sysfs: allow creating symlinks from untagged to tagged directories
[linux-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include "drmP.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "drm_dp_helper.h"
37
38 #include "drm_crtc_helper.h"
39
40 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
41
42 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
43 static void intel_update_watermarks(struct drm_device *dev);
44 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
45
46 typedef struct {
47     /* given values */
48     int n;
49     int m1, m2;
50     int p1, p2;
51     /* derived values */
52     int dot;
53     int vco;
54     int m;
55     int p;
56 } intel_clock_t;
57
58 typedef struct {
59     int min, max;
60 } intel_range_t;
61
62 typedef struct {
63     int dot_limit;
64     int p2_slow, p2_fast;
65 } intel_p2_t;
66
67 #define INTEL_P2_NUM                  2
68 typedef struct intel_limit intel_limit_t;
69 struct intel_limit {
70     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
71     intel_p2_t      p2;
72     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
73                       int, int, intel_clock_t *);
74 };
75
76 #define I8XX_DOT_MIN              25000
77 #define I8XX_DOT_MAX             350000
78 #define I8XX_VCO_MIN             930000
79 #define I8XX_VCO_MAX            1400000
80 #define I8XX_N_MIN                    3
81 #define I8XX_N_MAX                   16
82 #define I8XX_M_MIN                   96
83 #define I8XX_M_MAX                  140
84 #define I8XX_M1_MIN                  18
85 #define I8XX_M1_MAX                  26
86 #define I8XX_M2_MIN                   6
87 #define I8XX_M2_MAX                  16
88 #define I8XX_P_MIN                    4
89 #define I8XX_P_MAX                  128
90 #define I8XX_P1_MIN                   2
91 #define I8XX_P1_MAX                  33
92 #define I8XX_P1_LVDS_MIN              1
93 #define I8XX_P1_LVDS_MAX              6
94 #define I8XX_P2_SLOW                  4
95 #define I8XX_P2_FAST                  2
96 #define I8XX_P2_LVDS_SLOW             14
97 #define I8XX_P2_LVDS_FAST             7
98 #define I8XX_P2_SLOW_LIMIT       165000
99
100 #define I9XX_DOT_MIN              20000
101 #define I9XX_DOT_MAX             400000
102 #define I9XX_VCO_MIN            1400000
103 #define I9XX_VCO_MAX            2800000
104 #define PINEVIEW_VCO_MIN                1700000
105 #define PINEVIEW_VCO_MAX                3500000
106 #define I9XX_N_MIN                    1
107 #define I9XX_N_MAX                    6
108 /* Pineview's Ncounter is a ring counter */
109 #define PINEVIEW_N_MIN                3
110 #define PINEVIEW_N_MAX                6
111 #define I9XX_M_MIN                   70
112 #define I9XX_M_MAX                  120
113 #define PINEVIEW_M_MIN                2
114 #define PINEVIEW_M_MAX              256
115 #define I9XX_M1_MIN                  10
116 #define I9XX_M1_MAX                  22
117 #define I9XX_M2_MIN                   5
118 #define I9XX_M2_MAX                   9
119 /* Pineview M1 is reserved, and must be 0 */
120 #define PINEVIEW_M1_MIN               0
121 #define PINEVIEW_M1_MAX               0
122 #define PINEVIEW_M2_MIN               0
123 #define PINEVIEW_M2_MAX               254
124 #define I9XX_P_SDVO_DAC_MIN           5
125 #define I9XX_P_SDVO_DAC_MAX          80
126 #define I9XX_P_LVDS_MIN               7
127 #define I9XX_P_LVDS_MAX              98
128 #define PINEVIEW_P_LVDS_MIN                   7
129 #define PINEVIEW_P_LVDS_MAX                  112
130 #define I9XX_P1_MIN                   1
131 #define I9XX_P1_MAX                   8
132 #define I9XX_P2_SDVO_DAC_SLOW                10
133 #define I9XX_P2_SDVO_DAC_FAST                 5
134 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
135 #define I9XX_P2_LVDS_SLOW                    14
136 #define I9XX_P2_LVDS_FAST                     7
137 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
138
139 /*The parameter is for SDVO on G4x platform*/
140 #define G4X_DOT_SDVO_MIN           25000
141 #define G4X_DOT_SDVO_MAX           270000
142 #define G4X_VCO_MIN                1750000
143 #define G4X_VCO_MAX                3500000
144 #define G4X_N_SDVO_MIN             1
145 #define G4X_N_SDVO_MAX             4
146 #define G4X_M_SDVO_MIN             104
147 #define G4X_M_SDVO_MAX             138
148 #define G4X_M1_SDVO_MIN            17
149 #define G4X_M1_SDVO_MAX            23
150 #define G4X_M2_SDVO_MIN            5
151 #define G4X_M2_SDVO_MAX            11
152 #define G4X_P_SDVO_MIN             10
153 #define G4X_P_SDVO_MAX             30
154 #define G4X_P1_SDVO_MIN            1
155 #define G4X_P1_SDVO_MAX            3
156 #define G4X_P2_SDVO_SLOW           10
157 #define G4X_P2_SDVO_FAST           10
158 #define G4X_P2_SDVO_LIMIT          270000
159
160 /*The parameter is for HDMI_DAC on G4x platform*/
161 #define G4X_DOT_HDMI_DAC_MIN           22000
162 #define G4X_DOT_HDMI_DAC_MAX           400000
163 #define G4X_N_HDMI_DAC_MIN             1
164 #define G4X_N_HDMI_DAC_MAX             4
165 #define G4X_M_HDMI_DAC_MIN             104
166 #define G4X_M_HDMI_DAC_MAX             138
167 #define G4X_M1_HDMI_DAC_MIN            16
168 #define G4X_M1_HDMI_DAC_MAX            23
169 #define G4X_M2_HDMI_DAC_MIN            5
170 #define G4X_M2_HDMI_DAC_MAX            11
171 #define G4X_P_HDMI_DAC_MIN             5
172 #define G4X_P_HDMI_DAC_MAX             80
173 #define G4X_P1_HDMI_DAC_MIN            1
174 #define G4X_P1_HDMI_DAC_MAX            8
175 #define G4X_P2_HDMI_DAC_SLOW           10
176 #define G4X_P2_HDMI_DAC_FAST           5
177 #define G4X_P2_HDMI_DAC_LIMIT          165000
178
179 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
180 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
182 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
184 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
186 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
188 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
190 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
192 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
194 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
197
198 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
199 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
201 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
202 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
203 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
204 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
205 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
207 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
209 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
210 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
211 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
213 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
214 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
216
217 /*The parameter is for DISPLAY PORT on G4x platform*/
218 #define G4X_DOT_DISPLAY_PORT_MIN           161670
219 #define G4X_DOT_DISPLAY_PORT_MAX           227000
220 #define G4X_N_DISPLAY_PORT_MIN             1
221 #define G4X_N_DISPLAY_PORT_MAX             2
222 #define G4X_M_DISPLAY_PORT_MIN             97
223 #define G4X_M_DISPLAY_PORT_MAX             108
224 #define G4X_M1_DISPLAY_PORT_MIN            0x10
225 #define G4X_M1_DISPLAY_PORT_MAX            0x12
226 #define G4X_M2_DISPLAY_PORT_MIN            0x05
227 #define G4X_M2_DISPLAY_PORT_MAX            0x06
228 #define G4X_P_DISPLAY_PORT_MIN             10
229 #define G4X_P_DISPLAY_PORT_MAX             20
