]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: Turn on another required clock gating bit on gen6.
[linux-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41
42 #include "drm_crtc_helper.h"
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_update_watermarks(struct drm_device *dev);
48 static void intel_increase_pllclock(struct drm_crtc *crtc);
49 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50
51 typedef struct {
52         /* given values */
53         int n;
54         int m1, m2;
55         int p1, p2;
56         /* derived values */
57         int     dot;
58         int     vco;
59         int     m;
60         int     p;
61 } intel_clock_t;
62
63 typedef struct {
64         int     min, max;
65 } intel_range_t;
66
67 typedef struct {
68         int     dot_limit;
69         int     p2_slow, p2_fast;
70 } intel_p2_t;
71
72 #define INTEL_P2_NUM                  2
73 typedef struct intel_limit intel_limit_t;
74 struct intel_limit {
75         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
76         intel_p2_t          p2;
77         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78                         int, int, intel_clock_t *);
79 };
80
81 /* FDI */
82 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
83
84 static bool
85 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86                     int target, int refclk, intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89                         int target, int refclk, intel_clock_t *best_clock);
90
91 static bool
92 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
93                       int target, int refclk, intel_clock_t *best_clock);
94 static bool
95 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
96                            int target, int refclk, intel_clock_t *best_clock);
97
98 static inline u32 /* units of 100MHz */
99 intel_fdi_link_freq(struct drm_device *dev)
100 {
101         if (IS_GEN5(dev)) {
102                 struct drm_i915_private *dev_priv = dev->dev_private;
103                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
104         } else
105                 return 27;
106 }
107
108 static const intel_limit_t intel_limits_i8xx_dvo = {
109         .dot = { .min = 25000, .max = 350000 },
110         .vco = { .min = 930000, .max = 1400000 },
111         .n = { .min = 3, .max = 16 },
112         .m = { .min = 96, .max = 140 },
113         .m1 = { .min = 18, .max = 26 },
114         .m2 = { .min = 6, .max = 16 },
115         .p = { .min = 4, .max = 128 },
116         .p1 = { .min = 2, .max = 33 },
117         .p2 = { .dot_limit = 165000,
118                 .p2_slow = 4, .p2_fast = 2 },
119         .find_pll = intel_find_best_PLL,
120 };
121
122 static const intel_limit_t intel_limits_i8xx_lvds = {
123         .dot = { .min = 25000, .max = 350000 },
124         .vco = { .min = 930000, .max = 1400000 },
125         .n = { .min = 3, .max = 16 },
126         .m = { .min = 96, .max = 140 },
127         .m1 = { .min = 18, .max = 26 },
128         .m2 = { .min = 6, .max = 16 },
129         .p = { .min = 4, .max = 128 },
130         .p1 = { .min = 1, .max = 6 },
131         .p2 = { .dot_limit = 165000,
132                 .p2_slow = 14, .p2_fast = 7 },
133         .find_pll = intel_find_best_PLL,
134 };
135
136 static const intel_limit_t intel_limits_i9xx_sdvo = {
137         .dot = { .min = 20000, .max = 400000 },
138         .vco = { .min = 1400000, .max = 2800000 },
139         .n = { .min = 1, .max = 6 },
140         .m = { .min = 70, .max = 120 },
141         .m1 = { .min = 10, .max = 22 },
142         .m2 = { .min = 5, .max = 9 },
143         .p = { .min = 5, .max = 80 },
144         .p1 = { .min = 1, .max = 8 },
145         .p2 = { .dot_limit = 200000,
146                 .p2_slow = 10, .p2_fast = 5 },
147         .find_pll = intel_find_best_PLL,
148 };
149
150 static const intel_limit_t intel_limits_i9xx_lvds = {
151         .dot = { .min = 20000, .max = 400000 },
152         .vco = { .min = 1400000, .max = 2800000 },
153         .n = { .min = 1, .max = 6 },
154         .m = { .min = 70, .max = 120 },
155         .m1 = { .min = 10, .max = 22 },
156         .m2 = { .min = 5, .max = 9 },
157         .p = { .min = 7, .max = 98 },
158         .p1 = { .min = 1, .max = 8 },
159         .p2 = { .dot_limit = 112000,
160                 .p2_slow = 14, .p2_fast = 7 },
161         .find_pll = intel_find_best_PLL,
162 };
163
164
165 static const intel_limit_t intel_limits_g4x_sdvo = {
166         .dot = { .min = 25000, .max = 270000 },
167         .vco = { .min = 1750000, .max = 3500000},
168         .n = { .min = 1, .max = 4 },
169         .m = { .min = 104, .max = 138 },
170         .m1 = { .min = 17, .max = 23 },
171         .m2 = { .min = 5, .max = 11 },
172         .p = { .min = 10, .max = 30 },
173         .p1 = { .min = 1, .max = 3},
174         .p2 = { .dot_limit = 270000,
175                 .p2_slow = 10,
176                 .p2_fast = 10
177         },
178         .find_pll = intel_g4x_find_best_PLL,
179 };
180
181 static const intel_limit_t intel_limits_g4x_hdmi = {
182         .dot = { .min = 22000, .max = 400000 },
183         .vco = { .min = 1750000, .max = 3500000},
184         .n = { .min = 1, .max = 4 },
185         .m = { .min = 104, .max = 138 },
186         .m1 = { .min = 16, .max = 23 },
187         .m2 = { .min = 5, .max = 11 },
188         .p = { .min = 5, .max = 80 },
189         .p1 = { .min = 1, .max = 8},
190         .p2 = { .dot_limit = 165000,
191                 .p2_slow = 10, .p2_fast = 5 },
192         .find_pll = intel_g4x_find_best_PLL,
193 };
194
195 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
196         .dot = { .min = 20000, .max = 115000 },
197         .vco = { .min = 1750000, .max = 3500000 },
198         .n = { .min = 1, .max = 3 },
199         .m = { .min = 104, .max = 138 },
200         .m1 = { .min = 17, .max = 23 },
201         .m2 = { .min = 5, .max = 11 },
202         .p = { .min = 28, .max = 112 },
203         .p1 = { .min = 2, .max = 8 },
204         .p2 = { .dot_limit = 0,
205                 .p2_slow = 14, .p2_fast = 14
206         },
207         .find_pll = intel_g4x_find_best_PLL,
208 };
209
210 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
211         .dot = { .min = 80000, .max = 224000 },
212         .vco = { .min = 1750000, .max = 3500000 },
213         .n = { .min = 1, .max = 3 },
214         .m = { .min = 104, .max = 138 },
215         .m1 = { .min = 17, .max = 23 },
216         .m2 = { .min = 5, .max = 11 },
217         .p = { .min = 14, .max = 42 },
218         .p1 = { .min = 2, .max = 6 },
219         .p2 = { .dot_limit = 0,
220                 .p2_slow = 7, .p2_fast = 7
221         },
222         .find_pll = intel_g4x_find_best_PLL,
223 };
224
225 static const intel_limit_t intel_limits_g4x_display_port = {
226         .dot = { .min = 161670, .max = 227000 },
227         .vco = { .min = 1750000, .max = 3500000},
228         .n = { .min = 1, .max = 2 },
229         .m = { .min = 97, .max = 108 },
230         .m1 = { .min = 0x10, .max = 0x12 },
231         .m2 = { .min = 0x05, .max = 0x06 },
232         .p = { .min = 10, .max = 20 },
233         .p1 = { .min = 1, .max = 2},
234         .p2 = { .dot_limit = 0,
235                 .p2_slow = 10, .p2_fast = 10 },
236         .find_pll = intel_find_pll_g4x_dp,
237 };
238
239 static const intel_limit_t intel_limits_pineview_sdvo = {
240         .dot = { .min = 20000, .max = 400000},
241         .vco = { .min = 1700000, .max = 3500000 },
242         /* Pineview's Ncounter is a ring counter */
243         .n = { .min = 3, .max = 6 },
244         .m = { .min = 2, .max = 256 },
245         /* Pineview only has one combined m divider, which we treat as m2. */
246         .m1 = { .min = 0, .max = 0 },
247         .m2 = { .min = 0, .max = 254 },
248         .p = { .min = 5, .max = 80 },
249         .p1 = { .min = 1, .max = 8 },
250         .p2 = { .dot_limit = 200000,
251                 .p2_slow = 10, .p2_fast = 5 },
252         .find_pll = intel_find_best_PLL,
253 };
254
255 static const intel_limit_t intel_limits_pineview_lvds = {
256         .dot = { .min = 20000, .max = 400000 },
257         .vco = { .min = 1700000, .max = 3500000 },
258         .n = { .min = 3, .max = 6 },
259         .m = { .min = 2, .max = 256 },
260         .m1 = { .min = 0, .max = 0 },
261         .m2 = { .min = 0, .max = 254 },
262         .p = { .min = 7, .max = 112 },
263         .p1 = { .min = 1, .max = 8 },
264         .p2 = { .dot_limit = 112000,
265                 .p2_slow = 14, .p2_fast = 14 },
266         .find_pll = intel_find_best_PLL,
267 };
268
269 /* Ironlake / Sandybridge
270  *
271  * We calculate clock using (register_value + 2) for N/M1/M2, so here
272  * the range value for them is (actual_value - 2).
273  */
274 static const intel_limit_t intel_limits_ironlake_dac = {
275         .dot = { .min = 25000, .max = 350000 },
276         .vco = { .min = 1760000, .max = 3510000 },
277         .n = { .min = 1, .max = 5 },
278         .m = { .min = 79, .max = 127 },
279         .m1 = { .min = 12, .max = 22 },
280         .m2 = { .min = 5, .max = 9 },
281         .p = { .min = 5, .max = 80 },
282         .p1 = { .min = 1, .max = 8 },
283         .p2 = { .dot_limit = 225000,
284                 .p2_slow = 10, .p2_fast = 5 },
285         .find_pll = intel_g4x_find_best_PLL,
286 };
287
288 static const intel_limit_t intel_limits_ironlake_single_lvds = {
289         .dot = { .min = 25000, .max = 350000 },
290         .vco = { .min = 1760000, .max = 3510000 },
291         .n = { .min = 1, .max = 3 },
292         .m = { .min = 79, .max = 118 },
293         .m1 = { .min = 12, .max = 22 },
294         .m2 = { .min = 5, .max = 9 },
295         .p = { .min = 28, .max = 112 },
296         .p1 = { .min = 2, .max = 8 },
297         .p2 = { .dot_limit = 225000,
298                 .p2_slow = 14, .p2_fast = 14 },
299         .find_pll = intel_g4x_find_best_PLL,
300 };
301
302 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
303         .dot = { .min = 25000, .max = 350000 },
304         .vco = { .min = 1760000, .max = 3510000 },
305         .n = { .min = 1, .max = 3 },
306         .m = { .min = 79, .max = 127 },
307         .m1 = { .min = 12, .max = 22 },
308         .m2 = { .min = 5, .max = 9 },
309         .p = { .min = 14, .max = 56 },
310         .p1 = { .min = 2, .max = 8 },
311         .p2 = { .dot_limit = 225000,
312                 .p2_slow = 7, .p2_fast = 7 },
313         .find_pll = intel_g4x_find_best_PLL,
314 };
315
316 /* LVDS 100mhz refclk limits. */
317 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
318         .dot = { .min = 25000, .max = 350000 },
319         .vco = { .min = 1760000, .max = 3510000 },
320         .n = { .min = 1, .max = 2 },
321         .m = { .min = 79, .max = 126 },
322         .m1 = { .min = 12, .max = 22 },
323         .m2 = { .min = 5, .max = 9 },
324         .p = { .min = 28, .max = 112 },
325         .p1 = { .min = 2, .max = 8 },
326         .p2 = { .dot_limit = 225000,
327                 .p2_slow = 14, .p2_fast = 14 },
328         .find_pll = intel_g4x_find_best_PLL,
329 };
330
331 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
332         .dot = { .min = 25000, .max = 350000 },
333         .vco = { .min = 1760000, .max = 3510000 },
334         .n = { .min = 1, .max = 3 },
335         .m = { .min = 79, .max = 126 },
336         .m1 = { .min = 12, .max = 22 },
337         .m2 = { .min = 5, .max = 9 },
338         .p = { .min = 14, .max = 42 },
339         .p1 = { .min = 2, .max = 6 },
340         .p2 = { .dot_limit = 225000,
341                 .p2_slow = 7, .p2_fast = 7 },
342         .find_pll = intel_g4x_find_best_PLL,
343 };
344
345 static const intel_limit_t intel_limits_ironlake_display_port = {
346         .dot = { .min = 25000, .max = 350000 },
347         .vco = { .min = 1760000, .max = 3510000},
348         .n = { .min = 1, .max = 2 },
349         .m = { .min = 81, .max = 90 },
350         .m1 = { .min = 12, .max = 22 },
351         .m2 = { .min = 5, .max = 9 },
352         .p = { .min = 10, .max = 20 },
353         .p1 = { .min = 1, .max = 2},
354         .p2 = { .dot_limit = 0,
355                 .p2_slow = 10, .p2_fast = 10 },
356         .find_pll = intel_find_pll_ironlake_dp,
357 };
358
359 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
360                                                 int refclk)
361 {
362         struct drm_device *dev = crtc->dev;
363         struct drm_i915_private *dev_priv = dev->dev_private;
364         const intel_limit_t *limit;
365
366         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
367                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
368                     LVDS_CLKB_POWER_UP) {
369                         /* LVDS dual channel */
370                         if (refclk == 100000)
371                                 limit = &intel_limits_ironlake_dual_lvds_100m;
372                         else
373                                 limit = &intel_limits_ironlake_dual_lvds;
374                 } else {
375                         if (refclk == 100000)
376                                 limit = &intel_limits_ironlake_single_lvds_100m;
377                         else
378                                 limit = &intel_limits_ironlake_single_lvds;
379                 }
380         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
381                         HAS_eDP)
382                 limit = &intel_limits_ironlake_display_port;
383         else
384                 limit = &intel_limits_ironlake_dac;
385
386         return limit;
387 }
388
389 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
390 {
391         struct drm_device *dev = crtc->dev;
392         struct drm_i915_private *dev_priv = dev->dev_private;
393         const intel_limit_t *limit;
394
395         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
396                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
397                     LVDS_CLKB_POWER_UP)
398                         /* LVDS with dual channel */
399                         limit = &intel_limits_g4x_dual_channel_lvds;
400                 else
401                         /* LVDS with dual channel */
402                         limit = &intel_limits_g4x_single_channel_lvds;
403         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
404                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
405                 limit = &intel_limits_g4x_hdmi;
406         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
407                 limit = &intel_limits_g4x_sdvo;
408         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
409                 limit = &intel_limits_g4x_display_port;
410         } else /* The option is for other outputs */
411                 limit = &intel_limits_i9xx_sdvo;
412
413         return limit;
414 }
415
416 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
417 {
418         struct drm_device *dev = crtc->dev;
419         const intel_limit_t *limit;
420
421         if (HAS_PCH_SPLIT(dev))
422                 limit = intel_ironlake_limit(crtc, refclk);
423         else if (IS_G4X(dev)) {
424                 limit = intel_g4x_limit(crtc);
425         } else if (IS_PINEVIEW(dev)) {
426                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
427                         limit = &intel_limits_pineview_lvds;
428                 else
429                         limit = &intel_limits_pineview_sdvo;
430         } else if (!IS_GEN2(dev)) {
431                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
432                         limit = &intel_limits_i9xx_lvds;
433                 else
434                         limit = &intel_limits_i9xx_sdvo;
435         } else {
436                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
437                         limit = &intel_limits_i8xx_lvds;
438                 else
439                         limit = &intel_limits_i8xx_dvo;
440         }
441         return limit;
442 }
443
444 /* m1 is reserved as 0 in Pineview, n is a ring counter */
445 static void pineview_clock(int refclk, intel_clock_t *clock)
446 {
447         clock->m = clock->m2 + 2;
448         clock->p = clock->p1 * clock->p2;
449         clock->vco = refclk * clock->m / clock->n;
450         clock->dot = clock->vco / clock->p;
451 }
452
453 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
454 {
455         if (IS_PINEVIEW(dev)) {
456                 pineview_clock(refclk, clock);
457                 return;
458         }
459         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
460         clock->p = clock->p1 * clock->p2;
461         clock->vco = refclk * clock->m / (clock->n + 2);
462         clock->dot = clock->vco / clock->p;
463 }
464
465 /**
466  * Returns whether any output on the specified pipe is of the specified type
467  */
468 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
469 {
470         struct drm_device *dev = crtc->dev;
471         struct drm_mode_config *mode_config = &dev->mode_config;
472         struct intel_encoder *encoder;
473
474         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
475                 if (encoder->base.crtc == crtc && encoder->type == type)
476                         return true;
477
478         return false;
479 }
480
481 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
482 /**
483  * Returns whether the given set of divisors are valid for a given refclk with
484  * the given connectors.
485  */
486
487 static bool intel_PLL_is_valid(struct drm_device *dev,
488                                const intel_limit_t *limit,
489                                const intel_clock_t *clock)
490 {
491         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
492                 INTELPllInvalid("p1 out of range\n");
493         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
494                 INTELPllInvalid("p out of range\n");
495         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
496                 INTELPllInvalid("m2 out of range\n");
497         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
498                 INTELPllInvalid("m1 out of range\n");
499         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
500                 INTELPllInvalid("m1 <= m2\n");
501         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
502                 INTELPllInvalid("m out of range\n");
503         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
504                 INTELPllInvalid("n out of range\n");
505         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
506                 INTELPllInvalid("vco out of range\n");
507         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
508          * connector, etc., rather than just a single range.
509          */
510         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
511                 INTELPllInvalid("dot out of range\n");
512
513         return true;
514 }
515
516 static bool
517 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
518                     int target, int refclk, intel_clock_t *best_clock)
519
520 {
521         struct drm_device *dev = crtc->dev;
522         struct drm_i915_private *dev_priv = dev->dev_private;
523         intel_clock_t clock;
524         int err = target;
525
526         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
527             (I915_READ(LVDS)) != 0) {
528                 /*
529                  * For LVDS, if the panel is on, just rely on its current
530                  * settings for dual-channel.  We haven't figured out how to
531                  * reliably set up different single/dual channel state, if we
532                  * even can.
533                  */
534                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
535                     LVDS_CLKB_POWER_UP)
536                         clock.p2 = limit->p2.p2_fast;
537                 else
538                         clock.p2 = limit->p2.p2_slow;
539         } else {
540                 if (target < limit->p2.dot_limit)
541                         clock.p2 = limit->p2.p2_slow;
542                 else
543                         clock.p2 = limit->p2.p2_fast;
544         }
545
546         memset(best_clock, 0, sizeof(*best_clock));
547
548         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
549              clock.m1++) {
550                 for (clock.m2 = limit->m2.min;
551                      clock.m2 <= limit->m2.max; clock.m2++) {
552                         /* m1 is always 0 in Pineview */
553                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
554                                 break;
555                         for (clock.n = limit->n.min;
556                              clock.n <= limit->n.max; clock.n++) {
557                                 for (clock.p1 = limit->p1.min;
558                                         clock.p1 <= limit->p1.max; clock.p1++) {
559                                         int this_err;
560
561                                         intel_clock(dev, refclk, &clock);
562                                         if (!intel_PLL_is_valid(dev, limit,
563                                                                 &clock))
564                                                 continue;
565
566                                         this_err = abs(clock.dot - target);
567                                         if (this_err < err) {
568                                                 *best_clock = clock;
569                                                 err = this_err;
570                                         }
571                                 }
572                         }
573                 }
574         }
575
576         return (err != target);
577 }
578
579 static bool
580 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
581                         int target, int refclk, intel_clock_t *best_clock)
582 {
583         struct drm_device *dev = crtc->dev;
584         struct drm_i915_private *dev_priv = dev->dev_private;
585         intel_clock_t clock;
586         int max_n;
587         bool found;
588         /* approximately equals target * 0.00585 */
589         int err_most = (target >> 8) + (target >> 9);
590         found = false;
591
592         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
593                 int lvds_reg;
594
595                 if (HAS_PCH_SPLIT(dev))
596                         lvds_reg = PCH_LVDS;
597                 else
598                         lvds_reg = LVDS;
599                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
600                     LVDS_CLKB_POWER_UP)
601                         clock.p2 = limit->p2.p2_fast;
602                 else
603                         clock.p2 = limit->p2.p2_slow;
604         } else {
605                 if (target < limit->p2.dot_limit)
606                         clock.p2 = limit->p2.p2_slow;
607                 else
608                         clock.p2 = limit->p2.p2_fast;
609         }
610
611         memset(best_clock, 0, sizeof(*best_clock));
612         max_n = limit->n.max;
613         /* based on hardware requirement, prefer smaller n to precision */
614         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
615                 /* based on hardware requirement, prefere larger m1,m2 */
616                 for (clock.m1 = limit->m1.max;
617                      clock.m1 >= limit->m1.min; clock.m1--) {
618                         for (clock.m2 = limit->m2.max;
619                              clock.m2 >= limit->m2.min; clock.m2--) {
620                                 for (clock.p1 = limit->p1.max;
621                                      clock.p1 >= limit->p1.min; clock.p1--) {
622                                         int this_err;
623
624                                         intel_clock(dev, refclk, &clock);
625                                         if (!intel_PLL_is_valid(dev, limit,
626                                                                 &clock))
627                                                 continue;
628
629                                         this_err = abs(clock.dot - target);
630                                         if (this_err < err_most) {
631                                                 *best_clock = clock;
632                                                 err_most = this_err;
633                                                 max_n = clock.n;
634                                                 found = true;
635                                         }
636                                 }
637                         }
638                 }
639         }
640         return found;
641 }
642
643 static bool
644 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
645                            int target, int refclk, intel_clock_t *best_clock)
646 {
647         struct drm_device *dev = crtc->dev;
648         intel_clock_t clock;
649
650         if (target < 200000) {
651                 clock.n = 1;
652                 clock.p1 = 2;
653                 clock.p2 = 10;
654                 clock.m1 = 12;
655                 clock.m2 = 9;
656         } else {
657                 clock.n = 2;
658                 clock.p1 = 1;
659                 clock.p2 = 10;
660                 clock.m1 = 14;
661                 clock.m2 = 8;
662         }
663         intel_clock(dev, refclk, &clock);
664         memcpy(best_clock, &clock, sizeof(intel_clock_t));
665         return true;
666 }
667
668 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
669 static bool
670 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
671                       int target, int refclk, intel_clock_t *best_clock)
672 {
673         intel_clock_t clock;
674         if (target < 200000) {
675                 clock.p1 = 2;
676                 clock.p2 = 10;
677                 clock.n = 2;
678                 clock.m1 = 23;
679                 clock.m2 = 8;
680         } else {
681                 clock.p1 = 1;
682                 clock.p2 = 10;
683                 clock.n = 1;
684                 clock.m1 = 14;
685                 clock.m2 = 2;
686         }
687         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
688         clock.p = (clock.p1 * clock.p2);
689         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
690         clock.vco = 0;
691         memcpy(best_clock, &clock, sizeof(intel_clock_t));
692         return true;
693 }
694
695 /**
696  * intel_wait_for_vblank - wait for vblank on a given pipe
697  * @dev: drm device
698  * @pipe: pipe to wait for
699  *
700  * Wait for vblank to occur on a given pipe.  Needed for various bits of
701  * mode setting code.
702  */
703 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
704 {
705         struct drm_i915_private *dev_priv = dev->dev_private;
706         int pipestat_reg = PIPESTAT(pipe);
707
708         /* Clear existing vblank status. Note this will clear any other
709          * sticky status fields as well.
710          *
711          * This races with i915_driver_irq_handler() with the result
712          * that either function could miss a vblank event.  Here it is not
713          * fatal, as we will either wait upon the next vblank interrupt or
714          * timeout.  Generally speaking intel_wait_for_vblank() is only
715          * called during modeset at which time the GPU should be idle and
716          * should *not* be performing page flips and thus not waiting on
717          * vblanks...
718          * Currently, the result of us stealing a vblank from the irq
719          * handler is that a single frame will be skipped during swapbuffers.
720          */
721         I915_WRITE(pipestat_reg,
722                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
723
724         /* Wait for vblank interrupt bit to set */
725         if (wait_for(I915_READ(pipestat_reg) &
726                      PIPE_VBLANK_INTERRUPT_STATUS,
727                      50))
728                 DRM_DEBUG_KMS("vblank wait timed out\n");
729 }
730
731 /*
732  * intel_wait_for_pipe_off - wait for pipe to turn off
733  * @dev: drm device
734  * @pipe: pipe to wait for
735  *
736  * After disabling a pipe, we can't wait for vblank in the usual way,
737  * spinning on the vblank interrupt status bit, since we won't actually
738  * see an interrupt when the pipe is disabled.
739  *
740  * On Gen4 and above:
741  *   wait for the pipe register state bit to turn off
742  *
743  * Otherwise:
744  *   wait for the display line value to settle (it usually
745  *   ends up stopping at the start of the next frame).
746  *
747  */
748 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
749 {
750         struct drm_i915_private *dev_priv = dev->dev_private;
751
752         if (INTEL_INFO(dev)->gen >= 4) {
753                 int reg = PIPECONF(pipe);
754
755                 /* Wait for the Pipe State to go off */
756                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
757                              100))
758                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
759         } else {
760                 u32 last_line;
761                 int reg = PIPEDSL(pipe);
762                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
763
764                 /* Wait for the display line to settle */
765                 do {
766                         last_line = I915_READ(reg) & DSL_LINEMASK;
767                         mdelay(5);
768                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
769                          time_after(timeout, jiffies));
770                 if (time_after(jiffies, timeout))
771                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
772         }
773 }
774
775 static const char *state_string(bool enabled)
776 {
777         return enabled ? "on" : "off";
778 }
779
780 /* Only for pre-ILK configs */
781 static void assert_pll(struct drm_i915_private *dev_priv,
782                        enum pipe pipe, bool state)
783 {
784         int reg;
785         u32 val;
786         bool cur_state;
787
788         reg = DPLL(pipe);
789         val = I915_READ(reg);
790         cur_state = !!(val & DPLL_VCO_ENABLE);
791         WARN(cur_state != state,
792              "PLL state assertion failure (expected %s, current %s)\n",
793              state_string(state), state_string(cur_state));
794 }
795 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
796 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
797
798 /* For ILK+ */
799 static void assert_pch_pll(struct drm_i915_private *dev_priv,
800                            enum pipe pipe, bool state)
801 {
802         int reg;
803         u32 val;
804         bool cur_state;
805
806         if (HAS_PCH_CPT(dev_priv->dev)) {
807                 u32 pch_dpll;
808
809                 pch_dpll = I915_READ(PCH_DPLL_SEL);
810
811                 /* Make sure the selected PLL is enabled to the transcoder */
812                 WARN(!((pch_dpll >> (4 * pipe)) & 8),
813                      "transcoder %d PLL not enabled\n", pipe);
814
815                 /* Convert the transcoder pipe number to a pll pipe number */
816                 pipe = (pch_dpll >> (4 * pipe)) & 1;
817         }
818
819         reg = PCH_DPLL(pipe);
820         val = I915_READ(reg);
821         cur_state = !!(val & DPLL_VCO_ENABLE);
822         WARN(cur_state != state,
823              "PCH PLL state assertion failure (expected %s, current %s)\n",
824              state_string(state), state_string(cur_state));
825 }
826 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
827 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
828
829 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
830                           enum pipe pipe, bool state)
831 {
832         int reg;
833         u32 val;
834         bool cur_state;
835
836         reg = FDI_TX_CTL(pipe);
837         val = I915_READ(reg);
838         cur_state = !!(val & FDI_TX_ENABLE);
839         WARN(cur_state != state,
840              "FDI TX state assertion failure (expected %s, current %s)\n",
841              state_string(state), state_string(cur_state));
842 }
843 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
844 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
845
846 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
847                           enum pipe pipe, bool state)
848 {
849         int reg;
850         u32 val;
851         bool cur_state;
852
853         reg = FDI_RX_CTL(pipe);
854         val = I915_READ(reg);
855         cur_state = !!(val & FDI_RX_ENABLE);
856         WARN(cur_state != state,
857              "FDI RX state assertion failure (expected %s, current %s)\n",
858              state_string(state), state_string(cur_state));
859 }
860 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
861 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
862
863 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
864                                       enum pipe pipe)
865 {
866         int reg;
867         u32 val;
868
869         /* ILK FDI PLL is always enabled */
870         if (dev_priv->info->gen == 5)
871                 return;
872
873         reg = FDI_TX_CTL(pipe);
874         val = I915_READ(reg);
875         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
876 }
877
878 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
879                                       enum pipe pipe)
880 {
881         int reg;
882         u32 val;
883
884         reg = FDI_RX_CTL(pipe);
885         val = I915_READ(reg);
886         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
887 }
888
889 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
890                                   enum pipe pipe)
891 {
892         int pp_reg, lvds_reg;
893         u32 val;
894         enum pipe panel_pipe = PIPE_A;
895         bool locked = true;
896
897         if (HAS_PCH_SPLIT(dev_priv->dev)) {
898                 pp_reg = PCH_PP_CONTROL;
899                 lvds_reg = PCH_LVDS;
900         } else {
901                 pp_reg = PP_CONTROL;
902                 lvds_reg = LVDS;
903         }
904
905         val = I915_READ(pp_reg);
906         if (!(val & PANEL_POWER_ON) ||
907             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
908                 locked = false;
909
910         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
911                 panel_pipe = PIPE_B;
912
913         WARN(panel_pipe == pipe && locked,
914              "panel assertion failure, pipe %c regs locked\n",
915              pipe_name(pipe));
916 }
917
918 static void assert_pipe(struct drm_i915_private *dev_priv,
919                         enum pipe pipe, bool state)
920 {
921         int reg;
922         u32 val;
923         bool cur_state;
924
925         reg = PIPECONF(pipe);
926         val = I915_READ(reg);
927         cur_state = !!(val & PIPECONF_ENABLE);
928         WARN(cur_state != state,
929              "pipe %c assertion failure (expected %s, current %s)\n",
930              pipe_name(pipe), state_string(state), state_string(cur_state));
931 }
932 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
933 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
934
935 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
936                                  enum plane plane)
937 {
938         int reg;
939         u32 val;
940
941         reg = DSPCNTR(plane);
942         val = I915_READ(reg);
943         WARN(!(val & DISPLAY_PLANE_ENABLE),
944              "plane %c assertion failure, should be active but is disabled\n",
945              plane_name(plane));
946 }
947
948 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
949                                    enum pipe pipe)
950 {
951         int reg, i;
952         u32 val;
953         int cur_pipe;
954
955         /* Planes are fixed to pipes on ILK+ */
956         if (HAS_PCH_SPLIT(dev_priv->dev))
957                 return;
958
959         /* Need to check both planes against the pipe */
960         for (i = 0; i < 2; i++) {
961                 reg = DSPCNTR(i);
962                 val = I915_READ(reg);
963                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
964                         DISPPLANE_SEL_PIPE_SHIFT;
965                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
966                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
967                      plane_name(i), pipe_name(pipe));
968         }
969 }
970
971 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
972 {
973         u32 val;
974         bool enabled;
975
976         val = I915_READ(PCH_DREF_CONTROL);
977         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
978                             DREF_SUPERSPREAD_SOURCE_MASK));
979         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
980 }
981
982 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
983                                        enum pipe pipe)
984 {
985         int reg;
986         u32 val;
987         bool enabled;
988
989         reg = TRANSCONF(pipe);
990         val = I915_READ(reg);
991         enabled = !!(val & TRANS_ENABLE);
992         WARN(enabled,
993              "transcoder assertion failed, should be off on pipe %c but is still active\n",
994              pipe_name(pipe));
995 }
996
997 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
998                             enum pipe pipe, u32 port_sel, u32 val)
999 {
1000         if ((val & DP_PORT_EN) == 0)
1001                 return false;
1002
1003         if (HAS_PCH_CPT(dev_priv->dev)) {
1004                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1005                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1006                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1007                         return false;
1008         } else {
1009                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1010                         return false;
1011         }
1012         return true;
1013 }
1014
1015 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1016                               enum pipe pipe, u32 val)
1017 {
1018         if ((val & PORT_ENABLE) == 0)
1019                 return false;
1020
1021         if (HAS_PCH_CPT(dev_priv->dev)) {
1022                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1023                         return false;
1024         } else {
1025                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1026                         return false;
1027         }
1028         return true;
1029 }
1030
1031 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1032                               enum pipe pipe, u32 val)
1033 {
1034         if ((val & LVDS_PORT_EN) == 0)
1035                 return false;
1036
1037         if (HAS_PCH_CPT(dev_priv->dev)) {
1038                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1039                         return false;
1040         } else {
1041                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1042                         return false;
1043         }
1044         return true;
1045 }
1046
1047 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1048                               enum pipe pipe, u32 val)
1049 {
1050         if ((val & ADPA_DAC_ENABLE) == 0)
1051                 return false;
1052         if (HAS_PCH_CPT(dev_priv->dev)) {
1053                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1054                         return false;
1055         } else {
1056                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1057                         return false;
1058         }
1059         return true;
1060 }
1061
1062 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1063                                    enum pipe pipe, int reg, u32 port_sel)
1064 {
1065         u32 val = I915_READ(reg);
1066         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1067              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1068              reg, pipe_name(pipe));
1069 }
1070
1071 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1072                                      enum pipe pipe, int reg)
1073 {
1074         u32 val = I915_READ(reg);
1075         WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1076              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1077              reg, pipe_name(pipe));
1078 }
1079
1080 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1081                                       enum pipe pipe)
1082 {
1083         int reg;
1084         u32 val;
1085
1086         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1087         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1088         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1089
1090         reg = PCH_ADPA;
1091         val = I915_READ(reg);
1092         WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1093              "PCH VGA enabled on transcoder %c, should be disabled\n",
1094              pipe_name(pipe));
1095
1096         reg = PCH_LVDS;
1097         val = I915_READ(reg);
1098         WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1099              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1100              pipe_name(pipe));
1101
1102         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1103         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1104         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1105 }
1106
1107 /**
1108  * intel_enable_pll - enable a PLL
1109  * @dev_priv: i915 private structure
1110  * @pipe: pipe PLL to enable
1111  *
1112  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1113  * make sure the PLL reg is writable first though, since the panel write
1114  * protect mechanism may be enabled.
1115  *
1116  * Note!  This is for pre-ILK only.
1117  */
1118 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1119 {
1120         int reg;
1121         u32 val;
1122
1123         /* No really, not for ILK+ */
1124         BUG_ON(dev_priv->info->gen >= 5);
1125
1126         /* PLL is protected by panel, make sure we can write it */
1127         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1128                 assert_panel_unlocked(dev_priv, pipe);
1129
1130         reg = DPLL(pipe);
1131         val = I915_READ(reg);
1132         val |= DPLL_VCO_ENABLE;
1133
1134         /* We do this three times for luck */
1135         I915_WRITE(reg, val);
1136         POSTING_READ(reg);
1137         udelay(150); /* wait for warmup */
1138         I915_WRITE(reg, val);
1139         POSTING_READ(reg);
1140         udelay(150); /* wait for warmup */
1141         I915_WRITE(reg, val);
1142         POSTING_READ(reg);
1143         udelay(150); /* wait for warmup */
1144 }
1145
1146 /**
1147  * intel_disable_pll - disable a PLL
1148  * @dev_priv: i915 private structure
1149  * @pipe: pipe PLL to disable
1150  *
1151  * Disable the PLL for @pipe, making sure the pipe is off first.
