                             unsigned short type, void *daddr, void *saddr,
176                             unsigned len);
177 static int ether1394_rebuild_header(struct sk_buff *skb);
178 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
179 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
180 static void ether1394_header_cache_update(struct hh_cache *hh,
181                                           struct net_device *dev,
182                                           unsigned char * haddr);
183 static int ether1394_mac_addr(struct net_device *dev, void *p);
184
185 static void purge_partial_datagram(struct list_head *old);
186 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
187 static void ether1394_iso(struct hpsb_iso *iso);
188
189 static struct ethtool_ops ethtool_ops;
190
191 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
192                            quadlet_t *data, u64 addr, size_t len, u16 flags);
193 static void ether1394_add_host (struct hpsb_host *host);
194 static void ether1394_remove_host (struct hpsb_host *host);
195 static void ether1394_host_reset (struct hpsb_host *host);
196
197 /* Function for incoming 1394 packets */
198 static struct hpsb_address_ops addr_ops = {
199         .write =        ether1394_write,
200 };
201
202 /* Ieee1394 highlevel driver functions */
203 static struct hpsb_highlevel eth1394_highlevel = {
204         .name =         driver_name,
205         .add_host =     ether1394_add_host,
206         .remove_host =  ether1394_remove_host,
207         .host_reset =   ether1394_host_reset,
208 };
209
210
211 /* This is called after an "ifup" */
212 static int ether1394_open (struct net_device *dev)
213 {
214         struct eth1394_priv *priv = netdev_priv(dev);
215         int ret = 0;
216
217         /* Something bad happened, don't even try */
218         if (priv->bc_state == ETHER1394_BC_ERROR) {
219                 /* we'll try again */
220                 priv->iso = hpsb_iso_recv_init(priv->host,
221                                                ETHER1394_ISO_BUF_SIZE,
222                                                ETHER1394_GASP_BUFFERS,
223                                                priv->broadcast_channel,
224                                                HPSB_ISO_DMA_PACKET_PER_BUFFER,
225                                                1, ether1394_iso);
226                 if (priv->iso == NULL) {
227                         ETH1394_PRINT(KERN_ERR, dev->name,
228                                       "Could not allocate isochronous receive "
229                                       "context for the broadcast channel\n");
230                         priv->bc_state = ETHER1394_BC_ERROR;
231                         ret = -EAGAIN;
232                 } else {
233                         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
234                                 priv->bc_state = ETHER1394_BC_STOPPED;
235                         else
236                                 priv->bc_state = ETHER1394_BC_RUNNING;
237                 }
238         }
239
240         if (ret)
241                 return ret;
242
243         netif_start_queue (dev);
244         return 0;
245 }
246
247 /* This is called after an "ifdown" */
248 static int ether1394_stop (struct net_device *dev)
249 {
250         netif_stop_queue (dev);
251         return 0;
252 }
253
254 /* Return statistics to the caller */
255 static struct net_device_stats *ether1394_stats (struct net_device *dev)
256 {
257         return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
258 }
259
260 /* What to do if we timeout. I think a host reset is probably in order, so
261  * that's what we do. Should we increment the stat counters too?  */
262 static void ether1394_tx_timeout (struct net_device *dev)
263 {
264         ETH1394_PRINT (KERN_ERR, dev->name, "Timeout, resetting host %s\n",
265                        ((struct eth1394_priv *)netdev_priv(dev))->host->driver->name);
266
267         highlevel_host_reset (((struct eth1394_priv *)netdev_priv(dev))->host);
268
269         netif_wake_queue (dev);
270 }
271
272 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
273 {
274         struct eth1394_priv *priv = netdev_priv(dev);
275
276         if ((new_mtu < 68) ||
277             (new_mtu > min(ETH1394_DATA_LEN,
278                            (int)((1 << (priv->host->csr.max_rec + 1)) -
279                                  (sizeof(union eth1394_hdr) +
280                                   ETHER1394_GASP_OVERHEAD)))))
281                 return -EINVAL;
282         dev->mtu = new_mtu;
283         return 0;
284 }
285
286 static void purge_partial_datagram(struct list_head *old)
287 {
288         struct partial_datagram *pd = list_entry(old, struct partial_datagram, list);
289         struct list_head *lh, *n;
290
291         list_for_each_safe(lh, n, &pd->frag_info) {
292                 struct fragment_info *fi = list_entry(lh, struct fragment_info, list);
293                 list_del(lh);
294                 kfree(fi);
295         }
296         list_del(old);
297         kfree_skb(pd->skb);
298         kfree(pd);
299 }
300
301 /******************************************
302  * 1394 bus activity functions
303  ******************************************/
304
305 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
306                                                   struct unit_directory *ud)
307 {
308         struct eth1394_node_ref *node;
309
310         list_for_each_entry(node, inl, list)
311                 if (node->ud == ud)
312                         return node;
313
314         return NULL;
315 }
316
317 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
318                                                        u64 guid)
319 {
320         struct eth1394_node_ref *node;
321
322         list_for_each_entry(node, inl, list)
323                 if (node->ud->ne->guid == guid)
324                         return node;
325
326         return NULL;
327 }
328
329 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
330                                                          nodeid_t nodeid)
331 {
332         struct eth1394_node_ref *node;
333         list_for_each_entry(node, inl, list) {
334                 if (node->ud->ne->nodeid == nodeid)
335                         return node;
336         }
337
338         return NULL;
339 }
340
341 static int eth1394_probe(struct device *dev)
342 {
343         struct unit_directory *ud;
344         struct eth1394_host_info *hi;
345         struct eth1394_priv *priv;
346         struct eth1394_node_ref *new_node;
347         struct eth1394_node_info *node_info;
348
349         ud = container_of(dev, struct unit_directory, device);
350
351         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
352         if (!hi)
353                 return -ENOENT;
354
355         new_node = kmalloc(sizeof(struct eth1394_node_ref),
356                            in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
357         if (!new_node)
358                 return -ENOMEM;
359
360         node_info = kmalloc(sizeof(struct eth1394_node_info),
361                             in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
362         if (!node_info) {
363                 kfree(new_node);
364                 return -ENOMEM;
365         }
366
367         spin_lock_init(&node_info->pdg.lock);