230 #define G4X_P1_DISPLAY_PORT_MIN            1
231 #define G4X_P1_DISPLAY_PORT_MAX            2
232 #define G4X_P2_DISPLAY_PORT_SLOW           10
233 #define G4X_P2_DISPLAY_PORT_FAST           10
234 #define G4X_P2_DISPLAY_PORT_LIMIT          0
235
236 /* Ironlake / Sandybridge */
237 /* as we calculate clock using (register_value + 2) for
238    N/M1/M2, so here the range value for them is (actual_value-2).
239  */
240 #define IRONLAKE_DOT_MIN         25000
241 #define IRONLAKE_DOT_MAX         350000
242 #define IRONLAKE_VCO_MIN         1760000
243 #define IRONLAKE_VCO_MAX         3510000
244 #define IRONLAKE_M1_MIN          12
245 #define IRONLAKE_M1_MAX          22
246 #define IRONLAKE_M2_MIN          5
247 #define IRONLAKE_M2_MAX          9
248 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
249
250 /* We have parameter ranges for different type of outputs. */
251
252 /* DAC & HDMI Refclk 120Mhz */
253 #define IRONLAKE_DAC_N_MIN      1
254 #define IRONLAKE_DAC_N_MAX      5
255 #define IRONLAKE_DAC_M_MIN      79
256 #define IRONLAKE_DAC_M_MAX      127
257 #define IRONLAKE_DAC_P_MIN      5
258 #define IRONLAKE_DAC_P_MAX      80
259 #define IRONLAKE_DAC_P1_MIN     1
260 #define IRONLAKE_DAC_P1_MAX     8
261 #define IRONLAKE_DAC_P2_SLOW    10
262 #define IRONLAKE_DAC_P2_FAST    5
263
264 /* LVDS single-channel 120Mhz refclk */
265 #define IRONLAKE_LVDS_S_N_MIN   1
266 #define IRONLAKE_LVDS_S_N_MAX   3
267 #define IRONLAKE_LVDS_S_M_MIN   79
268 #define IRONLAKE_LVDS_S_M_MAX   118
269 #define IRONLAKE_LVDS_S_P_MIN   28
270 #define IRONLAKE_LVDS_S_P_MAX   112
271 #define IRONLAKE_LVDS_S_P1_MIN  2
272 #define IRONLAKE_LVDS_S_P1_MAX  8
273 #define IRONLAKE_LVDS_S_P2_SLOW 14
274 #define IRONLAKE_LVDS_S_P2_FAST 14
275
276 /* LVDS dual-channel 120Mhz refclk */
277 #define IRONLAKE_LVDS_D_N_MIN   1
278 #define IRONLAKE_LVDS_D_N_MAX   3
279 #define IRONLAKE_LVDS_D_M_MIN   79
280 #define IRONLAKE_LVDS_D_M_MAX   127
281 #define IRONLAKE_LVDS_D_P_MIN   14
282 #define IRONLAKE_LVDS_D_P_MAX   56
283 #define IRONLAKE_LVDS_D_P1_MIN  2
284 #define IRONLAKE_LVDS_D_P1_MAX  8
285 #define IRONLAKE_LVDS_D_P2_SLOW 7
286 #define IRONLAKE_LVDS_D_P2_FAST 7
287
288 /* LVDS single-channel 100Mhz refclk */
289 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
290 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
291 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
292 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
293 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
294 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
295 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
296 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
297 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
298 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
299
300 /* LVDS dual-channel 100Mhz refclk */
301 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
302 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
303 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
304 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
305 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
306 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
307 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
308 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
309 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
310 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
311
312 /* DisplayPort */
313 #define IRONLAKE_DP_N_MIN               1
314 #define IRONLAKE_DP_N_MAX               2
315 #define IRONLAKE_DP_M_MIN               81
316 #define IRONLAKE_DP_M_MAX               90
317 #define IRONLAKE_DP_P_MIN               10
318 #define IRONLAKE_DP_P_MAX               20
319 #define IRONLAKE_DP_P2_FAST             10
320 #define IRONLAKE_DP_P2_SLOW             10
321 #define IRONLAKE_DP_P2_LIMIT            0
322 #define IRONLAKE_DP_P1_MIN              1
323 #define IRONLAKE_DP_P1_MAX              2
324
325 static bool
326 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
327                     int target, int refclk, intel_clock_t *best_clock);
328 static bool
329 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
330                         int target, int refclk, intel_clock_t *best_clock);
331
332 static bool
333 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
334                       int target, int refclk, intel_clock_t *best_clock);
335 static bool
336 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
337                            int target, int refclk, intel_clock_t *best_clock);
338
339 static const intel_limit_t intel_limits_i8xx_dvo = {
340         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
341         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
342         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
343         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
344         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
345         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
346         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
347         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
348         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
349                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
350         .find_pll = intel_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_i8xx_lvds = {
354         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
355         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
356         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
357         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
358         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
359         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
360         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
361         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
362         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
363                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
364         .find_pll = intel_find_best_PLL,
365 };
366         
367 static const intel_limit_t intel_limits_i9xx_sdvo = {
368         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
369         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
370         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
371         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
372         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
373         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
374         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
375         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
376         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
377                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
378         .find_pll = intel_find_best_PLL,
379 };
380
381 static const intel_limit_t intel_limits_i9xx_lvds = {
382         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
383         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
384         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
385         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
386         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
387         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
388         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
389         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
390         /* The single-channel range is 25-112Mhz, and dual-channel
391          * is 80-224Mhz.  Prefer single channel as much as possible.