1152  *
1153  * Note!  This is for pre-ILK only.
1154  */
1155 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1156 {
1157         int reg;
1158         u32 val;
1159
1160         /* Don't disable pipe A or pipe A PLLs if needed */
1161         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1162                 return;
1163
1164         /* Make sure the pipe isn't still relying on us */
1165         assert_pipe_disabled(dev_priv, pipe);
1166
1167         reg = DPLL(pipe);
1168         val = I915_READ(reg);
1169         val &= ~DPLL_VCO_ENABLE;
1170         I915_WRITE(reg, val);
1171         POSTING_READ(reg);
1172 }
1173
1174 /**
1175  * intel_enable_pch_pll - enable PCH PLL
1176  * @dev_priv: i915 private structure
1177  * @pipe: pipe PLL to enable
1178  *
1179  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1180  * drives the transcoder clock.
1181  */
1182 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1183                                  enum pipe pipe)
1184 {
1185         int reg;
1186         u32 val;
1187
1188         if (pipe > 1)
1189                 return;
1190
1191         /* PCH only available on ILK+ */
1192         BUG_ON(dev_priv->info->gen < 5);
1193
1194         /* PCH refclock must be enabled first */
1195         assert_pch_refclk_enabled(dev_priv);
1196
1197         reg = PCH_DPLL(pipe);
1198         val = I915_READ(reg);
1199         val |= DPLL_VCO_ENABLE;
1200         I915_WRITE(reg, val);
1201         POSTING_READ(reg);
1202         udelay(200);
1203 }
1204
1205 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1206                                   enum pipe pipe)
1207 {
1208         int reg;
1209         u32 val;
1210
1211         if (pipe > 1)
1212                 return;
1213
1214         /* PCH only available on ILK+ */
1215         BUG_ON(dev_priv->info->gen < 5);
1216
1217         /* Make sure transcoder isn't still depending on us */
1218         assert_transcoder_disabled(dev_priv, pipe);
1219
1220         reg = PCH_DPLL(pipe);
1221         val = I915_READ(reg);
1222         val &= ~DPLL_VCO_ENABLE;
1223         I915_WRITE(reg, val);
1224         POSTING_READ(reg);
1225         udelay(200);
1226 }
1227
1228 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1229                                     enum pipe pipe)
1230 {
1231         int reg;
1232         u32 val;
1233
1234         /* PCH only available on ILK+ */
1235         BUG_ON(dev_priv->info->gen < 5);
1236
1237         /* Make sure PCH DPLL is enabled */
1238         assert_pch_pll_enabled(dev_priv, pipe);
1239
1240         /* FDI must be feeding us bits for PCH ports */
1241         assert_fdi_tx_enabled(dev_priv, pipe);
1242         assert_fdi_rx_enabled(dev_priv, pipe);
1243
1244         reg = TRANSCONF(pipe);
1245         val = I915_READ(reg);
1246
1247         if (HAS_PCH_IBX(dev_priv->dev)) {
1248                 /*
1249                  * make the BPC in transcoder be consistent with
1250                  * that in pipeconf reg.
1251                  */
1252                 val &= ~PIPE_BPC_MASK;
1253                 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1254         }
1255         I915_WRITE(reg, val | TRANS_ENABLE);
1256         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1257                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1258 }
1259
1260 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1261                                      enum pipe pipe)
1262 {
1263         int reg;
1264         u32 val;
1265
1266         /* FDI relies on the transcoder */
1267         assert_fdi_tx_disabled(dev_priv, pipe);
1268         assert_fdi_rx_disabled(dev_priv, pipe);
1269
1270         /* Ports must be off as well */
1271         assert_pch_ports_disabled(dev_priv, pipe);
1272
1273         reg = TRANSCONF(pipe);
1274         val = I915_READ(reg);
1275         val &= ~TRANS_ENABLE;
1276         I915_WRITE(reg, val);
1277         /* wait for PCH transcoder off, transcoder state */
1278         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1279                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1280 }
1281
1282 /**
1283  * intel_enable_pipe - enable a pipe, asserting requirements
1284  * @dev_priv: i915 private structure
1285  * @pipe: pipe to enable
1286  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1287  *
1288  * Enable @pipe, making sure that various hardware specific requirements
1289  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1290  *
1291  * @pipe should be %PIPE_A or %PIPE_B.
1292  *
1293  * Will wait until the pipe is actually running (i.e. first vblank) before
1294  * returning.
1295  */
1296 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1297                               bool pch_port)
1298 {
1299         int reg;
1300         u32 val;
1301
1302         /*
1303          * A pipe without a PLL won't actually be able to drive bits from
1304          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1305          * need the check.
1306          */
1307         if (!HAS_PCH_SPLIT(dev_priv->dev))
1308                 assert_pll_enabled(dev_priv, pipe);
1309         else {
1310                 if (pch_port) {
1311                         /* if driving the PCH, we need FDI enabled */
1312                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1313                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1314                 }
1315                 /* FIXME: assert CPU port conditions for SNB+ */
1316         }
1317
1318         reg = PIPECONF(pipe);
1319         val = I915_READ(reg);
1320         if (val & PIPECONF_ENABLE)
1321                 return;
1322
1323         I915_WRITE(reg, val | PIPECONF_ENABLE);
1324         intel_wait_for_vblank(dev_priv->dev, pipe);
1325 }
1326
1327 /**
1328  * intel_disable_pipe - disable a pipe, asserting requirements
1329  * @dev_priv: i915 private structure
1330  * @pipe: pipe to disable
1331  *
1332  * Disable @pipe, making sure that various hardware specific requirements
1333  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1334  *
1335  * @pipe should be %PIPE_A or %PIPE_B.
1336  *
1337  * Will wait until the pipe has shut down before returning.
1338  */
1339 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1340                                enum pipe pipe)
1341 {
1342         int reg;
1343         u32 val;
1344
1345         /*
1346          * Make sure planes won't keep trying to pump pixels to us,
1347          * or we might hang the display.
1348          */
1349         assert_planes_disabled(dev_priv, pipe);
1350
1351         /* Don't disable pipe A or pipe A PLLs if needed */
1352         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1353                 return;
1354
1355         reg = PIPECONF(pipe);
1356         val = I915_READ(reg);
1357         if ((val & PIPECONF_ENABLE) == 0)
1358                 return;
1359
1360         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1361         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1362 }
1363
1364 /*
1365  * Plane regs are double buffered, going from enabled->disabled needs a
1366  * trigger in order to latch.  The display address reg provides this.
1367  */
1368 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1369                                       enum plane plane)
1370 {
1371         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1372         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1373 }
1374
1375 /**
1376  * intel_enable_plane - enable a display plane on a given pipe
1377  * @dev_priv: i915 private structure
1378  * @plane: plane to enable
1379  * @pipe: pipe being fed
1380  *
1381  * Enable @plane on @pipe, making sure that @pipe is running first.
1382  */
1383 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1384                                enum plane plane, enum pipe pipe)
1385 {
1386         int reg;
1387         u32 val;
1388
1389         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1390         assert_pipe_enabled(dev_priv, pipe);
1391
1392         reg = DSPCNTR(plane);
1393         val = I915_READ(reg);
1394         if (val & DISPLAY_PLANE_ENABLE)
1395                 return;
1396
1397         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1398         intel_flush_display_plane(dev_priv, plane);
1399         intel_wait_for_vblank(dev_priv->dev, pipe);
1400 }
1401
1402 /**
1403  * intel_disable_plane - disable a display plane
1404  * @dev_priv: i915 private structure
1405  * @plane: plane to disable
1406  * @pipe: pipe consuming the data
1407  *
1408  * Disable @plane; should be an independent operation.
1409  */
1410 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1411                                 enum plane plane, enum pipe pipe)
1412 {
1413         int reg;
1414         u32 val;
1415
1416         reg = DSPCNTR(plane);
1417         val = I915_READ(reg);
1418         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1419                 return;
1420
1421         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1422         intel_flush_display_plane(dev_priv, plane);
1423         intel_wait_for_vblank(dev_priv->dev, pipe);
1424 }
1425
1426 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1427                            enum pipe pipe, int reg, u32 port_sel)
1428 {
1429         u32 val = I915_READ(reg);
1430         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1431                 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1432                 I915_WRITE(reg, val & ~DP_PORT_EN);
1433         }
1434 }
1435
1436 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1437                              enum pipe pipe, int reg)
1438 {
1439         u32 val = I915_READ(reg);
1440         if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1441                 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1442                               reg, pipe);
1443                 I915_WRITE(reg, val & ~PORT_ENABLE);
1444         }
1445 }
1446
1447 /* Disable any ports connected to this transcoder */
1448 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1449                                     enum pipe pipe)
1450 {
1451         u32 reg, val;
1452
1453         val = I915_READ(PCH_PP_CONTROL);
1454         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1455
1456         disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1457         disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1458         disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1459
1460         reg = PCH_ADPA;
1461         val = I915_READ(reg);
1462         if (adpa_pipe_enabled(dev_priv, val, pipe))
1463                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1464
1465         reg = PCH_LVDS;
1466         val = I915_READ(reg);
1467         if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1468                 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1469                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1470                 POSTING_READ(reg);
1471                 udelay(100);
1472         }
1473
1474         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1475         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1476         disable_pch_hdmi(dev_priv, pipe, HDMID);
1477 }
1478
1479 static void i8xx_disable_fbc(struct drm_device *dev)
1480 {
1481         struct drm_i915_private *dev_priv = dev->dev_private;
1482         u32 fbc_ctl;
1483
1484         /* Disable compression */
1485         fbc_ctl = I915_READ(FBC_CONTROL);
1486         if ((fbc_ctl & FBC_CTL_EN) == 0)
1487                 return;
1488
1489         fbc_ctl &= ~FBC_CTL_EN;
1490         I915_WRITE(FBC_CONTROL, fbc_ctl);
1491
1492         /* Wait for compressing bit to clear */
1493         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1494                 DRM_DEBUG_KMS("FBC idle timed out\n");
1495                 return;
1496         }
1497
1498         DRM_DEBUG_KMS("disabled FBC\n");
1499 }
1500
1501 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1502 {
1503         struct drm_device *dev = crtc->dev;
1504         struct drm_i915_private *dev_priv = dev->dev_private;
1505         struct drm_framebuffer *fb = crtc->fb;
1506         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1507         struct drm_i915_gem_object *obj = intel_fb->obj;
1508         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1509         int cfb_pitch;
1510         int plane, i;
1511         u32 fbc_ctl, fbc_ctl2;
1512
1513         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1514         if (fb->pitch < cfb_pitch)
1515                 cfb_pitch = fb->pitch;
1516
1517         /* FBC_CTL wants 64B units */
1518         cfb_pitch = (cfb_pitch / 64) - 1;
1519         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1520
1521         /* Clear old tags */
1522         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1523                 I915_WRITE(FBC_TAG + (i * 4), 0);
1524
1525         /* Set it up... */
1526         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1527         fbc_ctl2 |= plane;
1528         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1529         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1530
1531         /* enable it... */
1532         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1533         if (IS_I945GM(dev))
1534                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1535         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1536         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1537         fbc_ctl |= obj->fence_reg;
1538         I915_WRITE(FBC_CONTROL, fbc_ctl);
1539
1540         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1541                       cfb_pitch, crtc->y, intel_crtc->plane);
1542 }
1543
1544 static bool i8xx_fbc_enabled(struct drm_device *dev)
1545 {
1546         struct drm_i915_private *dev_priv = dev->dev_private;
1547
1548         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1549 }
1550
1551 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1552 {
1553         struct drm_device *dev = crtc->dev;
1554         struct drm_i915_private *dev_priv = dev->dev_private;
1555         struct drm_framebuffer *fb = crtc->fb;
1556         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1557         struct drm_i915_gem_object *obj = intel_fb->obj;
1558         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1559         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1560         unsigned long stall_watermark = 200;
1561         u32 dpfc_ctl;
1562
1563         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1564         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1565         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1566
1567         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1568                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1569                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1570         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1571
1572         /* enable it... */
1573         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1574
1575         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1576 }
1577
1578 static void g4x_disable_fbc(struct drm_device *dev)
1579 {
1580         struct drm_i915_private *dev_priv = dev->dev_private;
1581         u32 dpfc_ctl;
1582
1583         /* Disable compression */
1584         dpfc_ctl = I915_READ(DPFC_CONTROL);
1585         if (dpfc_ctl & DPFC_CTL_EN) {
1586                 dpfc_ctl &= ~DPFC_CTL_EN;
1587                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1588
1589                 DRM_DEBUG_KMS("disabled FBC\n");
1590         }
1591 }
1592
1593 static bool g4x_fbc_enabled(struct drm_device *dev)
1594 {
1595         struct drm_i915_private *dev_priv = dev->dev_private;
1596
1597         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1598 }
1599
1600 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1601 {
1602         struct drm_i915_private *dev_priv = dev->dev_private;
1603         u32 blt_ecoskpd;
1604
1605         /* Make sure blitter notifies FBC of writes */
1606         gen6_gt_force_wake_get(dev_priv);
1607         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1608         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1609                 GEN6_BLITTER_LOCK_SHIFT;
1610         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1611         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1612         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1613         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1614                          GEN6_BLITTER_LOCK_SHIFT);
1615         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1616         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1617         gen6_gt_force_wake_put(dev_priv);
1618 }
1619
1620 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1621 {
1622         struct drm_device *dev = crtc->dev;
1623         struct drm_i915_private *dev_priv = dev->dev_private;
1624         struct drm_framebuffer *fb = crtc->fb;
1625         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1626         struct drm_i915_gem_object *obj = intel_fb->obj;
1627         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1628         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1629         unsigned long stall_watermark = 200;
1630         u32 dpfc_ctl;
1631
1632         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1633         dpfc_ctl &= DPFC_RESERVED;
1634         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1635         /* Set persistent mode for front-buffer rendering, ala X. */
1636         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1637         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1638         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1639
1640         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1641                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1642                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1643         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1644         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1645         /* enable it... */
1646         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1647
1648         if (IS_GEN6(dev)) {
1649                 I915_WRITE(SNB_DPFC_CTL_SA,
1650                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1651                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1652                 sandybridge_blit_fbc_update(dev);
1653         }
1654
1655         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1656 }
1657
1658 static void ironlake_disable_fbc(struct drm_device *dev)
1659 {
1660         struct drm_i915_private *dev_priv = dev->dev_private;
1661         u32 dpfc_ctl;
1662
1663         /* Disable compression */
1664         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1665         if (dpfc_ctl & DPFC_CTL_EN) {
1666                 dpfc_ctl &= ~DPFC_CTL_EN;
1667                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1668
1669                 DRM_DEBUG_KMS("disabled FBC\n");
1670         }
1671 }
1672
1673 static bool ironlake_fbc_enabled(struct drm_device *dev)
1674 {
1675         struct drm_i915_private *dev_priv = dev->dev_private;
1676
1677         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1678 }
1679
1680 bool intel_fbc_enabled(struct drm_device *dev)
1681 {
1682         struct drm_i915_private *dev_priv = dev->dev_private;
1683
1684         if (!dev_priv->display.fbc_enabled)
1685                 return false;
1686
1687         return dev_priv->display.fbc_enabled(dev);
1688 }
1689
1690 static void intel_fbc_work_fn(struct work_struct *__work)
1691 {
1692         struct intel_fbc_work *work =
1693                 container_of(to_delayed_work(__work),
1694                              struct intel_fbc_work, work);
1695         struct drm_device *dev = work->crtc->dev;
1696         struct drm_i915_private *dev_priv = dev->dev_private;
1697
1698         mutex_lock(&dev->struct_mutex);
1699         if (work == dev_priv->fbc_work) {
1700                 /* Double check that we haven't switched fb without cancelling
1701                  * the prior work.
1702                  */
1703                 if (work->crtc->fb == work->fb) {
1704                         dev_priv->display.enable_fbc(work->crtc,
1705                                                      work->interval);
1706
1707                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1708                         dev_priv->cfb_fb = work->crtc->fb->base.id;
1709                         dev_priv->cfb_y = work->crtc->y;
1710                 }
1711
1712                 dev_priv->fbc_work = NULL;
1713         }
1714         mutex_unlock(&dev->struct_mutex);
1715
1716         kfree(work);
1717 }
1718
1719 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1720 {
1721         if (dev_priv->fbc_work == NULL)
1722                 return;
1723
1724         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1725
1726         /* Synchronisation is provided by struct_mutex and checking of
1727          * dev_priv->fbc_work, so we can perform the cancellation
1728          * entirely asynchronously.
1729          */
1730         if (cancel_delayed_work(&dev_priv->fbc_work->work))
1731                 /* tasklet was killed before being run, clean up */
1732                 kfree(dev_priv->fbc_work);
1733
1734         /* Mark the work as no longer wanted so that if it does
1735          * wake-up (because the work was already running and waiting
1736          * for our mutex), it will discover that is no longer
1737          * necessary to run.
1738          */
1739         dev_priv->fbc_work = NULL;
1740 }
1741
1742 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1743 {
1744         struct intel_fbc_work *work;
1745         struct drm_device *dev = crtc->dev;
1746         struct drm_i915_private *dev_priv = dev->dev_private;
1747
1748         if (!dev_priv->display.enable_fbc)
1749                 return;
1750
1751         intel_cancel_fbc_work(dev_priv);
1752
1753         work = kzalloc(sizeof *work, GFP_KERNEL);
1754         if (work == NULL) {
1755                 dev_priv->display.enable_fbc(crtc, interval);
1756                 return;
1757         }
1758
1759         work->crtc = crtc;
1760         work->fb = crtc->fb;
1761         work->interval = interval;
1762         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1763
1764         dev_priv->fbc_work = work;
1765
1766         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1767
1768         /* Delay the actual enabling to let pageflipping cease and the
1769          * display to settle before starting the compression. Note that
1770          * this delay also serves a second purpose: it allows for a
1771          * vblank to pass after disabling the FBC before we attempt
1772          * to modify the control registers.
1773          *
1774          * A more complicated solution would involve tracking vblanks
1775          * following the termination of the page-flipping sequence
1776          * and indeed performing the enable as a co-routine and not
1777          * waiting synchronously upon the vblank.
1778          */
1779         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1780 }
1781
1782 void intel_disable_fbc(struct drm_device *dev)
1783 {
1784         struct drm_i915_private *dev_priv = dev->dev_private;
1785
1786         intel_cancel_fbc_work(dev_priv);
1787
1788         if (!dev_priv->display.disable_fbc)
1789                 return;
1790
1791         dev_priv->display.disable_fbc(dev);
1792         dev_priv->cfb_plane = -1;
1793 }
1794
1795 /**
1796  * intel_update_fbc - enable/disable FBC as needed
1797  * @dev: the drm_device
1798  *
1799  * Set up the framebuffer compression hardware at mode set time.  We
1800  * enable it if possible:
1801  *   - plane A only (on pre-965)
1802  *   - no pixel mulitply/line duplication
1803  *   - no alpha buffer discard
1804  *   - no dual wide
1805  *   - framebuffer <= 2048 in width, 1536 in height
1806  *
1807  * We can't assume that any compression will take place (worst case),
1808  * so the compressed buffer has to be the same size as the uncompressed
1809  * one.  It also must reside (along with the line length buffer) in
1810  * stolen memory.
1811  *
1812  * We need to enable/disable FBC on a global basis.
1813  */
1814 static void intel_update_fbc(struct drm_device *dev)
1815 {
1816         struct drm_i915_private *dev_priv = dev->dev_private;
1817         struct drm_crtc *crtc = NULL, *tmp_crtc;
1818         struct intel_crtc *intel_crtc;
1819         struct drm_framebuffer *fb;
1820         struct intel_framebuffer *intel_fb;
1821         struct drm_i915_gem_object *obj;
1822         int enable_fbc;
1823
1824         DRM_DEBUG_KMS("\n");
1825
1826         if (!i915_powersave)
1827                 return;
1828
1829         if (!I915_HAS_FBC(dev))
1830                 return;
1831
1832         /*
1833          * If FBC is already on, we just have to verify that we can
1834          * keep it that way...
1835          * Need to disable if:
1836          *   - more than one pipe is active
1837          *   - changing FBC params (stride, fence, mode)
1838          *   - new fb is too large to fit in compressed buffer
1839          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1840          */
1841         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1842                 if (tmp_crtc->enabled && tmp_crtc->fb) {
1843                         if (crtc) {
1844                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1845                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1846                                 goto out_disable;
1847                         }
1848                         crtc = tmp_crtc;
1849                 }
1850         }
1851
1852         if (!crtc || crtc->fb == NULL) {
1853                 DRM_DEBUG_KMS("no output, disabling\n");
1854                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1855                 goto out_disable;
1856         }
1857
1858         intel_crtc = to_intel_crtc(crtc);
1859         fb = crtc->fb;
1860         intel_fb = to_intel_framebuffer(fb);
1861         obj = intel_fb->obj;
1862
1863         enable_fbc = i915_enable_fbc;
1864         if (enable_fbc < 0) {
1865                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1866                 enable_fbc = 1;
1867                 if (INTEL_INFO(dev)->gen <= 5)
1868                         enable_fbc = 0;
1869         }
1870         if (!enable_fbc) {
1871                 DRM_DEBUG_KMS("fbc disabled per module param\n");
1872                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1873                 goto out_disable;
1874         }
1875         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1876                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1877                               "compression\n");
1878                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1879                 goto out_disable;
1880         }
1881         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1882             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1883                 DRM_DEBUG_KMS("mode incompatible with compression, "
1884                               "disabling\n");
1885                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1886                 goto out_disable;
1887         }
1888         if ((crtc->mode.hdisplay > 2048) ||
1889             (crtc->mode.vdisplay > 1536)) {
1890                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1891                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1892                 goto out_disable;
1893         }
1894         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1895                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1896                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1897                 goto out_disable;
1898         }
1899
1900         /* The use of a CPU fence is mandatory in order to detect writes
1901          * by the CPU to the scanout and trigger updates to the FBC.
1902          */
1903         if (obj->tiling_mode != I915_TILING_X ||
1904             obj->fence_reg == I915_FENCE_REG_NONE) {
1905                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1906                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1907                 goto out_disable;
1908         }
1909
1910         /* If the kernel debugger is active, always disable compression */
1911         if (in_dbg_master())
1912                 goto out_disable;
1913
1914         /* If the scanout has not changed, don't modify the FBC settings.
1915          * Note that we make the fundamental assumption that the fb->obj
1916          * cannot be unpinned (and have its GTT offset and fence revoked)
1917          * without first being decoupled from the scanout and FBC disabled.
1918          */
1919         if (dev_priv->cfb_plane == intel_crtc->plane &&
1920             dev_priv->cfb_fb == fb->base.id &&
1921             dev_priv->cfb_y == crtc->y)
1922                 return;
1923
1924         if (intel_fbc_enabled(dev)) {
1925                 /* We update FBC along two paths, after changing fb/crtc
1926                  * configuration (modeswitching) and after page-flipping
1927                  * finishes. For the latter, we know that not only did
1928                  * we disable the FBC at the start of the page-flip
1929                  * sequence, but also more than one vblank has passed.
1930                  *
1931                  * For the former case of modeswitching, it is possible
1932                  * to switch between two FBC valid configurations
1933                  * instantaneously so we do need to disable the FBC
1934                  * before we can modify its control registers. We also
1935                  * have to wait for the next vblank for that to take
1936                  * effect. However, since we delay enabling FBC we can
1937                  * assume that a vblank has passed since disabling and
1938                  * that we can safely alter the registers in the deferred
1939                  * callback.
1940                  *
1941                  * In the scenario that we go from a valid to invalid
1942                  * and then back to valid FBC configuration we have
1943                  * no strict enforcement that a vblank occurred since
1944                  * disabling the FBC. However, along all current pipe
1945                  * disabling paths we do need to wait for a vblank at
1946                  * some point. And we wait before enabling FBC anyway.
1947                  */
1948                 DRM_DEBUG_KMS("disabling active FBC for update\n");
1949                 intel_disable_fbc(dev);
1950         }
1951
1952         intel_enable_fbc(crtc, 500);
1953         return;
1954
1955 out_disable:
1956         /* Multiple disables should be harmless */
1957         if (intel_fbc_enabled(dev)) {
1958                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1959                 intel_disable_fbc(dev);
1960         }
1961 }
1962
1963 int
1964 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1965                            struct drm_i915_gem_object *obj,
1966                            struct intel_ring_buffer *pipelined)
1967 {
1968         struct drm_i915_private *dev_priv = dev->dev_private;
1969         u32 alignment;
1970         int ret;
1971
1972         switch (obj->tiling_mode) {
1973         case I915_TILING_NONE:
1974                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1975                         alignment = 128 * 1024;
1976                 else if (INTEL_INFO(dev)->gen >= 4)
1977                         alignment = 4 * 1024;
1978                 else
1979                         alignment = 64 * 1024;
1980                 break;
1981         case I915_TILING_X:
1982                 /* pin() will align the object as required by fence */
1983                 alignment = 0;
1984                 break;
1985         case I915_TILING_Y:
1986                 /* FIXME: Is this true? */
1987                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1988                 return -EINVAL;
1989         default:
1990                 BUG();
1991         }
1992
1993         dev_priv->mm.interruptible = false;
1994         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1995         if (ret)
1996                 goto err_interruptible;
1997
1998         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1999          * fence, whereas 965+ only requires a fence if using
2000          * framebuffer compression.  For simplicity, we always install
2001          * a fence as the cost is not that onerous.
2002          */
2003         if (obj->tiling_mode != I915_TILING_NONE) {
2004                 ret = i915_gem_object_get_fence(obj, pipelined);
2005                 if (ret)
2006                         goto err_unpin;
2007         }
2008
2009         dev_priv->mm.interruptible = true;
2010         return 0;
2011
2012 err_unpin:
2013         i915_gem_object_unpin(obj);
2014 err_interruptible:
2015         dev_priv->mm.interruptible = true;
2016         return ret;
2017 }
2018
2019 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2020                              int x, int y)
2021 {
2022         struct drm_device *dev = crtc->dev;
2023         struct drm_i915_private *dev_priv = dev->dev_private;
2024         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2025         struct intel_framebuffer *intel_fb;
2026         struct drm_i915_gem_object *obj;
2027         int plane = intel_crtc->plane;
2028         unsigned long Start, Offset;
2029         u32 dspcntr;
2030         u32 reg;
2031
2032         switch (plane) {
2033         case 0:
2034         case 1:
2035                 break;
2036         default:
2037                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2038                 return -EINVAL;
2039         }
2040
2041         intel_fb = to_intel_framebuffer(fb);
2042         obj = intel_fb->obj;
2043
2044         reg = DSPCNTR(plane);
2045         dspcntr = I915_READ(reg);
2046         /* Mask out pixel format bits in case we change it */
2047         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2048         switch (fb->bits_per_pixel) {
2049         case 8:
2050                 dspcntr |= DISPPLANE_8BPP;
2051                 break;
2052         case 16:
2053                 if (fb->depth == 15)
2054                         dspcntr |= DISPPLANE_15_16BPP;
2055                 else
2056                         dspcntr |= DISPPLANE_16BPP;
2057                 break;
2058         case 24:
2059         case 32:
2060                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2061                 break;
2062         default:
2063                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2064                 return -EINVAL;
2065         }
2066         if (INTEL_INFO(dev)->gen >= 4) {
2067                 if (obj->tiling_mode != I915_TILING_NONE)
2068                         dspcntr |= DISPPLANE_TILED;
2069                 else
2070                         dspcntr &= ~DISPPLANE_TILED;
2071         }
2072
2073         I915_WRITE(reg, dspcntr);
2074
2075         Start = obj->gtt_offset;
2076         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2077
2078         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2079                       Start, Offset, x, y, fb->pitch);
2080         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2081         if (INTEL_INFO(dev)->gen >= 4) {
2082                 I915_WRITE(DSPSURF(plane), Start);
2083                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2084                 I915_WRITE(DSPADDR(plane), Offset);
2085         } else
2086                 I915_WRITE(DSPADDR(plane), Start + Offset);
2087         POSTING_READ(reg);
2088
2089         return 0;
2090 }
2091
2092 static int ironlake_update_plane(struct drm_crtc *crtc,
2093                                  struct drm_framebuffer *fb, int x, int y)
2094 {
2095         struct drm_device *dev = crtc->dev;
2096         struct drm_i915_private *dev_priv = dev->dev_private;
2097         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2098         struct intel_framebuffer *intel_fb;
2099         struct drm_i915_gem_object *obj;
2100         int plane = intel_crtc->plane;
2101         unsigned long Start, Offset;
2102         u32 dspcntr;
2103         u32 reg;
2104
2105         switch (plane) {
2106         case 0:
2107         case 1:
2108         case 2:
2109                 break;
2110         default:
2111                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2112                 return -EINVAL;
2113         }
2114
2115         intel_fb = to_intel_framebuffer(fb);
2116         obj = intel_fb->obj;
2117
2118         reg = DSPCNTR(plane);
2119         dspcntr = I915_READ(reg);
2120         /* Mask out pixel format bits in case we change it */
2121         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2122         switch (fb->bits_per_pixel) {
2123         case 8:
2124                 dspcntr |= DISPPLANE_8BPP;
2125                 break;
2126         case 16:
2127                 if (fb->depth != 16)
2128                         return -EINVAL;
2129
2130                 dspcntr |= DISPPLANE_16BPP;
2131                 break;
2132         case 24:
2133         case 32:
2134                 if (fb->depth == 24)
2135                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2136                 else if (fb->depth == 30)
2137                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2138                 else
2139                         return -EINVAL;
2140                 break;
2141         default:
2142                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2143                 return -EINVAL;
2144         }
2145
2146         if (obj->tiling_mode != I915_TILING_NONE)
2147                 dspcntr |= DISPPLANE_TILED;
2148         else
2149                 dspcntr &= ~DISPPLANE_TILED;
2150
2151         /* must disable */
2152         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2153
2154         I915_WRITE(reg, dspcntr);
2155
2156         Start = obj->gtt_offset;
2157         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2158
2159         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2160                       Start, Offset, x, y, fb->pitch);
2161         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2162         I915_WRITE(DSPSURF(plane), Start);
2163         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2164         I915_WRITE(DSPADDR(plane), Offset);
2165         POSTING_READ(reg);
2166
2167         return 0;
2168 }
2169
2170 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2171 static int
2172 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2173                            int x, int y, enum mode_set_atomic state)
2174 {
2175         struct drm_device *dev = crtc->dev;
2176         struct drm_i915_private *dev_priv = dev->dev_private;
2177         int ret;
2178
2179         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2180         if (ret)
2181                 return ret;
2182
2183         intel_update_fbc(dev);
2184         intel_increase_pllclock(crtc);
2185
2186         return 0;
2187 }
2188
2189 static int
2190 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2191                     struct drm_framebuffer *old_fb)
2192 {
2193         struct drm_device *dev = crtc->dev;
2194         struct drm_i915_master_private *master_priv;
2195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2196         int ret;
2197
2198         /* no fb bound */
2199         if (!crtc->fb) {
2200                 DRM_ERROR("No FB bound\n");
2201                 return 0;
2202         }
2203
2204         switch (intel_crtc->plane) {
2205         case 0:
2206         case 1:
2207                 break;
2208         case 2:
2209                 if (IS_IVYBRIDGE(dev))
2210                         break;
2211                 /* fall through otherwise */
2212         default:
2213                 DRM_ERROR("no plane for crtc\n");
2214                 return -EINVAL;
2215         }
2216
2217         mutex_lock(&dev->struct_mutex);
2218         ret = intel_pin_and_fence_fb_obj(dev,
2219                                          to_intel_framebuffer(crtc->fb)->obj,
2220                                          NULL);
2221         if (ret != 0) {
2222                 mutex_unlock(&dev->struct_mutex);
2223                 DRM_ERROR("pin & fence failed\n");
2224                 return ret;
2225         }
2226
2227         if (old_fb) {
2228                 struct drm_i915_private *dev_priv = dev->dev_private;
2229                 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2230
2231                 wait_event(dev_priv->pending_flip_queue,
2232                            atomic_read(&dev_priv->mm.wedged) ||
2233                            atomic_read(&obj->pending_flip) == 0);
2234
2235                 /* Big Hammer, we also need to ensure that any pending
2236                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2237                  * current scanout is retired before unpinning the old
2238                  * framebuffer.
2239                  *
2240                  * This should only fail upon a hung GPU, in which case we
2241                  * can safely continue.