368         INIT_LIST_HEAD(&node_info->pdg.list);
369         node_info->pdg.sz = 0;
370         node_info->fifo = ETHER1394_INVALID_ADDR;
371
372         ud->device.driver_data = node_info;
373         new_node->ud = ud;
374
375         priv = netdev_priv(hi->dev);
376         list_add_tail(&new_node->list, &priv->ip_node_list);
377
378         return 0;
379 }
380
381 static int eth1394_remove(struct device *dev)
382 {
383         struct unit_directory *ud;
384         struct eth1394_host_info *hi;
385         struct eth1394_priv *priv;
386         struct eth1394_node_ref *old_node;
387         struct eth1394_node_info *node_info;
388         struct list_head *lh, *n;
389         unsigned long flags;
390
391         ud = container_of(dev, struct unit_directory, device);
392         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
393         if (!hi)
394                 return -ENOENT;
395
396         priv = netdev_priv(hi->dev);
397
398         old_node = eth1394_find_node(&priv->ip_node_list, ud);
399
400         if (old_node) {
401                 list_del(&old_node->list);
402                 kfree(old_node);
403
404                 node_info = (struct eth1394_node_info*)ud->device.driver_data;
405
406                 spin_lock_irqsave(&node_info->pdg.lock, flags);
407                 /* The partial datagram list should be empty, but we'll just
408                  * make sure anyway... */
409                 list_for_each_safe(lh, n, &node_info->pdg.list) {
410                         purge_partial_datagram(lh);
411                 }
412                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
413
414                 kfree(node_info);
415                 ud->device.driver_data = NULL;
416         }
417         return 0;
418 }
419
420 static int eth1394_update(struct unit_directory *ud)
421 {
422         struct eth1394_host_info *hi;
423         struct eth1394_priv *priv;
424         struct eth1394_node_ref *node;
425         struct eth1394_node_info *node_info;
426
427         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
428         if (!hi)
429                 return -ENOENT;
430
431         priv = netdev_priv(hi->dev);
432
433         node = eth1394_find_node(&priv->ip_node_list, ud);
434
435         if (!node) {
436                 node = kmalloc(sizeof(struct eth1394_node_ref),
437                                in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
438                 if (!node)
439                         return -ENOMEM;
440
441                 node_info = kmalloc(sizeof(struct eth1394_node_info),
442                                     in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
443                 if (!node_info) {
444                         kfree(node);
445                         return -ENOMEM;
446                 }
447
448                 spin_lock_init(&node_info->pdg.lock);
449                 INIT_LIST_HEAD(&node_info->pdg.list);
450                 node_info->pdg.sz = 0;
451
452                 ud->device.driver_data = node_info;
453                 node->ud = ud;
454
455                 priv = netdev_priv(hi->dev);
456                 list_add_tail(&node->list, &priv->ip_node_list);
457         }
458
459         return 0;
460 }
461
462
463 static struct ieee1394_device_id eth1394_id_table[] = {
464         {
465                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
466                                 IEEE1394_MATCH_VERSION),
467                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
468                 .version = ETHER1394_GASP_VERSION,
469         },
470         {}
471 };
472
473 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
474
475 static struct hpsb_protocol_driver eth1394_proto_driver = {
476         .name           = "IPv4 over 1394 Driver",
477         .id_table       = eth1394_id_table,
478         .update         = eth1394_update,
479         .driver         = {
480                 .name           = ETH1394_DRIVER_NAME,
481                 .bus            = &ieee1394_bus_type,
482                 .probe          = eth1394_probe,
483                 .remove         = eth1394_remove,
484         },
485 };
486
487
488 static void ether1394_reset_priv (struct net_device *dev, int set_mtu)
489 {
490         unsigned long flags;
491         int i;
492         struct eth1394_priv *priv = netdev_priv(dev);
493         struct hpsb_host *host = priv->host;
494         u64 guid = *((u64*)&(host->csr.rom->bus_info_data[3]));
495         u16 maxpayload = 1 << (host->csr.max_rec + 1);
496         int max_speed = IEEE1394_SPEED_MAX;
497
498         spin_lock_irqsave (&priv->lock, flags);
499
500         memset(priv->ud_list, 0, sizeof(struct node_entry*) * ALL_NODES);
501         priv->bc_maxpayload = 512;
502
503         /* Determine speed limit */
504         for (i = 0; i < host->node_count; i++)
505                 if (max_speed > host->speed_map[NODEID_TO_NODE(host->node_id) *
506                                                 64 + i])
507                         max_speed = host->speed_map[NODEID_TO_NODE(host->node_id) *
508                                                     64 + i];
509         priv->bc_sspd = max_speed;
510
511         /* We'll use our maxpayload as the default mtu */
512         if (set_mtu) {
513                 dev->mtu = min(ETH1394_DATA_LEN,
514                                (int)(maxpayload -
515                                      (sizeof(union eth1394_hdr) +
516                                       ETHER1394_GASP_OVERHEAD)));
517
518                 /* Set our hardware address while we're at it */
519                 *(u64*)dev->dev_addr = guid;
520                 *(u64*)dev->broadcast = ~0x0ULL;
521         }
522
523         spin_unlock_irqrestore (&priv->lock, flags);
524 }
525
526 /* This function is called right before register_netdev */
527 static void ether1394_init_dev (struct net_device *dev)
528 {
529         /* Our functions */
530         dev->open               = ether1394_open;
531         dev->stop               = ether1394_stop;
532         dev->hard_start_xmit    = ether1394_tx;
533         dev->get_stats          = ether1394_stats;
534         dev->tx_timeout         = ether1394_tx_timeout;
535         dev->change_mtu         = ether1394_change_mtu;
536
537         dev->hard_header        = ether1394_header;
538         dev->rebuild_header     = ether1394_rebuild_header;
539         dev->hard_header_cache  = ether1394_header_cache;
540         dev->header_cache_update= ether1394_header_cache_update;
541         dev->hard_header_parse  = ether1394_header_parse;
542         dev->set_mac_address    = ether1394_mac_addr;
543         SET_ETHTOOL_OPS(dev, &ethtool_ops);
544
545         /* Some constants */
546         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
547         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
548         dev->features           = NETIF_F_HIGHDMA;
549         dev->addr_len           = ETH1394_ALEN;
550         dev->hard_header_len    = ETH1394_HLEN;
551         dev->type               = ARPHRD_IEEE1394;
552
553         ether1394_reset_priv (dev, 1);
554 }
555
556 /*
557  * This function is called every time a card is found. It is generally called
558  * when the module is installed. This is where we add all of our ethernet
559  * devices. One for each host.