392          */
393         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
394                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
395         .find_pll = intel_find_best_PLL,
396 };
397
398     /* below parameter and function is for G4X Chipset Family*/
399 static const intel_limit_t intel_limits_g4x_sdvo = {
400         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
401         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
402         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
403         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
404         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
405         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
406         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
407         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
408         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
409                  .p2_slow = G4X_P2_SDVO_SLOW,
410                  .p2_fast = G4X_P2_SDVO_FAST
411         },
412         .find_pll = intel_g4x_find_best_PLL,
413 };
414
415 static const intel_limit_t intel_limits_g4x_hdmi = {
416         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
417         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
418         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
419         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
420         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
421         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
422         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
423         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
424         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
425                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
426                  .p2_fast = G4X_P2_HDMI_DAC_FAST
427         },
428         .find_pll = intel_g4x_find_best_PLL,
429 };
430
431 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
432         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
433                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
434         .vco = { .min = G4X_VCO_MIN,
435                  .max = G4X_VCO_MAX },
436         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
437                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
438         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
439                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
440         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
441                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
442         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
443                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
444         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
445                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
446         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
447                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
448         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
449                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
450                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
451         },
452         .find_pll = intel_g4x_find_best_PLL,
453 };
454
455 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
456         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
457                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
458         .vco = { .min = G4X_VCO_MIN,
459                  .max = G4X_VCO_MAX },
460         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
461                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
462         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
463                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
464         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
465                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
466         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
467                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
468         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
469                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
470         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
471                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
472         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
473                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
474                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
475         },
476         .find_pll = intel_g4x_find_best_PLL,
477 };
478
479 static const intel_limit_t intel_limits_g4x_display_port = {
480         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
481                  .max = G4X_DOT_DISPLAY_PORT_MAX },
482         .vco = { .min = G4X_VCO_MIN,
483                  .max = G4X_VCO_MAX},
484         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
485                  .max = G4X_N_DISPLAY_PORT_MAX },
486         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
487                  .max = G4X_M_DISPLAY_PORT_MAX },
488         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
489                  .max = G4X_M1_DISPLAY_PORT_MAX },
490         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
491                  .max = G4X_M2_DISPLAY_PORT_MAX },
492         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
493                  .max = G4X_P_DISPLAY_PORT_MAX },
494         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
495                  .max = G4X_P1_DISPLAY_PORT_MAX},
496         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
497                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
498                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
499         .find_pll = intel_find_pll_g4x_dp,
500 };
501
502 static const intel_limit_t intel_limits_pineview_sdvo = {
503         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
504         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
505         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
506         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
507         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
508         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
509         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
510         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
511         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
512                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
513         .find_pll = intel_find_best_PLL,
514 };
515
516 static const intel_limit_t intel_limits_pineview_lvds = {
517         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
518         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
519         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
520         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
521         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
522         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
523         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
524         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
525         /* Pineview only supports single-channel mode. */
526         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
527                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
528         .find_pll = intel_find_best_PLL,
529 };
530
531 static const intel_limit_t intel_limits_ironlake_dac = {
532         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
533         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
534         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
535         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
536         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
537         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
538         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
539         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
540         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
541                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
542                  .p2_fast = IRONLAKE_DAC_P2_FAST },
543         .find_pll = intel_g4x_find_best_PLL,
544 };
545
546 static const intel_limit_t intel_limits_ironlake_single_lvds = {
547         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
548         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
549         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
550         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
551         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
552         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
553         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
554         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
555         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
556                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
557                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
558         .find_pll = intel_g4x_find_best_PLL,
559 };
560
561 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
562         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
563         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
564         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
565         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
566         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
567         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
568         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
569         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
570         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
571                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
572                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
573         .find_pll = intel_g4x_find_best_PLL,
574 };
575
576 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
577         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
578         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
579         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
580         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
581         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
582         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
583         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
584         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
585         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
586                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
587                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
588         .find_pll = intel_g4x_find_best_PLL,
589 };
590
591 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
592         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
593         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
594         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
595         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
596         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
597         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
598         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
599         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
600         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
601                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
602                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
603         .find_pll = intel_g4x_find_best_PLL,
604 };
605
606 static const intel_limit_t intel_limits_ironlake_display_port = {
607         .dot = { .min = IRONLAKE_DOT_MIN,
608                  .max = IRONLAKE_DOT_MAX },
609         .vco = { .min = IRONLAKE_VCO_MIN,
610                  .max = IRONLAKE_VCO_MAX},
611         .n   = { .min = IRONLAKE_DP_N_MIN,
612                  .max = IRONLAKE_DP_N_MAX },
613         .m   = { .min = IRONLAKE_DP_M_MIN,
614                  .max = IRONLAKE_DP_M_MAX },
615         .m1  = { .min = IRONLAKE_M1_MIN,
616                  .max = IRONLAKE_M1_MAX },
617         .m2  = { .min = IRONLAKE_M2_MIN,
618                  .max = IRONLAKE_M2_MAX },
619         .p   = { .min = IRONLAKE_DP_P_MIN,
620                  .max = IRONLAKE_DP_P_MAX },
621         .p1  = { .min = IRONLAKE_DP_P1_MIN,
622                  .max = IRONLAKE_DP_P1_MAX},
623         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
624                  .p2_slow = IRONLAKE_DP_P2_SLOW,
625                  .p2_fast = IRONLAKE_DP_P2_FAST },
626         .find_pll = intel_find_pll_ironlake_dp,
627 };
628
629 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
630 {
631         struct drm_device *dev = crtc->dev;
632         struct drm_i915_private *dev_priv = dev->dev_private;
633         const intel_limit_t *limit;
634         int refclk = 120;
635
636         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
637                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
638                         refclk = 100;
639
640                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
641                     LVDS_CLKB_POWER_UP) {
642                         /* LVDS dual channel */
643                         if (refclk == 100)
644                                 limit = &intel_limits_ironlake_dual_lvds_100m;
645                         else
646                                 limit = &intel_limits_ironlake_dual_lvds;
647                 } else {
648                         if (refclk == 100)
649                                 limit = &intel_limits_ironlake_single_lvds_100m;
650                         else
651                                 limit = &intel_limits_ironlake_single_lvds;
652                 }
653         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
654                         HAS_eDP)
655                 limit = &intel_limits_ironlake_display_port;
656         else
657                 limit = &intel_limits_ironlake_dac;
658
659         return limit;
660 }
661
662 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
663 {
664         struct drm_device *dev = crtc->dev;
665         struct drm_i915_private *dev_priv = dev->dev_private;
666         const intel_limit_t *limit;
667
668         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
669                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
670                     LVDS_CLKB_POWER_UP)
671                         /* LVDS with dual channel */
672                         limit = &intel_limits_g4x_dual_channel_lvds;
673                 else
674                         /* LVDS with dual channel */
675                         limit = &intel_limits_g4x_single_channel_lvds;
676         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
677                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
678                 limit = &intel_limits_g4x_hdmi;
679         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
680                 limit = &intel_limits_g4x_sdvo;
681         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
682                 limit = &intel_limits_g4x_display_port;
683         } else /* The option is for other outputs */
684                 limit = &intel_limits_i9xx_sdvo;
685
686         return limit;
687 }
688
689 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
690 {
691         struct drm_device *dev = crtc->dev;
692         const intel_limit_t *limit;
693
694         if (HAS_PCH_SPLIT(dev))
695                 limit = intel_ironlake_limit(crtc);
696         else if (IS_G4X(dev)) {
697                 limit = intel_g4x_limit(crtc);
698         } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
699                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
700                         limit = &intel_limits_i9xx_lvds;
701                 else
702                         limit = &intel_limits_i9xx_sdvo;
703         } else if (IS_PINEVIEW(dev)) {
704                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
705                         limit = &intel_limits_pineview_lvds;
706                 else
707                         limit = &intel_limits_pineview_sdvo;
708         } else {
709                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
710                         limit = &intel_limits_i8xx_lvds;
711                 else
712                         limit = &intel_limits_i8xx_dvo;
713         }
714         return limit;
715 }
716
717 /* m1 is reserved as 0 in Pineview, n is a ring counter */
718 static void pineview_clock(int refclk, intel_clock_t *clock)
719 {
720         clock->m = clock->m2 + 2;
721         clock->p = clock->p1 * clock->p2;
722         clock->vco = refclk * clock->m / clock->n;
723         clock->dot = clock->vco / clock->p;
724 }
725
726 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
727 {
728         if (IS_PINEVIEW(dev)) {
729                 pineview_clock(refclk, clock);
730                 return;
731         }
732         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
733         clock->p = clock->p1 * clock->p2;
734         clock->vco = refclk * clock->m / (clock->n + 2);
735         clock->dot = clock->vco / clock->p;
736 }
737
738 /**
739  * Returns whether any output on the specified pipe is of the specified type
740  */
741 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
742 {
743     struct drm_device *dev = crtc->dev;
744     struct drm_mode_config *mode_config = &dev->mode_config;
745     struct drm_encoder *l_entry;
746
747     list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
748             if (l_entry && l_entry->crtc == crtc) {
749                     struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
750                     if (intel_encoder->type == type)
751                             return true;
752             }
753     }
754     return false;
755 }
756
757 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
758 /**
759  * Returns whether the given set of divisors are valid for a given refclk with
760  * the given connectors.