2242                  */
2243                 ret = i915_gem_object_finish_gpu(obj);
2244                 (void) ret;
2245         }
2246
2247         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2248                                          LEAVE_ATOMIC_MODE_SET);
2249         if (ret) {
2250                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2251                 mutex_unlock(&dev->struct_mutex);
2252                 DRM_ERROR("failed to update base address\n");
2253                 return ret;
2254         }
2255
2256         if (old_fb) {
2257                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2258                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2259         }
2260
2261         mutex_unlock(&dev->struct_mutex);
2262
2263         if (!dev->primary->master)
2264                 return 0;
2265
2266         master_priv = dev->primary->master->driver_priv;
2267         if (!master_priv->sarea_priv)
2268                 return 0;
2269
2270         if (intel_crtc->pipe) {
2271                 master_priv->sarea_priv->pipeB_x = x;
2272                 master_priv->sarea_priv->pipeB_y = y;
2273         } else {
2274                 master_priv->sarea_priv->pipeA_x = x;
2275                 master_priv->sarea_priv->pipeA_y = y;
2276         }
2277
2278         return 0;
2279 }
2280
2281 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2282 {
2283         struct drm_device *dev = crtc->dev;
2284         struct drm_i915_private *dev_priv = dev->dev_private;
2285         u32 dpa_ctl;
2286
2287         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2288         dpa_ctl = I915_READ(DP_A);
2289         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2290
2291         if (clock < 200000) {
2292                 u32 temp;
2293                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2294                 /* workaround for 160Mhz:
2295                    1) program 0x4600c bits 15:0 = 0x8124
2296                    2) program 0x46010 bit 0 = 1
2297                    3) program 0x46034 bit 24 = 1
2298                    4) program 0x64000 bit 14 = 1
2299                    */
2300                 temp = I915_READ(0x4600c);
2301                 temp &= 0xffff0000;
2302                 I915_WRITE(0x4600c, temp | 0x8124);
2303
2304                 temp = I915_READ(0x46010);
2305                 I915_WRITE(0x46010, temp | 1);
2306
2307                 temp = I915_READ(0x46034);
2308                 I915_WRITE(0x46034, temp | (1 << 24));
2309         } else {
2310                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2311         }
2312         I915_WRITE(DP_A, dpa_ctl);
2313
2314         POSTING_READ(DP_A);
2315         udelay(500);
2316 }
2317
2318 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2319 {
2320         struct drm_device *dev = crtc->dev;
2321         struct drm_i915_private *dev_priv = dev->dev_private;
2322         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2323         int pipe = intel_crtc->pipe;
2324         u32 reg, temp;
2325
2326         /* enable normal train */
2327         reg = FDI_TX_CTL(pipe);
2328         temp = I915_READ(reg);
2329         if (IS_IVYBRIDGE(dev)) {
2330                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2331                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2332         } else {
2333                 temp &= ~FDI_LINK_TRAIN_NONE;
2334                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2335         }
2336         I915_WRITE(reg, temp);
2337
2338         reg = FDI_RX_CTL(pipe);
2339         temp = I915_READ(reg);
2340         if (HAS_PCH_CPT(dev)) {
2341                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2342                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2343         } else {
2344                 temp &= ~FDI_LINK_TRAIN_NONE;
2345                 temp |= FDI_LINK_TRAIN_NONE;
2346         }
2347         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2348
2349         /* wait one idle pattern time */
2350         POSTING_READ(reg);
2351         udelay(1000);
2352
2353         /* IVB wants error correction enabled */
2354         if (IS_IVYBRIDGE(dev))
2355                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2356                            FDI_FE_ERRC_ENABLE);
2357 }
2358
2359 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2360 {
2361         struct drm_i915_private *dev_priv = dev->dev_private;
2362         u32 flags = I915_READ(SOUTH_CHICKEN1);
2363
2364         flags |= FDI_PHASE_SYNC_OVR(pipe);
2365         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2366         flags |= FDI_PHASE_SYNC_EN(pipe);
2367         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2368         POSTING_READ(SOUTH_CHICKEN1);
2369 }
2370
2371 /* The FDI link training functions for ILK/Ibexpeak. */
2372 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2373 {
2374         struct drm_device *dev = crtc->dev;
2375         struct drm_i915_private *dev_priv = dev->dev_private;
2376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2377         int pipe = intel_crtc->pipe;
2378         int plane = intel_crtc->plane;
2379         u32 reg, temp, tries;
2380
2381         /* FDI needs bits from pipe & plane first */
2382         assert_pipe_enabled(dev_priv, pipe);
2383         assert_plane_enabled(dev_priv, plane);
2384
2385         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2386            for train result */
2387         reg = FDI_RX_IMR(pipe);
2388         temp = I915_READ(reg);
2389         temp &= ~FDI_RX_SYMBOL_LOCK;
2390         temp &= ~FDI_RX_BIT_LOCK;
2391         I915_WRITE(reg, temp);
2392         I915_READ(reg);
2393         udelay(150);
2394
2395         /* enable CPU FDI TX and PCH FDI RX */
2396         reg = FDI_TX_CTL(pipe);
2397         temp = I915_READ(reg);
2398         temp &= ~(7 << 19);
2399         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2400         temp &= ~FDI_LINK_TRAIN_NONE;
2401         temp |= FDI_LINK_TRAIN_PATTERN_1;
2402         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2403
2404         reg = FDI_RX_CTL(pipe);
2405         temp = I915_READ(reg);
2406         temp &= ~FDI_LINK_TRAIN_NONE;
2407         temp |= FDI_LINK_TRAIN_PATTERN_1;
2408         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2409
2410         POSTING_READ(reg);
2411         udelay(150);
2412
2413         /* Ironlake workaround, enable clock pointer after FDI enable*/
2414         if (HAS_PCH_IBX(dev)) {
2415                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2416                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2417                            FDI_RX_PHASE_SYNC_POINTER_EN);
2418         }
2419
2420         reg = FDI_RX_IIR(pipe);
2421         for (tries = 0; tries < 5; tries++) {
2422                 temp = I915_READ(reg);
2423                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2424
2425                 if ((temp & FDI_RX_BIT_LOCK)) {
2426                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2427                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2428                         break;
2429                 }
2430         }
2431         if (tries == 5)
2432                 DRM_ERROR("FDI train 1 fail!\n");
2433
2434         /* Train 2 */
2435         reg = FDI_TX_CTL(pipe);
2436         temp = I915_READ(reg);
2437         temp &= ~FDI_LINK_TRAIN_NONE;
2438         temp |= FDI_LINK_TRAIN_PATTERN_2;
2439         I915_WRITE(reg, temp);
2440
2441         reg = FDI_RX_CTL(pipe);
2442         temp = I915_READ(reg);
2443         temp &= ~FDI_LINK_TRAIN_NONE;
2444         temp |= FDI_LINK_TRAIN_PATTERN_2;
2445         I915_WRITE(reg, temp);
2446
2447         POSTING_READ(reg);
2448         udelay(150);
2449
2450         reg = FDI_RX_IIR(pipe);
2451         for (tries = 0; tries < 5; tries++) {
2452                 temp = I915_READ(reg);
2453                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2454
2455                 if (temp & FDI_RX_SYMBOL_LOCK) {
2456                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2457                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2458                         break;
2459                 }
2460         }
2461         if (tries == 5)
2462                 DRM_ERROR("FDI train 2 fail!\n");
2463
2464         DRM_DEBUG_KMS("FDI train done\n");
2465
2466 }
2467
2468 static const int snb_b_fdi_train_param[] = {
2469         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2470         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2471         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2472         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2473 };
2474
2475 /* The FDI link training functions for SNB/Cougarpoint. */
2476 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2477 {
2478         struct drm_device *dev = crtc->dev;
2479         struct drm_i915_private *dev_priv = dev->dev_private;
2480         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2481         int pipe = intel_crtc->pipe;
2482         u32 reg, temp, i;
2483
2484         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2485            for train result */
2486         reg = FDI_RX_IMR(pipe);
2487         temp = I915_READ(reg);
2488         temp &= ~FDI_RX_SYMBOL_LOCK;
2489         temp &= ~FDI_RX_BIT_LOCK;
2490         I915_WRITE(reg, temp);
2491
2492         POSTING_READ(reg);
2493         udelay(150);
2494
2495         /* enable CPU FDI TX and PCH FDI RX */
2496         reg = FDI_TX_CTL(pipe);
2497         temp = I915_READ(reg);
2498         temp &= ~(7 << 19);
2499         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2500         temp &= ~FDI_LINK_TRAIN_NONE;
2501         temp |= FDI_LINK_TRAIN_PATTERN_1;
2502         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2503         /* SNB-B */
2504         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2505         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2506
2507         reg = FDI_RX_CTL(pipe);
2508         temp = I915_READ(reg);
2509         if (HAS_PCH_CPT(dev)) {
2510                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2511                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2512         } else {
2513                 temp &= ~FDI_LINK_TRAIN_NONE;
2514                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2515         }
2516         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2517
2518         POSTING_READ(reg);
2519         udelay(150);
2520
2521         if (HAS_PCH_CPT(dev))
2522                 cpt_phase_pointer_enable(dev, pipe);
2523
2524         for (i = 0; i < 4; i++) {
2525                 reg = FDI_TX_CTL(pipe);
2526                 temp = I915_READ(reg);
2527                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2528                 temp |= snb_b_fdi_train_param[i];
2529                 I915_WRITE(reg, temp);
2530
2531                 POSTING_READ(reg);
2532                 udelay(500);
2533
2534                 reg = FDI_RX_IIR(pipe);
2535                 temp = I915_READ(reg);
2536                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537
2538                 if (temp & FDI_RX_BIT_LOCK) {
2539                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2540                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2541                         break;
2542                 }
2543         }
2544         if (i == 4)
2545                 DRM_ERROR("FDI train 1 fail!\n");
2546
2547         /* Train 2 */
2548         reg = FDI_TX_CTL(pipe);
2549         temp = I915_READ(reg);
2550         temp &= ~FDI_LINK_TRAIN_NONE;
2551         temp |= FDI_LINK_TRAIN_PATTERN_2;
2552         if (IS_GEN6(dev)) {
2553                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2554                 /* SNB-B */
2555                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2556         }
2557         I915_WRITE(reg, temp);
2558
2559         reg = FDI_RX_CTL(pipe);
2560         temp = I915_READ(reg);
2561         if (HAS_PCH_CPT(dev)) {
2562                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2563                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2564         } else {
2565                 temp &= ~FDI_LINK_TRAIN_NONE;
2566                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2567         }
2568         I915_WRITE(reg, temp);
2569
2570         POSTING_READ(reg);
2571         udelay(150);
2572
2573         for (i = 0; i < 4; i++) {
2574                 reg = FDI_TX_CTL(pipe);
2575                 temp = I915_READ(reg);
2576                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2577                 temp |= snb_b_fdi_train_param[i];
2578                 I915_WRITE(reg, temp);
2579
2580                 POSTING_READ(reg);
2581                 udelay(500);
2582
2583                 reg = FDI_RX_IIR(pipe);
2584                 temp = I915_READ(reg);
2585                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2586
2587                 if (temp & FDI_RX_SYMBOL_LOCK) {
2588                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2589                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2590                         break;
2591                 }
2592         }
2593         if (i == 4)
2594                 DRM_ERROR("FDI train 2 fail!\n");
2595
2596         DRM_DEBUG_KMS("FDI train done.\n");
2597 }
2598
2599 /* Manual link training for Ivy Bridge A0 parts */
2600 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2601 {
2602         struct drm_device *dev = crtc->dev;
2603         struct drm_i915_private *dev_priv = dev->dev_private;
2604         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2605         int pipe = intel_crtc->pipe;
2606         u32 reg, temp, i;
2607
2608         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2609            for train result */
2610         reg = FDI_RX_IMR(pipe);
2611         temp = I915_READ(reg);
2612         temp &= ~FDI_RX_SYMBOL_LOCK;
2613         temp &= ~FDI_RX_BIT_LOCK;
2614         I915_WRITE(reg, temp);
2615
2616         POSTING_READ(reg);
2617         udelay(150);
2618
2619         /* enable CPU FDI TX and PCH FDI RX */
2620         reg = FDI_TX_CTL(pipe);
2621         temp = I915_READ(reg);
2622         temp &= ~(7 << 19);
2623         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2624         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2625         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2626         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2627         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2628         temp |= FDI_COMPOSITE_SYNC;
2629         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2630
2631         reg = FDI_RX_CTL(pipe);
2632         temp = I915_READ(reg);
2633         temp &= ~FDI_LINK_TRAIN_AUTO;
2634         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2635         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2636         temp |= FDI_COMPOSITE_SYNC;
2637         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2638
2639         POSTING_READ(reg);
2640         udelay(150);
2641
2642         if (HAS_PCH_CPT(dev))
2643                 cpt_phase_pointer_enable(dev, pipe);
2644
2645         for (i = 0; i < 4; i++) {
2646                 reg = FDI_TX_CTL(pipe);
2647                 temp = I915_READ(reg);
2648                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2649                 temp |= snb_b_fdi_train_param[i];
2650                 I915_WRITE(reg, temp);
2651
2652                 POSTING_READ(reg);
2653                 udelay(500);
2654
2655                 reg = FDI_RX_IIR(pipe);
2656                 temp = I915_READ(reg);
2657                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2658
2659                 if (temp & FDI_RX_BIT_LOCK ||
2660                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2661                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2662                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2663                         break;
2664                 }
2665         }
2666         if (i == 4)
2667                 DRM_ERROR("FDI train 1 fail!\n");
2668
2669         /* Train 2 */
2670         reg = FDI_TX_CTL(pipe);
2671         temp = I915_READ(reg);
2672         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2673         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2674         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2675         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2676         I915_WRITE(reg, temp);
2677
2678         reg = FDI_RX_CTL(pipe);
2679         temp = I915_READ(reg);
2680         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2681         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2682         I915_WRITE(reg, temp);
2683
2684         POSTING_READ(reg);
2685         udelay(150);
2686
2687         for (i = 0; i < 4; i++) {
2688                 reg = FDI_TX_CTL(pipe);
2689                 temp = I915_READ(reg);
2690                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2691                 temp |= snb_b_fdi_train_param[i];
2692                 I915_WRITE(reg, temp);
2693
2694                 POSTING_READ(reg);
2695                 udelay(500);
2696
2697                 reg = FDI_RX_IIR(pipe);
2698                 temp = I915_READ(reg);
2699                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2700
2701                 if (temp & FDI_RX_SYMBOL_LOCK) {
2702                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2703                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2704                         break;
2705                 }
2706         }
2707         if (i == 4)
2708                 DRM_ERROR("FDI train 2 fail!\n");
2709
2710         DRM_DEBUG_KMS("FDI train done.\n");
2711 }
2712
2713 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2714 {
2715         struct drm_device *dev = crtc->dev;
2716         struct drm_i915_private *dev_priv = dev->dev_private;
2717         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2718         int pipe = intel_crtc->pipe;
2719         u32 reg, temp;
2720
2721         /* Write the TU size bits so error detection works */
2722         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2723                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2724
2725         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2726         reg = FDI_RX_CTL(pipe);
2727         temp = I915_READ(reg);
2728         temp &= ~((0x7 << 19) | (0x7 << 16));
2729         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2730         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2731         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2732
2733         POSTING_READ(reg);
2734         udelay(200);
2735
2736         /* Switch from Rawclk to PCDclk */
2737         temp = I915_READ(reg);
2738         I915_WRITE(reg, temp | FDI_PCDCLK);
2739
2740         POSTING_READ(reg);
2741         udelay(200);
2742
2743         /* Enable CPU FDI TX PLL, always on for Ironlake */
2744         reg = FDI_TX_CTL(pipe);
2745         temp = I915_READ(reg);
2746         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2747                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2748
2749                 POSTING_READ(reg);
2750                 udelay(100);
2751         }
2752 }
2753
2754 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2755 {
2756         struct drm_i915_private *dev_priv = dev->dev_private;
2757         u32 flags = I915_READ(SOUTH_CHICKEN1);
2758
2759         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2760         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2761         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2762         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2763         POSTING_READ(SOUTH_CHICKEN1);
2764 }
2765 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2766 {
2767         struct drm_device *dev = crtc->dev;
2768         struct drm_i915_private *dev_priv = dev->dev_private;
2769         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2770         int pipe = intel_crtc->pipe;
2771         u32 reg, temp;
2772
2773         /* disable CPU FDI tx and PCH FDI rx */
2774         reg = FDI_TX_CTL(pipe);
2775         temp = I915_READ(reg);
2776         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2777         POSTING_READ(reg);
2778
2779         reg = FDI_RX_CTL(pipe);
2780         temp = I915_READ(reg);
2781         temp &= ~(0x7 << 16);
2782         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2783         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2784
2785         POSTING_READ(reg);
2786         udelay(100);
2787
2788         /* Ironlake workaround, disable clock pointer after downing FDI */
2789         if (HAS_PCH_IBX(dev)) {
2790                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2791                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2792                            I915_READ(FDI_RX_CHICKEN(pipe) &
2793                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2794         } else if (HAS_PCH_CPT(dev)) {
2795                 cpt_phase_pointer_disable(dev, pipe);
2796         }
2797
2798         /* still set train pattern 1 */
2799         reg = FDI_TX_CTL(pipe);
2800         temp = I915_READ(reg);
2801         temp &= ~FDI_LINK_TRAIN_NONE;
2802         temp |= FDI_LINK_TRAIN_PATTERN_1;
2803         I915_WRITE(reg, temp);
2804
2805         reg = FDI_RX_CTL(pipe);
2806         temp = I915_READ(reg);
2807         if (HAS_PCH_CPT(dev)) {
2808                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2809                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2810         } else {
2811                 temp &= ~FDI_LINK_TRAIN_NONE;
2812                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2813         }
2814         /* BPC in FDI rx is consistent with that in PIPECONF */
2815         temp &= ~(0x07 << 16);
2816         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2817         I915_WRITE(reg, temp);
2818
2819         POSTING_READ(reg);
2820         udelay(100);
2821 }
2822
2823 /*
2824  * When we disable a pipe, we need to clear any pending scanline wait events
2825  * to avoid hanging the ring, which we assume we are waiting on.
2826  */
2827 static void intel_clear_scanline_wait(struct drm_device *dev)
2828 {
2829         struct drm_i915_private *dev_priv = dev->dev_private;
2830         struct intel_ring_buffer *ring;
2831         u32 tmp;
2832
2833         if (IS_GEN2(dev))
2834                 /* Can't break the hang on i8xx */
2835                 return;
2836
2837         ring = LP_RING(dev_priv);
2838         tmp = I915_READ_CTL(ring);
2839         if (tmp & RING_WAIT)
2840                 I915_WRITE_CTL(ring, tmp);
2841 }
2842
2843 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2844 {
2845         struct drm_i915_gem_object *obj;
2846         struct drm_i915_private *dev_priv;
2847
2848         if (crtc->fb == NULL)
2849                 return;
2850
2851         obj = to_intel_framebuffer(crtc->fb)->obj;
2852         dev_priv = crtc->dev->dev_private;
2853         wait_event(dev_priv->pending_flip_queue,
2854                    atomic_read(&obj->pending_flip) == 0);
2855 }
2856
2857 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2858 {
2859         struct drm_device *dev = crtc->dev;
2860         struct drm_mode_config *mode_config = &dev->mode_config;
2861         struct intel_encoder *encoder;
2862
2863         /*
2864          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2865          * must be driven by its own crtc; no sharing is possible.
2866          */
2867         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2868                 if (encoder->base.crtc != crtc)
2869                         continue;
2870
2871                 switch (encoder->type) {
2872                 case INTEL_OUTPUT_EDP:
2873                         if (!intel_encoder_is_pch_edp(&encoder->base))
2874                                 return false;
2875                         continue;
2876                 }
2877         }
2878
2879         return true;
2880 }
2881
2882 /*
2883  * Enable PCH resources required for PCH ports:
2884  *   - PCH PLLs
2885  *   - FDI training & RX/TX
2886  *   - update transcoder timings
2887  *   - DP transcoding bits
2888  *   - transcoder
2889  */
2890 static void ironlake_pch_enable(struct drm_crtc *crtc)
2891 {
2892         struct drm_device *dev = crtc->dev;
2893         struct drm_i915_private *dev_priv = dev->dev_private;
2894         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2895         int pipe = intel_crtc->pipe;
2896         u32 reg, temp, transc_sel;
2897
2898         /* For PCH output, training FDI link */
2899         dev_priv->display.fdi_link_train(crtc);
2900
2901         intel_enable_pch_pll(dev_priv, pipe);
2902
2903         if (HAS_PCH_CPT(dev)) {
2904                 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2905                         TRANSC_DPLLB_SEL;
2906
2907                 /* Be sure PCH DPLL SEL is set */
2908                 temp = I915_READ(PCH_DPLL_SEL);
2909                 if (pipe == 0) {
2910                         temp &= ~(TRANSA_DPLLB_SEL);
2911                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2912                 } else if (pipe == 1) {
2913                         temp &= ~(TRANSB_DPLLB_SEL);
2914                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2915                 } else if (pipe == 2) {
2916                         temp &= ~(TRANSC_DPLLB_SEL);
2917                         temp |= (TRANSC_DPLL_ENABLE | transc_sel);
2918                 }
2919                 I915_WRITE(PCH_DPLL_SEL, temp);
2920         }
2921
2922         /* set transcoder timing, panel must allow it */
2923         assert_panel_unlocked(dev_priv, pipe);
2924         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2925         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2926         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2927
2928         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2929         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2930         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2931
2932         intel_fdi_normal_train(crtc);
2933
2934         /* For PCH DP, enable TRANS_DP_CTL */
2935         if (HAS_PCH_CPT(dev) &&
2936             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2937                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2938                 reg = TRANS_DP_CTL(pipe);
2939                 temp = I915_READ(reg);
2940                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2941                           TRANS_DP_SYNC_MASK |
2942                           TRANS_DP_BPC_MASK);
2943                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2944                          TRANS_DP_ENH_FRAMING);
2945                 temp |= bpc << 9; /* same format but at 11:9 */
2946
2947                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2948                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2949                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2950                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2951
2952                 switch (intel_trans_dp_port_sel(crtc)) {
2953                 case PCH_DP_B:
2954                         temp |= TRANS_DP_PORT_SEL_B;
2955                         break;
2956                 case PCH_DP_C:
2957                         temp |= TRANS_DP_PORT_SEL_C;
2958                         break;
2959                 case PCH_DP_D:
2960                         temp |= TRANS_DP_PORT_SEL_D;
2961                         break;
2962                 default:
2963                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2964                         temp |= TRANS_DP_PORT_SEL_B;
2965                         break;
2966                 }
2967
2968                 I915_WRITE(reg, temp);
2969         }
2970
2971         intel_enable_transcoder(dev_priv, pipe);
2972 }
2973
2974 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
2975 {
2976         struct drm_i915_private *dev_priv = dev->dev_private;
2977         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
2978         u32 temp;
2979
2980         temp = I915_READ(dslreg);
2981         udelay(500);
2982         if (wait_for(I915_READ(dslreg) != temp, 5)) {
2983                 /* Without this, mode sets may fail silently on FDI */
2984                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
2985                 udelay(250);
2986                 I915_WRITE(tc2reg, 0);
2987                 if (wait_for(I915_READ(dslreg) != temp, 5))
2988                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
2989         }
2990 }
2991
2992 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2993 {
2994         struct drm_device *dev = crtc->dev;
2995         struct drm_i915_private *dev_priv = dev->dev_private;
2996         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2997         int pipe = intel_crtc->pipe;
2998         int plane = intel_crtc->plane;
2999         u32 temp;
3000         bool is_pch_port;
3001
3002         if (intel_crtc->active)
3003                 return;
3004
3005         intel_crtc->active = true;
3006         intel_update_watermarks(dev);
3007
3008         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3009                 temp = I915_READ(PCH_LVDS);
3010                 if ((temp & LVDS_PORT_EN) == 0)
3011                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3012         }
3013
3014         is_pch_port = intel_crtc_driving_pch(crtc);
3015
3016         if (is_pch_port)
3017                 ironlake_fdi_pll_enable(crtc);
3018         else
3019                 ironlake_fdi_disable(crtc);
3020
3021         /* Enable panel fitting for LVDS */
3022         if (dev_priv->pch_pf_size &&
3023             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3024                 /* Force use of hard-coded filter coefficients
3025                  * as some pre-programmed values are broken,
3026                  * e.g. x201.
3027                  */
3028                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3029                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3030                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3031         }
3032
3033         /*
3034          * On ILK+ LUT must be loaded before the pipe is running but with
3035          * clocks enabled
3036          */
3037         intel_crtc_load_lut(crtc);
3038
3039         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3040         intel_enable_plane(dev_priv, plane, pipe);
3041
3042         if (is_pch_port)
3043                 ironlake_pch_enable(crtc);
3044
3045         mutex_lock(&dev->struct_mutex);
3046         intel_update_fbc(dev);
3047         mutex_unlock(&dev->struct_mutex);
3048
3049         intel_crtc_update_cursor(crtc, true);
3050 }
3051
3052 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3053 {
3054         struct drm_device *dev = crtc->dev;
3055         struct drm_i915_private *dev_priv = dev->dev_private;
3056         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3057         int pipe = intel_crtc->pipe;
3058         int plane = intel_crtc->plane;
3059         u32 reg, temp;
3060
3061         if (!intel_crtc->active)
3062                 return;
3063
3064         intel_crtc_wait_for_pending_flips(crtc);
3065         drm_vblank_off(dev, pipe);
3066         intel_crtc_update_cursor(crtc, false);
3067
3068         intel_disable_plane(dev_priv, plane, pipe);
3069
3070         if (dev_priv->cfb_plane == plane)
3071                 intel_disable_fbc(dev);
3072
3073         intel_disable_pipe(dev_priv, pipe);
3074
3075         /* Disable PF */
3076         I915_WRITE(PF_CTL(pipe), 0);
3077         I915_WRITE(PF_WIN_SZ(pipe), 0);
3078
3079         ironlake_fdi_disable(crtc);
3080
3081         /* This is a horrible layering violation; we should be doing this in
3082          * the connector/encoder ->prepare instead, but we don't always have
3083          * enough information there about the config to know whether it will
3084          * actually be necessary or just cause undesired flicker.
3085          */
3086         intel_disable_pch_ports(dev_priv, pipe);
3087
3088         intel_disable_transcoder(dev_priv, pipe);
3089
3090         if (HAS_PCH_CPT(dev)) {
3091                 /* disable TRANS_DP_CTL */
3092                 reg = TRANS_DP_CTL(pipe);
3093                 temp = I915_READ(reg);
3094                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3095                 temp |= TRANS_DP_PORT_SEL_NONE;
3096                 I915_WRITE(reg, temp);
3097
3098                 /* disable DPLL_SEL */
3099                 temp = I915_READ(PCH_DPLL_SEL);
3100                 switch (pipe) {
3101                 case 0:
3102                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3103                         break;
3104                 case 1:
3105                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3106                         break;
3107                 case 2:
3108                         /* C shares PLL A or B */
3109                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3110                         break;
3111                 default:
3112                         BUG(); /* wtf */
3113                 }
3114                 I915_WRITE(PCH_DPLL_SEL, temp);
3115         }
3116
3117         /* disable PCH DPLL */
3118         if (!intel_crtc->no_pll)
3119                 intel_disable_pch_pll(dev_priv, pipe);
3120
3121         /* Switch from PCDclk to Rawclk */
3122         reg = FDI_RX_CTL(pipe);
3123         temp = I915_READ(reg);
3124         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3125
3126         /* Disable CPU FDI TX PLL */
3127         reg = FDI_TX_CTL(pipe);
3128         temp = I915_READ(reg);
3129         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3130
3131         POSTING_READ(reg);
3132         udelay(100);
3133
3134         reg = FDI_RX_CTL(pipe);
3135         temp = I915_READ(reg);
3136         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3137
3138         /* Wait for the clocks to turn off. */
3139         POSTING_READ(reg);
3140         udelay(100);
3141
3142         intel_crtc->active = false;
3143         intel_update_watermarks(dev);
3144
3145         mutex_lock(&dev->struct_mutex);
3146         intel_update_fbc(dev);
3147         intel_clear_scanline_wait(dev);
3148         mutex_unlock(&dev->struct_mutex);
3149 }
3150
3151 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3152 {
3153         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3154         int pipe = intel_crtc->pipe;
3155         int plane = intel_crtc->plane;
3156
3157         /* XXX: When our outputs are all unaware of DPMS modes other than off
3158          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3159          */
3160         switch (mode) {
3161         case DRM_MODE_DPMS_ON:
3162         case DRM_MODE_DPMS_STANDBY:
3163         case DRM_MODE_DPMS_SUSPEND:
3164                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3165                 ironlake_crtc_enable(crtc);
3166                 break;
3167
3168         case DRM_MODE_DPMS_OFF:
3169                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3170                 ironlake_crtc_disable(crtc);
3171                 break;
3172         }
3173 }
3174
3175 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3176 {
3177         if (!enable && intel_crtc->overlay) {
3178                 struct drm_device *dev = intel_crtc->base.dev;
3179                 struct drm_i915_private *dev_priv = dev->dev_private;
3180
3181                 mutex_lock(&dev->struct_mutex);
3182                 dev_priv->mm.interruptible = false;
3183                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3184                 dev_priv->mm.interruptible = true;
3185                 mutex_unlock(&dev->struct_mutex);
3186         }
3187
3188         /* Let userspace switch the overlay on again. In most cases userspace
3189          * has to recompute where to put it anyway.
3190          */
3191 }
3192
3193 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3194 {
3195         struct drm_device *dev = crtc->dev;
3196         struct drm_i915_private *dev_priv = dev->dev_private;
3197         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3198         int pipe = intel_crtc->pipe;
3199         int plane = intel_crtc->plane;
3200
3201         if (intel_crtc->active)
3202                 return;
3203
3204         intel_crtc->active = true;
3205         intel_update_watermarks(dev);
3206
3207         intel_enable_pll(dev_priv, pipe);
3208         intel_enable_pipe(dev_priv, pipe, false);
3209         intel_enable_plane(dev_priv, plane, pipe);
3210
3211         intel_crtc_load_lut(crtc);
3212         intel_update_fbc(dev);
3213
3214         /* Give the overlay scaler a chance to enable if it's on this pipe */
3215         intel_crtc_dpms_overlay(intel_crtc, true);
3216         intel_crtc_update_cursor(crtc, true);
3217 }
3218
3219 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3220 {
3221         struct drm_device *dev = crtc->dev;
3222         struct drm_i915_private *dev_priv = dev->dev_private;
3223         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3224         int pipe = intel_crtc->pipe;
3225         int plane = intel_crtc->plane;
3226
3227         if (!intel_crtc->active)
3228                 return;
3229
3230         /* Give the overlay scaler a chance to disable if it's on this pipe */
3231         intel_crtc_wait_for_pending_flips(crtc);
3232         drm_vblank_off(dev, pipe);
3233         intel_crtc_dpms_overlay(intel_crtc, false);
3234         intel_crtc_update_cursor(crtc, false);
3235
3236         if (dev_priv->cfb_plane == plane)
3237                 intel_disable_fbc(dev);
3238
3239         intel_disable_plane(dev_priv, plane, pipe);
3240         intel_disable_pipe(dev_priv, pipe);
3241         intel_disable_pll(dev_priv, pipe);
3242
3243         intel_crtc->active = false;
3244         intel_update_fbc(dev);
3245         intel_update_watermarks(dev);
3246         intel_clear_scanline_wait(dev);
3247 }
3248
3249 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3250 {
3251         /* XXX: When our outputs are all unaware of DPMS modes other than off
3252          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3253          */
3254         switch (mode) {
3255         case DRM_MODE_DPMS_ON:
3256         case DRM_MODE_DPMS_STANDBY:
3257         case DRM_MODE_DPMS_SUSPEND:
3258                 i9xx_crtc_enable(crtc);
3259                 break;
3260         case DRM_MODE_DPMS_OFF:
3261                 i9xx_crtc_disable(crtc);
3262                 break;
3263         }
3264 }
3265
3266 /**
3267  * Sets the power management mode of the pipe and plane.
3268  */
3269 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3270 {
3271         struct drm_device *dev = crtc->dev;
3272         struct drm_i915_private *dev_priv = dev->dev_private;
3273         struct drm_i915_master_private *master_priv;
3274         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3275         int pipe = intel_crtc->pipe;
3276         bool enabled;
3277
3278         if (intel_crtc->dpms_mode == mode)
3279                 return;
3280
3281         intel_crtc->dpms_mode = mode;
3282
3283         dev_priv->display.dpms(crtc, mode);
3284
3285         if (!dev->primary->master)
3286                 return;
3287
3288         master_priv = dev->primary->master->driver_priv;
3289         if (!master_priv->sarea_priv)
3290                 return;
3291
3292         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3293
3294         switch (pipe) {
3295         case 0:
3296                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3297                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3298                 break;
3299         case 1:
3300                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3301                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3302                 break;
3303         default:
3304                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3305                 break;
3306         }
3307 }
3308
3309 static void intel_crtc_disable(struct drm_crtc *crtc)
3310 {
3311         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3312         struct drm_device *dev = crtc->dev;
3313
3314         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3315
3316         if (crtc->fb) {
3317                 mutex_lock(&dev->struct_mutex);
3318                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3319                 mutex_unlock(&dev->struct_mutex);
3320         }
3321 }
3322
3323 /* Prepare for a mode set.
3324  *
3325  * Note we could be a lot smarter here.  We need to figure out which outputs
3326  * will be enabled, which disabled (in short, how the config will changes)
3327  * and perform the minimum necessary steps to accomplish that, e.g. updating
3328  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3329  * panel fitting is in the proper state, etc.
3330  */
3331 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3332 {
3333         i9xx_crtc_disable(crtc);
3334 }
3335
3336 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3337 {
3338         i9xx_crtc_enable(crtc);
3339 }
3340
3341 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3342 {
3343         ironlake_crtc_disable(crtc);
3344 }
3345
3346 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3347 {
3348         ironlake_crtc_enable(crtc);
3349 }
3350
3351 void intel_encoder_prepare(struct drm_encoder *encoder)
3352 {
3353         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3354         /* lvds has its own version of prepare see intel_lvds_prepare */
3355         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3356 }
3357
3358 void intel_encoder_commit(struct drm_encoder *encoder)
3359 {
3360         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3361         struct drm_device *dev = encoder->dev;
3362         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3363         struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3364
3365         /* lvds has its own version of commit see intel_lvds_commit */
3366         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3367
3368         if (HAS_PCH_CPT(dev))
3369                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3370 }
3371
3372 void intel_encoder_destroy(struct drm_encoder *encoder)
3373 {
3374         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3375
3376         drm_encoder_cleanup(encoder);
3377         kfree(intel_encoder);
3378 }
3379
3380 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3381                                   struct drm_display_mode *mode,
3382                                   struct drm_display_mode *adjusted_mode)
3383 {
3384         struct drm_device *dev = crtc->dev;
3385
3386         if (HAS_PCH_SPLIT(dev)) {
3387                 /* FDI link clock is fixed at 2.7G */
3388                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3389                         return false;
3390         }
3391
3392         /* XXX some encoders set the crtcinfo, others don't.
3393          * Obviously we need some form of conflict resolution here...
3394          */
3395         if (adjusted_mode->crtc_htotal == 0)
3396                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3397
3398         return true;
3399 }
3400
3401 static int i945_get_display_clock_speed(struct drm_device *dev)
3402 {
3403         return 400000;
3404 }
3405
3406 static int i915_get_display_clock_speed(struct drm_device *dev)
3407 {
3408         return 333000;
3409 }
3410
3411 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3412 {
3413         return 200000;
3414 }
3415
3416 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3417 {
3418         u16 gcfgc = 0;
3419
3420         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3421
3422         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3423                 return 133000;
3424         else {
3425                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3426                 case GC_DISPLAY_CLOCK_333_MHZ:
3427                         return 333000;
3428                 default:
3429                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3430                         return 190000;
3431                 }
3432         }
3433 }
3434
3435 static int i865_get_display_clock_speed(struct drm_device *dev)
3436 {
3437         return 266000;
3438 }
3439
3440 static int i855_get_display_clock_speed(struct drm_device *dev)
3441 {
3442         u16 hpllcc = 0;
3443         /* Assume that the hardware is in the high speed state.  This
3444          * should be the default.