560  */
561 static void ether1394_add_host (struct hpsb_host *host)
562 {
563         struct eth1394_host_info *hi = NULL;
564         struct net_device *dev = NULL;
565         struct eth1394_priv *priv;
566         u64 fifo_addr;
567
568         if (!(host->config_roms & HPSB_CONFIG_ROM_ENTRY_IP1394))
569                 return;
570
571         fifo_addr = hpsb_allocate_and_register_addrspace(&eth1394_highlevel,
572                                                          host,
573                                                          &addr_ops,
574                                                          ETHER1394_REGION_ADDR_LEN,
575                                                          ETHER1394_REGION_ADDR_LEN,
576                                                          -1, -1);
577         if (fifo_addr == ~0ULL)
578                 goto out;
579
580         /* We should really have our own alloc_hpsbdev() function in
581          * net_init.c instead of calling the one for ethernet then hijacking
582          * it for ourselves.  That way we'd be a real networking device. */
583         dev = alloc_etherdev(sizeof (struct eth1394_priv));
584
585         if (dev == NULL) {
586                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate "
587                                  "etherdevice for IEEE 1394 device %s-%d\n",
588                                  host->driver->name, host->id);
589                 goto out;
590         }
591
592         SET_MODULE_OWNER(dev);
593         SET_NETDEV_DEV(dev, &host->device);
594
595         priv = netdev_priv(dev);
596
597         INIT_LIST_HEAD(&priv->ip_node_list);
598
599         spin_lock_init(&priv->lock);
600         priv->host = host;
601         priv->local_fifo = fifo_addr;
602
603         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
604
605         if (hi == NULL) {
606                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create "
607                                  "hostinfo for IEEE 1394 device %s-%d\n",
608                                  host->driver->name, host->id);
609                 goto out;
610         }
611
612         ether1394_init_dev(dev);
613
614         if (register_netdev (dev)) {
615                 ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n");
616                 goto out;
617         }
618
619         ETH1394_PRINT (KERN_INFO, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet (fw-host%d)\n",
620                        host->id);
621
622         hi->host = host;
623         hi->dev = dev;
624
625         /* Ignore validity in hopes that it will be set in the future.  It'll
626          * be checked when the eth device is opened. */
627         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
628
629         priv->iso = hpsb_iso_recv_init(host,
630                                        ETHER1394_ISO_BUF_SIZE,
631                                        ETHER1394_GASP_BUFFERS,
632                                        priv->broadcast_channel,
633                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
634                                        1, ether1394_iso);
635         if (priv->iso == NULL) {
636                 ETH1394_PRINT(KERN_ERR, dev->name,
637                               "Could not allocate isochronous receive context "
638                               "for the broadcast channel\n");
639                 priv->bc_state = ETHER1394_BC_ERROR;
640         } else {
641                 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
642                         priv->bc_state = ETHER1394_BC_STOPPED;
643                 else
644                         priv->bc_state = ETHER1394_BC_RUNNING;
645         }
646
647         return;
648
649 out:
650         if (dev != NULL)
651                 free_netdev(dev);
652         if (hi)
653                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
654
655         return;
656 }
657
658 /* Remove a card from our list */
659 static void ether1394_remove_host (struct hpsb_host *host)
660 {
661         struct eth1394_host_info *hi;
662
663         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
664         if (hi != NULL) {
665                 struct eth1394_priv *priv = netdev_priv(hi->dev);
666
667                 hpsb_unregister_addrspace(&eth1394_highlevel, host,
668                                           priv->local_fifo);
669
670                 if (priv->iso != NULL)
671                         hpsb_iso_shutdown(priv->iso);
672
673                 if (hi->dev) {
674                         unregister_netdev (hi->dev);
675                         free_netdev(hi->dev);
676                 }
677         }
678
679         return;
680 }
681
682 /* A reset has just arisen */
683 static void ether1394_host_reset (struct hpsb_host *host)
684 {
685         struct eth1394_host_info *hi;
686         struct eth1394_priv *priv;
687         struct net_device *dev;
688         struct list_head *lh, *n;
689         struct eth1394_node_ref *node;
690         struct eth1394_node_info *node_info;
691         unsigned long flags;
692
693         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
694
695         /* This can happen for hosts that we don't use */
696         if (hi == NULL)
697                 return;
698
699         dev = hi->dev;
700         priv = (struct eth1394_priv *)netdev_priv(dev);
701
702         /* Reset our private host data, but not our mtu */
703         netif_stop_queue (dev);
704         ether1394_reset_priv (dev, 0);
705
706         list_for_each_entry(node, &priv->ip_node_list, list) {
707                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
708
709                 spin_lock_irqsave(&node_info->pdg.lock, flags);
710
711                 list_for_each_safe(lh, n, &node_info->pdg.list) {
712                         purge_partial_datagram(lh);
713                 }
714
715                 INIT_LIST_HEAD(&(node_info->pdg.list));
716                 node_info->pdg.sz = 0;
717
718                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
719         }
720
721         netif_wake_queue (dev);
722 }
723
724 /******************************************
725  * HW Header net device functions
726  ******************************************/
727 /* These functions have been adapted from net/ethernet/eth.c */
728
729
730 /* Create a fake MAC header for an arbitrary protocol layer.
731  * saddr=NULL means use device source address
732  * daddr=NULL means leave destination address (eg unresolved arp). */
733 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
734                             unsigned short type, void *daddr, void *saddr,
735                             unsigned len)
736 {
737         struct eth1394hdr *eth = (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
738
739         eth->h_proto = htons(type);
740
741         if (dev->flags & (IFF_LOOPBACK|IFF_NOARP)) {
742                 memset(eth->h_dest, 0, dev->addr_len);
743                 return(dev->hard_header_len);
744         }
745
746         if (daddr) {
747                 memcpy(eth->h_dest,daddr,dev->addr_len);
748                 return dev->hard_header_len;
749         }
750
751         return -dev->hard_header_len;
752
753 }
754
755
756 /* Rebuild the faked MAC header. This is called after an ARP
757  * (or in future other address resolution) has completed on this
758  * sk_buff. We now let ARP fill in the other fields.
759  *
760  * This routine CANNOT use cached dst->neigh!
761  * Really, it is used only when dst->neigh is wrong.