761  */
762
763 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
764 {
765         const intel_limit_t *limit = intel_limit (crtc);
766         struct drm_device *dev = crtc->dev;
767
768         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
769                 INTELPllInvalid ("p1 out of range\n");
770         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
771                 INTELPllInvalid ("p out of range\n");
772         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
773                 INTELPllInvalid ("m2 out of range\n");
774         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
775                 INTELPllInvalid ("m1 out of range\n");
776         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
777                 INTELPllInvalid ("m1 <= m2\n");
778         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
779                 INTELPllInvalid ("m out of range\n");
780         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
781                 INTELPllInvalid ("n out of range\n");
782         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
783                 INTELPllInvalid ("vco out of range\n");
784         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
785          * connector, etc., rather than just a single range.
786          */
787         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
788                 INTELPllInvalid ("dot out of range\n");
789
790         return true;
791 }
792
793 static bool
794 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
795                     int target, int refclk, intel_clock_t *best_clock)
796
797 {
798         struct drm_device *dev = crtc->dev;
799         struct drm_i915_private *dev_priv = dev->dev_private;
800         intel_clock_t clock;
801         int err = target;
802
803         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
804             (I915_READ(LVDS)) != 0) {
805                 /*
806                  * For LVDS, if the panel is on, just rely on its current
807                  * settings for dual-channel.  We haven't figured out how to
808                  * reliably set up different single/dual channel state, if we
809                  * even can.
810                  */
811                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
812                     LVDS_CLKB_POWER_UP)
813                         clock.p2 = limit->p2.p2_fast;
814                 else
815                         clock.p2 = limit->p2.p2_slow;
816         } else {
817                 if (target < limit->p2.dot_limit)
818                         clock.p2 = limit->p2.p2_slow;
819                 else
820                         clock.p2 = limit->p2.p2_fast;
821         }
822
823         memset (best_clock, 0, sizeof (*best_clock));
824
825         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
826              clock.m1++) {
827                 for (clock.m2 = limit->m2.min;
828                      clock.m2 <= limit->m2.max; clock.m2++) {
829                         /* m1 is always 0 in Pineview */
830                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
831                                 break;
832                         for (clock.n = limit->n.min;
833                              clock.n <= limit->n.max; clock.n++) {
834                                 for (clock.p1 = limit->p1.min;
835                                         clock.p1 <= limit->p1.max; clock.p1++) {
836                                         int this_err;
837
838                                         intel_clock(dev, refclk, &clock);
839
840                                         if (!intel_PLL_is_valid(crtc, &clock))
841                                                 continue;
842
843                                         this_err = abs(clock.dot - target);
844                                         if (this_err < err) {
845                                                 *best_clock = clock;
846                                                 err = this_err;
847                                         }
848                                 }
849                         }
850                 }
851         }
852
853         return (err != target);
854 }
855
856 static bool
857 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
858                         int target, int refclk, intel_clock_t *best_clock)
859 {
860         struct drm_device *dev = crtc->dev;
861         struct drm_i915_private *dev_priv = dev->dev_private;
862         intel_clock_t clock;
863         int max_n;
864         bool found;
865         /* approximately equals target * 0.00488 */
866         int err_most = (target >> 8) + (target >> 10);
867         found = false;
868
869         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
870                 int lvds_reg;
871
872                 if (HAS_PCH_SPLIT(dev))
873                         lvds_reg = PCH_LVDS;
874                 else
875                         lvds_reg = LVDS;
876                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
877                     LVDS_CLKB_POWER_UP)
878                         clock.p2 = limit->p2.p2_fast;
879                 else
880                         clock.p2 = limit->p2.p2_slow;
881         } else {
882                 if (target < limit->p2.dot_limit)
883                         clock.p2 = limit->p2.p2_slow;
884                 else
885                         clock.p2 = limit->p2.p2_fast;
886         }
887
888         memset(best_clock, 0, sizeof(*best_clock));
889         max_n = limit->n.max;
890         /* based on hardware requirement, prefer smaller n to precision */
891         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
892                 /* based on hardware requirement, prefere larger m1,m2 */
893                 for (clock.m1 = limit->m1.max;
894                      clock.m1 >= limit->m1.min; clock.m1--) {
895                         for (clock.m2 = limit->m2.max;
896                              clock.m2 >= limit->m2.min; clock.m2--) {
897                                 for (clock.p1 = limit->p1.max;
898                                      clock.p1 >= limit->p1.min; clock.p1--) {
899                                         int this_err;
900
901                                         intel_clock(dev, refclk, &clock);
902                                         if (!intel_PLL_is_valid(crtc, &clock))
903                                                 continue;
904                                         this_err = abs(clock.dot - target) ;
905                                         if (this_err < err_most) {
906                                                 *best_clock = clock;
907                                                 err_most = this_err;
908                                                 max_n = clock.n;
909                                                 found = true;
910                                         }
911                                 }
912                         }
913                 }
914         }
915         return found;
916 }
917
918 static bool
919 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
920                            int target, int refclk, intel_clock_t *best_clock)
921 {
922         struct drm_device *dev = crtc->dev;
923         intel_clock_t clock;
924
925         /* return directly when it is eDP */
926         if (HAS_eDP)
927                 return true;
928
929         if (target < 200000) {
930                 clock.n = 1;
931                 clock.p1 = 2;
932                 clock.p2 = 10;
933                 clock.m1 = 12;
934                 clock.m2 = 9;
935         } else {
936                 clock.n = 2;
937                 clock.p1 = 1;
938                 clock.p2 = 10;
939                 clock.m1 = 14;
940                 clock.m2 = 8;
941         }
942         intel_clock(dev, refclk, &clock);
943         memcpy(best_clock, &clock, sizeof(intel_clock_t));
944         return true;
945 }
946
947 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
948 static bool
949 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
950                       int target, int refclk, intel_clock_t *best_clock)