3445          */
3446         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3447         case GC_CLOCK_133_200:
3448         case GC_CLOCK_100_200:
3449                 return 200000;
3450         case GC_CLOCK_166_250:
3451                 return 250000;
3452         case GC_CLOCK_100_133:
3453                 return 133000;
3454         }
3455
3456         /* Shouldn't happen */
3457         return 0;
3458 }
3459
3460 static int i830_get_display_clock_speed(struct drm_device *dev)
3461 {
3462         return 133000;
3463 }
3464
3465 struct fdi_m_n {
3466         u32        tu;
3467         u32        gmch_m;
3468         u32        gmch_n;
3469         u32        link_m;
3470         u32        link_n;
3471 };
3472
3473 static void
3474 fdi_reduce_ratio(u32 *num, u32 *den)
3475 {
3476         while (*num > 0xffffff || *den > 0xffffff) {
3477                 *num >>= 1;
3478                 *den >>= 1;
3479         }
3480 }
3481
3482 static void
3483 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3484                      int link_clock, struct fdi_m_n *m_n)
3485 {
3486         m_n->tu = 64; /* default size */
3487
3488         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3489         m_n->gmch_m = bits_per_pixel * pixel_clock;
3490         m_n->gmch_n = link_clock * nlanes * 8;
3491         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3492
3493         m_n->link_m = pixel_clock;
3494         m_n->link_n = link_clock;
3495         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3496 }
3497
3498
3499 struct intel_watermark_params {
3500         unsigned long fifo_size;
3501         unsigned long max_wm;
3502         unsigned long default_wm;
3503         unsigned long guard_size;
3504         unsigned long cacheline_size;
3505 };
3506
3507 /* Pineview has different values for various configs */
3508 static const struct intel_watermark_params pineview_display_wm = {
3509         PINEVIEW_DISPLAY_FIFO,
3510         PINEVIEW_MAX_WM,
3511         PINEVIEW_DFT_WM,
3512         PINEVIEW_GUARD_WM,
3513         PINEVIEW_FIFO_LINE_SIZE
3514 };
3515 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3516         PINEVIEW_DISPLAY_FIFO,
3517         PINEVIEW_MAX_WM,
3518         PINEVIEW_DFT_HPLLOFF_WM,
3519         PINEVIEW_GUARD_WM,
3520         PINEVIEW_FIFO_LINE_SIZE
3521 };
3522 static const struct intel_watermark_params pineview_cursor_wm = {
3523         PINEVIEW_CURSOR_FIFO,
3524         PINEVIEW_CURSOR_MAX_WM,
3525         PINEVIEW_CURSOR_DFT_WM,
3526         PINEVIEW_CURSOR_GUARD_WM,
3527         PINEVIEW_FIFO_LINE_SIZE,
3528 };
3529 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3530         PINEVIEW_CURSOR_FIFO,
3531         PINEVIEW_CURSOR_MAX_WM,
3532         PINEVIEW_CURSOR_DFT_WM,
3533         PINEVIEW_CURSOR_GUARD_WM,
3534         PINEVIEW_FIFO_LINE_SIZE
3535 };
3536 static const struct intel_watermark_params g4x_wm_info = {
3537         G4X_FIFO_SIZE,
3538         G4X_MAX_WM,
3539         G4X_MAX_WM,
3540         2,
3541         G4X_FIFO_LINE_SIZE,
3542 };
3543 static const struct intel_watermark_params g4x_cursor_wm_info = {
3544         I965_CURSOR_FIFO,
3545         I965_CURSOR_MAX_WM,
3546         I965_CURSOR_DFT_WM,
3547         2,
3548         G4X_FIFO_LINE_SIZE,
3549 };
3550 static const struct intel_watermark_params i965_cursor_wm_info = {
3551         I965_CURSOR_FIFO,
3552         I965_CURSOR_MAX_WM,
3553         I965_CURSOR_DFT_WM,
3554         2,
3555         I915_FIFO_LINE_SIZE,
3556 };
3557 static const struct intel_watermark_params i945_wm_info = {
3558         I945_FIFO_SIZE,
3559         I915_MAX_WM,
3560         1,
3561         2,
3562         I915_FIFO_LINE_SIZE
3563 };
3564 static const struct intel_watermark_params i915_wm_info = {
3565         I915_FIFO_SIZE,
3566         I915_MAX_WM,
3567         1,
3568         2,
3569         I915_FIFO_LINE_SIZE
3570 };
3571 static const struct intel_watermark_params i855_wm_info = {
3572         I855GM_FIFO_SIZE,
3573         I915_MAX_WM,
3574         1,
3575         2,
3576         I830_FIFO_LINE_SIZE
3577 };
3578 static const struct intel_watermark_params i830_wm_info = {
3579         I830_FIFO_SIZE,
3580         I915_MAX_WM,
3581         1,
3582         2,
3583         I830_FIFO_LINE_SIZE
3584 };
3585
3586 static const struct intel_watermark_params ironlake_display_wm_info = {
3587         ILK_DISPLAY_FIFO,
3588         ILK_DISPLAY_MAXWM,
3589         ILK_DISPLAY_DFTWM,
3590         2,
3591         ILK_FIFO_LINE_SIZE
3592 };
3593 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3594         ILK_CURSOR_FIFO,
3595         ILK_CURSOR_MAXWM,
3596         ILK_CURSOR_DFTWM,
3597         2,
3598         ILK_FIFO_LINE_SIZE
3599 };
3600 static const struct intel_watermark_params ironlake_display_srwm_info = {
3601         ILK_DISPLAY_SR_FIFO,
3602         ILK_DISPLAY_MAX_SRWM,
3603         ILK_DISPLAY_DFT_SRWM,
3604         2,
3605         ILK_FIFO_LINE_SIZE
3606 };
3607 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3608         ILK_CURSOR_SR_FIFO,
3609         ILK_CURSOR_MAX_SRWM,
3610         ILK_CURSOR_DFT_SRWM,
3611         2,
3612         ILK_FIFO_LINE_SIZE
3613 };
3614
3615 static const struct intel_watermark_params sandybridge_display_wm_info = {
3616         SNB_DISPLAY_FIFO,
3617         SNB_DISPLAY_MAXWM,
3618         SNB_DISPLAY_DFTWM,
3619         2,
3620         SNB_FIFO_LINE_SIZE
3621 };
3622 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3623         SNB_CURSOR_FIFO,
3624         SNB_CURSOR_MAXWM,
3625         SNB_CURSOR_DFTWM,
3626         2,
3627         SNB_FIFO_LINE_SIZE
3628 };
3629 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3630         SNB_DISPLAY_SR_FIFO,
3631         SNB_DISPLAY_MAX_SRWM,
3632         SNB_DISPLAY_DFT_SRWM,
3633         2,
3634         SNB_FIFO_LINE_SIZE
3635 };
3636 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3637         SNB_CURSOR_SR_FIFO,
3638         SNB_CURSOR_MAX_SRWM,
3639         SNB_CURSOR_DFT_SRWM,
3640         2,
3641         SNB_FIFO_LINE_SIZE
3642 };
3643
3644
3645 /**
3646  * intel_calculate_wm - calculate watermark level
3647  * @clock_in_khz: pixel clock
3648  * @wm: chip FIFO params
3649  * @pixel_size: display pixel size
3650  * @latency_ns: memory latency for the platform
3651  *
3652  * Calculate the watermark level (the level at which the display plane will
3653  * start fetching from memory again).  Each chip has a different display
3654  * FIFO size and allocation, so the caller needs to figure that out and pass
3655  * in the correct intel_watermark_params structure.
3656  *
3657  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3658  * on the pixel size.  When it reaches the watermark level, it'll start
3659  * fetching FIFO line sized based chunks from memory until the FIFO fills
3660  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3661  * will occur, and a display engine hang could result.
3662  */
3663 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3664                                         const struct intel_watermark_params *wm,
3665                                         int fifo_size,
3666                                         int pixel_size,
3667                                         unsigned long latency_ns)
3668 {
3669         long entries_required, wm_size;
3670
3671         /*
3672          * Note: we need to make sure we don't overflow for various clock &
3673          * latency values.
3674          * clocks go from a few thousand to several hundred thousand.
3675          * latency is usually a few thousand
3676          */
3677         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3678                 1000;
3679         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3680
3681         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3682
3683         wm_size = fifo_size - (entries_required + wm->guard_size);
3684
3685         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3686
3687         /* Don't promote wm_size to unsigned... */
3688         if (wm_size > (long)wm->max_wm)
3689                 wm_size = wm->max_wm;
3690         if (wm_size <= 0)
3691                 wm_size = wm->default_wm;
3692         return wm_size;
3693 }
3694
3695 struct cxsr_latency {
3696         int is_desktop;
3697         int is_ddr3;
3698         unsigned long fsb_freq;
3699         unsigned long mem_freq;
3700         unsigned long display_sr;
3701         unsigned long display_hpll_disable;
3702         unsigned long cursor_sr;
3703         unsigned long cursor_hpll_disable;
3704 };
3705
3706 static const struct cxsr_latency cxsr_latency_table[] = {
3707         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3708         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3709         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3710         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3711         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3712
3713         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3714         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3715         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3716         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3717         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3718
3719         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3720         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3721         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3722         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3723         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3724
3725         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3726         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3727         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3728         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3729         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3730
3731         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3732         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3733         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3734         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3735         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3736
3737         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3738         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3739         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3740         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3741         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3742 };
3743
3744 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3745                                                          int is_ddr3,
3746                                                          int fsb,
3747                                                          int mem)
3748 {
3749         const struct cxsr_latency *latency;
3750         int i;
3751
3752         if (fsb == 0 || mem == 0)
3753                 return NULL;
3754
3755         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3756                 latency = &cxsr_latency_table[i];
3757                 if (is_desktop == latency->is_desktop &&
3758                     is_ddr3 == latency->is_ddr3 &&
3759                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3760                         return latency;
3761         }
3762
3763         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3764
3765         return NULL;
3766 }
3767
3768 static void pineview_disable_cxsr(struct drm_device *dev)
3769 {
3770         struct drm_i915_private *dev_priv = dev->dev_private;
3771
3772         /* deactivate cxsr */
3773         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3774 }
3775
3776 /*
3777  * Latency for FIFO fetches is dependent on several factors:
3778  *   - memory configuration (speed, channels)
3779  *   - chipset
3780  *   - current MCH state
3781  * It can be fairly high in some situations, so here we assume a fairly
3782  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3783  * set this value too high, the FIFO will fetch frequently to stay full)
3784  * and power consumption (set it too low to save power and we might see
3785  * FIFO underruns and display "flicker").
3786  *
3787  * A value of 5us seems to be a good balance; safe for very low end
3788  * platforms but not overly aggressive on lower latency configs.
3789  */
3790 static const int latency_ns = 5000;
3791
3792 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3793 {
3794         struct drm_i915_private *dev_priv = dev->dev_private;
3795         uint32_t dsparb = I915_READ(DSPARB);
3796         int size;
3797
3798         size = dsparb & 0x7f;
3799         if (plane)
3800                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3801
3802         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3803                       plane ? "B" : "A", size);
3804
3805         return size;
3806 }
3807
3808 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3809 {
3810         struct drm_i915_private *dev_priv = dev->dev_private;
3811         uint32_t dsparb = I915_READ(DSPARB);
3812         int size;
3813
3814         size = dsparb & 0x1ff;
3815         if (plane)
3816                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3817         size >>= 1; /* Convert to cachelines */
3818
3819         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3820                       plane ? "B" : "A", size);
3821
3822         return size;
3823 }
3824
3825 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3826 {
3827         struct drm_i915_private *dev_priv = dev->dev_private;
3828         uint32_t dsparb = I915_READ(DSPARB);
3829         int size;
3830
3831         size = dsparb & 0x7f;
3832         size >>= 2; /* Convert to cachelines */
3833
3834         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3835                       plane ? "B" : "A",
3836                       size);
3837
3838         return size;
3839 }
3840
3841 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3842 {
3843         struct drm_i915_private *dev_priv = dev->dev_private;
3844         uint32_t dsparb = I915_READ(DSPARB);
3845         int size;
3846
3847         size = dsparb & 0x7f;
3848         size >>= 1; /* Convert to cachelines */
3849
3850         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3851                       plane ? "B" : "A", size);
3852
3853         return size;
3854 }
3855
3856 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3857 {
3858         struct drm_crtc *crtc, *enabled = NULL;
3859
3860         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3861                 if (crtc->enabled && crtc->fb) {
3862                         if (enabled)
3863                                 return NULL;
3864                         enabled = crtc;
3865                 }
3866         }
3867
3868         return enabled;
3869 }
3870
3871 static void pineview_update_wm(struct drm_device *dev)
3872 {
3873         struct drm_i915_private *dev_priv = dev->dev_private;
3874         struct drm_crtc *crtc;
3875         const struct cxsr_latency *latency;
3876         u32 reg;
3877         unsigned long wm;
3878
3879         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3880                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3881         if (!latency) {
3882                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3883                 pineview_disable_cxsr(dev);
3884                 return;
3885         }
3886
3887         crtc = single_enabled_crtc(dev);
3888         if (crtc) {
3889                 int clock = crtc->mode.clock;
3890                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3891
3892                 /* Display SR */
3893                 wm = intel_calculate_wm(clock, &pineview_display_wm,
3894                                         pineview_display_wm.fifo_size,
3895                                         pixel_size, latency->display_sr);
3896                 reg = I915_READ(DSPFW1);
3897                 reg &= ~DSPFW_SR_MASK;
3898                 reg |= wm << DSPFW_SR_SHIFT;
3899                 I915_WRITE(DSPFW1, reg);
3900                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3901
3902                 /* cursor SR */
3903                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3904                                         pineview_display_wm.fifo_size,
3905                                         pixel_size, latency->cursor_sr);
3906                 reg = I915_READ(DSPFW3);
3907                 reg &= ~DSPFW_CURSOR_SR_MASK;
3908                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3909                 I915_WRITE(DSPFW3, reg);
3910
3911                 /* Display HPLL off SR */
3912                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3913                                         pineview_display_hplloff_wm.fifo_size,
3914                                         pixel_size, latency->display_hpll_disable);
3915                 reg = I915_READ(DSPFW3);
3916                 reg &= ~DSPFW_HPLL_SR_MASK;
3917                 reg |= wm & DSPFW_HPLL_SR_MASK;
3918                 I915_WRITE(DSPFW3, reg);
3919
3920                 /* cursor HPLL off SR */
3921                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3922                                         pineview_display_hplloff_wm.fifo_size,
3923                                         pixel_size, latency->cursor_hpll_disable);
3924                 reg = I915_READ(DSPFW3);
3925                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3926                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3927                 I915_WRITE(DSPFW3, reg);
3928                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3929
3930                 /* activate cxsr */
3931                 I915_WRITE(DSPFW3,
3932                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3933                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3934         } else {
3935                 pineview_disable_cxsr(dev);
3936                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3937         }
3938 }
3939
3940 static bool g4x_compute_wm0(struct drm_device *dev,
3941                             int plane,
3942                             const struct intel_watermark_params *display,
3943                             int display_latency_ns,
3944                             const struct intel_watermark_params *cursor,
3945                             int cursor_latency_ns,
3946                             int *plane_wm,
3947                             int *cursor_wm)
3948 {
3949         struct drm_crtc *crtc;
3950         int htotal, hdisplay, clock, pixel_size;
3951         int line_time_us, line_count;
3952         int entries, tlb_miss;
3953
3954         crtc = intel_get_crtc_for_plane(dev, plane);
3955         if (crtc->fb == NULL || !crtc->enabled) {
3956                 *cursor_wm = cursor->guard_size;
3957                 *plane_wm = display->guard_size;
3958                 return false;
3959         }
3960
3961         htotal = crtc->mode.htotal;
3962         hdisplay = crtc->mode.hdisplay;
3963         clock = crtc->mode.clock;
3964         pixel_size = crtc->fb->bits_per_pixel / 8;
3965
3966         /* Use the small buffer method to calculate plane watermark */
3967         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3968         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3969         if (tlb_miss > 0)
3970                 entries += tlb_miss;
3971         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3972         *plane_wm = entries + display->guard_size;
3973         if (*plane_wm > (int)display->max_wm)
3974                 *plane_wm = display->max_wm;
3975
3976         /* Use the large buffer method to calculate cursor watermark */
3977         line_time_us = ((htotal * 1000) / clock);
3978         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3979         entries = line_count * 64 * pixel_size;
3980         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3981         if (tlb_miss > 0)
3982                 entries += tlb_miss;
3983         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3984         *cursor_wm = entries + cursor->guard_size;
3985         if (*cursor_wm > (int)cursor->max_wm)
3986                 *cursor_wm = (int)cursor->max_wm;
3987
3988         return true;
3989 }
3990
3991 /*
3992  * Check the wm result.
3993  *
3994  * If any calculated watermark values is larger than the maximum value that
3995  * can be programmed into the associated watermark register, that watermark
3996  * must be disabled.
3997  */
3998 static bool g4x_check_srwm(struct drm_device *dev,
3999                            int display_wm, int cursor_wm,
4000                            const struct intel_watermark_params *display,
4001                            const struct intel_watermark_params *cursor)
4002 {
4003         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4004                       display_wm, cursor_wm);
4005
4006         if (display_wm > display->max_wm) {
4007                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4008                               display_wm, display->max_wm);
4009                 return false;
4010         }
4011
4012         if (cursor_wm > cursor->max_wm) {
4013                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4014                               cursor_wm, cursor->max_wm);
4015                 return false;
4016         }
4017
4018         if (!(display_wm || cursor_wm)) {
4019                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4020                 return false;
4021         }
4022
4023         return true;
4024 }
4025
4026 static bool g4x_compute_srwm(struct drm_device *dev,
4027                              int plane,
4028                              int latency_ns,
4029                              const struct intel_watermark_params *display,
4030                              const struct intel_watermark_params *cursor,
4031                              int *display_wm, int *cursor_wm)
4032 {
4033         struct drm_crtc *crtc;
4034         int hdisplay, htotal, pixel_size, clock;
4035         unsigned long line_time_us;
4036         int line_count, line_size;
4037         int small, large;
4038         int entries;
4039
4040         if (!latency_ns) {
4041                 *display_wm = *cursor_wm = 0;
4042                 return false;
4043         }
4044
4045         crtc = intel_get_crtc_for_plane(dev, plane);
4046         hdisplay = crtc->mode.hdisplay;
4047         htotal = crtc->mode.htotal;
4048         clock = crtc->mode.clock;
4049         pixel_size = crtc->fb->bits_per_pixel / 8;
4050
4051         line_time_us = (htotal * 1000) / clock;
4052         line_count = (latency_ns / line_time_us + 1000) / 1000;
4053         line_size = hdisplay * pixel_size;
4054
4055         /* Use the minimum of the small and large buffer method for primary */
4056         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4057         large = line_count * line_size;
4058
4059         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4060         *display_wm = entries + display->guard_size;
4061
4062         /* calculate the self-refresh watermark for display cursor */
4063         entries = line_count * pixel_size * 64;
4064         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4065         *cursor_wm = entries + cursor->guard_size;
4066
4067         return g4x_check_srwm(dev,
4068                               *display_wm, *cursor_wm,
4069                               display, cursor);
4070 }
4071
4072 #define single_plane_enabled(mask) is_power_of_2(mask)
4073
4074 static void g4x_update_wm(struct drm_device *dev)
4075 {
4076         static const int sr_latency_ns = 12000;
4077         struct drm_i915_private *dev_priv = dev->dev_private;
4078         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4079         int plane_sr, cursor_sr;
4080         unsigned int enabled = 0;
4081
4082         if (g4x_compute_wm0(dev, 0,
4083                             &g4x_wm_info, latency_ns,
4084                             &g4x_cursor_wm_info, latency_ns,
4085                             &planea_wm, &cursora_wm))
4086                 enabled |= 1;
4087
4088         if (g4x_compute_wm0(dev, 1,
4089                             &g4x_wm_info, latency_ns,
4090                             &g4x_cursor_wm_info, latency_ns,
4091                             &planeb_wm, &cursorb_wm))
4092                 enabled |= 2;
4093
4094         plane_sr = cursor_sr = 0;
4095         if (single_plane_enabled(enabled) &&
4096             g4x_compute_srwm(dev, ffs(enabled) - 1,
4097                              sr_latency_ns,
4098                              &g4x_wm_info,
4099                              &g4x_cursor_wm_info,
4100                              &plane_sr, &cursor_sr))
4101                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4102         else
4103                 I915_WRITE(FW_BLC_SELF,
4104                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4105
4106         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4107                       planea_wm, cursora_wm,
4108                       planeb_wm, cursorb_wm,
4109                       plane_sr, cursor_sr);
4110
4111         I915_WRITE(DSPFW1,
4112                    (plane_sr << DSPFW_SR_SHIFT) |
4113                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4114                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
4115                    planea_wm);
4116         I915_WRITE(DSPFW2,
4117                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4118                    (cursora_wm << DSPFW_CURSORA_SHIFT));
4119         /* HPLL off in SR has some issues on G4x... disable it */
4120         I915_WRITE(DSPFW3,
4121                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4122                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4123 }
4124
4125 static void i965_update_wm(struct drm_device *dev)
4126 {
4127         struct drm_i915_private *dev_priv = dev->dev_private;
4128         struct drm_crtc *crtc;
4129         int srwm = 1;
4130         int cursor_sr = 16;
4131
4132         /* Calc sr entries for one plane configs */
4133         crtc = single_enabled_crtc(dev);
4134         if (crtc) {
4135                 /* self-refresh has much higher latency */
4136                 static const int sr_latency_ns = 12000;
4137                 int clock = crtc->mode.clock;
4138                 int htotal = crtc->mode.htotal;
4139                 int hdisplay = crtc->mode.hdisplay;
4140                 int pixel_size = crtc->fb->bits_per_pixel / 8;
4141                 unsigned long line_time_us;
4142                 int entries;
4143
4144                 line_time_us = ((htotal * 1000) / clock);
4145
4146                 /* Use ns/us then divide to preserve precision */
4147                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4148                         pixel_size * hdisplay;
4149                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4150                 srwm = I965_FIFO_SIZE - entries;
4151                 if (srwm < 0)
4152                         srwm = 1;
4153                 srwm &= 0x1ff;
4154                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4155                               entries, srwm);
4156
4157                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4158                         pixel_size * 64;
4159                 entries = DIV_ROUND_UP(entries,
4160                                           i965_cursor_wm_info.cacheline_size);
4161                 cursor_sr = i965_cursor_wm_info.fifo_size -
4162                         (entries + i965_cursor_wm_info.guard_size);
4163
4164                 if (cursor_sr > i965_cursor_wm_info.max_wm)
4165                         cursor_sr = i965_cursor_wm_info.max_wm;
4166
4167                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4168                               "cursor %d\n", srwm, cursor_sr);
4169
4170                 if (IS_CRESTLINE(dev))
4171                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4172         } else {
4173                 /* Turn off self refresh if both pipes are enabled */
4174                 if (IS_CRESTLINE(dev))
4175                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4176                                    & ~FW_BLC_SELF_EN);
4177         }
4178
4179         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4180                       srwm);
4181
4182         /* 965 has limitations... */
4183         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4184                    (8 << 16) | (8 << 8) | (8 << 0));
4185         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4186         /* update cursor SR watermark */
4187         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4188 }
4189
4190 static void i9xx_update_wm(struct drm_device *dev)
4191 {
4192         struct drm_i915_private *dev_priv = dev->dev_private;
4193         const struct intel_watermark_params *wm_info;
4194         uint32_t fwater_lo;
4195         uint32_t fwater_hi;
4196         int cwm, srwm = 1;
4197         int fifo_size;
4198         int planea_wm, planeb_wm;
4199         struct drm_crtc *crtc, *enabled = NULL;
4200
4201         if (IS_I945GM(dev))
4202                 wm_info = &i945_wm_info;
4203         else if (!IS_GEN2(dev))
4204                 wm_info = &i915_wm_info;
4205         else
4206                 wm_info = &i855_wm_info;
4207
4208         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4209         crtc = intel_get_crtc_for_plane(dev, 0);
4210         if (crtc->enabled && crtc->fb) {
4211                 planea_wm = intel_calculate_wm(crtc->mode.clock,
4212                                                wm_info, fifo_size,
4213                                                crtc->fb->bits_per_pixel / 8,
4214                                                latency_ns);
4215                 enabled = crtc;
4216         } else
4217                 planea_wm = fifo_size - wm_info->guard_size;
4218
4219         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4220         crtc = intel_get_crtc_for_plane(dev, 1);
4221         if (crtc->enabled && crtc->fb) {
4222                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4223                                                wm_info, fifo_size,
4224                                                crtc->fb->bits_per_pixel / 8,
4225                                                latency_ns);
4226                 if (enabled == NULL)
4227                         enabled = crtc;
4228                 else
4229                         enabled = NULL;
4230         } else
4231                 planeb_wm = fifo_size - wm_info->guard_size;
4232
4233         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4234
4235         /*
4236          * Overlay gets an aggressive default since video jitter is bad.
4237          */
4238         cwm = 2;
4239
4240         /* Play safe and disable self-refresh before adjusting watermarks. */
4241         if (IS_I945G(dev) || IS_I945GM(dev))
4242                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4243         else if (IS_I915GM(dev))
4244                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4245
4246         /* Calc sr entries for one plane configs */
4247         if (HAS_FW_BLC(dev) && enabled) {
4248                 /* self-refresh has much higher latency */
4249                 static const int sr_latency_ns = 6000;
4250                 int clock = enabled->mode.clock;
4251                 int htotal = enabled->mode.htotal;
4252                 int hdisplay = enabled->mode.hdisplay;
4253                 int pixel_size = enabled->fb->bits_per_pixel / 8;
4254                 unsigned long line_time_us;
4255                 int entries;
4256
4257                 line_time_us = (htotal * 1000) / clock;
4258
4259                 /* Use ns/us then divide to preserve precision */
4260                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4261                         pixel_size * hdisplay;
4262                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4263                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4264                 srwm = wm_info->fifo_size - entries;
4265                 if (srwm < 0)
4266                         srwm = 1;
4267
4268                 if (IS_I945G(dev) || IS_I945GM(dev))
4269                         I915_WRITE(FW_BLC_SELF,
4270                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4271                 else if (IS_I915GM(dev))
4272                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4273         }
4274
4275         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4276                       planea_wm, planeb_wm, cwm, srwm);
4277
4278         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4279         fwater_hi = (cwm & 0x1f);
4280
4281         /* Set request length to 8 cachelines per fetch */
4282         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4283         fwater_hi = fwater_hi | (1 << 8);
4284
4285         I915_WRITE(FW_BLC, fwater_lo);
4286         I915_WRITE(FW_BLC2, fwater_hi);
4287
4288         if (HAS_FW_BLC(dev)) {
4289                 if (enabled) {
4290                         if (IS_I945G(dev) || IS_I945GM(dev))
4291                                 I915_WRITE(FW_BLC_SELF,
4292                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4293                         else if (IS_I915GM(dev))
4294                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4295                         DRM_DEBUG_KMS("memory self refresh enabled\n");
4296                 } else
4297                         DRM_DEBUG_KMS("memory self refresh disabled\n");
4298         }
4299 }
4300
4301 static void i830_update_wm(struct drm_device *dev)
4302 {
4303         struct drm_i915_private *dev_priv = dev->dev_private;
4304         struct drm_crtc *crtc;
4305         uint32_t fwater_lo;
4306         int planea_wm;
4307
4308         crtc = single_enabled_crtc(dev);
4309         if (crtc == NULL)
4310                 return;
4311
4312         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4313                                        dev_priv->display.get_fifo_size(dev, 0),
4314                                        crtc->fb->bits_per_pixel / 8,
4315                                        latency_ns);
4316         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4317         fwater_lo |= (3<<8) | planea_wm;
4318
4319         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4320
4321         I915_WRITE(FW_BLC, fwater_lo);
4322 }
4323
4324 #define ILK_LP0_PLANE_LATENCY           700
4325 #define ILK_LP0_CURSOR_LATENCY          1300
4326
4327 /*
4328  * Check the wm result.
4329  *
4330  * If any calculated watermark values is larger than the maximum value that
4331  * can be programmed into the associated watermark register, that watermark
4332  * must be disabled.
4333  */
4334 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4335                                 int fbc_wm, int display_wm, int cursor_wm,
4336                                 const struct intel_watermark_params *display,
4337                                 const struct intel_watermark_params *cursor)
4338 {
4339         struct drm_i915_private *dev_priv = dev->dev_private;
4340
4341         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4342                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4343
4344         if (fbc_wm > SNB_FBC_MAX_SRWM) {
4345                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4346                               fbc_wm, SNB_FBC_MAX_SRWM, level);
4347
4348                 /* fbc has it's own way to disable FBC WM */
4349                 I915_WRITE(DISP_ARB_CTL,
4350                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4351                 return false;
4352         }
4353
4354         if (display_wm > display->max_wm) {
4355                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4356                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
4357                 return false;
4358         }
4359
4360         if (cursor_wm > cursor->max_wm) {
4361                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4362                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4363                 return false;
4364         }
4365
4366         if (!(fbc_wm || display_wm || cursor_wm)) {
4367                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4368                 return false;
4369         }
4370
4371         return true;
4372 }
4373
4374 /*
4375  * Compute watermark values of WM[1-3],
4376  */
4377 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4378                                   int latency_ns,
4379                                   const struct intel_watermark_params *display,
4380                                   const struct intel_watermark_params *cursor,
4381                                   int *fbc_wm, int *display_wm, int *cursor_wm)
4382 {
4383         struct drm_crtc *crtc;
4384         unsigned long line_time_us;
4385         int hdisplay, htotal, pixel_size, clock;
4386         int line_count, line_size;
4387         int small, large;
4388         int entries;
4389
4390         if (!latency_ns) {
4391                 *fbc_wm = *display_wm = *cursor_wm = 0;
4392                 return false;
4393         }
4394
4395         crtc = intel_get_crtc_for_plane(dev, plane);
4396         hdisplay = crtc->mode.hdisplay;
4397         htotal = crtc->mode.htotal;
4398         clock = crtc->mode.clock;
4399         pixel_size = crtc->fb->bits_per_pixel / 8;
4400
4401         line_time_us = (htotal * 1000) / clock;
4402         line_count = (latency_ns / line_time_us + 1000) / 1000;
4403         line_size = hdisplay * pixel_size;
4404
4405         /* Use the minimum of the small and large buffer method for primary */
4406         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4407         large = line_count * line_size;
4408
4409         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4410         *display_wm = entries + display->guard_size;
4411
4412         /*
4413          * Spec says:
4414          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4415          */
4416         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4417
4418         /* calculate the self-refresh watermark for display cursor */
4419         entries = line_count * pixel_size * 64;
4420         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4421         *cursor_wm = entries + cursor->guard_size;
4422
4423         return ironlake_check_srwm(dev, level,
4424                                    *fbc_wm, *display_wm, *cursor_wm,
4425                                    display, cursor);
4426 }
4427
4428 static void ironlake_update_wm(struct drm_device *dev)
4429 {
4430         struct drm_i915_private *dev_priv = dev->dev_private;
4431         int fbc_wm, plane_wm, cursor_wm;
4432         unsigned int enabled;
4433
4434         enabled = 0;
4435         if (g4x_compute_wm0(dev, 0,
4436                             &ironlake_display_wm_info,
4437                             ILK_LP0_PLANE_LATENCY,
4438                             &ironlake_cursor_wm_info,
4439                             ILK_LP0_CURSOR_LATENCY,
4440                             &plane_wm, &cursor_wm)) {
4441                 I915_WRITE(WM0_PIPEA_ILK,
4442                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4443                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4444                               " plane %d, " "cursor: %d\n",
4445                               plane_wm, cursor_wm);
4446                 enabled |= 1;
4447         }
4448
4449         if (g4x_compute_wm0(dev, 1,
4450                             &ironlake_display_wm_info,
4451                             ILK_LP0_PLANE_LATENCY,
4452                             &ironlake_cursor_wm_info,
4453                             ILK_LP0_CURSOR_LATENCY,
4454                             &plane_wm, &cursor_wm)) {
4455                 I915_WRITE(WM0_PIPEB_ILK,
4456                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4457                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4458                               " plane %d, cursor: %d\n",
4459                               plane_wm, cursor_wm);
4460                 enabled |= 2;
4461         }
4462
4463         /*
4464          * Calculate and update the self-refresh watermark only when one
4465          * display plane is used.
4466          */
4467         I915_WRITE(WM3_LP_ILK, 0);
4468         I915_WRITE(WM2_LP_ILK, 0);
4469         I915_WRITE(WM1_LP_ILK, 0);
4470
4471         if (!single_plane_enabled(enabled))
4472                 return;
4473         enabled = ffs(enabled) - 1;
4474
4475         /* WM1 */
4476         if (!ironlake_compute_srwm(dev, 1, enabled,
4477                                    ILK_READ_WM1_LATENCY() * 500,
4478                                    &ironlake_display_srwm_info,
4479                                    &ironlake_cursor_srwm_info,
4480                                    &fbc_wm, &plane_wm, &cursor_wm))
4481                 return;
4482
4483         I915_WRITE(WM1_LP_ILK,
4484                    WM1_LP_SR_EN |
4485                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4486                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4487                    (plane_wm << WM1_LP_SR_SHIFT) |
4488                    cursor_wm);
4489
4490         /* WM2 */
4491         if (!ironlake_compute_srwm(dev, 2, enabled,
4492                                    ILK_READ_WM2_LATENCY() * 500,
4493                                    &ironlake_display_srwm_info,
4494                                    &ironlake_cursor_srwm_info,
4495                                    &fbc_wm, &plane_wm, &cursor_wm))
4496                 return;
4497
4498         I915_WRITE(WM2_LP_ILK,
4499                    WM2_LP_EN |
4500                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4501                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4502                    (plane_wm << WM1_LP_SR_SHIFT) |
4503                    cursor_wm);
4504
4505         /*
4506          * WM3 is unsupported on ILK, probably because we don't have latency
4507          * data for that power state
4508          */
4509 }
4510
4511 static void sandybridge_update_wm(struct drm_device *dev)
4512 {
4513         struct drm_i915_private *dev_priv = dev->dev_private;
4514         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4515         int fbc_wm, plane_wm, cursor_wm;
4516         unsigned int enabled;
4517
4518         enabled = 0;
4519         if (g4x_compute_wm0(dev, 0,
4520                             &sandybridge_display_wm_info, latency,
4521                             &sandybridge_cursor_wm_info, latency,
4522                             &plane_wm, &cursor_wm)) {
4523                 I915_WRITE(WM0_PIPEA_ILK,
4524                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4525                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4526                               " plane %d, " "cursor: %d\n",
4527                               plane_wm, cursor_wm);
4528                 enabled |= 1;
4529         }
4530
4531         if (g4x_compute_wm0(dev, 1,
4532                             &sandybridge_display_wm_info, latency,
4533                             &sandybridge_cursor_wm_info, latency,
4534                             &plane_wm, &cursor_wm)) {
4535                 I915_WRITE(WM0_PIPEB_ILK,
4536                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4537                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4538                               " plane %d, cursor: %d\n",
4539                               plane_wm, cursor_wm);
4540                 enabled |= 2;
4541         }
4542
4543         /* IVB has 3 pipes */
4544         if (IS_IVYBRIDGE(dev) &&
4545             g4x_compute_wm0(dev, 2,
4546                             &sandybridge_display_wm_info, latency,
4547                             &sandybridge_cursor_wm_info, latency,
4548                             &plane_wm, &cursor_wm)) {
4549                 I915_WRITE(WM0_PIPEC_IVB,
4550                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4551                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4552                               " plane %d, cursor: %d\n",
4553                               plane_wm, cursor_wm);
4554                 enabled |= 3;
4555         }
4556
4557         /*
4558          * Calculate and update the self-refresh watermark only when one
4559          * display plane is used.
4560          *
4561          * SNB support 3 levels of watermark.