762  */
763 static int ether1394_rebuild_header(struct sk_buff *skb)
764 {
765         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
766         struct net_device *dev = skb->dev;
767
768         switch (eth->h_proto) {
769
770 #ifdef CONFIG_INET
771         case __constant_htons(ETH_P_IP):
772                 return arp_find((unsigned char*)&eth->h_dest, skb);
773 #endif
774         default:
775                 ETH1394_PRINT(KERN_DEBUG, dev->name,
776                               "unable to resolve type %04x addresses.\n",
777                               eth->h_proto);
778                 break;
779         }
780
781         return 0;
782 }
783
784 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
785 {
786         struct net_device *dev = skb->dev;
787         memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
788         return ETH1394_ALEN;
789 }
790
791
792 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
793 {
794         unsigned short type = hh->hh_type;
795         struct eth1394hdr *eth = (struct eth1394hdr*)(((u8*)hh->hh_data) +
796                                                       (16 - ETH1394_HLEN));
797         struct net_device *dev = neigh->dev;
798
799         if (type == __constant_htons(ETH_P_802_3)) {
800                 return -1;
801         }
802
803         eth->h_proto = type;
804         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
805
806         hh->hh_len = ETH1394_HLEN;
807         return 0;
808 }
809
810 /* Called by Address Resolution module to notify changes in address. */
811 static void ether1394_header_cache_update(struct hh_cache *hh,
812                                           struct net_device *dev,
813                                           unsigned char * haddr)
814 {
815         memcpy(((u8*)hh->hh_data) + (16 - ETH1394_HLEN), haddr, dev->addr_len);
816 }
817
818 static int ether1394_mac_addr(struct net_device *dev, void *p)
819 {
820         if (netif_running(dev))
821                 return -EBUSY;
822
823         /* Not going to allow setting the MAC address, we really need to use
824          * the real one supplied by the hardware */
825          return -EINVAL;
826  }
827
828
829
830 /******************************************
831  * Datagram reception code
832  ******************************************/
833
834 /* Copied from net/ethernet/eth.c */
835 static inline u16 ether1394_type_trans(struct sk_buff *skb,
836                                        struct net_device *dev)
837 {
838         struct eth1394hdr *eth;
839         unsigned char *rawp;
840
841         skb->mac.raw = skb->data;
842         skb_pull (skb, ETH1394_HLEN);
843         eth = eth1394_hdr(skb);
844
845         if (*eth->h_dest & 1) {
846                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len)==0)
847                         skb->pkt_type = PACKET_BROADCAST;
848 #if 0
849                 else
850                         skb->pkt_type = PACKET_MULTICAST;
851 #endif
852         } else {
853                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
854                         skb->pkt_type = PACKET_OTHERHOST;
855         }
856
857         if (ntohs (eth->h_proto) >= 1536)
858                 return eth->h_proto;
859
860         rawp = skb->data;
861
862         if (*(unsigned short *)rawp == 0xFFFF)
863                 return htons (ETH_P_802_3);
864
865         return htons (ETH_P_802_2);
866 }
867
868 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
869  * We also perform ARP translation here, if need be.  */
870 static inline u16 ether1394_parse_encap(struct sk_buff *skb,
871                                         struct net_device *dev,
872                                         nodeid_t srcid, nodeid_t destid,
873                                         u16 ether_type)
874 {
875         struct eth1394_priv *priv = netdev_priv(dev);
876         u64 dest_hw;
877         unsigned short ret = 0;
878
879         /* Setup our hw addresses. We use these to build the
880          * ethernet header.  */
881         if (destid == (LOCAL_BUS | ALL_NODES))
882                 dest_hw = ~0ULL;  /* broadcast */
883         else
884                 dest_hw = cpu_to_be64((((u64)priv->host->csr.guid_hi) << 32) |
885                                       priv->host->csr.guid_lo);
886
887         /* If this is an ARP packet, convert it. First, we want to make
888          * use of some of the fields, since they tell us a little bit
889          * about the sending machine.  */
890         if (ether_type == __constant_htons (ETH_P_ARP)) {
891                 struct eth1394_arp *arp1394 = (struct eth1394_arp*)skb->data;
892                 struct arphdr *arp = (struct arphdr *)skb->data;
893                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
894                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
895                         ntohl(arp1394->fifo_lo);
896                 u8 max_rec = min(priv->host->csr.max_rec,
897                                  (u8)(arp1394->max_rec));
898                 int sspd = arp1394->sspd;
899                 u16 maxpayload;
900                 struct eth1394_node_ref *node;
901                 struct eth1394_node_info *node_info;
902
903                 /* Sanity check. MacOSX seems to be sending us 131 in this
904                  * field (atleast on my Panther G5). Not sure why. */
905                 if (sspd > 5 || sspd < 0)
906                         sspd = 0;
907
908                 maxpayload = min(eth1394_speedto_maxpayload[sspd], (u16)(1 << (max_rec + 1)));
909
910                 node = eth1394_find_node_guid(&priv->ip_node_list,
911                                               be64_to_cpu(arp1394->s_uniq_id));
912                 if (!node) {
913                         return 0;
914                 }
915
916                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
917
918                 /* Update our speed/payload/fifo_offset table */
919                 node_info->maxpayload = maxpayload;
920                 node_info->sspd =       sspd;
921                 node_info->fifo =       fifo_addr;
922
923                 /* Now that we're done with the 1394 specific stuff, we'll
924                  * need to alter some of the data.  Believe it or not, all
925                  * that needs to be done is sender_IP_address needs to be
926                  * moved, the destination hardware address get stuffed
927                  * in and the hardware address length set to 8.
928                  *
929                  * IMPORTANT: The code below overwrites 1394 specific data
930                  * needed above so keep the munging of the data for the
931                  * higher level IP stack last. */
932
933                 arp->ar_hln = 8;
934                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
935                 *(u32*)arp_ptr = arp1394->sip;  /* move sender IP addr */
936                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
937
938                 if (arp->ar_op == 1)
939                         /* just set ARP req target unique ID to 0 */
940                         *((u64*)arp_ptr) = 0;
941                 else
942                         *((u64*)arp_ptr) = *((u64*)dev->dev_addr);
943         }
944
945         /* Now add the ethernet header. */
946         if (dev->hard_header (skb, dev, __constant_ntohs (ether_type),
947                               &dest_hw, NULL, skb->len) >= 0)
948                 ret = ether1394_type_trans(skb, dev);
949
950         return ret;
951 }
952
953 static inline int fragment_overlap(struct list_head *frag_list, int offset, int len)
954 {
955         struct fragment_info *fi;
956
957         list_for_each_entry(fi, frag_list, list) {
958                 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
959                        ((offset + len - 1) < fi->offset)))
960                         return 1;
961         }
962         return 0;
963 }
964
965 static inline struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
966 {
967         struct partial_datagram *pd;
968
969         list_for_each_entry(pd, pdgl, list) {
970                 if (pd->dgl == dgl)
971                         return &pd->list;
972         }
973         return NULL;
974 }
975
976 /* Assumes that new fragment does not overlap any existing fragments */
977 static inline int new_fragment(struct list_head *frag_info, int offset, int len)
978 {
979         struct list_head *lh;
980         struct fragment_info *fi, *fi2, *new;