951 {
952     intel_clock_t clock;
953     if (target < 200000) {
954         clock.p1 = 2;
955         clock.p2 = 10;
956         clock.n = 2;
957         clock.m1 = 23;
958         clock.m2 = 8;
959     } else {
960         clock.p1 = 1;
961         clock.p2 = 10;
962         clock.n = 1;
963         clock.m1 = 14;
964         clock.m2 = 2;
965     }
966     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
967     clock.p = (clock.p1 * clock.p2);
968     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
969     clock.vco = 0;
970     memcpy(best_clock, &clock, sizeof(intel_clock_t));
971     return true;
972 }
973
974 void
975 intel_wait_for_vblank(struct drm_device *dev)
976 {
977         /* Wait for 20ms, i.e. one cycle at 50hz. */
978         msleep(20);
979 }
980
981 /* Parameters have changed, update FBC info */
982 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
983 {
984         struct drm_device *dev = crtc->dev;
985         struct drm_i915_private *dev_priv = dev->dev_private;
986         struct drm_framebuffer *fb = crtc->fb;
987         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
988         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
989         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
990         int plane, i;
991         u32 fbc_ctl, fbc_ctl2;
992
993         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
994
995         if (fb->pitch < dev_priv->cfb_pitch)
996                 dev_priv->cfb_pitch = fb->pitch;
997
998         /* FBC_CTL wants 64B units */
999         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1000         dev_priv->cfb_fence = obj_priv->fence_reg;
1001         dev_priv->cfb_plane = intel_crtc->plane;
1002         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1003
1004         /* Clear old tags */
1005         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1006                 I915_WRITE(FBC_TAG + (i * 4), 0);
1007
1008         /* Set it up... */
1009         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1010         if (obj_priv->tiling_mode != I915_TILING_NONE)
1011                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1012         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1013         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1014
1015         /* enable it... */
1016         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1017         if (IS_I945GM(dev))
1018                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1019         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1020         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1021         if (obj_priv->tiling_mode != I915_TILING_NONE)
1022                 fbc_ctl |= dev_priv->cfb_fence;
1023         I915_WRITE(FBC_CONTROL, fbc_ctl);
1024
1025         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1026                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1027 }
1028
1029 void i8xx_disable_fbc(struct drm_device *dev)
1030 {
1031         struct drm_i915_private *dev_priv = dev->dev_private;
1032         unsigned long timeout = jiffies + msecs_to_jiffies(1);
1033         u32 fbc_ctl;
1034
1035         if (!I915_HAS_FBC(dev))
1036                 return;
1037
1038         if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
1039                 return; /* Already off, just return */
1040
1041         /* Disable compression */
1042         fbc_ctl = I915_READ(FBC_CONTROL);
1043         fbc_ctl &= ~FBC_CTL_EN;
1044         I915_WRITE(FBC_CONTROL, fbc_ctl);
1045
1046         /* Wait for compressing bit to clear */
1047         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) {
1048                 if (time_after(jiffies, timeout)) {
1049                         DRM_DEBUG_DRIVER("FBC idle timed out\n");
1050                         break;
1051                 }
1052                 ; /* do nothing */
1053         }
1054
1055         intel_wait_for_vblank(dev);
1056
1057         DRM_DEBUG_KMS("disabled FBC\n");
1058 }
1059
1060 static bool i8xx_fbc_enabled(struct drm_device *dev)
1061 {
1062         struct drm_i915_private *dev_priv = dev->dev_private;
1063
1064         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1065 }
1066
1067 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1068 {
1069         struct drm_device *dev = crtc->dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         struct drm_framebuffer *fb = crtc->fb;
1072         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1073         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1074         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1075         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1076                      DPFC_CTL_PLANEB);
1077         unsigned long stall_watermark = 200;
1078         u32 dpfc_ctl;
1079
1080         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1081         dev_priv->cfb_fence = obj_priv->fence_reg;
1082         dev_priv->cfb_plane = intel_crtc->plane;
1083
1084         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1085         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1086                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1087                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1088         } else {
1089                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1090         }
1091
1092         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1093         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1094                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1095                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1096         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1097
1098         /* enable it... */
1099         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1100
1101         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1102 }
1103
1104 void g4x_disable_fbc(struct drm_device *dev)
1105 {
1106         struct drm_i915_private *dev_priv = dev->dev_private;
1107         u32 dpfc_ctl;
1108
1109         /* Disable compression */
1110         dpfc_ctl = I915_READ(DPFC_CONTROL);
1111         dpfc_ctl &= ~DPFC_CTL_EN;
1112         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1113         intel_wait_for_vblank(dev);
1114
1115         DRM_DEBUG_KMS("disabled FBC\n");
1116 }
1117
1118 static bool g4x_fbc_enabled(struct drm_device *dev)
1119 {
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121
1122         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1123 }
1124
1125 bool intel_fbc_enabled(struct drm_device *dev)
1126 {
1127         struct drm_i915_private *dev_priv = dev->dev_private;
1128
1129         if (!dev_priv->display.fbc_enabled)
1130                 return false;
1131
1132         return dev_priv->display.fbc_enabled(dev);
1133 }
1134
1135 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1136 {
1137         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1138
1139         if (!dev_priv->display.enable_fbc)
1140                 return;
1141
1142         dev_priv->display.enable_fbc(crtc, interval);
1143 }
1144
1145 void intel_disable_fbc(struct drm_device *dev)
1146 {
1147         struct drm_i915_private *dev_priv = dev->dev_private;
1148
1149         if (!dev_priv->display.disable_fbc)
1150                 return;
1151
1152         dev_priv->display.disable_fbc(dev);
1153 }
1154
1155 /**
1156  * intel_update_fbc - enable/disable FBC as needed
1157  * @crtc: CRTC to point the compressor at
1158  * @mode: mode in use
1159  *
1160  * Set up the framebuffer compression hardware at mode set time.  We
1161  * enable it if possible:
1162  *   - plane A only (on pre-965)
1163  *   - no pixel mulitply/line duplication
1164  *   - no alpha buffer discard
1165  *   - no dual wide
1166  *   - framebuffer <= 2048 in width, 1536 in height
1167  *
1168  * We can't assume that any compression will take place (worst case),
1169  * so the compressed buffer has to be the same size as the uncompressed
1170  * one.  It also must reside (along with the line length buffer) in
1171  * stolen memory.