4562          *
4563          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4564          * and disabled in the descending order
4565          *
4566          */
4567         I915_WRITE(WM3_LP_ILK, 0);
4568         I915_WRITE(WM2_LP_ILK, 0);
4569         I915_WRITE(WM1_LP_ILK, 0);
4570
4571         if (!single_plane_enabled(enabled))
4572                 return;
4573         enabled = ffs(enabled) - 1;
4574
4575         /* WM1 */
4576         if (!ironlake_compute_srwm(dev, 1, enabled,
4577                                    SNB_READ_WM1_LATENCY() * 500,
4578                                    &sandybridge_display_srwm_info,
4579                                    &sandybridge_cursor_srwm_info,
4580                                    &fbc_wm, &plane_wm, &cursor_wm))
4581                 return;
4582
4583         I915_WRITE(WM1_LP_ILK,
4584                    WM1_LP_SR_EN |
4585                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4586                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4587                    (plane_wm << WM1_LP_SR_SHIFT) |
4588                    cursor_wm);
4589
4590         /* WM2 */
4591         if (!ironlake_compute_srwm(dev, 2, enabled,
4592                                    SNB_READ_WM2_LATENCY() * 500,
4593                                    &sandybridge_display_srwm_info,
4594                                    &sandybridge_cursor_srwm_info,
4595                                    &fbc_wm, &plane_wm, &cursor_wm))
4596                 return;
4597
4598         I915_WRITE(WM2_LP_ILK,
4599                    WM2_LP_EN |
4600                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4601                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4602                    (plane_wm << WM1_LP_SR_SHIFT) |
4603                    cursor_wm);
4604
4605         /* WM3 */
4606         if (!ironlake_compute_srwm(dev, 3, enabled,
4607                                    SNB_READ_WM3_LATENCY() * 500,
4608                                    &sandybridge_display_srwm_info,
4609                                    &sandybridge_cursor_srwm_info,
4610                                    &fbc_wm, &plane_wm, &cursor_wm))
4611                 return;
4612
4613         I915_WRITE(WM3_LP_ILK,
4614                    WM3_LP_EN |
4615                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4616                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4617                    (plane_wm << WM1_LP_SR_SHIFT) |
4618                    cursor_wm);
4619 }
4620
4621 /**
4622  * intel_update_watermarks - update FIFO watermark values based on current modes
4623  *
4624  * Calculate watermark values for the various WM regs based on current mode
4625  * and plane configuration.
4626  *
4627  * There are several cases to deal with here:
4628  *   - normal (i.e. non-self-refresh)
4629  *   - self-refresh (SR) mode
4630  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4631  *   - lines are small relative to FIFO size (buffer can hold more than 2
4632  *     lines), so need to account for TLB latency
4633  *
4634  *   The normal calculation is:
4635  *     watermark = dotclock * bytes per pixel * latency
4636  *   where latency is platform & configuration dependent (we assume pessimal
4637  *   values here).
4638  *
4639  *   The SR calculation is:
4640  *     watermark = (trunc(latency/line time)+1) * surface width *
4641  *       bytes per pixel
4642  *   where
4643  *     line time = htotal / dotclock
4644  *     surface width = hdisplay for normal plane and 64 for cursor
4645  *   and latency is assumed to be high, as above.
4646  *
4647  * The final value programmed to the register should always be rounded up,
4648  * and include an extra 2 entries to account for clock crossings.
4649  *
4650  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4651  * to set the non-SR watermarks to 8.
4652  */
4653 static void intel_update_watermarks(struct drm_device *dev)
4654 {
4655         struct drm_i915_private *dev_priv = dev->dev_private;
4656
4657         if (dev_priv->display.update_wm)
4658                 dev_priv->display.update_wm(dev);
4659 }
4660
4661 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4662 {
4663         if (i915_panel_use_ssc >= 0)
4664                 return i915_panel_use_ssc != 0;
4665         return dev_priv->lvds_use_ssc
4666                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4667 }
4668
4669 /**
4670  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4671  * @crtc: CRTC structure
4672  *
4673  * A pipe may be connected to one or more outputs.  Based on the depth of the
4674  * attached framebuffer, choose a good color depth to use on the pipe.
4675  *
4676  * If possible, match the pipe depth to the fb depth.  In some cases, this
4677  * isn't ideal, because the connected output supports a lesser or restricted
4678  * set of depths.  Resolve that here:
4679  *    LVDS typically supports only 6bpc, so clamp down in that case
4680  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4681  *    Displays may support a restricted set as well, check EDID and clamp as
4682  *      appropriate.
4683  *
4684  * RETURNS:
4685  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4686  * true if they don't match).
4687  */
4688 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4689                                          unsigned int *pipe_bpp)
4690 {
4691         struct drm_device *dev = crtc->dev;
4692         struct drm_i915_private *dev_priv = dev->dev_private;
4693         struct drm_encoder *encoder;
4694         struct drm_connector *connector;
4695         unsigned int display_bpc = UINT_MAX, bpc;
4696
4697         /* Walk the encoders & connectors on this crtc, get min bpc */
4698         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4699                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4700
4701                 if (encoder->crtc != crtc)
4702                         continue;
4703
4704                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4705                         unsigned int lvds_bpc;
4706
4707                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4708                             LVDS_A3_POWER_UP)
4709                                 lvds_bpc = 8;
4710                         else
4711                                 lvds_bpc = 6;
4712
4713                         if (lvds_bpc < display_bpc) {
4714                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4715                                 display_bpc = lvds_bpc;
4716                         }
4717                         continue;
4718                 }
4719
4720                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4721                         /* Use VBT settings if we have an eDP panel */
4722                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4723
4724                         if (edp_bpc < display_bpc) {
4725                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4726                                 display_bpc = edp_bpc;
4727                         }
4728                         continue;
4729                 }
4730
4731                 /* Not one of the known troublemakers, check the EDID */
4732                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4733                                     head) {
4734                         if (connector->encoder != encoder)
4735                                 continue;
4736
4737                         /* Don't use an invalid EDID bpc value */
4738                         if (connector->display_info.bpc &&
4739                             connector->display_info.bpc < display_bpc) {
4740                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4741                                 display_bpc = connector->display_info.bpc;
4742                         }
4743                 }
4744
4745                 /*
4746                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4747                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4748                  */
4749                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4750                         if (display_bpc > 8 && display_bpc < 12) {
4751                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4752                                 display_bpc = 12;
4753                         } else {
4754                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4755                                 display_bpc = 8;
4756                         }
4757                 }
4758         }
4759
4760         /*
4761          * We could just drive the pipe at the highest bpc all the time and
4762          * enable dithering as needed, but that costs bandwidth.  So choose
4763          * the minimum value that expresses the full color range of the fb but
4764          * also stays within the max display bpc discovered above.
4765          */
4766
4767         switch (crtc->fb->depth) {
4768         case 8:
4769                 bpc = 8; /* since we go through a colormap */
4770                 break;
4771         case 15:
4772         case 16:
4773                 bpc = 6; /* min is 18bpp */
4774                 break;
4775         case 24:
4776                 bpc = 8;
4777                 break;
4778         case 30:
4779                 bpc = 10;
4780                 break;
4781         case 48:
4782                 bpc = 12;
4783                 break;
4784         default:
4785                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4786                 bpc = min((unsigned int)8, display_bpc);
4787                 break;
4788         }
4789
4790         display_bpc = min(display_bpc, bpc);
4791
4792         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4793                       bpc, display_bpc);
4794
4795         *pipe_bpp = display_bpc * 3;
4796
4797         return display_bpc != bpc;
4798 }
4799
4800 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4801                               struct drm_display_mode *mode,
4802                               struct drm_display_mode *adjusted_mode,
4803                               int x, int y,
4804                               struct drm_framebuffer *old_fb)
4805 {
4806         struct drm_device *dev = crtc->dev;
4807         struct drm_i915_private *dev_priv = dev->dev_private;
4808         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4809         int pipe = intel_crtc->pipe;
4810         int plane = intel_crtc->plane;
4811         int refclk, num_connectors = 0;
4812         intel_clock_t clock, reduced_clock;
4813         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4814         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4815         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4816         struct drm_mode_config *mode_config = &dev->mode_config;
4817         struct intel_encoder *encoder;
4818         const intel_limit_t *limit;
4819         int ret;
4820         u32 temp;
4821         u32 lvds_sync = 0;
4822
4823         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4824                 if (encoder->base.crtc != crtc)
4825                         continue;
4826
4827                 switch (encoder->type) {
4828                 case INTEL_OUTPUT_LVDS:
4829                         is_lvds = true;
4830                         break;
4831                 case INTEL_OUTPUT_SDVO:
4832                 case INTEL_OUTPUT_HDMI:
4833                         is_sdvo = true;
4834                         if (encoder->needs_tv_clock)
4835                                 is_tv = true;
4836                         break;
4837                 case INTEL_OUTPUT_DVO:
4838                         is_dvo = true;
4839                         break;
4840                 case INTEL_OUTPUT_TVOUT:
4841                         is_tv = true;
4842                         break;
4843                 case INTEL_OUTPUT_ANALOG:
4844                         is_crt = true;
4845                         break;
4846                 case INTEL_OUTPUT_DISPLAYPORT:
4847                         is_dp = true;
4848                         break;
4849                 }
4850
4851                 num_connectors++;
4852         }
4853
4854         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4855                 refclk = dev_priv->lvds_ssc_freq * 1000;
4856                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4857                               refclk / 1000);
4858         } else if (!IS_GEN2(dev)) {
4859                 refclk = 96000;
4860         } else {
4861                 refclk = 48000;
4862         }
4863
4864         /*
4865          * Returns a set of divisors for the desired target clock with the given
4866          * refclk, or FALSE.  The returned values represent the clock equation:
4867          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4868          */
4869         limit = intel_limit(crtc, refclk);
4870         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4871         if (!ok) {
4872                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4873                 return -EINVAL;
4874         }
4875
4876         /* Ensure that the cursor is valid for the new mode before changing... */
4877         intel_crtc_update_cursor(crtc, true);
4878
4879         if (is_lvds && dev_priv->lvds_downclock_avail) {
4880                 has_reduced_clock = limit->find_pll(limit, crtc,
4881                                                     dev_priv->lvds_downclock,
4882                                                     refclk,
4883                                                     &reduced_clock);
4884                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4885                         /*
4886                          * If the different P is found, it means that we can't
4887                          * switch the display clock by using the FP0/FP1.
4888                          * In such case we will disable the LVDS downclock
4889                          * feature.
4890                          */
4891                         DRM_DEBUG_KMS("Different P is found for "
4892                                       "LVDS clock/downclock\n");
4893                         has_reduced_clock = 0;
4894                 }
4895         }
4896         /* SDVO TV has fixed PLL values depend on its clock range,
4897            this mirrors vbios setting. */
4898         if (is_sdvo && is_tv) {
4899                 if (adjusted_mode->clock >= 100000
4900                     && adjusted_mode->clock < 140500) {
4901                         clock.p1 = 2;
4902                         clock.p2 = 10;
4903                         clock.n = 3;
4904                         clock.m1 = 16;
4905                         clock.m2 = 8;
4906                 } else if (adjusted_mode->clock >= 140500
4907                            && adjusted_mode->clock <= 200000) {
4908                         clock.p1 = 1;
4909                         clock.p2 = 10;
4910                         clock.n = 6;
4911                         clock.m1 = 12;
4912                         clock.m2 = 8;
4913                 }
4914         }
4915
4916         if (IS_PINEVIEW(dev)) {
4917                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4918                 if (has_reduced_clock)
4919                         fp2 = (1 << reduced_clock.n) << 16 |
4920                                 reduced_clock.m1 << 8 | reduced_clock.m2;
4921         } else {
4922                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4923                 if (has_reduced_clock)
4924                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4925                                 reduced_clock.m2;
4926         }
4927
4928         dpll = DPLL_VGA_MODE_DIS;
4929
4930         if (!IS_GEN2(dev)) {
4931                 if (is_lvds)
4932                         dpll |= DPLLB_MODE_LVDS;
4933                 else
4934                         dpll |= DPLLB_MODE_DAC_SERIAL;
4935                 if (is_sdvo) {
4936                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4937                         if (pixel_multiplier > 1) {
4938                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4939                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4940                         }
4941                         dpll |= DPLL_DVO_HIGH_SPEED;
4942                 }
4943                 if (is_dp)
4944                         dpll |= DPLL_DVO_HIGH_SPEED;
4945
4946                 /* compute bitmask from p1 value */
4947                 if (IS_PINEVIEW(dev))
4948                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4949                 else {
4950                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4951                         if (IS_G4X(dev) && has_reduced_clock)
4952                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4953                 }
4954                 switch (clock.p2) {
4955                 case 5:
4956                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4957                         break;
4958                 case 7:
4959                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4960                         break;
4961                 case 10:
4962                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4963                         break;
4964                 case 14:
4965                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4966                         break;
4967                 }
4968                 if (INTEL_INFO(dev)->gen >= 4)
4969                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4970         } else {
4971                 if (is_lvds) {
4972                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4973                 } else {
4974                         if (clock.p1 == 2)
4975                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
4976                         else
4977                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4978                         if (clock.p2 == 4)
4979                                 dpll |= PLL_P2_DIVIDE_BY_4;
4980                 }
4981         }
4982
4983         if (is_sdvo && is_tv)
4984                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4985         else if (is_tv)
4986                 /* XXX: just matching BIOS for now */
4987                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4988                 dpll |= 3;
4989         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4990                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4991         else
4992                 dpll |= PLL_REF_INPUT_DREFCLK;
4993
4994         /* setup pipeconf */
4995         pipeconf = I915_READ(PIPECONF(pipe));
4996
4997         /* Set up the display plane register */
4998         dspcntr = DISPPLANE_GAMMA_ENABLE;
4999
5000         /* Ironlake's plane is forced to pipe, bit 24 is to
5001            enable color space conversion */
5002         if (pipe == 0)
5003                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5004         else
5005                 dspcntr |= DISPPLANE_SEL_PIPE_B;
5006
5007         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5008                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5009                  * core speed.
5010                  *
5011                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5012                  * pipe == 0 check?
5013                  */
5014                 if (mode->clock >
5015                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5016                         pipeconf |= PIPECONF_DOUBLE_WIDE;
5017                 else
5018                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5019         }
5020
5021         dpll |= DPLL_VCO_ENABLE;
5022
5023         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5024         drm_mode_debug_printmodeline(mode);
5025
5026         I915_WRITE(FP0(pipe), fp);
5027         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5028
5029         POSTING_READ(DPLL(pipe));
5030         udelay(150);
5031
5032         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5033          * This is an exception to the general rule that mode_set doesn't turn
5034          * things on.
5035          */
5036         if (is_lvds) {
5037                 temp = I915_READ(LVDS);
5038                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5039                 if (pipe == 1) {
5040                         temp |= LVDS_PIPEB_SELECT;
5041                 } else {
5042                         temp &= ~LVDS_PIPEB_SELECT;
5043                 }
5044                 /* set the corresponsding LVDS_BORDER bit */
5045                 temp |= dev_priv->lvds_border_bits;
5046                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5047                  * set the DPLLs for dual-channel mode or not.
5048                  */
5049                 if (clock.p2 == 7)
5050                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5051                 else
5052                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5053
5054                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5055                  * appropriately here, but we need to look more thoroughly into how
5056                  * panels behave in the two modes.
5057                  */
5058                 /* set the dithering flag on LVDS as needed */
5059                 if (INTEL_INFO(dev)->gen >= 4) {
5060                         if (dev_priv->lvds_dither)
5061                                 temp |= LVDS_ENABLE_DITHER;
5062                         else
5063                                 temp &= ~LVDS_ENABLE_DITHER;
5064                 }
5065                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5066                         lvds_sync |= LVDS_HSYNC_POLARITY;
5067                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5068                         lvds_sync |= LVDS_VSYNC_POLARITY;
5069                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5070                     != lvds_sync) {
5071                         char flags[2] = "-+";
5072                         DRM_INFO("Changing LVDS panel from "
5073                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5074                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5075                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5076                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5077                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5078                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5079                         temp |= lvds_sync;
5080                 }
5081                 I915_WRITE(LVDS, temp);
5082         }
5083
5084         if (is_dp) {
5085                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5086         }
5087
5088         I915_WRITE(DPLL(pipe), dpll);
5089
5090         /* Wait for the clocks to stabilize. */
5091         POSTING_READ(DPLL(pipe));
5092         udelay(150);
5093
5094         if (INTEL_INFO(dev)->gen >= 4) {
5095                 temp = 0;
5096                 if (is_sdvo) {
5097                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5098                         if (temp > 1)
5099                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5100                         else
5101                                 temp = 0;
5102                 }
5103                 I915_WRITE(DPLL_MD(pipe), temp);
5104         } else {
5105                 /* The pixel multiplier can only be updated once the
5106                  * DPLL is enabled and the clocks are stable.
5107                  *
5108                  * So write it again.
5109                  */
5110                 I915_WRITE(DPLL(pipe), dpll);
5111         }
5112
5113         intel_crtc->lowfreq_avail = false;
5114         if (is_lvds && has_reduced_clock && i915_powersave) {
5115                 I915_WRITE(FP1(pipe), fp2);
5116                 intel_crtc->lowfreq_avail = true;
5117                 if (HAS_PIPE_CXSR(dev)) {
5118                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5119                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5120                 }
5121         } else {
5122                 I915_WRITE(FP1(pipe), fp);
5123                 if (HAS_PIPE_CXSR(dev)) {
5124                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5125                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5126                 }
5127         }
5128
5129         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5130                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5131                 /* the chip adds 2 halflines automatically */
5132                 adjusted_mode->crtc_vdisplay -= 1;
5133                 adjusted_mode->crtc_vtotal -= 1;
5134                 adjusted_mode->crtc_vblank_start -= 1;
5135                 adjusted_mode->crtc_vblank_end -= 1;
5136                 adjusted_mode->crtc_vsync_end -= 1;
5137                 adjusted_mode->crtc_vsync_start -= 1;
5138         } else
5139                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5140
5141         I915_WRITE(HTOTAL(pipe),
5142                    (adjusted_mode->crtc_hdisplay - 1) |
5143                    ((adjusted_mode->crtc_htotal - 1) << 16));
5144         I915_WRITE(HBLANK(pipe),
5145                    (adjusted_mode->crtc_hblank_start - 1) |
5146                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5147         I915_WRITE(HSYNC(pipe),
5148                    (adjusted_mode->crtc_hsync_start - 1) |
5149                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5150
5151         I915_WRITE(VTOTAL(pipe),
5152                    (adjusted_mode->crtc_vdisplay - 1) |
5153                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5154         I915_WRITE(VBLANK(pipe),
5155                    (adjusted_mode->crtc_vblank_start - 1) |
5156                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5157         I915_WRITE(VSYNC(pipe),
5158                    (adjusted_mode->crtc_vsync_start - 1) |
5159                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5160
5161         /* pipesrc and dspsize control the size that is scaled from,
5162          * which should always be the user's requested size.
5163          */
5164         I915_WRITE(DSPSIZE(plane),
5165                    ((mode->vdisplay - 1) << 16) |
5166                    (mode->hdisplay - 1));
5167         I915_WRITE(DSPPOS(plane), 0);
5168         I915_WRITE(PIPESRC(pipe),
5169                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5170
5171         I915_WRITE(PIPECONF(pipe), pipeconf);
5172         POSTING_READ(PIPECONF(pipe));
5173         intel_enable_pipe(dev_priv, pipe, false);
5174
5175         intel_wait_for_vblank(dev, pipe);
5176
5177         I915_WRITE(DSPCNTR(plane), dspcntr);
5178         POSTING_READ(DSPCNTR(plane));
5179         intel_enable_plane(dev_priv, plane, pipe);
5180
5181         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5182
5183         intel_update_watermarks(dev);
5184
5185         return ret;
5186 }
5187
5188 /*
5189  * Initialize reference clocks when the driver loads
5190  */
5191 void ironlake_init_pch_refclk(struct drm_device *dev)
5192 {
5193         struct drm_i915_private *dev_priv = dev->dev_private;
5194         struct drm_mode_config *mode_config = &dev->mode_config;
5195         struct intel_encoder *encoder;
5196         u32 temp;
5197         bool has_lvds = false;
5198         bool has_cpu_edp = false;
5199         bool has_pch_edp = false;
5200         bool has_panel = false;
5201         bool has_ck505 = false;
5202         bool can_ssc = false;
5203
5204         /* We need to take the global config into account */
5205         list_for_each_entry(encoder, &mode_config->encoder_list,
5206                             base.head) {
5207                 switch (encoder->type) {
5208                 case INTEL_OUTPUT_LVDS:
5209                         has_panel = true;
5210                         has_lvds = true;
5211                         break;
5212                 case INTEL_OUTPUT_EDP:
5213                         has_panel = true;
5214                         if (intel_encoder_is_pch_edp(&encoder->base))
5215                                 has_pch_edp = true;
5216                         else
5217                                 has_cpu_edp = true;
5218                         break;
5219                 }
5220         }
5221
5222         if (HAS_PCH_IBX(dev)) {
5223                 has_ck505 = dev_priv->display_clock_mode;
5224                 can_ssc = has_ck505;
5225         } else {
5226                 has_ck505 = false;
5227                 can_ssc = true;
5228         }
5229
5230         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5231                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5232                       has_ck505);
5233
5234         /* Ironlake: try to setup display ref clock before DPLL
5235          * enabling. This is only under driver's control after
5236          * PCH B stepping, previous chipset stepping should be
5237          * ignoring this setting.
5238          */
5239         temp = I915_READ(PCH_DREF_CONTROL);
5240         /* Always enable nonspread source */
5241         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5242
5243         if (has_ck505)
5244                 temp |= DREF_NONSPREAD_CK505_ENABLE;
5245         else
5246                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5247
5248         if (has_panel) {
5249                 temp &= ~DREF_SSC_SOURCE_MASK;
5250                 temp |= DREF_SSC_SOURCE_ENABLE;
5251
5252                 /* SSC must be turned on before enabling the CPU output  */
5253                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5254                         DRM_DEBUG_KMS("Using SSC on panel\n");
5255                         temp |= DREF_SSC1_ENABLE;
5256                 }
5257
5258                 /* Get SSC going before enabling the outputs */
5259                 I915_WRITE(PCH_DREF_CONTROL, temp);
5260                 POSTING_READ(PCH_DREF_CONTROL);
5261                 udelay(200);
5262
5263                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5264
5265                 /* Enable CPU source on CPU attached eDP */
5266                 if (has_cpu_edp) {
5267                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5268                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5269                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5270                         }
5271                         else
5272                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5273                 } else
5274                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5275
5276                 I915_WRITE(PCH_DREF_CONTROL, temp);
5277                 POSTING_READ(PCH_DREF_CONTROL);
5278                 udelay(200);
5279         } else {
5280                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5281
5282                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5283
5284                 /* Turn off CPU output */
5285                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5286
5287                 I915_WRITE(PCH_DREF_CONTROL, temp);
5288                 POSTING_READ(PCH_DREF_CONTROL);
5289                 udelay(200);
5290
5291                 /* Turn off the SSC source */
5292                 temp &= ~DREF_SSC_SOURCE_MASK;
5293                 temp |= DREF_SSC_SOURCE_DISABLE;
5294
5295                 /* Turn off SSC1 */
5296                 temp &= ~ DREF_SSC1_ENABLE;
5297
5298                 I915_WRITE(PCH_DREF_CONTROL, temp);
5299                 POSTING_READ(PCH_DREF_CONTROL);
5300                 udelay(200);
5301         }
5302 }
5303
5304 static int ironlake_get_refclk(struct drm_crtc *crtc)
5305 {
5306         struct drm_device *dev = crtc->dev;
5307         struct drm_i915_private *dev_priv = dev->dev_private;
5308         struct intel_encoder *encoder;
5309         struct drm_mode_config *mode_config = &dev->mode_config;
5310         struct intel_encoder *edp_encoder = NULL;
5311         int num_connectors = 0;
5312         bool is_lvds = false;
5313
5314         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5315                 if (encoder->base.crtc != crtc)
5316                         continue;
5317
5318                 switch (encoder->type) {
5319                 case INTEL_OUTPUT_LVDS:
5320                         is_lvds = true;
5321                         break;
5322                 case INTEL_OUTPUT_EDP:
5323                         edp_encoder = encoder;
5324                         break;
5325                 }
5326                 num_connectors++;
5327         }
5328
5329         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5330                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5331                               dev_priv->lvds_ssc_freq);
5332                 return dev_priv->lvds_ssc_freq * 1000;
5333         }
5334
5335         return 120000;
5336 }
5337
5338 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5339                                   struct drm_display_mode *mode,
5340                                   struct drm_display_mode *adjusted_mode,
5341                                   int x, int y,
5342                                   struct drm_framebuffer *old_fb)
5343 {
5344         struct drm_device *dev = crtc->dev;
5345         struct drm_i915_private *dev_priv = dev->dev_private;
5346         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5347         int pipe = intel_crtc->pipe;
5348         int plane = intel_crtc->plane;
5349         int refclk, num_connectors = 0;
5350         intel_clock_t clock, reduced_clock;
5351         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5352         bool ok, has_reduced_clock = false, is_sdvo = false;
5353         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5354         struct intel_encoder *has_edp_encoder = NULL;
5355         struct drm_mode_config *mode_config = &dev->mode_config;
5356         struct intel_encoder *encoder;
5357         const intel_limit_t *limit;
5358         int ret;
5359         struct fdi_m_n m_n = {0};
5360         u32 temp;
5361         u32 lvds_sync = 0;
5362         int target_clock, pixel_multiplier, lane, link_bw, factor;
5363         unsigned int pipe_bpp;
5364         bool dither;
5365
5366         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5367                 if (encoder->base.crtc != crtc)
5368                         continue;
5369
5370                 switch (encoder->type) {
5371                 case INTEL_OUTPUT_LVDS:
5372                         is_lvds = true;
5373                         break;
5374                 case INTEL_OUTPUT_SDVO:
5375                 case INTEL_OUTPUT_HDMI:
5376                         is_sdvo = true;
5377                         if (encoder->needs_tv_clock)
5378                                 is_tv = true;
5379                         break;
5380                 case INTEL_OUTPUT_TVOUT:
5381                         is_tv = true;
5382                         break;
5383                 case INTEL_OUTPUT_ANALOG:
5384                         is_crt = true;
5385                         break;
5386                 case INTEL_OUTPUT_DISPLAYPORT:
5387                         is_dp = true;
5388                         break;
5389                 case INTEL_OUTPUT_EDP:
5390                         has_edp_encoder = encoder;
5391                         break;
5392                 }
5393
5394                 num_connectors++;
5395         }
5396
5397         refclk = ironlake_get_refclk(crtc);
5398
5399         /*
5400          * Returns a set of divisors for the desired target clock with the given
5401          * refclk, or FALSE.  The returned values represent the clock equation:
5402          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5403          */
5404         limit = intel_limit(crtc, refclk);
5405         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5406         if (!ok) {
5407                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5408                 return -EINVAL;
5409         }
5410
5411         /* Ensure that the cursor is valid for the new mode before changing... */
5412         intel_crtc_update_cursor(crtc, true);
5413
5414         if (is_lvds && dev_priv->lvds_downclock_avail) {
5415                 has_reduced_clock = limit->find_pll(limit, crtc,
5416                                                     dev_priv->lvds_downclock,
5417                                                     refclk,
5418                                                     &reduced_clock);
5419                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5420                         /*
5421                          * If the different P is found, it means that we can't
5422                          * switch the display clock by using the FP0/FP1.
5423                          * In such case we will disable the LVDS downclock
5424                          * feature.
5425                          */
5426                         DRM_DEBUG_KMS("Different P is found for "
5427                                       "LVDS clock/downclock\n");
5428                         has_reduced_clock = 0;
5429                 }
5430         }
5431         /* SDVO TV has fixed PLL values depend on its clock range,
5432            this mirrors vbios setting. */
5433         if (is_sdvo && is_tv) {
5434                 if (adjusted_mode->clock >= 100000
5435                     && adjusted_mode->clock < 140500) {
5436                         clock.p1 = 2;
5437                         clock.p2 = 10;
5438                         clock.n = 3;
5439                         clock.m1 = 16;
5440                         clock.m2 = 8;
5441                 } else if (adjusted_mode->clock >= 140500
5442                            && adjusted_mode->clock <= 200000) {
5443                         clock.p1 = 1;
5444                         clock.p2 = 10;
5445                         clock.n = 6;
5446                         clock.m1 = 12;
5447                         clock.m2 = 8;
5448                 }
5449         }
5450
5451         /* FDI link */
5452         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5453         lane = 0;
5454         /* CPU eDP doesn't require FDI link, so just set DP M/N
5455            according to current link config */
5456         if (has_edp_encoder &&
5457             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5458                 target_clock = mode->clock;
5459                 intel_edp_link_config(has_edp_encoder,
5460                                       &lane, &link_bw);
5461         } else {
5462                 /* [e]DP over FDI requires target mode clock
5463                    instead of link clock */
5464                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5465                         target_clock = mode->clock;
5466                 else
5467                         target_clock = adjusted_mode->clock;
5468
5469                 /* FDI is a binary signal running at ~2.7GHz, encoding
5470                  * each output octet as 10 bits. The actual frequency
5471                  * is stored as a divider into a 100MHz clock, and the
5472                  * mode pixel clock is stored in units of 1KHz.
5473                  * Hence the bw of each lane in terms of the mode signal
5474                  * is:
5475                  */
5476                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5477         }
5478
5479         /* determine panel color depth */
5480         temp = I915_READ(PIPECONF(pipe));
5481         temp &= ~PIPE_BPC_MASK;
5482         dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
5483         switch (pipe_bpp) {
5484         case 18:
5485                 temp |= PIPE_6BPC;
5486                 break;
5487         case 24:
5488                 temp |= PIPE_8BPC;
5489                 break;
5490         case 30:
5491                 temp |= PIPE_10BPC;
5492                 break;
5493         case 36:
5494                 temp |= PIPE_12BPC;
5495                 break;
5496         default:
5497                 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5498                         pipe_bpp);
5499                 temp |= PIPE_8BPC;
5500                 pipe_bpp = 24;
5501                 break;
5502         }
5503
5504         intel_crtc->bpp = pipe_bpp;
5505         I915_WRITE(PIPECONF(pipe), temp);
5506
5507         if (!lane) {
5508                 /*
5509                  * Account for spread spectrum to avoid
5510                  * oversubscribing the link. Max center spread
5511                  * is 2.5%; use 5% for safety's sake.
5512                  */
5513                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5514                 lane = bps / (link_bw * 8) + 1;
5515         }
5516
5517         intel_crtc->fdi_lanes = lane;
5518
5519         if (pixel_multiplier > 1)
5520                 link_bw *= pixel_multiplier;
5521         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5522                              &m_n);
5523
5524         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5525         if (has_reduced_clock)
5526                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5527                         reduced_clock.m2;
5528
5529         /* Enable autotuning of the PLL clock (if permissible) */
5530         factor = 21;
5531         if (is_lvds) {
5532                 if ((intel_panel_use_ssc(dev_priv) &&
5533                      dev_priv->lvds_ssc_freq == 100) ||
5534                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5535                         factor = 25;
5536         } else if (is_sdvo && is_tv)
5537                 factor = 20;
5538
5539         if (clock.m < factor * clock.n)
5540                 fp |= FP_CB_TUNE;
5541
5542         dpll = 0;
5543
5544         if (is_lvds)
5545                 dpll |= DPLLB_MODE_LVDS;
5546         else
5547                 dpll |= DPLLB_MODE_DAC_SERIAL;
5548         if (is_sdvo) {
5549                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5550                 if (pixel_multiplier > 1) {
5551                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5552                 }
5553                 dpll |= DPLL_DVO_HIGH_SPEED;
5554         }
5555         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5556                 dpll |= DPLL_DVO_HIGH_SPEED;
5557
5558         /* compute bitmask from p1 value */
5559         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5560         /* also FPA1 */
5561         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5562
5563         switch (clock.p2) {
5564         case 5:
5565                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5566                 break;
5567         case 7:
5568                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5569                 break;
5570         case 10:
5571                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5572                 break;
5573         case 14:
5574                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5575                 break;
5576         }
5577
5578         if (is_sdvo && is_tv)
5579                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5580         else if (is_tv)
5581                 /* XXX: just matching BIOS for now */
5582                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5583                 dpll |= 3;
5584         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5585                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5586         else
5587                 dpll |= PLL_REF_INPUT_DREFCLK;
5588
5589         /* setup pipeconf */
5590         pipeconf = I915_READ(PIPECONF(pipe));
5591
5592         /* Set up the display plane register */
5593         dspcntr = DISPPLANE_GAMMA_ENABLE;
5594
5595         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5596         drm_mode_debug_printmodeline(mode);
5597
5598         /* PCH eDP needs FDI, but CPU eDP does not */
5599         if (!intel_crtc->no_pll) {
5600                 if (!has_edp_encoder ||
5601                     intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5602                         I915_WRITE(PCH_FP0(pipe), fp);
5603                         I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5604
5605                         POSTING_READ(PCH_DPLL(pipe));
5606                         udelay(150);
5607                 }
5608         } else {
5609                 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5610                     fp == I915_READ(PCH_FP0(0))) {
5611                         intel_crtc->use_pll_a = true;
5612                         DRM_DEBUG_KMS("using pipe a dpll\n");
5613                 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5614                            fp == I915_READ(PCH_FP0(1))) {
5615                         intel_crtc->use_pll_a = false;
5616                         DRM_DEBUG_KMS("using pipe b dpll\n");
5617                 } else {
5618                         DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5619                         return -EINVAL;
5620                 }
5621         }
5622
5623         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5624          * This is an exception to the general rule that mode_set doesn't turn
5625          * things on.
5626          */
5627         if (is_lvds) {
5628                 temp = I915_READ(PCH_LVDS);
5629                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5630                 if (HAS_PCH_CPT(dev))
5631                         temp |= PORT_TRANS_SEL_CPT(pipe);
5632                 else if (pipe == 1)
5633                         temp |= LVDS_PIPEB_SELECT;
5634                 else
5635                         temp &= ~LVDS_PIPEB_SELECT;
5636
5637                 /* set the corresponsding LVDS_BORDER bit */
5638                 temp |= dev_priv->lvds_border_bits;
5639                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5640                  * set the DPLLs for dual-channel mode or not.
5641                  */
5642                 if (clock.p2 == 7)
5643                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5644                 else
5645                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5646
5647                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5648                  * appropriately here, but we need to look more thoroughly into how
5649                  * panels behave in the two modes.