981
982         list_for_each(lh, frag_info) {
983                 fi = list_entry(lh, struct fragment_info, list);
984                 if ((fi->offset + fi->len) == offset) {
985                         /* The new fragment can be tacked on to the end */
986                         fi->len += len;
987                         /* Did the new fragment plug a hole? */
988                         fi2 = list_entry(lh->next, struct fragment_info, list);
989                         if ((fi->offset + fi->len) == fi2->offset) {
990                                 /* glue fragments together */
991                                 fi->len += fi2->len;
992                                 list_del(lh->next);
993                                 kfree(fi2);
994                         }
995                         return 0;
996                 } else if ((offset + len) == fi->offset) {
997                         /* The new fragment can be tacked on to the beginning */
998                         fi->offset = offset;
999                         fi->len += len;
1000                         /* Did the new fragment plug a hole? */
1001                         fi2 = list_entry(lh->prev, struct fragment_info, list);
1002                         if ((fi2->offset + fi2->len) == fi->offset) {
1003                                 /* glue fragments together */
1004                                 fi2->len += fi->len;
1005                                 list_del(lh);
1006                                 kfree(fi);
1007                         }
1008                         return 0;
1009                 } else if (offset > (fi->offset + fi->len)) {
1010                         break;
1011                 } else if ((offset + len) < fi->offset) {
1012                         lh = lh->prev;
1013                         break;
1014                 }
1015         }
1016
1017         new = kmalloc(sizeof(struct fragment_info), GFP_ATOMIC);
1018         if (!new)
1019                 return -ENOMEM;
1020
1021         new->offset = offset;
1022         new->len = len;
1023
1024         list_add(&new->list, lh);
1025
1026         return 0;
1027 }
1028
1029 static inline int new_partial_datagram(struct net_device *dev,
1030                                        struct list_head *pdgl, int dgl,
1031                                        int dg_size, char *frag_buf,
1032                                        int frag_off, int frag_len)
1033 {
1034         struct partial_datagram *new;
1035
1036         new = kmalloc(sizeof(struct partial_datagram), GFP_ATOMIC);
1037         if (!new)
1038                 return -ENOMEM;
1039
1040         INIT_LIST_HEAD(&new->frag_info);
1041
1042         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1043                 kfree(new);
1044                 return -ENOMEM;
1045         }
1046
1047         new->dgl = dgl;
1048         new->dg_size = dg_size;
1049
1050         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1051         if (!new->skb) {
1052                 struct fragment_info *fi = list_entry(new->frag_info.next,
1053                                                       struct fragment_info,
1054                                                       list);
1055                 kfree(fi);
1056                 kfree(new);
1057                 return -ENOMEM;
1058         }
1059
1060         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1061         new->pbuf = skb_put(new->skb, dg_size);
1062         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1063
1064         list_add(&new->list, pdgl);
1065
1066         return 0;
1067 }
1068
1069 static inline int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1070                                           char *frag_buf, int frag_off, int frag_len)
1071 {
1072         struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1073
1074         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0) {
1075                 return -ENOMEM;
1076         }
1077
1078         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1079
1080         /* Move list entry to beginnig of list so that oldest partial
1081          * datagrams percolate to the end of the list */
1082         list_del(lh);
1083         list_add(lh, pdgl);
1084
1085         return 0;
1086 }
1087
1088 static inline int is_datagram_complete(struct list_head *lh, int dg_size)
1089 {
1090         struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1091         struct fragment_info *fi = list_entry(pd->frag_info.next,
1092                                               struct fragment_info, list);
1093
1094         return (fi->len == dg_size);
1095 }
1096
1097 /* Packet reception. We convert the IP1394 encapsulation header to an
1098  * ethernet header, and fill it with some of our other fields. This is
1099  * an incoming packet from the 1394 bus.  */
1100 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1101                                   char *buf, int len)
1102 {
1103         struct sk_buff *skb;
1104         unsigned long flags;
1105         struct eth1394_priv *priv = netdev_priv(dev);
1106         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1107         u16 ether_type = 0;  /* initialized to clear warning */
1108         int hdr_len;
1109         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1110         struct eth1394_node_info *node_info;
1111
1112         if (!ud) {
1113                 struct eth1394_node_ref *node;
1114                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1115                 if (!node) {
1116                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1117                                    "lookup failure: " NODE_BUS_FMT,
1118                                    NODE_BUS_ARGS(priv->host, srcid));
1119                         priv->stats.rx_dropped++;
1120                         return -1;
1121                 }
1122                 ud = node->ud;
1123
1124                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1125         }
1126
1127         node_info = (struct eth1394_node_info*)ud->device.driver_data;
1128
1129         /* First, did we receive a fragmented or unfragmented datagram? */
1130         hdr->words.word1 = ntohs(hdr->words.word1);
1131
1132         hdr_len = hdr_type_len[hdr->common.lf];
1133
1134         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1135                 /* An unfragmented datagram has been received by the ieee1394
1136                  * bus. Build an skbuff around it so we can pass it to the
1137                  * high level network layer. */
1138
1139                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1140                 if (!skb) {
1141                         HPSB_PRINT (KERN_ERR, "ether1394 rx: low on mem\n");
1142                         priv->stats.rx_dropped++;
1143                         return -1;
1144                 }
1145                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1146                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len, len - hdr_len);
1147                 ether_type = hdr->uf.ether_type;
1148         } else {
1149                 /* A datagram fragment has been received, now the fun begins. */
1150
1151                 struct list_head *pdgl, *lh;
1152                 struct partial_datagram *pd;
1153                 int fg_off;
1154                 int fg_len = len - hdr_len;
1155                 int dg_size;
1156                 int dgl;
1157                 int retval;
1158                 struct pdg_list *pdg = &(node_info->pdg);
1159
1160                 hdr->words.word3 = ntohs(hdr->words.word3);
1161                 /* The 4th header word is reserved so no need to do ntohs() */
1162
1163                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1164                         ether_type = hdr->ff.ether_type;
1165                         dgl = hdr->ff.dgl;
1166                         dg_size = hdr->ff.dg_size + 1;
1167                         fg_off = 0;
1168                 } else {
1169                         hdr->words.word2 = ntohs(hdr->words.word2);
1170                         dgl = hdr->sf.dgl;
1171                         dg_size = hdr->sf.dg_size + 1;
1172                         fg_off = hdr->sf.fg_off;
1173                 }
1174                 spin_lock_irqsave(&pdg->lock, flags);
1175
1176                 pdgl = &(pdg->list);
1177                 lh = find_partial_datagram(pdgl, dgl);
1178
1179                 if (lh == NULL) {