1172  *
1173  * We need to enable/disable FBC on a global basis.
1174  */
1175 static void intel_update_fbc(struct drm_crtc *crtc,
1176                              struct drm_display_mode *mode)
1177 {
1178         struct drm_device *dev = crtc->dev;
1179         struct drm_i915_private *dev_priv = dev->dev_private;
1180         struct drm_framebuffer *fb = crtc->fb;
1181         struct intel_framebuffer *intel_fb;
1182         struct drm_i915_gem_object *obj_priv;
1183         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1184         int plane = intel_crtc->plane;
1185
1186         if (!i915_powersave)
1187                 return;
1188
1189         if (!I915_HAS_FBC(dev))
1190                 return;
1191
1192         if (!crtc->fb)
1193                 return;
1194
1195         intel_fb = to_intel_framebuffer(fb);
1196         obj_priv = to_intel_bo(intel_fb->obj);
1197
1198         /*
1199          * If FBC is already on, we just have to verify that we can
1200          * keep it that way...
1201          * Need to disable if:
1202          *   - changing FBC params (stride, fence, mode)
1203          *   - new fb is too large to fit in compressed buffer
1204          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1205          */
1206         if (intel_fb->obj->size > dev_priv->cfb_size) {
1207                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1208                                 "compression\n");
1209                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1210                 goto out_disable;
1211         }
1212         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1213             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1214                 DRM_DEBUG_KMS("mode incompatible with compression, "
1215                                 "disabling\n");
1216                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1217                 goto out_disable;
1218         }
1219         if ((mode->hdisplay > 2048) ||
1220             (mode->vdisplay > 1536)) {
1221                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1222                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1223                 goto out_disable;
1224         }
1225         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1226                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1227                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1228                 goto out_disable;
1229         }
1230         if (obj_priv->tiling_mode != I915_TILING_X) {
1231                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1232                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1233                 goto out_disable;
1234         }
1235
1236         if (intel_fbc_enabled(dev)) {
1237                 /* We can re-enable it in this case, but need to update pitch */
1238                 if ((fb->pitch > dev_priv->cfb_pitch) ||
1239                     (obj_priv->fence_reg != dev_priv->cfb_fence) ||
1240                     (plane != dev_priv->cfb_plane))
1241                         intel_disable_fbc(dev);
1242         }
1243
1244         /* Now try to turn it back on if possible */
1245         if (!intel_fbc_enabled(dev))
1246                 intel_enable_fbc(crtc, 500);
1247
1248         return;
1249
1250 out_disable:
1251         /* Multiple disables should be harmless */
1252         if (intel_fbc_enabled(dev)) {
1253                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1254                 intel_disable_fbc(dev);
1255         }
1256 }
1257
1258 static int
1259 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1260 {
1261         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1262         u32 alignment;
1263         int ret;
1264
1265         switch (obj_priv->tiling_mode) {
1266         case I915_TILING_NONE:
1267                 alignment = 64 * 1024;
1268                 break;
1269         case I915_TILING_X:
1270                 /* pin() will align the object as required by fence */
1271                 alignment = 0;
1272                 break;
1273         case I915_TILING_Y:
1274                 /* FIXME: Is this true? */
1275                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1276                 return -EINVAL;
1277         default:
1278                 BUG();
1279         }
1280
1281         ret = i915_gem_object_pin(obj, alignment);
1282         if (ret != 0)
1283                 return ret;
1284
1285         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1286          * fence, whereas 965+ only requires a fence if using
1287          * framebuffer compression.  For simplicity, we always install
1288          * a fence as the cost is not that onerous.
1289          */
1290         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1291             obj_priv->tiling_mode != I915_TILING_NONE) {
1292                 ret = i915_gem_object_get_fence_reg(obj);
1293                 if (ret != 0) {
1294                         i915_gem_object_unpin(obj);
1295                         return ret;
1296                 }
1297         }
1298
1299         return 0;
1300 }
1301
1302 static int
1303 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1304                     struct drm_framebuffer *old_fb)
1305 {
1306         struct drm_device *dev = crtc->dev;
1307         struct drm_i915_private *dev_priv = dev->dev_private;
1308         struct drm_i915_master_private *master_priv;
1309         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1310         struct intel_framebuffer *intel_fb;
1311         struct drm_i915_gem_object *obj_priv;
1312         struct drm_gem_object *obj;
1313         int pipe = intel_crtc->pipe;
1314         int plane = intel_crtc->plane;
1315         unsigned long Start, Offset;
1316         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1317         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1318         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1319         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1320         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1321         u32 dspcntr;
1322         int ret;
1323
1324         /* no fb bound */
1325         if (!crtc->fb) {
1326                 DRM_DEBUG_KMS("No FB bound\n");
1327                 return 0;
1328         }
1329
1330         switch (plane) {
1331         case 0:
1332         case 1:
1333                 break;
1334         default:
1335                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1336                 return -EINVAL;
1337         }
1338
1339         intel_fb = to_intel_framebuffer(crtc->fb);
1340         obj = intel_fb->obj;
1341         obj_priv = to_intel_bo(obj);
1342
1343         mutex_lock(&dev->struct_mutex);
1344         ret = intel_pin_and_fence_fb_obj(dev, obj);
1345         if (ret != 0) {
1346                 mutex_unlock(&dev->struct_mutex);
1347                 return ret;
1348         }
1349
1350         ret = i915_gem_object_set_to_display_plane(obj);
1351         if (ret != 0) {
1352                 i915_gem_object_unpin(obj);
1353                 mutex_unlock(&dev->struct_mutex);
1354                 return ret;
1355         }
1356
1357         dspcntr = I915_READ(dspcntr_reg);
1358         /* Mask out pixel format bits in case we change it */
1359         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1360         switch (crtc->fb->bits_per_pixel) {
1361         case 8:
1362                 dspcntr |= DISPPLANE_8BPP;
1363                 break;
1364         case 16:
1365                 if (crtc->fb->depth == 15)
1366                         dspcntr |= DISPPLANE_15_16BPP;
1367                 else
1368                         dspcntr |= DISPPLANE_16BPP;
1369                 break;
1370         case 24:
1371         case 32:
1372                 if (crtc->fb->depth == 30)
1373                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1374                 else
1375                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1376                 break;
1377         default:
1378                 DRM_ERROR("Unknown color depth\n");
1379                 i915_gem_object_unpin(obj);