5650                  */
5651                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5652                         lvds_sync |= LVDS_HSYNC_POLARITY;
5653                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5654                         lvds_sync |= LVDS_VSYNC_POLARITY;
5655                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5656                     != lvds_sync) {
5657                         char flags[2] = "-+";
5658                         DRM_INFO("Changing LVDS panel from "
5659                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5660                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5661                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5662                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5663                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5664                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5665                         temp |= lvds_sync;
5666                 }
5667                 I915_WRITE(PCH_LVDS, temp);
5668         }
5669
5670         pipeconf &= ~PIPECONF_DITHER_EN;
5671         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5672         if ((is_lvds && dev_priv->lvds_dither) || dither) {
5673                 pipeconf |= PIPECONF_DITHER_EN;
5674                 pipeconf |= PIPECONF_DITHER_TYPE_SP;
5675         }
5676         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5677                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5678         } else {
5679                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5680                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5681                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5682                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5683                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5684         }
5685
5686         if (!intel_crtc->no_pll &&
5687             (!has_edp_encoder ||
5688              intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
5689                 I915_WRITE(PCH_DPLL(pipe), dpll);
5690
5691                 /* Wait for the clocks to stabilize. */
5692                 POSTING_READ(PCH_DPLL(pipe));
5693                 udelay(150);
5694
5695                 /* The pixel multiplier can only be updated once the
5696                  * DPLL is enabled and the clocks are stable.
5697                  *
5698                  * So write it again.
5699                  */
5700                 I915_WRITE(PCH_DPLL(pipe), dpll);
5701         }
5702
5703         intel_crtc->lowfreq_avail = false;
5704         if (!intel_crtc->no_pll) {
5705                 if (is_lvds && has_reduced_clock && i915_powersave) {
5706                         I915_WRITE(PCH_FP1(pipe), fp2);
5707                         intel_crtc->lowfreq_avail = true;
5708                         if (HAS_PIPE_CXSR(dev)) {
5709                                 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5710                                 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5711                         }
5712                 } else {
5713                         I915_WRITE(PCH_FP1(pipe), fp);
5714                         if (HAS_PIPE_CXSR(dev)) {
5715                                 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5716                                 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5717                         }
5718                 }
5719         }
5720
5721         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5722                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5723                 /* the chip adds 2 halflines automatically */
5724                 adjusted_mode->crtc_vdisplay -= 1;
5725                 adjusted_mode->crtc_vtotal -= 1;
5726                 adjusted_mode->crtc_vblank_start -= 1;
5727                 adjusted_mode->crtc_vblank_end -= 1;
5728                 adjusted_mode->crtc_vsync_end -= 1;
5729                 adjusted_mode->crtc_vsync_start -= 1;
5730         } else
5731                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5732
5733         I915_WRITE(HTOTAL(pipe),
5734                    (adjusted_mode->crtc_hdisplay - 1) |
5735                    ((adjusted_mode->crtc_htotal - 1) << 16));
5736         I915_WRITE(HBLANK(pipe),
5737                    (adjusted_mode->crtc_hblank_start - 1) |
5738                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5739         I915_WRITE(HSYNC(pipe),
5740                    (adjusted_mode->crtc_hsync_start - 1) |
5741                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5742
5743         I915_WRITE(VTOTAL(pipe),
5744                    (adjusted_mode->crtc_vdisplay - 1) |
5745                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5746         I915_WRITE(VBLANK(pipe),
5747                    (adjusted_mode->crtc_vblank_start - 1) |
5748                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5749         I915_WRITE(VSYNC(pipe),
5750                    (adjusted_mode->crtc_vsync_start - 1) |
5751                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5752
5753         /* pipesrc controls the size that is scaled from, which should
5754          * always be the user's requested size.
5755          */
5756         I915_WRITE(PIPESRC(pipe),
5757                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5758
5759         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5760         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5761         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5762         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5763
5764         if (has_edp_encoder &&
5765             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5766                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5767         }
5768
5769         I915_WRITE(PIPECONF(pipe), pipeconf);
5770         POSTING_READ(PIPECONF(pipe));
5771
5772         intel_wait_for_vblank(dev, pipe);
5773
5774         if (IS_GEN5(dev)) {
5775                 /* enable address swizzle for tiling buffer */
5776                 temp = I915_READ(DISP_ARB_CTL);
5777                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5778         }
5779
5780         I915_WRITE(DSPCNTR(plane), dspcntr);
5781         POSTING_READ(DSPCNTR(plane));
5782
5783         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5784
5785         intel_update_watermarks(dev);
5786
5787         return ret;
5788 }
5789
5790 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5791                                struct drm_display_mode *mode,
5792                                struct drm_display_mode *adjusted_mode,
5793                                int x, int y,
5794                                struct drm_framebuffer *old_fb)
5795 {
5796         struct drm_device *dev = crtc->dev;
5797         struct drm_i915_private *dev_priv = dev->dev_private;
5798         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5799         int pipe = intel_crtc->pipe;
5800         int ret;
5801
5802         drm_vblank_pre_modeset(dev, pipe);
5803
5804         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5805                                               x, y, old_fb);
5806
5807         drm_vblank_post_modeset(dev, pipe);
5808
5809         intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
5810
5811         return ret;
5812 }
5813
5814 static void g4x_write_eld(struct drm_connector *connector,
5815                           struct drm_crtc *crtc)
5816 {
5817         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5818         uint8_t *eld = connector->eld;
5819         uint32_t eldv;
5820         uint32_t len;
5821         uint32_t i;
5822
5823         i = I915_READ(G4X_AUD_VID_DID);
5824
5825         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5826                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5827         else
5828                 eldv = G4X_ELDV_DEVCTG;
5829
5830         i = I915_READ(G4X_AUD_CNTL_ST);
5831         i &= ~(eldv | G4X_ELD_ADDR);
5832         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5833         I915_WRITE(G4X_AUD_CNTL_ST, i);
5834
5835         if (!eld[0])
5836                 return;
5837
5838         len = min_t(uint8_t, eld[2], len);
5839         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5840         for (i = 0; i < len; i++)
5841                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5842
5843         i = I915_READ(G4X_AUD_CNTL_ST);
5844         i |= eldv;
5845         I915_WRITE(G4X_AUD_CNTL_ST, i);
5846 }
5847
5848 static void ironlake_write_eld(struct drm_connector *connector,
5849                                      struct drm_crtc *crtc)
5850 {
5851         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5852         uint8_t *eld = connector->eld;
5853         uint32_t eldv;
5854         uint32_t i;
5855         int len;
5856         int hdmiw_hdmiedid;
5857         int aud_cntl_st;
5858         int aud_cntrl_st2;
5859
5860         if (IS_IVYBRIDGE(connector->dev)) {
5861                 hdmiw_hdmiedid = GEN7_HDMIW_HDMIEDID_A;
5862                 aud_cntl_st = GEN7_AUD_CNTRL_ST_A;
5863                 aud_cntrl_st2 = GEN7_AUD_CNTRL_ST2;
5864         } else {
5865                 hdmiw_hdmiedid = GEN5_HDMIW_HDMIEDID_A;
5866                 aud_cntl_st = GEN5_AUD_CNTL_ST_A;
5867                 aud_cntrl_st2 = GEN5_AUD_CNTL_ST2;
5868         }
5869
5870         i = to_intel_crtc(crtc)->pipe;
5871         hdmiw_hdmiedid += i * 0x100;
5872         aud_cntl_st += i * 0x100;
5873
5874         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
5875
5876         i = I915_READ(aud_cntl_st);
5877         i = (i >> 29) & 0x3;            /* DIP_Port_Select, 0x1 = PortB */
5878         if (!i) {
5879                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5880                 /* operate blindly on all ports */
5881                 eldv = GEN5_ELD_VALIDB;
5882                 eldv |= GEN5_ELD_VALIDB << 4;
5883                 eldv |= GEN5_ELD_VALIDB << 8;
5884         } else {
5885                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5886                 eldv = GEN5_ELD_VALIDB << ((i - 1) * 4);
5887         }
5888
5889         i = I915_READ(aud_cntrl_st2);
5890         i &= ~eldv;
5891         I915_WRITE(aud_cntrl_st2, i);
5892
5893         if (!eld[0])
5894                 return;
5895
5896         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5897                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5898                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5899         }
5900
5901         i = I915_READ(aud_cntl_st);
5902         i &= ~GEN5_ELD_ADDRESS;
5903         I915_WRITE(aud_cntl_st, i);
5904
5905         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5906         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5907         for (i = 0; i < len; i++)
5908                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5909
5910         i = I915_READ(aud_cntrl_st2);
5911         i |= eldv;
5912         I915_WRITE(aud_cntrl_st2, i);
5913 }
5914
5915 void intel_write_eld(struct drm_encoder *encoder,
5916                      struct drm_display_mode *mode)
5917 {
5918         struct drm_crtc *crtc = encoder->crtc;
5919         struct drm_connector *connector;
5920         struct drm_device *dev = encoder->dev;
5921         struct drm_i915_private *dev_priv = dev->dev_private;
5922
5923         connector = drm_select_eld(encoder, mode);
5924         if (!connector)
5925                 return;
5926
5927         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5928                          connector->base.id,
5929                          drm_get_connector_name(connector),
5930                          connector->encoder->base.id,
5931                          drm_get_encoder_name(connector->encoder));
5932
5933         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5934
5935         if (dev_priv->display.write_eld)
5936                 dev_priv->display.write_eld(connector, crtc);
5937 }
5938
5939 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5940 void intel_crtc_load_lut(struct drm_crtc *crtc)
5941 {
5942         struct drm_device *dev = crtc->dev;
5943         struct drm_i915_private *dev_priv = dev->dev_private;
5944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5945         int palreg = PALETTE(intel_crtc->pipe);
5946         int i;
5947
5948         /* The clocks have to be on to load the palette. */
5949         if (!crtc->enabled)
5950                 return;
5951
5952         /* use legacy palette for Ironlake */
5953         if (HAS_PCH_SPLIT(dev))
5954                 palreg = LGC_PALETTE(intel_crtc->pipe);
5955
5956         for (i = 0; i < 256; i++) {
5957                 I915_WRITE(palreg + 4 * i,
5958                            (intel_crtc->lut_r[i] << 16) |
5959                            (intel_crtc->lut_g[i] << 8) |
5960                            intel_crtc->lut_b[i]);
5961         }
5962 }
5963
5964 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5965 {
5966         struct drm_device *dev = crtc->dev;
5967         struct drm_i915_private *dev_priv = dev->dev_private;
5968         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5969         bool visible = base != 0;
5970         u32 cntl;
5971
5972         if (intel_crtc->cursor_visible == visible)
5973                 return;
5974
5975         cntl = I915_READ(_CURACNTR);
5976         if (visible) {
5977                 /* On these chipsets we can only modify the base whilst
5978                  * the cursor is disabled.
5979                  */
5980                 I915_WRITE(_CURABASE, base);
5981
5982                 cntl &= ~(CURSOR_FORMAT_MASK);
5983                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5984                 cntl |= CURSOR_ENABLE |
5985                         CURSOR_GAMMA_ENABLE |
5986                         CURSOR_FORMAT_ARGB;
5987         } else
5988                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5989         I915_WRITE(_CURACNTR, cntl);
5990
5991         intel_crtc->cursor_visible = visible;
5992 }
5993
5994 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5995 {
5996         struct drm_device *dev = crtc->dev;
5997         struct drm_i915_private *dev_priv = dev->dev_private;
5998         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5999         int pipe = intel_crtc->pipe;
6000         bool visible = base != 0;
6001
6002         if (intel_crtc->cursor_visible != visible) {
6003                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6004                 if (base) {
6005                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6006                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6007                         cntl |= pipe << 28; /* Connect to correct pipe */
6008                 } else {
6009                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6010                         cntl |= CURSOR_MODE_DISABLE;
6011                 }
6012                 I915_WRITE(CURCNTR(pipe), cntl);
6013
6014                 intel_crtc->cursor_visible = visible;
6015         }
6016         /* and commit changes on next vblank */
6017         I915_WRITE(CURBASE(pipe), base);
6018 }
6019
6020 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6021 {
6022         struct drm_device *dev = crtc->dev;
6023         struct drm_i915_private *dev_priv = dev->dev_private;
6024         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6025         int pipe = intel_crtc->pipe;
6026         bool visible = base != 0;
6027
6028         if (intel_crtc->cursor_visible != visible) {
6029                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6030                 if (base) {
6031                         cntl &= ~CURSOR_MODE;
6032                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6033                 } else {
6034                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6035                         cntl |= CURSOR_MODE_DISABLE;
6036                 }
6037                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6038
6039                 intel_crtc->cursor_visible = visible;
6040         }
6041         /* and commit changes on next vblank */
6042         I915_WRITE(CURBASE_IVB(pipe), base);
6043 }
6044
6045 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6046 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6047                                      bool on)
6048 {
6049         struct drm_device *dev = crtc->dev;
6050         struct drm_i915_private *dev_priv = dev->dev_private;
6051         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6052         int pipe = intel_crtc->pipe;
6053         int x = intel_crtc->cursor_x;
6054         int y = intel_crtc->cursor_y;
6055         u32 base, pos;
6056         bool visible;
6057
6058         pos = 0;
6059
6060         if (on && crtc->enabled && crtc->fb) {
6061                 base = intel_crtc->cursor_addr;
6062                 if (x > (int) crtc->fb->width)
6063                         base = 0;
6064
6065                 if (y > (int) crtc->fb->height)
6066                         base = 0;
6067         } else
6068                 base = 0;
6069
6070         if (x < 0) {
6071                 if (x + intel_crtc->cursor_width < 0)
6072                         base = 0;
6073
6074                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6075                 x = -x;
6076         }
6077         pos |= x << CURSOR_X_SHIFT;
6078
6079         if (y < 0) {
6080                 if (y + intel_crtc->cursor_height < 0)
6081                         base = 0;
6082
6083                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6084                 y = -y;
6085         }
6086         pos |= y << CURSOR_Y_SHIFT;
6087
6088         visible = base != 0;
6089         if (!visible && !intel_crtc->cursor_visible)
6090                 return;
6091
6092         if (IS_IVYBRIDGE(dev)) {
6093                 I915_WRITE(CURPOS_IVB(pipe), pos);
6094                 ivb_update_cursor(crtc, base);
6095         } else {
6096                 I915_WRITE(CURPOS(pipe), pos);
6097                 if (IS_845G(dev) || IS_I865G(dev))
6098                         i845_update_cursor(crtc, base);
6099                 else
6100                         i9xx_update_cursor(crtc, base);
6101         }
6102
6103         if (visible)
6104                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6105 }
6106
6107 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6108                                  struct drm_file *file,
6109                                  uint32_t handle,
6110                                  uint32_t width, uint32_t height)
6111 {
6112         struct drm_device *dev = crtc->dev;
6113         struct drm_i915_private *dev_priv = dev->dev_private;
6114         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6115         struct drm_i915_gem_object *obj;
6116         uint32_t addr;
6117         int ret;
6118
6119         DRM_DEBUG_KMS("\n");
6120
6121         /* if we want to turn off the cursor ignore width and height */
6122         if (!handle) {
6123                 DRM_DEBUG_KMS("cursor off\n");
6124                 addr = 0;
6125                 obj = NULL;
6126                 mutex_lock(&dev->struct_mutex);
6127                 goto finish;
6128         }
6129
6130         /* Currently we only support 64x64 cursors */
6131         if (width != 64 || height != 64) {
6132                 DRM_ERROR("we currently only support 64x64 cursors\n");
6133                 return -EINVAL;
6134         }
6135
6136         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6137         if (&obj->base == NULL)
6138                 return -ENOENT;
6139
6140         if (obj->base.size < width * height * 4) {
6141                 DRM_ERROR("buffer is to small\n");
6142                 ret = -ENOMEM;
6143                 goto fail;
6144         }
6145
6146         /* we only need to pin inside GTT if cursor is non-phy */
6147         mutex_lock(&dev->struct_mutex);
6148         if (!dev_priv->info->cursor_needs_physical) {
6149                 if (obj->tiling_mode) {
6150                         DRM_ERROR("cursor cannot be tiled\n");
6151                         ret = -EINVAL;
6152                         goto fail_locked;
6153                 }
6154
6155                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6156                 if (ret) {
6157                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6158                         goto fail_locked;
6159                 }
6160
6161                 ret = i915_gem_object_put_fence(obj);
6162                 if (ret) {
6163                         DRM_ERROR("failed to release fence for cursor");
6164                         goto fail_unpin;
6165                 }
6166
6167                 addr = obj->gtt_offset;
6168         } else {
6169                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6170                 ret = i915_gem_attach_phys_object(dev, obj,
6171                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6172                                                   align);
6173                 if (ret) {
6174                         DRM_ERROR("failed to attach phys object\n");
6175                         goto fail_locked;
6176                 }
6177                 addr = obj->phys_obj->handle->busaddr;
6178         }
6179
6180         if (IS_GEN2(dev))
6181                 I915_WRITE(CURSIZE, (height << 12) | width);
6182
6183  finish:
6184         if (intel_crtc->cursor_bo) {
6185                 if (dev_priv->info->cursor_needs_physical) {
6186                         if (intel_crtc->cursor_bo != obj)
6187                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6188                 } else
6189                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6190                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6191         }
6192
6193         mutex_unlock(&dev->struct_mutex);
6194
6195         intel_crtc->cursor_addr = addr;
6196         intel_crtc->cursor_bo = obj;
6197         intel_crtc->cursor_width = width;
6198         intel_crtc->cursor_height = height;
6199
6200         intel_crtc_update_cursor(crtc, true);
6201
6202         return 0;
6203 fail_unpin:
6204         i915_gem_object_unpin(obj);
6205 fail_locked:
6206         mutex_unlock(&dev->struct_mutex);
6207 fail:
6208         drm_gem_object_unreference_unlocked(&obj->base);
6209         return ret;
6210 }
6211
6212 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6213 {
6214         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6215
6216         intel_crtc->cursor_x = x;
6217         intel_crtc->cursor_y = y;
6218
6219         intel_crtc_update_cursor(crtc, true);
6220
6221         return 0;
6222 }
6223
6224 /** Sets the color ramps on behalf of RandR */
6225 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6226                                  u16 blue, int regno)
6227 {
6228         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6229
6230         intel_crtc->lut_r[regno] = red >> 8;
6231         intel_crtc->lut_g[regno] = green >> 8;
6232         intel_crtc->lut_b[regno] = blue >> 8;
6233 }
6234
6235 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6236                              u16 *blue, int regno)
6237 {
6238         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6239
6240         *red = intel_crtc->lut_r[regno] << 8;
6241         *green = intel_crtc->lut_g[regno] << 8;
6242         *blue = intel_crtc->lut_b[regno] << 8;
6243 }
6244
6245 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6246                                  u16 *blue, uint32_t start, uint32_t size)
6247 {
6248         int end = (start + size > 256) ? 256 : start + size, i;
6249         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6250
6251         for (i = start; i < end; i++) {
6252                 intel_crtc->lut_r[i] = red[i] >> 8;
6253                 intel_crtc->lut_g[i] = green[i] >> 8;
6254                 intel_crtc->lut_b[i] = blue[i] >> 8;
6255         }
6256
6257         intel_crtc_load_lut(crtc);
6258 }
6259
6260 /**
6261  * Get a pipe with a simple mode set on it for doing load-based monitor
6262  * detection.
6263  *
6264  * It will be up to the load-detect code to adjust the pipe as appropriate for
6265  * its requirements.  The pipe will be connected to no other encoders.
6266  *
6267  * Currently this code will only succeed if there is a pipe with no encoders
6268  * configured for it.  In the future, it could choose to temporarily disable
6269  * some outputs to free up a pipe for its use.
6270  *
6271  * \return crtc, or NULL if no pipes are available.
6272  */
6273
6274 /* VESA 640x480x72Hz mode to set on the pipe */
6275 static struct drm_display_mode load_detect_mode = {
6276         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6277                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6278 };
6279
6280 static struct drm_framebuffer *
6281 intel_framebuffer_create(struct drm_device *dev,
6282                          struct drm_mode_fb_cmd *mode_cmd,
6283                          struct drm_i915_gem_object *obj)
6284 {
6285         struct intel_framebuffer *intel_fb;
6286         int ret;
6287
6288         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6289         if (!intel_fb) {
6290                 drm_gem_object_unreference_unlocked(&obj->base);
6291                 return ERR_PTR(-ENOMEM);
6292         }
6293
6294         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6295         if (ret) {
6296                 drm_gem_object_unreference_unlocked(&obj->base);
6297                 kfree(intel_fb);
6298                 return ERR_PTR(ret);
6299         }
6300
6301         return &intel_fb->base;
6302 }
6303
6304 static u32
6305 intel_framebuffer_pitch_for_width(int width, int bpp)
6306 {
6307         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6308         return ALIGN(pitch, 64);
6309 }
6310
6311 static u32
6312 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6313 {
6314         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6315         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6316 }
6317
6318 static struct drm_framebuffer *
6319 intel_framebuffer_create_for_mode(struct drm_device *dev,
6320                                   struct drm_display_mode *mode,
6321                                   int depth, int bpp)
6322 {
6323         struct drm_i915_gem_object *obj;
6324         struct drm_mode_fb_cmd mode_cmd;
6325
6326         obj = i915_gem_alloc_object(dev,
6327                                     intel_framebuffer_size_for_mode(mode, bpp));
6328         if (obj == NULL)
6329                 return ERR_PTR(-ENOMEM);
6330
6331         mode_cmd.width = mode->hdisplay;
6332         mode_cmd.height = mode->vdisplay;
6333         mode_cmd.depth = depth;
6334         mode_cmd.bpp = bpp;
6335         mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
6336
6337         return intel_framebuffer_create(dev, &mode_cmd, obj);
6338 }
6339
6340 static struct drm_framebuffer *
6341 mode_fits_in_fbdev(struct drm_device *dev,
6342                    struct drm_display_mode *mode)
6343 {
6344         struct drm_i915_private *dev_priv = dev->dev_private;
6345         struct drm_i915_gem_object *obj;
6346         struct drm_framebuffer *fb;
6347
6348         if (dev_priv->fbdev == NULL)
6349                 return NULL;
6350
6351         obj = dev_priv->fbdev->ifb.obj;
6352         if (obj == NULL)
6353                 return NULL;
6354
6355         fb = &dev_priv->fbdev->ifb.base;
6356         if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
6357                                                           fb->bits_per_pixel))
6358                 return NULL;
6359
6360         if (obj->base.size < mode->vdisplay * fb->pitch)
6361                 return NULL;
6362
6363         return fb;
6364 }
6365
6366 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6367                                 struct drm_connector *connector,
6368                                 struct drm_display_mode *mode,
6369                                 struct intel_load_detect_pipe *old)
6370 {
6371         struct intel_crtc *intel_crtc;
6372         struct drm_crtc *possible_crtc;
6373         struct drm_encoder *encoder = &intel_encoder->base;
6374         struct drm_crtc *crtc = NULL;
6375         struct drm_device *dev = encoder->dev;
6376         struct drm_framebuffer *old_fb;
6377         int i = -1;
6378
6379         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6380                       connector->base.id, drm_get_connector_name(connector),
6381                       encoder->base.id, drm_get_encoder_name(encoder));
6382
6383         /*
6384          * Algorithm gets a little messy:
6385          *
6386          *   - if the connector already has an assigned crtc, use it (but make
6387          *     sure it's on first)
6388          *
6389          *   - try to find the first unused crtc that can drive this connector,
6390          *     and use that if we find one
6391          */
6392
6393         /* See if we already have a CRTC for this connector */
6394         if (encoder->crtc) {
6395                 crtc = encoder->crtc;
6396
6397                 intel_crtc = to_intel_crtc(crtc);
6398                 old->dpms_mode = intel_crtc->dpms_mode;
6399                 old->load_detect_temp = false;
6400
6401                 /* Make sure the crtc and connector are running */
6402                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6403                         struct drm_encoder_helper_funcs *encoder_funcs;
6404                         struct drm_crtc_helper_funcs *crtc_funcs;
6405
6406                         crtc_funcs = crtc->helper_private;
6407                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6408
6409                         encoder_funcs = encoder->helper_private;
6410                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6411                 }
6412
6413                 return true;
6414         }
6415
6416         /* Find an unused one (if possible) */
6417         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6418                 i++;
6419                 if (!(encoder->possible_crtcs & (1 << i)))
6420                         continue;
6421                 if (!possible_crtc->enabled) {
6422                         crtc = possible_crtc;
6423                         break;
6424                 }
6425         }
6426
6427         /*
6428          * If we didn't find an unused CRTC, don't use any.
6429          */
6430         if (!crtc) {
6431                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6432                 return false;
6433         }
6434
6435         encoder->crtc = crtc;
6436         connector->encoder = encoder;
6437
6438         intel_crtc = to_intel_crtc(crtc);
6439         old->dpms_mode = intel_crtc->dpms_mode;
6440         old->load_detect_temp = true;
6441         old->release_fb = NULL;
6442
6443         if (!mode)
6444                 mode = &load_detect_mode;
6445
6446         old_fb = crtc->fb;
6447
6448         /* We need a framebuffer large enough to accommodate all accesses
6449          * that the plane may generate whilst we perform load detection.
6450          * We can not rely on the fbcon either being present (we get called
6451          * during its initialisation to detect all boot displays, or it may
6452          * not even exist) or that it is large enough to satisfy the
6453          * requested mode.
6454          */
6455         crtc->fb = mode_fits_in_fbdev(dev, mode);
6456         if (crtc->fb == NULL) {
6457                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6458                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6459                 old->release_fb = crtc->fb;
6460         } else
6461                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6462         if (IS_ERR(crtc->fb)) {
6463                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6464                 crtc->fb = old_fb;
6465                 return false;
6466         }
6467
6468         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6469                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6470                 if (old->release_fb)
6471                         old->release_fb->funcs->destroy(old->release_fb);
6472                 crtc->fb = old_fb;
6473                 return false;
6474         }
6475
6476         /* let the connector get through one full cycle before testing */
6477         intel_wait_for_vblank(dev, intel_crtc->pipe);
6478
6479         return true;
6480 }
6481
6482 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6483                                     struct drm_connector *connector,
6484                                     struct intel_load_detect_pipe *old)
6485 {
6486         struct drm_encoder *encoder = &intel_encoder->base;
6487         struct drm_device *dev = encoder->dev;
6488         struct drm_crtc *crtc = encoder->crtc;
6489         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6490         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6491
6492         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6493                       connector->base.id, drm_get_connector_name(connector),
6494                       encoder->base.id, drm_get_encoder_name(encoder));
6495
6496         if (old->load_detect_temp) {
6497                 connector->encoder = NULL;
6498                 drm_helper_disable_unused_functions(dev);
6499
6500                 if (old->release_fb)
6501                         old->release_fb->funcs->destroy(old->release_fb);
6502
6503                 return;
6504         }
6505
6506         /* Switch crtc and encoder back off if necessary */
6507         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6508                 encoder_funcs->dpms(encoder, old->dpms_mode);
6509                 crtc_funcs->dpms(crtc, old->dpms_mode);
6510         }
6511 }
6512
6513 /* Returns the clock of the currently programmed mode of the given pipe. */
6514 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6515 {
6516         struct drm_i915_private *dev_priv = dev->dev_private;
6517         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6518         int pipe = intel_crtc->pipe;
6519         u32 dpll = I915_READ(DPLL(pipe));
6520         u32 fp;
6521         intel_clock_t clock;
6522
6523         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6524                 fp = I915_READ(FP0(pipe));
6525         else
6526                 fp = I915_READ(FP1(pipe));
6527
6528         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6529         if (IS_PINEVIEW(dev)) {
6530                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6531                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6532         } else {
6533                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6534                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6535         }
6536
6537         if (!IS_GEN2(dev)) {
6538                 if (IS_PINEVIEW(dev))
6539                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6540                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6541                 else
6542                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6543                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6544
6545                 switch (dpll & DPLL_MODE_MASK) {
6546                 case DPLLB_MODE_DAC_SERIAL:
6547                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6548                                 5 : 10;
6549                         break;
6550                 case DPLLB_MODE_LVDS:
6551                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6552                                 7 : 14;
6553                         break;
6554                 default:
6555                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6556                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6557                         return 0;
6558                 }
6559
6560                 /* XXX: Handle the 100Mhz refclk */
6561                 intel_clock(dev, 96000, &clock);
6562         } else {
6563                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6564
6565                 if (is_lvds) {
6566                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6567                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6568                         clock.p2 = 14;
6569
6570                         if ((dpll & PLL_REF_INPUT_MASK) ==
6571                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6572                                 /* XXX: might not be 66MHz */
6573                                 intel_clock(dev, 66000, &clock);
6574                         } else
6575                                 intel_clock(dev, 48000, &clock);
6576                 } else {
6577                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6578                                 clock.p1 = 2;
6579                         else {
6580                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6581                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6582                         }
6583                         if (dpll & PLL_P2_DIVIDE_BY_4)
6584                                 clock.p2 = 4;
6585                         else
6586                                 clock.p2 = 2;
6587
6588                         intel_clock(dev, 48000, &clock);
6589                 }
6590         }
6591
6592         /* XXX: It would be nice to validate the clocks, but we can't reuse
6593          * i830PllIsValid() because it relies on the xf86_config connector
6594          * configuration being accurate, which it isn't necessarily.
6595          */
6596
6597         return clock.dot;
6598 }
6599
6600 /** Returns the currently programmed mode of the given pipe. */
6601 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6602                                              struct drm_crtc *crtc)
6603 {
6604         struct drm_i915_private *dev_priv = dev->dev_private;
6605         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6606         int pipe = intel_crtc->pipe;
6607         struct drm_display_mode *mode;
6608         int htot = I915_READ(HTOTAL(pipe));
6609         int hsync = I915_READ(HSYNC(pipe));
6610         int vtot = I915_READ(VTOTAL(pipe));
6611         int vsync = I915_READ(VSYNC(pipe));
6612
6613         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6614         if (!mode)
6615                 return NULL;
6616
6617         mode->clock = intel_crtc_clock_get(dev, crtc);
6618         mode->hdisplay = (htot & 0xffff) + 1;
6619         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6620         mode->hsync_start = (hsync & 0xffff) + 1;
6621         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6622         mode->vdisplay = (vtot & 0xffff) + 1;
6623         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6624         mode->vsync_start = (vsync & 0xffff) + 1;
6625         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6626
6627         drm_mode_set_name(mode);
6628         drm_mode_set_crtcinfo(mode, 0);
6629
6630         return mode;
6631 }
6632
6633 #define GPU_IDLE_TIMEOUT 500 /* ms */
6634
6635 /* When this timer fires, we've been idle for awhile */
6636 static void intel_gpu_idle_timer(unsigned long arg)
6637 {
6638         struct drm_device *dev = (struct drm_device *)arg;
6639         drm_i915_private_t *dev_priv = dev->dev_private;
6640
6641         if (!list_empty(&dev_priv->mm.active_list)) {
6642                 /* Still processing requests, so just re-arm the timer. */
6643                 mod_timer(&dev_priv->idle_timer, jiffies +
6644                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6645                 return;
6646         }
6647
6648         dev_priv->busy = false;
6649         queue_work(dev_priv->wq, &dev_priv->idle_work);
6650 }
6651
6652 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6653
6654 static void intel_crtc_idle_timer(unsigned long arg)
6655 {
6656         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6657         struct drm_crtc *crtc = &intel_crtc->base;
6658         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6659         struct intel_framebuffer *intel_fb;
6660
6661         intel_fb = to_intel_framebuffer(crtc->fb);
6662         if (intel_fb && intel_fb->obj->active) {
6663                 /* The framebuffer is still being accessed by the GPU. */
6664                 mod_timer(&intel_crtc->idle_timer, jiffies +
6665                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6666                 return;
6667         }
6668
6669         intel_crtc->busy = false;
6670         queue_work(dev_priv->wq, &dev_priv->idle_work);
6671 }
6672
6673 static void intel_increase_pllclock(struct drm_crtc *crtc)
6674 {
6675         struct drm_device *dev = crtc->dev;
6676         drm_i915_private_t *dev_priv = dev->dev_private;
6677         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6678         int pipe = intel_crtc->pipe;
6679         int dpll_reg = DPLL(pipe);
6680         int dpll;
6681
6682         if (HAS_PCH_SPLIT(dev))
6683                 return;
6684
6685         if (!dev_priv->lvds_downclock_avail)
6686                 return;
6687
6688         dpll = I915_READ(dpll_reg);
6689         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6690                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6691
6692                 /* Unlock panel regs */
6693                 I915_WRITE(PP_CONTROL,
6694                            I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6695
6696                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6697                 I915_WRITE(dpll_reg, dpll);
6698                 intel_wait_for_vblank(dev, pipe);
6699
6700                 dpll = I915_READ(dpll_reg);
6701                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6702                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6703
6704                 /* ...and lock them again */
6705                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6706         }
6707
6708         /* Schedule downclock */
6709         mod_timer(&intel_crtc->idle_timer, jiffies +
6710                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6711 }
6712
6713 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6714 {
6715         struct drm_device *dev = crtc->dev;
6716         drm_i915_private_t *dev_priv = dev->dev_private;
6717         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6718         int pipe = intel_crtc->pipe;
6719         int dpll_reg = DPLL(pipe);
6720         int dpll = I915_READ(dpll_reg);
6721
6722         if (HAS_PCH_SPLIT(dev))
6723                 return;
6724
6725         if (!dev_priv->lvds_downclock_avail)
6726                 return;
6727
6728         /*
6729          * Since this is called by a timer, we should never get here in
6730          * the manual case.
6731          */
6732         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6733                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6734
6735                 /* Unlock panel regs */
6736                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6737                            PANEL_UNLOCK_REGS);
6738
6739                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6740                 I915_WRITE(dpll_reg, dpll);
6741                 intel_wait_for_vblank(dev, pipe);
6742                 dpll = I915_READ(dpll_reg);
6743                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6744                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6745
6746                 /* ...and lock them again */
6747                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6748         }
6749
6750 }
6751
6752 /**
6753  * intel_idle_update - adjust clocks for idleness
6754  * @work: work struct
6755  *
6756  * Either the GPU or display (or both) went idle.  Check the busy status
6757  * here and adjust the CRTC and GPU clocks as necessary.
6758  */
6759 static void intel_idle_update(struct work_struct *work)
6760 {
6761         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6762                                                     idle_work);
6763         struct drm_device *dev = dev_priv->dev;
6764         struct drm_crtc *crtc;
6765         struct intel_crtc *intel_crtc;
6766
6767         if (!i915_powersave)
6768                 return;
6769
6770         mutex_lock(&dev->struct_mutex);
6771
6772         i915_update_gfx_val(dev_priv);
6773
6774         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6775                 /* Skip inactive CRTCs */
6776                 if (!crtc->fb)
6777                         continue;
6778
6779                 intel_crtc = to_intel_crtc(crtc);
6780                 if (!intel_crtc->busy)
6781                         intel_decrease_pllclock(crtc);
6782         }
6783
6784
6785         mutex_unlock(&dev->struct_mutex);
6786 }
6787
6788 /**
6789  * intel_mark_busy - mark the GPU and possibly the display busy
6790  * @dev: drm device
6791  * @obj: object we're operating on
6792  *
6793  * Callers can use this function to indicate that the GPU is busy processing
6794  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
6795  * buffer), we'll also mark the display as busy, so we know to increase its
6796  * clock frequency.