1180                         while (pdg->sz >= max_partial_datagrams) {
1181                                 /* remove the oldest */
1182                                 purge_partial_datagram(pdgl->prev);
1183                                 pdg->sz--;
1184                         }
1185
1186                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1187                                                       buf + hdr_len, fg_off,
1188                                                       fg_len);
1189                         if (retval < 0) {
1190                                 spin_unlock_irqrestore(&pdg->lock, flags);
1191                                 goto bad_proto;
1192                         }
1193                         pdg->sz++;
1194                         lh = find_partial_datagram(pdgl, dgl);
1195                 } else {
1196                         struct partial_datagram *pd;
1197
1198                         pd = list_entry(lh, struct partial_datagram, list);
1199
1200                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1201                                 /* Overlapping fragments, obliterate old
1202                                  * datagram and start new one. */
1203                                 purge_partial_datagram(lh);
1204                                 retval = new_partial_datagram(dev, pdgl, dgl,
1205                                                               dg_size,
1206                                                               buf + hdr_len,
1207                                                               fg_off, fg_len);
1208                                 if (retval < 0) {
1209                                         pdg->sz--;
1210                                         spin_unlock_irqrestore(&pdg->lock, flags);
1211                                         goto bad_proto;
1212                                 }
1213                         } else {
1214                                 retval = update_partial_datagram(pdgl, lh,
1215                                                                  buf + hdr_len,
1216                                                                  fg_off, fg_len);
1217                                 if (retval < 0) {
1218                                         /* Couldn't save off fragment anyway
1219                                          * so might as well obliterate the
1220                                          * datagram now. */
1221                                         purge_partial_datagram(lh);
1222                                         pdg->sz--;
1223                                         spin_unlock_irqrestore(&pdg->lock, flags);
1224                                         goto bad_proto;
1225                                 }
1226                         } /* fragment overlap */
1227                 } /* new datagram or add to existing one */
1228
1229                 pd = list_entry(lh, struct partial_datagram, list);
1230
1231                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1232                         pd->ether_type = ether_type;
1233                 }
1234
1235                 if (is_datagram_complete(lh, dg_size)) {
1236                         ether_type = pd->ether_type;
1237                         pdg->sz--;
1238                         skb = skb_get(pd->skb);
1239                         purge_partial_datagram(lh);
1240                         spin_unlock_irqrestore(&pdg->lock, flags);
1241                 } else {
1242                         /* Datagram is not complete, we're done for the
1243                          * moment. */
1244                         spin_unlock_irqrestore(&pdg->lock, flags);
1245                         return 0;
1246                 }
1247         } /* unframgented datagram or fragmented one */
1248
1249         /* Write metadata, and then pass to the receive level */
1250         skb->dev = dev;
1251         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1252
1253         /* Parse the encapsulation header. This actually does the job of
1254          * converting to an ethernet frame header, aswell as arp
1255          * conversion if needed. ARP conversion is easier in this
1256          * direction, since we are using ethernet as our backend.  */
1257         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1258                                               ether_type);
1259
1260
1261         spin_lock_irqsave(&priv->lock, flags);
1262         if (!skb->protocol) {
1263                 priv->stats.rx_errors++;
1264                 priv->stats.rx_dropped++;
1265                 dev_kfree_skb_any(skb);
1266                 goto bad_proto;
1267         }
1268
1269         if (netif_rx(skb) == NET_RX_DROP) {
1270                 priv->stats.rx_errors++;
1271                 priv->stats.rx_dropped++;
1272                 goto bad_proto;
1273         }
1274
1275         /* Statistics */
1276         priv->stats.rx_packets++;
1277         priv->stats.rx_bytes += skb->len;
1278
1279 bad_proto:
1280         if (netif_queue_stopped(dev))
1281                 netif_wake_queue(dev);
1282         spin_unlock_irqrestore(&priv->lock, flags);
1283
1284         dev->last_rx = jiffies;
1285
1286         return 0;
1287 }
1288
1289 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1290                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1291 {
1292         struct eth1394_host_info *hi;
1293
1294         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1295         if (hi == NULL) {
1296                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1297                                 host->driver->name);
1298                 return RCODE_ADDRESS_ERROR;
1299         }
1300
1301         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1302                 return RCODE_ADDRESS_ERROR;
1303         else
1304                 return RCODE_COMPLETE;
1305 }
1306
1307 static void ether1394_iso(struct hpsb_iso *iso)
1308 {
1309         quadlet_t *data;
1310         char *buf;
1311         struct eth1394_host_info *hi;
1312         struct net_device *dev;
1313         struct eth1394_priv *priv;
1314         unsigned int len;
1315         u32 specifier_id;
1316         u16 source_id;
1317         int i;
1318         int nready;
1319
1320         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1321         if (hi == NULL) {
1322                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1323                                 iso->host->driver->name);
1324                 return;
1325         }
1326
1327         dev = hi->dev;
1328
1329         nready = hpsb_iso_n_ready(iso);
1330         for (i = 0; i < nready; i++) {
1331                 struct hpsb_iso_packet_info *info =
1332                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1333                 data = (quadlet_t*) (iso->data_buf.kvirt + info->offset);
1334
1335                 /* skip over GASP header */
1336                 buf = (char *)data + 8;
1337                 len = info->len - 8;
1338
1339                 specifier_id = (((be32_to_cpu(data[0]) & 0xffff) << 8) |
1340                                 ((be32_to_cpu(data[1]) & 0xff000000) >> 24));
1341                 source_id = be32_to_cpu(data[0]) >> 16;
1342
1343                 priv = netdev_priv(dev);
1344
1345                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f) ||
1346                    specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1347                         /* This packet is not for us */
1348                         continue;
1349                 }
1350                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1351                                        buf, len);
1352         }
1353
1354         hpsb_iso_recv_release_packets(iso, i);
1355
1356         dev->last_rx = jiffies;
1357 }
1358
1359 /******************************************
1360  * Datagram transmission code
1361  ******************************************/
1362
1363 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1364  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1365  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1366  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1367  * judge.
1368  *
1369  * Now that the EUI is used for the hardware address all we need to do to make
1370  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1371  * speed, and unicast FIFO address information between the sender_unique_id
1372  * and the IP addresses.