1380                 mutex_unlock(&dev->struct_mutex);
1381                 return -EINVAL;
1382         }
1383         if (IS_I965G(dev)) {
1384                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1385                         dspcntr |= DISPPLANE_TILED;
1386                 else
1387                         dspcntr &= ~DISPPLANE_TILED;
1388         }
1389
1390         if (HAS_PCH_SPLIT(dev))
1391                 /* must disable */
1392                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1393
1394         I915_WRITE(dspcntr_reg, dspcntr);
1395
1396         Start = obj_priv->gtt_offset;
1397         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1398
1399         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1400                       Start, Offset, x, y, crtc->fb->pitch);
1401         I915_WRITE(dspstride, crtc->fb->pitch);
1402         if (IS_I965G(dev)) {
1403                 I915_WRITE(dspbase, Offset);
1404                 I915_READ(dspbase);
1405                 I915_WRITE(dspsurf, Start);
1406                 I915_READ(dspsurf);
1407                 I915_WRITE(dsptileoff, (y << 16) | x);
1408         } else {
1409                 I915_WRITE(dspbase, Start + Offset);
1410                 I915_READ(dspbase);
1411         }
1412
1413         if ((IS_I965G(dev) || plane == 0))
1414                 intel_update_fbc(crtc, &crtc->mode);
1415
1416         intel_wait_for_vblank(dev);
1417
1418         if (old_fb) {
1419                 intel_fb = to_intel_framebuffer(old_fb);
1420                 obj_priv = to_intel_bo(intel_fb->obj);
1421                 i915_gem_object_unpin(intel_fb->obj);
1422         }
1423         intel_increase_pllclock(crtc, true);
1424
1425         mutex_unlock(&dev->struct_mutex);
1426
1427         if (!dev->primary->master)
1428                 return 0;
1429
1430         master_priv = dev->primary->master->driver_priv;
1431         if (!master_priv->sarea_priv)
1432                 return 0;
1433
1434         if (pipe) {
1435                 master_priv->sarea_priv->pipeB_x = x;
1436                 master_priv->sarea_priv->pipeB_y = y;
1437         } else {
1438                 master_priv->sarea_priv->pipeA_x = x;
1439                 master_priv->sarea_priv->pipeA_y = y;
1440         }
1441
1442         return 0;
1443 }
1444
1445 /* Disable the VGA plane that we never use */
1446 static void i915_disable_vga (struct drm_device *dev)
1447 {
1448         struct drm_i915_private *dev_priv = dev->dev_private;
1449         u8 sr1;
1450         u32 vga_reg;
1451
1452         if (HAS_PCH_SPLIT(dev))
1453                 vga_reg = CPU_VGACNTRL;
1454         else
1455                 vga_reg = VGACNTRL;
1456
1457         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1458                 return;
1459
1460         I915_WRITE8(VGA_SR_INDEX, 1);
1461         sr1 = I915_READ8(VGA_SR_DATA);
1462         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1463         udelay(100);
1464
1465         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1466 }
1467
1468 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1469 {
1470         struct drm_device *dev = crtc->dev;
1471         struct drm_i915_private *dev_priv = dev->dev_private;
1472         u32 dpa_ctl;
1473
1474         DRM_DEBUG_KMS("\n");
1475         dpa_ctl = I915_READ(DP_A);
1476         dpa_ctl &= ~DP_PLL_ENABLE;
1477         I915_WRITE(DP_A, dpa_ctl);
1478 }
1479
1480 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1481 {
1482         struct drm_device *dev = crtc->dev;
1483         struct drm_i915_private *dev_priv = dev->dev_private;
1484         u32 dpa_ctl;
1485
1486         dpa_ctl = I915_READ(DP_A);
1487         dpa_ctl |= DP_PLL_ENABLE;
1488         I915_WRITE(DP_A, dpa_ctl);
1489         udelay(200);
1490 }
1491
1492
1493 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1494 {
1495         struct drm_device *dev = crtc->dev;
1496         struct drm_i915_private *dev_priv = dev->dev_private;
1497         u32 dpa_ctl;
1498
1499         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1500         dpa_ctl = I915_READ(DP_A);
1501         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1502
1503         if (clock < 200000) {
1504                 u32 temp;
1505                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1506                 /* workaround for 160Mhz:
1507                    1) program 0x4600c bits 15:0 = 0x8124
1508                    2) program 0x46010 bit 0 = 1
1509                    3) program 0x46034 bit 24 = 1
1510                    4) program 0x64000 bit 14 = 1
1511                    */
1512                 temp = I915_READ(0x4600c);
1513                 temp &= 0xffff0000;
1514                 I915_WRITE(0x4600c, temp | 0x8124);
1515
1516                 temp = I915_READ(0x46010);
1517                 I915_WRITE(0x46010, temp | 1);
1518
1519                 temp = I915_READ(0x46034);
1520                 I915_WRITE(0x46034, temp | (1 << 24));
1521         } else {
1522                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1523         }
1524         I915_WRITE(DP_A, dpa_ctl);
1525
1526         udelay(500);
1527 }
1528
1529 /* The FDI link training functions for ILK/Ibexpeak. */
1530 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1531 {
1532         struct drm_device *dev = crtc->dev;
1533         struct drm_i915_private *dev_priv = dev->dev_private;
1534         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1535         int pipe = intel_crtc->pipe;
1536         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1537         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1538         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1539         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1540         u32 temp, tries = 0;
1541
1542         /* enable CPU FDI TX and PCH FDI RX */
1543         temp = I915_READ(fdi_tx_reg);
1544         temp |= FDI_TX_ENABLE;
1545         temp &= ~(7 << 19);
1546         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1547         temp &= ~FDI_LINK_TRAIN_NONE;
1548         temp |= FDI_LINK_TRAIN_PATTERN_1;
1549         I915_WRITE(fdi_tx_reg, temp);
1550         I915_READ(fdi_tx_reg);
1551
1552         temp = I915_READ(fdi_rx_reg);
1553         temp &= ~FDI_LINK_TRAIN_NONE;
1554         temp |= FDI_LINK_TRAIN_PATTERN_1;
1555         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1556         I915_READ(fdi_rx_reg);
1557         udelay(150);
1558
1559         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1560            for train result */
1561         temp = I915_READ(fdi_rx_imr_reg);
1562         temp &= ~FDI_RX_SYMBOL_LOCK;
1563         temp &= ~FDI_RX_BIT_LOCK;
1564         I915_WRITE(fdi_rx_imr_reg, temp);
1565         I915_READ(fdi_rx_imr_reg);
1566         udelay(150);
1567
1568         for (;;) {
1569                 temp = I915_READ(fdi_rx_iir_reg);
1570                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1571
1572                 if ((temp & FDI_RX_BIT_LOCK)) {
1573                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1574                         I915_WRITE(fdi_rx_iir_reg,
1575                                    temp | FDI_RX_BIT_LOCK);
1576                         break;
1577                 }
1578
1579                 tries++;
1580
1581                 if (tries > 5) {
1582                         DRM_DEBUG_KMS("FDI train 1 fail!\n");
1583                         break;
1584                 }
1585         }
1586
1587         /* Train 2 */
1588         temp = I915_READ(fdi_tx_reg);
1589         temp &= ~FDI_LINK_TRAIN_NONE;
1590         temp |= FDI_LINK_TRAIN_PATTERN_2;
1591         I915_WRITE(fdi_tx_reg, temp);
1592
1593         temp = I915_READ(fdi_rx_reg);
1594         temp &= ~FDI_LINK_TRAIN_NONE;
1595         temp |= FDI_LINK_TRAIN_PATTERN_2;
1596         I915_WRITE(fdi_rx_reg, temp);
1597         udelay(150);
1598
1599         tries = 0;
1600
1601         for (;;) {
1602                 temp = I915_READ(fdi_rx_iir_reg);
1603                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1604
1605                 if (temp & FDI_RX_SYMBOL_LOCK) {
1606                         I915_WRITE(fdi_rx_iir_reg,
1607                                    temp | FDI_RX_SYMBOL_LOCK);