6797  */
6798 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6799 {
6800         drm_i915_private_t *dev_priv = dev->dev_private;
6801         struct drm_crtc *crtc = NULL;
6802         struct intel_framebuffer *intel_fb;
6803         struct intel_crtc *intel_crtc;
6804
6805         if (!drm_core_check_feature(dev, DRIVER_MODESET))
6806                 return;
6807
6808         if (!dev_priv->busy)
6809                 dev_priv->busy = true;
6810         else
6811                 mod_timer(&dev_priv->idle_timer, jiffies +
6812                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6813
6814         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6815                 if (!crtc->fb)
6816                         continue;
6817
6818                 intel_crtc = to_intel_crtc(crtc);
6819                 intel_fb = to_intel_framebuffer(crtc->fb);
6820                 if (intel_fb->obj == obj) {
6821                         if (!intel_crtc->busy) {
6822                                 /* Non-busy -> busy, upclock */
6823                                 intel_increase_pllclock(crtc);
6824                                 intel_crtc->busy = true;
6825                         } else {
6826                                 /* Busy -> busy, put off timer */
6827                                 mod_timer(&intel_crtc->idle_timer, jiffies +
6828                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6829                         }
6830                 }
6831         }
6832 }
6833
6834 static void intel_crtc_destroy(struct drm_crtc *crtc)
6835 {
6836         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6837         struct drm_device *dev = crtc->dev;
6838         struct intel_unpin_work *work;
6839         unsigned long flags;
6840
6841         spin_lock_irqsave(&dev->event_lock, flags);
6842         work = intel_crtc->unpin_work;
6843         intel_crtc->unpin_work = NULL;
6844         spin_unlock_irqrestore(&dev->event_lock, flags);
6845
6846         if (work) {
6847                 cancel_work_sync(&work->work);
6848                 kfree(work);
6849         }
6850
6851         drm_crtc_cleanup(crtc);
6852
6853         kfree(intel_crtc);
6854 }
6855
6856 static void intel_unpin_work_fn(struct work_struct *__work)
6857 {
6858         struct intel_unpin_work *work =
6859                 container_of(__work, struct intel_unpin_work, work);
6860
6861         mutex_lock(&work->dev->struct_mutex);
6862         i915_gem_object_unpin(work->old_fb_obj);
6863         drm_gem_object_unreference(&work->pending_flip_obj->base);
6864         drm_gem_object_unreference(&work->old_fb_obj->base);
6865
6866         intel_update_fbc(work->dev);
6867         mutex_unlock(&work->dev->struct_mutex);
6868         kfree(work);
6869 }
6870
6871 static void do_intel_finish_page_flip(struct drm_device *dev,
6872                                       struct drm_crtc *crtc)
6873 {
6874         drm_i915_private_t *dev_priv = dev->dev_private;
6875         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6876         struct intel_unpin_work *work;
6877         struct drm_i915_gem_object *obj;
6878         struct drm_pending_vblank_event *e;
6879         struct timeval tnow, tvbl;
6880         unsigned long flags;
6881
6882         /* Ignore early vblank irqs */
6883         if (intel_crtc == NULL)
6884                 return;
6885
6886         do_gettimeofday(&tnow);
6887
6888         spin_lock_irqsave(&dev->event_lock, flags);
6889         work = intel_crtc->unpin_work;
6890         if (work == NULL || !work->pending) {
6891                 spin_unlock_irqrestore(&dev->event_lock, flags);
6892                 return;
6893         }
6894
6895         intel_crtc->unpin_work = NULL;
6896
6897         if (work->event) {
6898                 e = work->event;
6899                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6900
6901                 /* Called before vblank count and timestamps have
6902                  * been updated for the vblank interval of flip
6903                  * completion? Need to increment vblank count and
6904                  * add one videorefresh duration to returned timestamp
6905                  * to account for this. We assume this happened if we
6906                  * get called over 0.9 frame durations after the last
6907                  * timestamped vblank.
6908                  *
6909                  * This calculation can not be used with vrefresh rates
6910                  * below 5Hz (10Hz to be on the safe side) without
6911                  * promoting to 64 integers.
6912                  */
6913                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6914                     9 * crtc->framedur_ns) {
6915                         e->event.sequence++;
6916                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6917                                              crtc->framedur_ns);
6918                 }
6919
6920                 e->event.tv_sec = tvbl.tv_sec;
6921                 e->event.tv_usec = tvbl.tv_usec;
6922
6923                 list_add_tail(&e->base.link,
6924                               &e->base.file_priv->event_list);
6925                 wake_up_interruptible(&e->base.file_priv->event_wait);
6926         }
6927
6928         drm_vblank_put(dev, intel_crtc->pipe);
6929
6930         spin_unlock_irqrestore(&dev->event_lock, flags);
6931
6932         obj = work->old_fb_obj;
6933
6934         atomic_clear_mask(1 << intel_crtc->plane,
6935                           &obj->pending_flip.counter);
6936         if (atomic_read(&obj->pending_flip) == 0)
6937                 wake_up(&dev_priv->pending_flip_queue);
6938
6939         schedule_work(&work->work);
6940
6941         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6942 }
6943
6944 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6945 {
6946         drm_i915_private_t *dev_priv = dev->dev_private;
6947         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6948
6949         do_intel_finish_page_flip(dev, crtc);
6950 }
6951
6952 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6953 {
6954         drm_i915_private_t *dev_priv = dev->dev_private;
6955         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6956
6957         do_intel_finish_page_flip(dev, crtc);
6958 }
6959
6960 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6961 {
6962         drm_i915_private_t *dev_priv = dev->dev_private;
6963         struct intel_crtc *intel_crtc =
6964                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6965         unsigned long flags;
6966
6967         spin_lock_irqsave(&dev->event_lock, flags);
6968         if (intel_crtc->unpin_work) {
6969                 if ((++intel_crtc->unpin_work->pending) > 1)
6970                         DRM_ERROR("Prepared flip multiple times\n");
6971         } else {
6972                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6973         }
6974         spin_unlock_irqrestore(&dev->event_lock, flags);
6975 }
6976
6977 static int intel_gen2_queue_flip(struct drm_device *dev,
6978                                  struct drm_crtc *crtc,
6979                                  struct drm_framebuffer *fb,
6980                                  struct drm_i915_gem_object *obj)
6981 {
6982         struct drm_i915_private *dev_priv = dev->dev_private;
6983         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6984         unsigned long offset;
6985         u32 flip_mask;
6986         int ret;
6987
6988         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6989         if (ret)
6990                 goto out;
6991
6992         /* Offset into the new buffer for cases of shared fbs between CRTCs */
6993         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6994
6995         ret = BEGIN_LP_RING(6);
6996         if (ret)
6997                 goto out;
6998
6999         /* Can't queue multiple flips, so wait for the previous
7000          * one to finish before executing the next.
7001          */
7002         if (intel_crtc->plane)
7003                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7004         else
7005                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7006         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7007         OUT_RING(MI_NOOP);
7008         OUT_RING(MI_DISPLAY_FLIP |
7009                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7010         OUT_RING(fb->pitch);
7011         OUT_RING(obj->gtt_offset + offset);
7012         OUT_RING(MI_NOOP);
7013         ADVANCE_LP_RING();
7014 out:
7015         return ret;
7016 }
7017
7018 static int intel_gen3_queue_flip(struct drm_device *dev,
7019                                  struct drm_crtc *crtc,
7020                                  struct drm_framebuffer *fb,
7021                                  struct drm_i915_gem_object *obj)
7022 {
7023         struct drm_i915_private *dev_priv = dev->dev_private;
7024         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7025         unsigned long offset;
7026         u32 flip_mask;
7027         int ret;
7028
7029         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7030         if (ret)
7031                 goto out;
7032
7033         /* Offset into the new buffer for cases of shared fbs between CRTCs */
7034         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
7035
7036         ret = BEGIN_LP_RING(6);
7037         if (ret)
7038                 goto out;
7039
7040         if (intel_crtc->plane)
7041                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7042         else
7043                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7044         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7045         OUT_RING(MI_NOOP);
7046         OUT_RING(MI_DISPLAY_FLIP_I915 |
7047                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7048         OUT_RING(fb->pitch);
7049         OUT_RING(obj->gtt_offset + offset);
7050         OUT_RING(MI_NOOP);
7051
7052         ADVANCE_LP_RING();
7053 out:
7054         return ret;
7055 }
7056
7057 static int intel_gen4_queue_flip(struct drm_device *dev,
7058                                  struct drm_crtc *crtc,
7059                                  struct drm_framebuffer *fb,
7060                                  struct drm_i915_gem_object *obj)
7061 {
7062         struct drm_i915_private *dev_priv = dev->dev_private;
7063         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7064         uint32_t pf, pipesrc;
7065         int ret;
7066
7067         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7068         if (ret)
7069                 goto out;
7070
7071         ret = BEGIN_LP_RING(4);
7072         if (ret)
7073                 goto out;
7074
7075         /* i965+ uses the linear or tiled offsets from the
7076          * Display Registers (which do not change across a page-flip)
7077          * so we need only reprogram the base address.
7078          */
7079         OUT_RING(MI_DISPLAY_FLIP |
7080                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7081         OUT_RING(fb->pitch);
7082         OUT_RING(obj->gtt_offset | obj->tiling_mode);
7083
7084         /* XXX Enabling the panel-fitter across page-flip is so far
7085          * untested on non-native modes, so ignore it for now.
7086          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7087          */
7088         pf = 0;
7089         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7090         OUT_RING(pf | pipesrc);
7091         ADVANCE_LP_RING();
7092 out:
7093         return ret;
7094 }
7095
7096 static int intel_gen6_queue_flip(struct drm_device *dev,
7097                                  struct drm_crtc *crtc,
7098                                  struct drm_framebuffer *fb,
7099                                  struct drm_i915_gem_object *obj)
7100 {
7101         struct drm_i915_private *dev_priv = dev->dev_private;
7102         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7103         uint32_t pf, pipesrc;
7104         int ret;
7105
7106         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7107         if (ret)
7108                 goto out;
7109
7110         ret = BEGIN_LP_RING(4);
7111         if (ret)
7112                 goto out;
7113
7114         OUT_RING(MI_DISPLAY_FLIP |
7115                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7116         OUT_RING(fb->pitch | obj->tiling_mode);
7117         OUT_RING(obj->gtt_offset);
7118
7119         pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7120         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7121         OUT_RING(pf | pipesrc);
7122         ADVANCE_LP_RING();
7123 out:
7124         return ret;
7125 }
7126
7127 /*
7128  * On gen7 we currently use the blit ring because (in early silicon at least)
7129  * the render ring doesn't give us interrpts for page flip completion, which
7130  * means clients will hang after the first flip is queued.  Fortunately the
7131  * blit ring generates interrupts properly, so use it instead.
7132  */
7133 static int intel_gen7_queue_flip(struct drm_device *dev,
7134                                  struct drm_crtc *crtc,
7135                                  struct drm_framebuffer *fb,
7136                                  struct drm_i915_gem_object *obj)
7137 {
7138         struct drm_i915_private *dev_priv = dev->dev_private;
7139         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7140         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7141         int ret;
7142
7143         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7144         if (ret)
7145                 goto out;
7146
7147         ret = intel_ring_begin(ring, 4);
7148         if (ret)
7149                 goto out;
7150
7151         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7152         intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
7153         intel_ring_emit(ring, (obj->gtt_offset));
7154         intel_ring_emit(ring, (MI_NOOP));
7155         intel_ring_advance(ring);
7156 out:
7157         return ret;
7158 }
7159
7160 static int intel_default_queue_flip(struct drm_device *dev,
7161                                     struct drm_crtc *crtc,
7162                                     struct drm_framebuffer *fb,
7163                                     struct drm_i915_gem_object *obj)
7164 {
7165         return -ENODEV;
7166 }
7167
7168 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7169                                 struct drm_framebuffer *fb,
7170                                 struct drm_pending_vblank_event *event)
7171 {
7172         struct drm_device *dev = crtc->dev;
7173         struct drm_i915_private *dev_priv = dev->dev_private;
7174         struct intel_framebuffer *intel_fb;
7175         struct drm_i915_gem_object *obj;
7176         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7177         struct intel_unpin_work *work;
7178         unsigned long flags;
7179         int ret;
7180
7181         work = kzalloc(sizeof *work, GFP_KERNEL);
7182         if (work == NULL)
7183                 return -ENOMEM;
7184
7185         work->event = event;
7186         work->dev = crtc->dev;
7187         intel_fb = to_intel_framebuffer(crtc->fb);
7188         work->old_fb_obj = intel_fb->obj;
7189         INIT_WORK(&work->work, intel_unpin_work_fn);
7190
7191         /* We borrow the event spin lock for protecting unpin_work */
7192         spin_lock_irqsave(&dev->event_lock, flags);
7193         if (intel_crtc->unpin_work) {
7194                 spin_unlock_irqrestore(&dev->event_lock, flags);
7195                 kfree(work);
7196
7197                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7198                 return -EBUSY;
7199         }
7200         intel_crtc->unpin_work = work;
7201         spin_unlock_irqrestore(&dev->event_lock, flags);
7202
7203         intel_fb = to_intel_framebuffer(fb);
7204         obj = intel_fb->obj;
7205
7206         mutex_lock(&dev->struct_mutex);
7207
7208         /* Reference the objects for the scheduled work. */
7209         drm_gem_object_reference(&work->old_fb_obj->base);
7210         drm_gem_object_reference(&obj->base);
7211
7212         crtc->fb = fb;
7213
7214         ret = drm_vblank_get(dev, intel_crtc->pipe);
7215         if (ret)
7216                 goto cleanup_objs;
7217
7218         work->pending_flip_obj = obj;
7219
7220         work->enable_stall_check = true;
7221
7222         /* Block clients from rendering to the new back buffer until
7223          * the flip occurs and the object is no longer visible.
7224          */
7225         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7226
7227         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7228         if (ret)
7229                 goto cleanup_pending;
7230
7231         intel_disable_fbc(dev);
7232         mutex_unlock(&dev->struct_mutex);
7233
7234         trace_i915_flip_request(intel_crtc->plane, obj);
7235
7236         return 0;
7237
7238 cleanup_pending:
7239         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7240 cleanup_objs:
7241         drm_gem_object_unreference(&work->old_fb_obj->base);
7242         drm_gem_object_unreference(&obj->base);
7243         mutex_unlock(&dev->struct_mutex);
7244
7245         spin_lock_irqsave(&dev->event_lock, flags);
7246         intel_crtc->unpin_work = NULL;
7247         spin_unlock_irqrestore(&dev->event_lock, flags);
7248
7249         kfree(work);
7250
7251         return ret;
7252 }
7253
7254 static void intel_sanitize_modesetting(struct drm_device *dev,
7255                                        int pipe, int plane)
7256 {
7257         struct drm_i915_private *dev_priv = dev->dev_private;
7258         u32 reg, val;
7259
7260         if (HAS_PCH_SPLIT(dev))
7261                 return;
7262
7263         /* Who knows what state these registers were left in by the BIOS or
7264          * grub?
7265          *
7266          * If we leave the registers in a conflicting state (e.g. with the
7267          * display plane reading from the other pipe than the one we intend
7268          * to use) then when we attempt to teardown the active mode, we will
7269          * not disable the pipes and planes in the correct order -- leaving
7270          * a plane reading from a disabled pipe and possibly leading to
7271          * undefined behaviour.
7272          */
7273
7274         reg = DSPCNTR(plane);
7275         val = I915_READ(reg);
7276
7277         if ((val & DISPLAY_PLANE_ENABLE) == 0)
7278                 return;
7279         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7280                 return;
7281
7282         /* This display plane is active and attached to the other CPU pipe. */
7283         pipe = !pipe;
7284
7285         /* Disable the plane and wait for it to stop reading from the pipe. */
7286         intel_disable_plane(dev_priv, plane, pipe);
7287         intel_disable_pipe(dev_priv, pipe);
7288 }
7289
7290 static void intel_crtc_reset(struct drm_crtc *crtc)
7291 {
7292         struct drm_device *dev = crtc->dev;
7293         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7294
7295         /* Reset flags back to the 'unknown' status so that they
7296          * will be correctly set on the initial modeset.
7297          */
7298         intel_crtc->dpms_mode = -1;
7299
7300         /* We need to fix up any BIOS configuration that conflicts with
7301          * our expectations.
7302          */
7303         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7304 }
7305
7306 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7307         .dpms = intel_crtc_dpms,
7308         .mode_fixup = intel_crtc_mode_fixup,
7309         .mode_set = intel_crtc_mode_set,
7310         .mode_set_base = intel_pipe_set_base,
7311         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7312         .load_lut = intel_crtc_load_lut,
7313         .disable = intel_crtc_disable,
7314 };
7315
7316 static const struct drm_crtc_funcs intel_crtc_funcs = {
7317         .reset = intel_crtc_reset,
7318         .cursor_set = intel_crtc_cursor_set,
7319         .cursor_move = intel_crtc_cursor_move,
7320         .gamma_set = intel_crtc_gamma_set,
7321         .set_config = drm_crtc_helper_set_config,
7322         .destroy = intel_crtc_destroy,
7323         .page_flip = intel_crtc_page_flip,
7324 };
7325
7326 static void intel_crtc_init(struct drm_device *dev, int pipe)
7327 {
7328         drm_i915_private_t *dev_priv = dev->dev_private;
7329         struct intel_crtc *intel_crtc;
7330         int i;
7331
7332         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7333         if (intel_crtc == NULL)
7334                 return;
7335
7336         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7337
7338         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7339         for (i = 0; i < 256; i++) {
7340                 intel_crtc->lut_r[i] = i;
7341                 intel_crtc->lut_g[i] = i;
7342                 intel_crtc->lut_b[i] = i;
7343         }
7344
7345         /* Swap pipes & planes for FBC on pre-965 */
7346         intel_crtc->pipe = pipe;
7347         intel_crtc->plane = pipe;
7348         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7349                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7350                 intel_crtc->plane = !pipe;
7351         }
7352
7353         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7354                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7355         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7356         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7357
7358         intel_crtc_reset(&intel_crtc->base);
7359         intel_crtc->active = true; /* force the pipe off on setup_init_config */
7360         intel_crtc->bpp = 24; /* default for pre-Ironlake */
7361
7362         if (HAS_PCH_SPLIT(dev)) {
7363                 if (pipe == 2 && IS_IVYBRIDGE(dev))
7364                         intel_crtc->no_pll = true;
7365                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7366                 intel_helper_funcs.commit = ironlake_crtc_commit;
7367         } else {
7368                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7369                 intel_helper_funcs.commit = i9xx_crtc_commit;
7370         }
7371
7372         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7373
7374         intel_crtc->busy = false;
7375
7376         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7377                     (unsigned long)intel_crtc);
7378 }
7379
7380 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7381                                 struct drm_file *file)
7382 {
7383         drm_i915_private_t *dev_priv = dev->dev_private;
7384         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7385         struct drm_mode_object *drmmode_obj;
7386         struct intel_crtc *crtc;
7387
7388         if (!dev_priv) {
7389                 DRM_ERROR("called with no initialization\n");
7390                 return -EINVAL;
7391         }
7392
7393         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7394                         DRM_MODE_OBJECT_CRTC);
7395
7396         if (!drmmode_obj) {
7397                 DRM_ERROR("no such CRTC id\n");
7398                 return -EINVAL;
7399         }
7400
7401         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7402         pipe_from_crtc_id->pipe = crtc->pipe;
7403
7404         return 0;
7405 }
7406
7407 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7408 {
7409         struct intel_encoder *encoder;
7410         int index_mask = 0;
7411         int entry = 0;
7412
7413         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7414                 if (type_mask & encoder->clone_mask)
7415                         index_mask |= (1 << entry);
7416                 entry++;
7417         }
7418
7419         return index_mask;
7420 }
7421
7422 static bool has_edp_a(struct drm_device *dev)
7423 {
7424         struct drm_i915_private *dev_priv = dev->dev_private;
7425
7426         if (!IS_MOBILE(dev))
7427                 return false;
7428
7429         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7430                 return false;
7431
7432         if (IS_GEN5(dev) &&
7433             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7434                 return false;
7435
7436         return true;
7437 }
7438
7439 static void intel_setup_outputs(struct drm_device *dev)
7440 {
7441         struct drm_i915_private *dev_priv = dev->dev_private;
7442         struct intel_encoder *encoder;
7443         bool dpd_is_edp = false;
7444         bool has_lvds = false;
7445
7446         if (IS_MOBILE(dev) && !IS_I830(dev))
7447                 has_lvds = intel_lvds_init(dev);
7448         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7449                 /* disable the panel fitter on everything but LVDS */
7450                 I915_WRITE(PFIT_CONTROL, 0);
7451         }
7452
7453         if (HAS_PCH_SPLIT(dev)) {
7454                 dpd_is_edp = intel_dpd_is_edp(dev);
7455
7456                 if (has_edp_a(dev))
7457                         intel_dp_init(dev, DP_A);
7458
7459                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7460                         intel_dp_init(dev, PCH_DP_D);
7461         }
7462
7463         intel_crt_init(dev);
7464
7465         if (HAS_PCH_SPLIT(dev)) {
7466                 int found;
7467
7468                 if (I915_READ(HDMIB) & PORT_DETECTED) {
7469                         /* PCH SDVOB multiplex with HDMIB */
7470                         found = intel_sdvo_init(dev, PCH_SDVOB);
7471                         if (!found)
7472                                 intel_hdmi_init(dev, HDMIB);
7473                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7474                                 intel_dp_init(dev, PCH_DP_B);
7475                 }
7476
7477                 if (I915_READ(HDMIC) & PORT_DETECTED)
7478                         intel_hdmi_init(dev, HDMIC);
7479
7480                 if (I915_READ(HDMID) & PORT_DETECTED)
7481                         intel_hdmi_init(dev, HDMID);
7482
7483                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7484                         intel_dp_init(dev, PCH_DP_C);
7485
7486                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7487                         intel_dp_init(dev, PCH_DP_D);
7488
7489         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7490                 bool found = false;
7491
7492                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7493                         DRM_DEBUG_KMS("probing SDVOB\n");
7494                         found = intel_sdvo_init(dev, SDVOB);
7495                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7496                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7497                                 intel_hdmi_init(dev, SDVOB);
7498                         }
7499
7500                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7501                                 DRM_DEBUG_KMS("probing DP_B\n");
7502                                 intel_dp_init(dev, DP_B);
7503                         }
7504                 }
7505
7506                 /* Before G4X SDVOC doesn't have its own detect register */
7507
7508                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7509                         DRM_DEBUG_KMS("probing SDVOC\n");
7510                         found = intel_sdvo_init(dev, SDVOC);
7511                 }
7512
7513                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7514
7515                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7516                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7517                                 intel_hdmi_init(dev, SDVOC);
7518                         }
7519                         if (SUPPORTS_INTEGRATED_DP(dev)) {
7520                                 DRM_DEBUG_KMS("probing DP_C\n");
7521                                 intel_dp_init(dev, DP_C);
7522                         }
7523                 }
7524
7525                 if (SUPPORTS_INTEGRATED_DP(dev) &&
7526                     (I915_READ(DP_D) & DP_DETECTED)) {
7527                         DRM_DEBUG_KMS("probing DP_D\n");
7528                         intel_dp_init(dev, DP_D);
7529                 }
7530         } else if (IS_GEN2(dev))
7531                 intel_dvo_init(dev);
7532
7533         if (SUPPORTS_TV(dev))
7534                 intel_tv_init(dev);
7535
7536         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7537                 encoder->base.possible_crtcs = encoder->crtc_mask;
7538                 encoder->base.possible_clones =
7539                         intel_encoder_clones(dev, encoder->clone_mask);
7540         }
7541
7542         /* disable all the possible outputs/crtcs before entering KMS mode */
7543         drm_helper_disable_unused_functions(dev);
7544
7545         if (HAS_PCH_SPLIT(dev))
7546                 ironlake_init_pch_refclk(dev);
7547 }
7548
7549 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7550 {
7551         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7552
7553         drm_framebuffer_cleanup(fb);
7554         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7555
7556         kfree(intel_fb);
7557 }
7558
7559 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7560                                                 struct drm_file *file,
7561                                                 unsigned int *handle)
7562 {
7563         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7564         struct drm_i915_gem_object *obj = intel_fb->obj;
7565
7566         return drm_gem_handle_create(file, &obj->base, handle);
7567 }
7568
7569 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7570         .destroy = intel_user_framebuffer_destroy,
7571         .create_handle = intel_user_framebuffer_create_handle,
7572 };
7573
7574 int intel_framebuffer_init(struct drm_device *dev,
7575                            struct intel_framebuffer *intel_fb,
7576                            struct drm_mode_fb_cmd *mode_cmd,
7577                            struct drm_i915_gem_object *obj)
7578 {
7579         int ret;
7580
7581         if (obj->tiling_mode == I915_TILING_Y)
7582                 return -EINVAL;
7583
7584         if (mode_cmd->pitch & 63)
7585                 return -EINVAL;
7586
7587         switch (mode_cmd->bpp) {
7588         case 8:
7589         case 16:
7590                 /* Only pre-ILK can handle 5:5:5 */
7591                 if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
7592                         return -EINVAL;
7593                 break;
7594
7595         case 24:
7596         case 32:
7597                 break;
7598         default:
7599                 return -EINVAL;
7600         }
7601
7602         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7603         if (ret) {
7604                 DRM_ERROR("framebuffer init failed %d\n", ret);
7605                 return ret;
7606         }
7607
7608         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7609         intel_fb->obj = obj;
7610         return 0;
7611 }
7612
7613 static struct drm_framebuffer *
7614 intel_user_framebuffer_create(struct drm_device *dev,
7615                               struct drm_file *filp,
7616                               struct drm_mode_fb_cmd *mode_cmd)
7617 {
7618         struct drm_i915_gem_object *obj;
7619
7620         obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
7621         if (&obj->base == NULL)
7622                 return ERR_PTR(-ENOENT);
7623
7624         return intel_framebuffer_create(dev, mode_cmd, obj);
7625 }
7626
7627 static const struct drm_mode_config_funcs intel_mode_funcs = {
7628         .fb_create = intel_user_framebuffer_create,
7629         .output_poll_changed = intel_fb_output_poll_changed,
7630 };
7631
7632 static struct drm_i915_gem_object *
7633 intel_alloc_context_page(struct drm_device *dev)
7634 {
7635         struct drm_i915_gem_object *ctx;
7636         int ret;
7637
7638         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7639
7640         ctx = i915_gem_alloc_object(dev, 4096);
7641         if (!ctx) {
7642                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7643                 return NULL;
7644         }
7645
7646         ret = i915_gem_object_pin(ctx, 4096, true);
7647         if (ret) {
7648                 DRM_ERROR("failed to pin power context: %d\n", ret);
7649                 goto err_unref;
7650         }
7651
7652         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7653         if (ret) {
7654                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7655                 goto err_unpin;
7656         }
7657
7658         return ctx;
7659
7660 err_unpin:
7661         i915_gem_object_unpin(ctx);
7662 err_unref:
7663         drm_gem_object_unreference(&ctx->base);
7664         mutex_unlock(&dev->struct_mutex);
7665         return NULL;
7666 }
7667
7668 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7669 {
7670         struct drm_i915_private *dev_priv = dev->dev_private;
7671         u16 rgvswctl;
7672
7673         rgvswctl = I915_READ16(MEMSWCTL);
7674         if (rgvswctl & MEMCTL_CMD_STS) {
7675                 DRM_DEBUG("gpu busy, RCS change rejected\n");
7676                 return false; /* still busy with another command */
7677         }
7678
7679         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7680                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7681         I915_WRITE16(MEMSWCTL, rgvswctl);
7682         POSTING_READ16(MEMSWCTL);
7683
7684         rgvswctl |= MEMCTL_CMD_STS;
7685         I915_WRITE16(MEMSWCTL, rgvswctl);
7686
7687         return true;
7688 }
7689
7690 void ironlake_enable_drps(struct drm_device *dev)
7691 {
7692         struct drm_i915_private *dev_priv = dev->dev_private;
7693         u32 rgvmodectl = I915_READ(MEMMODECTL);
7694         u8 fmax, fmin, fstart, vstart;
7695
7696         /* Enable temp reporting */
7697         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7698         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7699
7700         /* 100ms RC evaluation intervals */
7701         I915_WRITE(RCUPEI, 100000);
7702         I915_WRITE(RCDNEI, 100000);
7703
7704         /* Set max/min thresholds to 90ms and 80ms respectively */
7705         I915_WRITE(RCBMAXAVG, 90000);
7706         I915_WRITE(RCBMINAVG, 80000);
7707
7708         I915_WRITE(MEMIHYST, 1);
7709
7710         /* Set up min, max, and cur for interrupt handling */
7711         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7712         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7713         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7714                 MEMMODE_FSTART_SHIFT;
7715
7716         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7717                 PXVFREQ_PX_SHIFT;
7718
7719         dev_priv->fmax = fmax; /* IPS callback will increase this */
7720         dev_priv->fstart = fstart;
7721
7722         dev_priv->max_delay = fstart;
7723         dev_priv->min_delay = fmin;
7724         dev_priv->cur_delay = fstart;
7725
7726         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7727                          fmax, fmin, fstart);
7728
7729         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7730
7731         /*
7732          * Interrupts will be enabled in ironlake_irq_postinstall
7733          */
7734
7735         I915_WRITE(VIDSTART, vstart);
7736         POSTING_READ(VIDSTART);
7737
7738         rgvmodectl |= MEMMODE_SWMODE_EN;
7739         I915_WRITE(MEMMODECTL, rgvmodectl);
7740
7741         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7742                 DRM_ERROR("stuck trying to change perf mode\n");
7743         msleep(1);
7744
7745         ironlake_set_drps(dev, fstart);
7746
7747         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7748                 I915_READ(0x112e0);
7749         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7750         dev_priv->last_count2 = I915_READ(0x112f4);
7751         getrawmonotonic(&dev_priv->last_time2);
7752 }
7753
7754 void ironlake_disable_drps(struct drm_device *dev)
7755 {
7756         struct drm_i915_private *dev_priv = dev->dev_private;
7757         u16 rgvswctl = I915_READ16(MEMSWCTL);
7758
7759         /* Ack interrupts, disable EFC interrupt */
7760         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7761         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7762         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7763         I915_WRITE(DEIIR, DE_PCU_EVENT);
7764         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7765
7766         /* Go back to the starting frequency */
7767         ironlake_set_drps(dev, dev_priv->fstart);
7768         msleep(1);
7769         rgvswctl |= MEMCTL_CMD_STS;
7770         I915_WRITE(MEMSWCTL, rgvswctl);
7771         msleep(1);
7772
7773 }
7774
7775 void gen6_set_rps(struct drm_device *dev, u8 val)
7776 {
7777         struct drm_i915_private *dev_priv = dev->dev_private;
7778         u32 swreq;
7779
7780         swreq = (val & 0x3ff) << 25;
7781         I915_WRITE(GEN6_RPNSWREQ, swreq);
7782 }
7783
7784 void gen6_disable_rps(struct drm_device *dev)
7785 {
7786         struct drm_i915_private *dev_priv = dev->dev_private;
7787
7788         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7789         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7790         I915_WRITE(GEN6_PMIER, 0);
7791         /* Complete PM interrupt masking here doesn't race with the rps work
7792          * item again unmasking PM interrupts because that is using a different
7793          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
7794          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
7795
7796         spin_lock_irq(&dev_priv->rps_lock);
7797         dev_priv->pm_iir = 0;
7798         spin_unlock_irq(&dev_priv->rps_lock);
7799
7800         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7801 }
7802
7803 static unsigned long intel_pxfreq(u32 vidfreq)
7804 {
7805         unsigned long freq;
7806         int div = (vidfreq & 0x3f0000) >> 16;
7807         int post = (vidfreq & 0x3000) >> 12;
7808         int pre = (vidfreq & 0x7);
7809
7810         if (!pre)
7811                 return 0;
7812
7813         freq = ((div * 133333) / ((1<<post) * pre));
7814
7815         return freq;
7816 }
7817
7818 void intel_init_emon(struct drm_device *dev)
7819 {
7820         struct drm_i915_private *dev_priv = dev->dev_private;
7821         u32 lcfuse;
7822         u8 pxw[16];
7823         int i;
7824
7825         /* Disable to program */
7826         I915_WRITE(ECR, 0);
7827         POSTING_READ(ECR);
7828
7829         /* Program energy weights for various events */
7830         I915_WRITE(SDEW, 0x15040d00);
7831         I915_WRITE(CSIEW0, 0x007f0000);
7832         I915_WRITE(CSIEW1, 0x1e220004);
7833         I915_WRITE(CSIEW2, 0x04000004);
7834
7835         for (i = 0; i < 5; i++)
7836                 I915_WRITE(PEW + (i * 4), 0);
7837         for (i = 0; i < 3; i++)
7838                 I915_WRITE(DEW + (i * 4), 0);
7839
7840         /* Program P-state weights to account for frequency power adjustment */
7841         for (i = 0; i < 16; i++) {
7842                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7843                 unsigned long freq = intel_pxfreq(pxvidfreq);
7844                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7845                         PXVFREQ_PX_SHIFT;
7846                 unsigned long val;
7847
7848                 val = vid * vid;
7849                 val *= (freq / 1000);
7850                 val *= 255;
7851                 val /= (127*127*900);
7852                 if (val > 0xff)
7853                         DRM_ERROR("bad pxval: %ld\n", val);
7854                 pxw[i] = val;
7855         }
7856         /* Render standby states get 0 weight */
7857         pxw[14] = 0;
7858         pxw[15] = 0;
7859
7860         for (i = 0; i < 4; i++) {
7861                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7862                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7863                 I915_WRITE(PXW + (i * 4), val);
7864         }
7865
7866         /* Adjust magic regs to magic values (more experimental results) */
7867         I915_WRITE(OGW0, 0);
7868         I915_WRITE(OGW1, 0);
7869         I915_WRITE(EG0, 0x00007f00);
7870         I915_WRITE(EG1, 0x0000000e);
7871         I915_WRITE(EG2, 0x000e0000);
7872         I915_WRITE(EG3, 0x68000300);
7873         I915_WRITE(EG4, 0x42000000);
7874         I915_WRITE(EG5, 0x00140031);
7875         I915_WRITE(EG6, 0);
7876         I915_WRITE(EG7, 0);
7877
7878         for (i = 0; i < 8; i++)
7879                 I915_WRITE(PXWL + (i * 4), 0);
7880
7881         /* Enable PMON + select events */
7882         I915_WRITE(ECR, 0x80000019);
7883
7884         lcfuse = I915_READ(LCFUSE02);
7885
7886         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7887 }
7888
7889 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7890 {
7891         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7892         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7893         u32 pcu_mbox, rc6_mask = 0;
7894         int cur_freq, min_freq, max_freq;
7895         int i;
7896
7897         /* Here begins a magic sequence of register writes to enable
7898          * auto-downclocking.
7899          *
7900          * Perhaps there might be some value in exposing these to
7901          * userspace...