1373  */
1374 static inline void ether1394_arp_to_1394arp(struct sk_buff *skb,
1375                                             struct net_device *dev)
1376 {
1377         struct eth1394_priv *priv = netdev_priv(dev);
1378
1379         struct arphdr *arp = (struct arphdr *)skb->data;
1380         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1381         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1382
1383         /* Believe it or not, all that need to happen is sender IP get moved
1384          * and set hw_addr_len, max_rec, sspd, fifo_hi and fifo_lo.  */
1385         arp1394->hw_addr_len    = 16;
1386         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1387         arp1394->max_rec        = priv->host->csr.max_rec;
1388         arp1394->sspd           = priv->host->csr.lnk_spd;
1389         arp1394->fifo_hi        = htons (priv->local_fifo >> 32);
1390         arp1394->fifo_lo        = htonl (priv->local_fifo & ~0x0);
1391
1392         return;
1393 }
1394
1395 /* We need to encapsulate the standard header with our own. We use the
1396  * ethernet header's proto for our own. */
1397 static inline unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1398                                                       int proto,
1399                                                       union eth1394_hdr *hdr,
1400                                                       u16 dg_size, u16 dgl)
1401 {
1402         unsigned int adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1403
1404         /* Does it all fit in one packet? */
1405         if (dg_size <= adj_max_payload) {
1406                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1407                 hdr->uf.ether_type = proto;
1408         } else {
1409                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1410                 hdr->ff.ether_type = proto;
1411                 hdr->ff.dg_size = dg_size - 1;
1412                 hdr->ff.dgl = dgl;
1413                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1414         }
1415         return((dg_size + (adj_max_payload - 1)) / adj_max_payload);
1416 }
1417
1418 static inline unsigned int ether1394_encapsulate(struct sk_buff *skb,
1419                                                  unsigned int max_payload,
1420                                                  union eth1394_hdr *hdr)
1421 {
1422         union eth1394_hdr *bufhdr;
1423         int ftype = hdr->common.lf;
1424         int hdrsz = hdr_type_len[ftype];
1425         unsigned int adj_max_payload = max_payload - hdrsz;
1426
1427         switch(ftype) {
1428         case ETH1394_HDR_LF_UF:
1429                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1430                 bufhdr->words.word1 = htons(hdr->words.word1);
1431                 bufhdr->words.word2 = hdr->words.word2;
1432                 break;
1433
1434         case ETH1394_HDR_LF_FF:
1435                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1436                 bufhdr->words.word1 = htons(hdr->words.word1);
1437                 bufhdr->words.word2 = hdr->words.word2;
1438                 bufhdr->words.word3 = htons(hdr->words.word3);
1439                 bufhdr->words.word4 = 0;
1440
1441                 /* Set frag type here for future interior fragments */
1442                 hdr->common.lf = ETH1394_HDR_LF_IF;
1443                 hdr->sf.fg_off = 0;
1444                 break;
1445
1446         default:
1447                 hdr->sf.fg_off += adj_max_payload;
1448                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1449                 if (max_payload >= skb->len)
1450                         hdr->common.lf = ETH1394_HDR_LF_LF;
1451                 bufhdr->words.word1 = htons(hdr->words.word1);
1452                 bufhdr->words.word2 = htons(hdr->words.word2);
1453                 bufhdr->words.word3 = htons(hdr->words.word3);
1454                 bufhdr->words.word4 = 0;
1455         }
1456
1457         return min(max_payload, skb->len);
1458 }
1459
1460 static inline struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1461 {
1462         struct hpsb_packet *p;
1463
1464         p = hpsb_alloc_packet(0);
1465         if (p) {
1466                 p->host = host;
1467                 p->generation = get_hpsb_generation(host);
1468                 p->type = hpsb_async;
1469         }
1470         return p;
1471 }
1472
1473 static inline int ether1394_prep_write_packet(struct hpsb_packet *p,
1474                                               struct hpsb_host *host,
1475                                               nodeid_t node, u64 addr,
1476                                               void * data, int tx_len)
1477 {
1478         p->node_id = node;
1479         p->data = NULL;
1480
1481         p->tcode = TCODE_WRITEB;
1482         p->header[1] = (host->node_id << 16) | (addr >> 32);
1483         p->header[2] = addr & 0xffffffff;
1484
1485         p->header_size = 16;
1486         p->expect_response = 1;
1487
1488         if (hpsb_get_tlabel(p)) {
1489                 ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending "
1490                                 "to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node));
1491                 return -1;
1492         }
1493         p->header[0] = (p->node_id << 16) | (p->tlabel << 10)
1494                 | (1 << 8) | (TCODE_WRITEB << 4);
1495
1496         p->header[3] = tx_len << 16;
1497         p->data_size = (tx_len + 3) & ~3;
1498         p->data = (quadlet_t*)data;
1499
1500         return 0;
1501 }
1502
1503 static inline void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1504                                               struct eth1394_priv *priv,
1505                                               struct sk_buff *skb, int length)
1506 {
1507         p->header_size = 4;
1508         p->tcode = TCODE_STREAM_DATA;
1509
1510         p->header[0] = (length << 16) | (3 << 14)
1511                 | ((priv->broadcast_channel) << 8)
1512                 | (TCODE_STREAM_DATA << 4);
1513         p->data_size = length;
1514         p->data = ((quadlet_t*)skb->data) - 2;
1515         p->data[0] = cpu_to_be32((priv->host->node_id << 16) |
1516                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1517         p->data[1] = __constant_cpu_to_be32((ETHER1394_GASP_SPECIFIER_ID_LO << 24) |
1518                                             ETHER1394_GASP_VERSION);
1519
1520         /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1521          * prevents hpsb_send_packet() from setting the speed to an arbitrary
1522          * value based on packet->node_id if packet->node_id is not set. */
1523         p->node_id = ALL_NODES;
1524         p->speed_code = priv->bc_sspd;
1525 }
1526
1527 static inline void ether1394_free_packet(struct hpsb_packet *packet)
1528 {
1529         if (packet->tcode != TCODE_STREAM_DATA)
1530                 hpsb_free_tlabel(packet);
1531         hpsb_free_packet(packet);
1532 }
1533
1534 static void ether1394_complete_cb(void *__ptask);
1535
1536 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1537 {
1538         struct eth1394_priv *priv = ptask->priv;
1539         struct hpsb_packet *packet = NULL;
1540
1541         packet = ether1394_alloc_common_packet(priv->host);
1542         if (!packet)
1543                 return -1;
1544
1545         if (ptask->tx_type == ETH1394_GASP) {
1546                 int length = tx_len + (2 * sizeof(quadlet_t));
1547
1548                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1549         } else if (ether1394_prep_write_packet(packet, priv->host,
1550                                                ptask->dest_node,
1551                                                ptask->addr, ptask->skb->data,
1552                                                tx_len)) {
1553                 hpsb_free_packet(packet);
1554                 return -1;
1555         }
1556
1557         ptask->packet = packet;
1558         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1559                                       ptask);
1560
1561         if (hpsb_send_packet(packet) < 0) {
1562                 ether1394_free_packet(packet);
1563                 return -1;
1564         }
1565
1566         return 0;
1567 }
1568
1569
1570 /* Task function to be run when a datagram transmission is completed */
1571 static inline void ether1394_dg_complete(struct packet_task *ptask, int fail)
1572 {
1573         struct sk_buff *skb = ptask->skb;
1574         struct net_device *dev = skb->dev;
1575         struct eth1394_priv *priv = netdev_priv(dev);
1576         unsigned long flags;
1577
1578         /* Statistics */
1579         spin_lock_irqsave(&priv->lock, flags);
1580         if (fail) {
1581                 priv->stats.tx_dropped++;
1582                 priv->stats.tx_errors++;
1583         } else {
1584                 priv->stats.tx_bytes += skb->len;
1585                 priv->stats.tx_packets++;
1586         }
1587         spin_unlock_irqrestore(&priv->lock, flags);
1588
1589         dev_kfree_skb_any(skb);
1590         kmem_cache_free(packet_task_cache, ptask);
1591 }
1592
1593
1594 /* Callback for when a packet has been sent and the status of that packet is
1595  * known */
1596 static void ether1394_complete_cb(void *__ptask)
1597 {
1598         struct packet_task *ptask = (struct packet_task *)__ptask;
1599         struct hpsb_packet *packet = ptask->packet;
1600         int fail = 0;
1601
1602         if (packet->tcode != TCODE_STREAM_DATA)
1603                 fail = hpsb_packet_success(packet);
1604
1605         ether1394_free_packet(packet);
1606
1607         ptask->outstanding_pkts--;
1608         if (ptask->outstanding_pkts > 0 && !fail) {
1609                 int tx_len;
1610
1611                 /* Add the encapsulation header to the fragment */
1612                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1613                                                &ptask->hdr);
1614                 if (ether1394_send_packet(ptask, tx_len))
1615                         ether1394_dg_complete(ptask, 1);
1616         } else {
1617                 ether1394_dg_complete(ptask, fail);
1618         }
1619 }
1620
1621
1622
1623 /* Transmit a packet (called by kernel) */
1624 static int ether1394_tx (struct sk_buff *skb, struct net_device *dev)
1625 {
1626         gfp_t kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1627         struct eth1394hdr *eth;
1628         struct eth1394_priv *priv = netdev_priv(dev);
1629         int proto;
1630         unsigned long flags;
1631         nodeid_t dest_node;
1632         eth1394_tx_type tx_type;
1633         int ret = 0;
1634         unsigned int tx_len;
1635         unsigned int max_payload;
1636         u16 dg_size;
1637         u16 dgl;
1638         struct packet_task *ptask;
1639         struct eth1394_node_ref *node;
1640         struct eth1394_node_info *node_info = NULL;
1641
1642         ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1643         if (ptask == NULL) {
1644                 ret = -ENOMEM;
1645                 goto fail;
1646         }
1647
1648         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1649          * it does not set our validity bit. We need to compensate for
1650          * that somewhere else, but not in eth1394. */
1651 #if 0
1652         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1653                 ret = -EAGAIN;
1654                 goto fail;
1655         }
1656 #endif
1657
1658         if ((skb = skb_share_check (skb, kmflags)) == NULL) {
1659                 ret = -ENOMEM;
1660                 goto fail;
1661         }
1662
1663         /* Get rid of the fake eth1394 header, but save a pointer */
1664         eth = (struct eth1394hdr*)skb->data;
1665         skb_pull(skb, ETH1394_HLEN);
1666
1667         proto = eth->h_proto;
1668         dg_size = skb->len;
1669
1670         /* Set the transmission type for the packet.  ARP packets and IP
1671          * broadcast packets are sent via GASP. */
1672         if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1673             proto == __constant_htons(ETH_P_ARP) ||
1674             (proto == __constant_htons(ETH_P_IP) &&
1675              IN_MULTICAST(__constant_ntohl(skb->nh.iph->daddr)))) {
1676                 tx_type = ETH1394_GASP;
1677                 dest_node = LOCAL_BUS | ALL_NODES;
1678                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1679                 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1680                 dgl = priv->bc_dgl;
1681                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1682                         priv->bc_dgl++;
1683         } else {
1684                 node = eth1394_find_node_guid(&priv->ip_node_list,
1685                                               be64_to_cpu(*(u64*)eth->h_dest));
1686                 if (!node) {
1687                         ret = -EAGAIN;
1688                         goto fail;
1689                 }
1690                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
1691                 if (node_info->fifo == ETHER1394_INVALID_ADDR) {
1692                         ret = -EAGAIN;
1693                         goto fail;
1694                 }
1695
1696                 dest_node = node->ud->ne->nodeid;
1697                 max_payload = node_info->maxpayload;
1698                 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1699
1700                 dgl = node_info->dgl;
1701                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1702                         node_info->dgl++;
1703                 tx_type = ETH1394_WRREQ;
1704         }
1705
1706         /* If this is an ARP packet, convert it */
1707         if (proto == __constant_htons (ETH_P_ARP))
1708                 ether1394_arp_to_1394arp (skb, dev);
1709
1710         ptask->hdr.words.word1 = 0;
1711         ptask->hdr.words.word2 = 0;
1712         ptask->hdr.words.word3 = 0;
1713         ptask->hdr.words.word4 = 0;
1714         ptask->skb = skb;
1715         ptask->priv = priv;
1716         ptask->tx_type = tx_type;
1717
1718         if (tx_type != ETH1394_GASP) {
1719                 u64 addr;
1720
1721                 spin_lock_irqsave(&priv->lock, flags);
1722                 addr = node_info->fifo;
1723                 spin_unlock_irqrestore(&priv->lock, flags);
1724
1725                 ptask->addr = addr;
1726                 ptask->dest_node = dest_node;
1727         }
1728
1729         ptask->tx_type = tx_type;
1730         ptask->max_payload = max_payload;
1731         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload, proto,
1732                                                              &ptask->hdr, dg_size,
1733                                                              dgl);
1734
1735         /* Add the encapsulation header to the fragment */
1736         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1737         dev->trans_start = jiffies;
1738         if (ether1394_send_packet(ptask, tx_len))
1739                 goto fail;
1740
1741         netif_wake_queue(dev);
1742         return 0;
1743 fail:
1744         if (ptask)
1745                 kmem_cache_free(packet_task_cache, ptask);
1746
1747         if (skb != NULL)
1748                 dev_kfree_skb(skb);
1749
1750         spin_lock_irqsave (&priv->lock, flags);
1751         priv->stats.tx_dropped++;
1752         priv->stats.tx_errors++;
1753         spin_unlock_irqrestore (&priv->lock, flags);
1754
1755         if (netif_queue_stopped(dev))
1756                 netif_wake_queue(dev);
1757
1758         return 0;  /* returning non-zero causes serious problems */
1759 }
1760
1761 static void ether1394_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1762 {
1763         strcpy (info->driver, driver_name);
1764         /* FIXME XXX provide sane businfo */
1765         strcpy (info->bus_info, "ieee1394");
1766 }
1767
1768 static struct ethtool_ops ethtool_ops = {
1769         .get_drvinfo = ether1394_get_drvinfo
1770 };
1771
1772 static int __init ether1394_init_module (void)
1773 {
1774         packet_task_cache = kmem_cache_create("packet_task", sizeof(struct packet_task),
1775                                               0, 0, NULL, NULL);
1776
1777         /* Register ourselves as a highlevel driver */
1778         hpsb_register_highlevel(&eth1394_highlevel);
1779
1780         return hpsb_register_protocol(&eth1394_proto_driver);
1781 }
1782
1783 static void __exit ether1394_exit_module (void)
1784 {
1785         hpsb_unregister_protocol(&eth1394_proto_driver);
1786         hpsb_unregister_highlevel(&eth1394_highlevel);
1787         kmem_cache_destroy(packet_task_cache);
1788 }
1789
1790 module_init(ether1394_init_module);
1791 module_exit(ether1394_exit_module);