7902          */
7903         I915_WRITE(GEN6_RC_STATE, 0);
7904         mutex_lock(&dev_priv->dev->struct_mutex);
7905         gen6_gt_force_wake_get(dev_priv);
7906
7907         /* disable the counters and set deterministic thresholds */
7908         I915_WRITE(GEN6_RC_CONTROL, 0);
7909
7910         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7911         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7912         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7913         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7914         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7915
7916         for (i = 0; i < I915_NUM_RINGS; i++)
7917                 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7918
7919         I915_WRITE(GEN6_RC_SLEEP, 0);
7920         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7921         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7922         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7923         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7924
7925         if (i915_enable_rc6)
7926                 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7927                         GEN6_RC_CTL_RC6_ENABLE;
7928
7929         I915_WRITE(GEN6_RC_CONTROL,
7930                    rc6_mask |
7931                    GEN6_RC_CTL_EI_MODE(1) |
7932                    GEN6_RC_CTL_HW_ENABLE);
7933
7934         I915_WRITE(GEN6_RPNSWREQ,
7935                    GEN6_FREQUENCY(10) |
7936                    GEN6_OFFSET(0) |
7937                    GEN6_AGGRESSIVE_TURBO);
7938         I915_WRITE(GEN6_RC_VIDEO_FREQ,
7939                    GEN6_FREQUENCY(12));
7940
7941         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7942         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7943                    18 << 24 |
7944                    6 << 16);
7945         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7946         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7947         I915_WRITE(GEN6_RP_UP_EI, 100000);
7948         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7949         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7950         I915_WRITE(GEN6_RP_CONTROL,
7951                    GEN6_RP_MEDIA_TURBO |
7952                    GEN6_RP_USE_NORMAL_FREQ |
7953                    GEN6_RP_MEDIA_IS_GFX |
7954                    GEN6_RP_ENABLE |
7955                    GEN6_RP_UP_BUSY_AVG |
7956                    GEN6_RP_DOWN_IDLE_CONT);
7957
7958         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7959                      500))
7960                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7961
7962         I915_WRITE(GEN6_PCODE_DATA, 0);
7963         I915_WRITE(GEN6_PCODE_MAILBOX,
7964                    GEN6_PCODE_READY |
7965                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7966         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7967                      500))
7968                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7969
7970         min_freq = (rp_state_cap & 0xff0000) >> 16;
7971         max_freq = rp_state_cap & 0xff;
7972         cur_freq = (gt_perf_status & 0xff00) >> 8;
7973
7974         /* Check for overclock support */
7975         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7976                      500))
7977                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7978         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7979         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7980         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7981                      500))
7982                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7983         if (pcu_mbox & (1<<31)) { /* OC supported */
7984                 max_freq = pcu_mbox & 0xff;
7985                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
7986         }
7987
7988         /* In units of 100MHz */
7989         dev_priv->max_delay = max_freq;
7990         dev_priv->min_delay = min_freq;
7991         dev_priv->cur_delay = cur_freq;
7992
7993         /* requires MSI enabled */
7994         I915_WRITE(GEN6_PMIER,
7995                    GEN6_PM_MBOX_EVENT |
7996                    GEN6_PM_THERMAL_EVENT |
7997                    GEN6_PM_RP_DOWN_TIMEOUT |
7998                    GEN6_PM_RP_UP_THRESHOLD |
7999                    GEN6_PM_RP_DOWN_THRESHOLD |
8000                    GEN6_PM_RP_UP_EI_EXPIRED |
8001                    GEN6_PM_RP_DOWN_EI_EXPIRED);
8002         spin_lock_irq(&dev_priv->rps_lock);
8003         WARN_ON(dev_priv->pm_iir != 0);
8004         I915_WRITE(GEN6_PMIMR, 0);
8005         spin_unlock_irq(&dev_priv->rps_lock);
8006         /* enable all PM interrupts */
8007         I915_WRITE(GEN6_PMINTRMSK, 0);
8008
8009         gen6_gt_force_wake_put(dev_priv);
8010         mutex_unlock(&dev_priv->dev->struct_mutex);
8011 }
8012
8013 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8014 {
8015         int min_freq = 15;
8016         int gpu_freq, ia_freq, max_ia_freq;
8017         int scaling_factor = 180;
8018
8019         max_ia_freq = cpufreq_quick_get_max(0);
8020         /*
8021          * Default to measured freq if none found, PCU will ensure we don't go
8022          * over
8023          */
8024         if (!max_ia_freq)
8025                 max_ia_freq = tsc_khz;
8026
8027         /* Convert from kHz to MHz */
8028         max_ia_freq /= 1000;
8029
8030         mutex_lock(&dev_priv->dev->struct_mutex);
8031
8032         /*
8033          * For each potential GPU frequency, load a ring frequency we'd like
8034          * to use for memory access.  We do this by specifying the IA frequency
8035          * the PCU should use as a reference to determine the ring frequency.
8036          */
8037         for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8038              gpu_freq--) {
8039                 int diff = dev_priv->max_delay - gpu_freq;
8040
8041                 /*
8042                  * For GPU frequencies less than 750MHz, just use the lowest
8043                  * ring freq.
8044                  */
8045                 if (gpu_freq < min_freq)
8046                         ia_freq = 800;
8047                 else
8048                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8049                 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8050
8051                 I915_WRITE(GEN6_PCODE_DATA,
8052                            (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8053                            gpu_freq);
8054                 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8055                            GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8056                 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8057                               GEN6_PCODE_READY) == 0, 10)) {
8058                         DRM_ERROR("pcode write of freq table timed out\n");
8059                         continue;
8060                 }
8061         }
8062
8063         mutex_unlock(&dev_priv->dev->struct_mutex);
8064 }
8065
8066 static void ironlake_init_clock_gating(struct drm_device *dev)
8067 {
8068         struct drm_i915_private *dev_priv = dev->dev_private;
8069         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8070
8071         /* Required for FBC */
8072         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8073                 DPFCRUNIT_CLOCK_GATE_DISABLE |
8074                 DPFDUNIT_CLOCK_GATE_DISABLE;
8075         /* Required for CxSR */
8076         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8077
8078         I915_WRITE(PCH_3DCGDIS0,
8079                    MARIUNIT_CLOCK_GATE_DISABLE |
8080                    SVSMUNIT_CLOCK_GATE_DISABLE);
8081         I915_WRITE(PCH_3DCGDIS1,
8082                    VFMUNIT_CLOCK_GATE_DISABLE);
8083
8084         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8085
8086         /*
8087          * According to the spec the following bits should be set in
8088          * order to enable memory self-refresh
8089          * The bit 22/21 of 0x42004
8090          * The bit 5 of 0x42020
8091          * The bit 15 of 0x45000
8092          */
8093         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8094                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
8095                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8096         I915_WRITE(ILK_DSPCLK_GATE,
8097                    (I915_READ(ILK_DSPCLK_GATE) |
8098                     ILK_DPARB_CLK_GATE));
8099         I915_WRITE(DISP_ARB_CTL,
8100                    (I915_READ(DISP_ARB_CTL) |
8101                     DISP_FBC_WM_DIS));
8102         I915_WRITE(WM3_LP_ILK, 0);
8103         I915_WRITE(WM2_LP_ILK, 0);
8104         I915_WRITE(WM1_LP_ILK, 0);
8105
8106         /*
8107          * Based on the document from hardware guys the following bits
8108          * should be set unconditionally in order to enable FBC.
8109          * The bit 22 of 0x42000
8110          * The bit 22 of 0x42004
8111          * The bit 7,8,9 of 0x42020.
8112          */
8113         if (IS_IRONLAKE_M(dev)) {
8114                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8115                            I915_READ(ILK_DISPLAY_CHICKEN1) |
8116                            ILK_FBCQ_DIS);
8117                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8118                            I915_READ(ILK_DISPLAY_CHICKEN2) |
8119                            ILK_DPARB_GATE);
8120                 I915_WRITE(ILK_DSPCLK_GATE,
8121                            I915_READ(ILK_DSPCLK_GATE) |
8122                            ILK_DPFC_DIS1 |
8123                            ILK_DPFC_DIS2 |
8124                            ILK_CLK_FBC);
8125         }
8126
8127         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8128                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8129                    ILK_ELPIN_409_SELECT);
8130         I915_WRITE(_3D_CHICKEN2,
8131                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8132                    _3D_CHICKEN2_WM_READ_PIPELINED);
8133 }
8134
8135 static void gen6_init_clock_gating(struct drm_device *dev)
8136 {
8137         struct drm_i915_private *dev_priv = dev->dev_private;
8138         int pipe;
8139         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8140
8141         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8142
8143         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8144                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8145                    ILK_ELPIN_409_SELECT);
8146
8147         I915_WRITE(WM3_LP_ILK, 0);
8148         I915_WRITE(WM2_LP_ILK, 0);
8149         I915_WRITE(WM1_LP_ILK, 0);
8150
8151         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8152          * gating disable must be set.  Failure to set it results in
8153          * flickering pixels due to Z write ordering failures after
8154          * some amount of runtime in the Mesa "fire" demo, and Unigine
8155          * Sanctuary and Tropics, and apparently anything else with
8156          * alpha test or pixel discard.
8157          *
8158          * According to the spec, bit 11 (RCCUNIT) must also be set,
8159          * but we didn't debug actual testcases to find it out.
8160          */
8161         I915_WRITE(GEN6_UCGCTL2,
8162                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8163                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8164
8165         /*
8166          * According to the spec the following bits should be
8167          * set in order to enable memory self-refresh and fbc:
8168          * The bit21 and bit22 of 0x42000
8169          * The bit21 and bit22 of 0x42004
8170          * The bit5 and bit7 of 0x42020
8171          * The bit14 of 0x70180
8172          * The bit14 of 0x71180
8173          */
8174         I915_WRITE(ILK_DISPLAY_CHICKEN1,
8175                    I915_READ(ILK_DISPLAY_CHICKEN1) |
8176                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8177         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8178                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8179                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8180         I915_WRITE(ILK_DSPCLK_GATE,
8181                    I915_READ(ILK_DSPCLK_GATE) |
8182                    ILK_DPARB_CLK_GATE  |
8183                    ILK_DPFD_CLK_GATE);
8184
8185         for_each_pipe(pipe) {
8186                 I915_WRITE(DSPCNTR(pipe),
8187                            I915_READ(DSPCNTR(pipe)) |
8188                            DISPPLANE_TRICKLE_FEED_DISABLE);
8189                 intel_flush_display_plane(dev_priv, pipe);
8190         }
8191 }
8192
8193 static void ivybridge_init_clock_gating(struct drm_device *dev)
8194 {
8195         struct drm_i915_private *dev_priv = dev->dev_private;
8196         int pipe;
8197         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8198
8199         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8200
8201         I915_WRITE(WM3_LP_ILK, 0);
8202         I915_WRITE(WM2_LP_ILK, 0);
8203         I915_WRITE(WM1_LP_ILK, 0);
8204
8205         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8206
8207         for_each_pipe(pipe) {
8208                 I915_WRITE(DSPCNTR(pipe),
8209                            I915_READ(DSPCNTR(pipe)) |
8210                            DISPPLANE_TRICKLE_FEED_DISABLE);
8211                 intel_flush_display_plane(dev_priv, pipe);
8212         }
8213 }
8214
8215 static void g4x_init_clock_gating(struct drm_device *dev)
8216 {
8217         struct drm_i915_private *dev_priv = dev->dev_private;
8218         uint32_t dspclk_gate;
8219
8220         I915_WRITE(RENCLK_GATE_D1, 0);
8221         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8222                    GS_UNIT_CLOCK_GATE_DISABLE |
8223                    CL_UNIT_CLOCK_GATE_DISABLE);
8224         I915_WRITE(RAMCLK_GATE_D, 0);
8225         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8226                 OVRUNIT_CLOCK_GATE_DISABLE |
8227                 OVCUNIT_CLOCK_GATE_DISABLE;
8228         if (IS_GM45(dev))
8229                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8230         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8231 }
8232
8233 static void crestline_init_clock_gating(struct drm_device *dev)
8234 {
8235         struct drm_i915_private *dev_priv = dev->dev_private;
8236
8237         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8238         I915_WRITE(RENCLK_GATE_D2, 0);
8239         I915_WRITE(DSPCLK_GATE_D, 0);
8240         I915_WRITE(RAMCLK_GATE_D, 0);
8241         I915_WRITE16(DEUC, 0);
8242 }
8243
8244 static void broadwater_init_clock_gating(struct drm_device *dev)
8245 {
8246         struct drm_i915_private *dev_priv = dev->dev_private;
8247
8248         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8249                    I965_RCC_CLOCK_GATE_DISABLE |
8250                    I965_RCPB_CLOCK_GATE_DISABLE |
8251                    I965_ISC_CLOCK_GATE_DISABLE |
8252                    I965_FBC_CLOCK_GATE_DISABLE);
8253         I915_WRITE(RENCLK_GATE_D2, 0);
8254 }
8255
8256 static void gen3_init_clock_gating(struct drm_device *dev)
8257 {
8258         struct drm_i915_private *dev_priv = dev->dev_private;
8259         u32 dstate = I915_READ(D_STATE);
8260
8261         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8262                 DSTATE_DOT_CLOCK_GATING;
8263         I915_WRITE(D_STATE, dstate);
8264 }
8265
8266 static void i85x_init_clock_gating(struct drm_device *dev)
8267 {
8268         struct drm_i915_private *dev_priv = dev->dev_private;
8269
8270         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8271 }
8272
8273 static void i830_init_clock_gating(struct drm_device *dev)
8274 {
8275         struct drm_i915_private *dev_priv = dev->dev_private;
8276
8277         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8278 }
8279
8280 static void ibx_init_clock_gating(struct drm_device *dev)
8281 {
8282         struct drm_i915_private *dev_priv = dev->dev_private;
8283
8284         /*
8285          * On Ibex Peak and Cougar Point, we need to disable clock
8286          * gating for the panel power sequencer or it will fail to
8287          * start up when no ports are active.
8288          */
8289         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8290 }
8291
8292 static void cpt_init_clock_gating(struct drm_device *dev)
8293 {
8294         struct drm_i915_private *dev_priv = dev->dev_private;
8295         int pipe;
8296
8297         /*
8298          * On Ibex Peak and Cougar Point, we need to disable clock
8299          * gating for the panel power sequencer or it will fail to
8300          * start up when no ports are active.
8301          */
8302         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8303         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8304                    DPLS_EDP_PPS_FIX_DIS);
8305         /* Without this, mode sets may fail silently on FDI */
8306         for_each_pipe(pipe)
8307                 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8308 }
8309
8310 static void ironlake_teardown_rc6(struct drm_device *dev)
8311 {
8312         struct drm_i915_private *dev_priv = dev->dev_private;
8313
8314         if (dev_priv->renderctx) {
8315                 i915_gem_object_unpin(dev_priv->renderctx);
8316                 drm_gem_object_unreference(&dev_priv->renderctx->base);
8317                 dev_priv->renderctx = NULL;
8318         }
8319
8320         if (dev_priv->pwrctx) {
8321                 i915_gem_object_unpin(dev_priv->pwrctx);
8322                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8323                 dev_priv->pwrctx = NULL;
8324         }
8325 }
8326
8327 static void ironlake_disable_rc6(struct drm_device *dev)
8328 {
8329         struct drm_i915_private *dev_priv = dev->dev_private;
8330
8331         if (I915_READ(PWRCTXA)) {
8332                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8333                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8334                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8335                          50);
8336
8337                 I915_WRITE(PWRCTXA, 0);
8338                 POSTING_READ(PWRCTXA);
8339
8340                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8341                 POSTING_READ(RSTDBYCTL);
8342         }
8343
8344         ironlake_teardown_rc6(dev);
8345 }
8346
8347 static int ironlake_setup_rc6(struct drm_device *dev)
8348 {
8349         struct drm_i915_private *dev_priv = dev->dev_private;
8350
8351         if (dev_priv->renderctx == NULL)
8352                 dev_priv->renderctx = intel_alloc_context_page(dev);
8353         if (!dev_priv->renderctx)
8354                 return -ENOMEM;
8355
8356         if (dev_priv->pwrctx == NULL)
8357                 dev_priv->pwrctx = intel_alloc_context_page(dev);
8358         if (!dev_priv->pwrctx) {
8359                 ironlake_teardown_rc6(dev);
8360                 return -ENOMEM;
8361         }
8362
8363         return 0;
8364 }
8365
8366 void ironlake_enable_rc6(struct drm_device *dev)
8367 {
8368         struct drm_i915_private *dev_priv = dev->dev_private;
8369         int ret;
8370
8371         /* rc6 disabled by default due to repeated reports of hanging during
8372          * boot and resume.
8373          */
8374         if (!i915_enable_rc6)
8375                 return;
8376
8377         mutex_lock(&dev->struct_mutex);
8378         ret = ironlake_setup_rc6(dev);
8379         if (ret) {
8380                 mutex_unlock(&dev->struct_mutex);
8381                 return;
8382         }
8383
8384         /*
8385          * GPU can automatically power down the render unit if given a page
8386          * to save state.
8387          */
8388         ret = BEGIN_LP_RING(6);
8389         if (ret) {
8390                 ironlake_teardown_rc6(dev);
8391                 mutex_unlock(&dev->struct_mutex);
8392                 return;
8393         }
8394
8395         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8396         OUT_RING(MI_SET_CONTEXT);
8397         OUT_RING(dev_priv->renderctx->gtt_offset |
8398                  MI_MM_SPACE_GTT |
8399                  MI_SAVE_EXT_STATE_EN |
8400                  MI_RESTORE_EXT_STATE_EN |
8401                  MI_RESTORE_INHIBIT);
8402         OUT_RING(MI_SUSPEND_FLUSH);
8403         OUT_RING(MI_NOOP);
8404         OUT_RING(MI_FLUSH);
8405         ADVANCE_LP_RING();
8406
8407         /*
8408          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8409          * does an implicit flush, combined with MI_FLUSH above, it should be
8410          * safe to assume that renderctx is valid
8411          */
8412         ret = intel_wait_ring_idle(LP_RING(dev_priv));
8413         if (ret) {
8414                 DRM_ERROR("failed to enable ironlake power power savings\n");
8415                 ironlake_teardown_rc6(dev);
8416                 mutex_unlock(&dev->struct_mutex);
8417                 return;
8418         }
8419
8420         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8421         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8422         mutex_unlock(&dev->struct_mutex);
8423 }
8424
8425 void intel_init_clock_gating(struct drm_device *dev)
8426 {
8427         struct drm_i915_private *dev_priv = dev->dev_private;
8428
8429         dev_priv->display.init_clock_gating(dev);
8430
8431         if (dev_priv->display.init_pch_clock_gating)
8432                 dev_priv->display.init_pch_clock_gating(dev);
8433 }
8434
8435 /* Set up chip specific display functions */
8436 static void intel_init_display(struct drm_device *dev)
8437 {
8438         struct drm_i915_private *dev_priv = dev->dev_private;
8439
8440         /* We always want a DPMS function */
8441         if (HAS_PCH_SPLIT(dev)) {
8442                 dev_priv->display.dpms = ironlake_crtc_dpms;
8443                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8444                 dev_priv->display.update_plane = ironlake_update_plane;
8445         } else {
8446                 dev_priv->display.dpms = i9xx_crtc_dpms;
8447                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8448                 dev_priv->display.update_plane = i9xx_update_plane;
8449         }
8450
8451         if (I915_HAS_FBC(dev)) {
8452                 if (HAS_PCH_SPLIT(dev)) {
8453                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8454                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
8455                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
8456                 } else if (IS_GM45(dev)) {
8457                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8458                         dev_priv->display.enable_fbc = g4x_enable_fbc;
8459                         dev_priv->display.disable_fbc = g4x_disable_fbc;
8460                 } else if (IS_CRESTLINE(dev)) {
8461                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8462                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
8463                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
8464                 }
8465                 /* 855GM needs testing */
8466         }
8467
8468         /* Returns the core display clock speed */
8469         if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8470                 dev_priv->display.get_display_clock_speed =
8471                         i945_get_display_clock_speed;
8472         else if (IS_I915G(dev))
8473                 dev_priv->display.get_display_clock_speed =
8474                         i915_get_display_clock_speed;
8475         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8476                 dev_priv->display.get_display_clock_speed =
8477                         i9xx_misc_get_display_clock_speed;
8478         else if (IS_I915GM(dev))
8479                 dev_priv->display.get_display_clock_speed =
8480                         i915gm_get_display_clock_speed;
8481         else if (IS_I865G(dev))
8482                 dev_priv->display.get_display_clock_speed =
8483                         i865_get_display_clock_speed;
8484         else if (IS_I85X(dev))
8485                 dev_priv->display.get_display_clock_speed =
8486                         i855_get_display_clock_speed;
8487         else /* 852, 830 */
8488                 dev_priv->display.get_display_clock_speed =
8489                         i830_get_display_clock_speed;
8490
8491         /* For FIFO watermark updates */
8492         if (HAS_PCH_SPLIT(dev)) {
8493                 if (HAS_PCH_IBX(dev))
8494                         dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8495                 else if (HAS_PCH_CPT(dev))
8496                         dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8497
8498                 if (IS_GEN5(dev)) {
8499                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8500                                 dev_priv->display.update_wm = ironlake_update_wm;
8501                         else {
8502                                 DRM_DEBUG_KMS("Failed to get proper latency. "
8503                                               "Disable CxSR\n");
8504                                 dev_priv->display.update_wm = NULL;
8505                         }
8506                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8507                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8508                         dev_priv->display.write_eld = ironlake_write_eld;
8509                 } else if (IS_GEN6(dev)) {
8510                         if (SNB_READ_WM0_LATENCY()) {
8511                                 dev_priv->display.update_wm = sandybridge_update_wm;
8512                         } else {
8513                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
8514                                               "Disable CxSR\n");
8515                                 dev_priv->display.update_wm = NULL;
8516                         }
8517                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8518                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8519                         dev_priv->display.write_eld = ironlake_write_eld;
8520                 } else if (IS_IVYBRIDGE(dev)) {
8521                         /* FIXME: detect B0+ stepping and use auto training */
8522                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8523                         if (SNB_READ_WM0_LATENCY()) {
8524                                 dev_priv->display.update_wm = sandybridge_update_wm;
8525                         } else {
8526                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
8527                                               "Disable CxSR\n");
8528                                 dev_priv->display.update_wm = NULL;
8529                         }
8530                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8531                         dev_priv->display.write_eld = ironlake_write_eld;
8532                 } else
8533                         dev_priv->display.update_wm = NULL;
8534         } else if (IS_PINEVIEW(dev)) {
8535                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8536                                             dev_priv->is_ddr3,
8537                                             dev_priv->fsb_freq,
8538                                             dev_priv->mem_freq)) {
8539                         DRM_INFO("failed to find known CxSR latency "
8540                                  "(found ddr%s fsb freq %d, mem freq %d), "
8541                                  "disabling CxSR\n",
8542                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
8543                                  dev_priv->fsb_freq, dev_priv->mem_freq);
8544                         /* Disable CxSR and never update its watermark again */
8545                         pineview_disable_cxsr(dev);
8546                         dev_priv->display.update_wm = NULL;
8547                 } else
8548                         dev_priv->display.update_wm = pineview_update_wm;
8549                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8550         } else if (IS_G4X(dev)) {
8551                 dev_priv->display.write_eld = g4x_write_eld;
8552                 dev_priv->display.update_wm = g4x_update_wm;
8553                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8554         } else if (IS_GEN4(dev)) {
8555                 dev_priv->display.update_wm = i965_update_wm;
8556                 if (IS_CRESTLINE(dev))
8557                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8558                 else if (IS_BROADWATER(dev))
8559                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8560         } else if (IS_GEN3(dev)) {
8561                 dev_priv->display.update_wm = i9xx_update_wm;
8562                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8563                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8564         } else if (IS_I865G(dev)) {
8565                 dev_priv->display.update_wm = i830_update_wm;
8566                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8567                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8568         } else if (IS_I85X(dev)) {
8569                 dev_priv->display.update_wm = i9xx_update_wm;
8570                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8571                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8572         } else {
8573                 dev_priv->display.update_wm = i830_update_wm;
8574                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8575                 if (IS_845G(dev))
8576                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
8577                 else
8578                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
8579         }
8580
8581         /* Default just returns -ENODEV to indicate unsupported */
8582         dev_priv->display.queue_flip = intel_default_queue_flip;
8583
8584         switch (INTEL_INFO(dev)->gen) {
8585         case 2:
8586                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8587                 break;
8588
8589         case 3:
8590                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8591                 break;
8592
8593         case 4:
8594         case 5:
8595                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8596                 break;
8597
8598         case 6:
8599                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8600                 break;
8601         case 7:
8602                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8603                 break;
8604         }
8605 }
8606
8607 /*
8608  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8609  * resume, or other times.  This quirk makes sure that's the case for
8610  * affected systems.
8611  */
8612 static void quirk_pipea_force(struct drm_device *dev)
8613 {
8614         struct drm_i915_private *dev_priv = dev->dev_private;
8615
8616         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8617         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8618 }
8619
8620 /*
8621  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8622  */
8623 static void quirk_ssc_force_disable(struct drm_device *dev)
8624 {
8625         struct drm_i915_private *dev_priv = dev->dev_private;
8626         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8627 }
8628
8629 struct intel_quirk {
8630         int device;
8631         int subsystem_vendor;
8632         int subsystem_device;
8633         void (*hook)(struct drm_device *dev);
8634 };
8635
8636 struct intel_quirk intel_quirks[] = {
8637         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8638         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8639         /* HP Mini needs pipe A force quirk (LP: #322104) */
8640         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8641
8642         /* Thinkpad R31 needs pipe A force quirk */
8643         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8644         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8645         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8646
8647         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8648         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
8649         /* ThinkPad X40 needs pipe A force quirk */
8650
8651         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8652         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8653
8654         /* 855 & before need to leave pipe A & dpll A up */
8655         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8656         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8657
8658         /* Lenovo U160 cannot use SSC on LVDS */
8659         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8660
8661         /* Sony Vaio Y cannot use SSC on LVDS */
8662         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8663 };
8664
8665 static void intel_init_quirks(struct drm_device *dev)
8666 {
8667         struct pci_dev *d = dev->pdev;
8668         int i;
8669
8670         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8671                 struct intel_quirk *q = &intel_quirks[i];
8672
8673                 if (d->device == q->device &&
8674                     (d->subsystem_vendor == q->subsystem_vendor ||
8675                      q->subsystem_vendor == PCI_ANY_ID) &&
8676                     (d->subsystem_device == q->subsystem_device ||
8677                      q->subsystem_device == PCI_ANY_ID))
8678                         q->hook(dev);
8679         }
8680 }
8681
8682 /* Disable the VGA plane that we never use */
8683 static void i915_disable_vga(struct drm_device *dev)
8684 {
8685         struct drm_i915_private *dev_priv = dev->dev_private;
8686         u8 sr1;
8687         u32 vga_reg;
8688
8689         if (HAS_PCH_SPLIT(dev))
8690                 vga_reg = CPU_VGACNTRL;
8691         else
8692                 vga_reg = VGACNTRL;
8693
8694         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8695         outb(1, VGA_SR_INDEX);
8696         sr1 = inb(VGA_SR_DATA);
8697         outb(sr1 | 1<<5, VGA_SR_DATA);
8698         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8699         udelay(300);
8700
8701         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8702         POSTING_READ(vga_reg);
8703 }
8704
8705 void intel_modeset_init(struct drm_device *dev)
8706 {
8707         struct drm_i915_private *dev_priv = dev->dev_private;
8708         int i;
8709
8710         drm_mode_config_init(dev);
8711
8712         dev->mode_config.min_width = 0;
8713         dev->mode_config.min_height = 0;
8714
8715         dev->mode_config.funcs = (void *)&intel_mode_funcs;
8716
8717         intel_init_quirks(dev);
8718
8719         intel_init_display(dev);
8720
8721         if (IS_GEN2(dev)) {
8722                 dev->mode_config.max_width = 2048;
8723                 dev->mode_config.max_height = 2048;
8724         } else if (IS_GEN3(dev)) {
8725                 dev->mode_config.max_width = 4096;
8726                 dev->mode_config.max_height = 4096;
8727         } else {
8728                 dev->mode_config.max_width = 8192;
8729                 dev->mode_config.max_height = 8192;
8730         }
8731         dev->mode_config.fb_base = dev->agp->base;
8732
8733         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8734                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8735
8736         for (i = 0; i < dev_priv->num_pipe; i++) {
8737                 intel_crtc_init(dev, i);
8738         }
8739
8740         /* Just disable it once at startup */
8741         i915_disable_vga(dev);
8742         intel_setup_outputs(dev);
8743
8744         intel_init_clock_gating(dev);
8745
8746         if (IS_IRONLAKE_M(dev)) {
8747                 ironlake_enable_drps(dev);
8748                 intel_init_emon(dev);
8749         }
8750
8751         if (IS_GEN6(dev) || IS_GEN7(dev)) {
8752                 gen6_enable_rps(dev_priv);
8753                 gen6_update_ring_freq(dev_priv);
8754         }
8755
8756         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
8757         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
8758                     (unsigned long)dev);
8759 }
8760
8761 void intel_modeset_gem_init(struct drm_device *dev)
8762 {
8763         if (IS_IRONLAKE_M(dev))
8764                 ironlake_enable_rc6(dev);
8765
8766         intel_setup_overlay(dev);
8767 }
8768
8769 void intel_modeset_cleanup(struct drm_device *dev)
8770 {
8771         struct drm_i915_private *dev_priv = dev->dev_private;
8772         struct drm_crtc *crtc;
8773         struct intel_crtc *intel_crtc;
8774
8775         drm_kms_helper_poll_fini(dev);
8776         mutex_lock(&dev->struct_mutex);
8777
8778         intel_unregister_dsm_handler();
8779
8780
8781         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8782                 /* Skip inactive CRTCs */
8783                 if (!crtc->fb)
8784                         continue;
8785
8786                 intel_crtc = to_intel_crtc(crtc);
8787                 intel_increase_pllclock(crtc);
8788         }
8789
8790         intel_disable_fbc(dev);
8791
8792         if (IS_IRONLAKE_M(dev))
8793                 ironlake_disable_drps(dev);
8794         if (IS_GEN6(dev) || IS_GEN7(dev))
8795                 gen6_disable_rps(dev);
8796
8797         if (IS_IRONLAKE_M(dev))
8798                 ironlake_disable_rc6(dev);
8799
8800         mutex_unlock(&dev->struct_mutex);
8801
8802         /* Disable the irq before mode object teardown, for the irq might
8803          * enqueue unpin/hotplug work. */
8804         drm_irq_uninstall(dev);
8805         cancel_work_sync(&dev_priv->hotplug_work);
8806         cancel_work_sync(&dev_priv->rps_work);
8807
8808         /* flush any delayed tasks or pending work */
8809         flush_scheduled_work();
8810
8811         /* Shut off idle work before the crtcs get freed. */
8812         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8813                 intel_crtc = to_intel_crtc(crtc);
8814                 del_timer_sync(&intel_crtc->idle_timer);
8815         }
8816         del_timer_sync(&dev_priv->idle_timer);
8817         cancel_work_sync(&dev_priv->idle_work);
8818
8819         drm_mode_config_cleanup(dev);
8820 }
8821
8822 /*
8823  * Return which encoder is currently attached for connector.
8824  */
8825 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8826 {
8827         return &intel_attached_encoder(connector)->base;
8828 }
8829
8830 void intel_connector_attach_encoder(struct intel_connector *connector,
8831                                     struct intel_encoder *encoder)
8832 {
8833         connector->encoder = encoder;
8834         drm_mode_connector_attach_encoder(&connector->base,
8835                                           &encoder->base);
8836 }
8837
8838 /*
8839  * set vga decode state - true == enable VGA decode
8840  */
8841 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8842 {
8843         struct drm_i915_private *dev_priv = dev->dev_private;
8844         u16 gmch_ctrl;
8845
8846         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8847         if (state)
8848                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8849         else
8850                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8851         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8852         return 0;
8853 }
8854
8855 #ifdef CONFIG_DEBUG_FS
8856 #include <linux/seq_file.h>
8857
8858 struct intel_display_error_state {
8859         struct intel_cursor_error_state {
8860                 u32 control;
8861                 u32 position;
8862                 u32 base;
8863                 u32 size;
8864         } cursor[2];
8865
8866         struct intel_pipe_error_state {
8867                 u32 conf;
8868                 u32 source;
8869
8870                 u32 htotal;
8871                 u32 hblank;
8872                 u32 hsync;
8873                 u32 vtotal;
8874                 u32 vblank;
8875                 u32 vsync;
8876         } pipe[2];
8877
8878         struct intel_plane_error_state {
8879                 u32 control;
8880                 u32 stride;
8881                 u32 size;
8882                 u32 pos;
8883                 u32 addr;
8884                 u32 surface;
8885                 u32 tile_offset;
8886         } plane[2];
8887 };
8888
8889 struct intel_display_error_state *
8890 intel_display_capture_error_state(struct drm_device *dev)
8891 {
8892         drm_i915_private_t *dev_priv = dev->dev_private;
8893         struct intel_display_error_state *error;
8894         int i;
8895
8896         error = kmalloc(sizeof(*error), GFP_ATOMIC);
8897         if (error == NULL)
8898                 return NULL;
8899
8900         for (i = 0; i < 2; i++) {
8901                 error->cursor[i].control = I915_READ(CURCNTR(i));
8902                 error->cursor[i].position = I915_READ(CURPOS(i));
8903                 error->cursor[i].base = I915_READ(CURBASE(i));
8904
8905                 error->plane[i].control = I915_READ(DSPCNTR(i));
8906                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8907                 error->plane[i].size = I915_READ(DSPSIZE(i));
8908                 error->plane[i].pos = I915_READ(DSPPOS(i));
8909                 error->plane[i].addr = I915_READ(DSPADDR(i));
8910                 if (INTEL_INFO(dev)->gen >= 4) {
8911                         error->plane[i].surface = I915_READ(DSPSURF(i));
8912                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8913                 }
8914
8915                 error->pipe[i].conf = I915_READ(PIPECONF(i));
8916                 error->pipe[i].source = I915_READ(PIPESRC(i));
8917                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8918                 error->pipe[i].hblank = I915_READ(HBLANK(i));
8919                 error->pipe[i].hsync = I915_READ(HSYNC(i));
8920                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8921                 error->pipe[i].vblank = I915_READ(VBLANK(i));
8922                 error->pipe[i].vsync = I915_READ(VSYNC(i));
8923         }
8924
8925         return error;
8926 }
8927
8928 void
8929 intel_display_print_error_state(struct seq_file *m,
8930                                 struct drm_device *dev,
8931                                 struct intel_display_error_state *error)
8932 {
8933         int i;
8934
8935         for (i = 0; i < 2; i++) {
8936                 seq_printf(m, "Pipe [%d]:\n", i);
8937                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
8938                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
8939                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
8940                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
8941                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
8942                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
8943                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
8944                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
8945
8946                 seq_printf(m, "Plane [%d]:\n", i);
8947                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
8948                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
8949                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
8950                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
8951                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
8952                 if (INTEL_INFO(dev)->gen >= 4) {
8953                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
8954                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
8955                 }
8956
8957                 seq_printf(m, "Cursor [%d]:\n", i);
8958                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
8959                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
8960                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
8961         }
8962 }
8963 #endif