1608                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1609                         break;
1610                 }
1611
1612                 tries++;
1613
1614                 if (tries > 5) {
1615                         DRM_DEBUG_KMS("FDI train 2 fail!\n");
1616                         break;
1617                 }
1618         }
1619
1620         DRM_DEBUG_KMS("FDI train done\n");
1621 }
1622
1623 static int snb_b_fdi_train_param [] = {
1624         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1625         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1626         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1627         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1628 };
1629
1630 /* The FDI link training functions for SNB/Cougarpoint. */
1631 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1632 {
1633         struct drm_device *dev = crtc->dev;
1634         struct drm_i915_private *dev_priv = dev->dev_private;
1635         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1636         int pipe = intel_crtc->pipe;
1637         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1638         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1639         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1640         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1641         u32 temp, i;
1642
1643         /* enable CPU FDI TX and PCH FDI RX */
1644         temp = I915_READ(fdi_tx_reg);
1645         temp |= FDI_TX_ENABLE;
1646         temp &= ~(7 << 19);
1647         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1648         temp &= ~FDI_LINK_TRAIN_NONE;
1649         temp |= FDI_LINK_TRAIN_PATTERN_1;
1650         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1651         /* SNB-B */
1652         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1653         I915_WRITE(fdi_tx_reg, temp);
1654         I915_READ(fdi_tx_reg);
1655
1656         temp = I915_READ(fdi_rx_reg);
1657         if (HAS_PCH_CPT(dev)) {
1658                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1659                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1660         } else {
1661                 temp &= ~FDI_LINK_TRAIN_NONE;
1662                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1663         }
1664         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1665         I915_READ(fdi_rx_reg);
1666         udelay(150);
1667
1668         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1669            for train result */
1670         temp = I915_READ(fdi_rx_imr_reg);
1671         temp &= ~FDI_RX_SYMBOL_LOCK;
1672         temp &= ~FDI_RX_BIT_LOCK;
1673         I915_WRITE(fdi_rx_imr_reg, temp);
1674         I915_READ(fdi_rx_imr_reg);
1675         udelay(150);
1676
1677         for (i = 0; i < 4; i++ ) {
1678                 temp = I915_READ(fdi_tx_reg);
1679                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1680                 temp |= snb_b_fdi_train_param[i];
1681                 I915_WRITE(fdi_tx_reg, temp);
1682                 udelay(500);
1683
1684                 temp = I915_READ(fdi_rx_iir_reg);
1685                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1686
1687                 if (temp & FDI_RX_BIT_LOCK) {
1688                         I915_WRITE(fdi_rx_iir_reg,
1689                                    temp | FDI_RX_BIT_LOCK);
1690                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1691                         break;
1692                 }
1693         }
1694         if (i == 4)
1695                 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1696
1697         /* Train 2 */
1698         temp = I915_READ(fdi_tx_reg);
1699         temp &= ~FDI_LINK_TRAIN_NONE;
1700         temp |= FDI_LINK_TRAIN_PATTERN_2;
1701         if (IS_GEN6(dev)) {
1702                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1703                 /* SNB-B */
1704                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1705         }
1706         I915_WRITE(fdi_tx_reg, temp);
1707
1708         temp = I915_READ(fdi_rx_reg);
1709         if (HAS_PCH_CPT(dev)) {
1710                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1711                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1712         } else {
1713                 temp &= ~FDI_LINK_TRAIN_NONE;
1714                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1715         }
1716         I915_WRITE(fdi_rx_reg, temp);
1717         udelay(150);
1718
1719         for (i = 0; i < 4; i++ ) {
1720                 temp = I915_READ(fdi_tx_reg);
1721                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1722                 temp |= snb_b_fdi_train_param[i];
1723                 I915_WRITE(fdi_tx_reg, temp);
1724                 udelay(500);
1725
1726                 temp = I915_READ(fdi_rx_iir_reg);
1727                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1728
1729                 if (temp & FDI_RX_SYMBOL_LOCK) {
1730                         I915_WRITE(fdi_rx_iir_reg,
1731                                    temp | FDI_RX_SYMBOL_LOCK);
1732                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1733                         break;
1734                 }
1735         }
1736         if (i == 4)
1737                 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1738
1739         DRM_DEBUG_KMS("FDI train done.\n");
1740 }
1741
1742 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1743 {
1744         struct drm_device *dev = crtc->dev;
1745         struct drm_i915_private *dev_priv = dev->dev_private;
1746         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1747         int pipe = intel_crtc->pipe;
1748         int plane = intel_crtc->plane;
1749         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1750         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1751         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1752         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1753         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1754         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1755         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1756         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1757         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1758         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1759         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1760         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1761         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1762         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1763         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1764         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1765         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1766         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1767         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1768         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1769         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1770         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1771         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
1772         u32 temp;
1773         int n;
1774         u32 pipe_bpc;
1775
1776         temp = I915_READ(pipeconf_reg);
1777         pipe_bpc = temp & PIPE_BPC_MASK;
1778
1779         /* XXX: When our outputs are all unaware of DPMS modes other than off
1780          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1781          */
1782         switch (mode) {
1783         case DRM_MODE_DPMS_ON:
1784         case DRM_MODE_DPMS_STANDBY:
1785         case DRM_MODE_DPMS_SUSPEND:
1786                 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1787
1788                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1789                         temp = I915_READ(PCH_LVDS);
1790                         if ((temp & LVDS_PORT_EN) == 0) {
1791                                 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1792                                 POSTING_READ(PCH_LVDS);
1793                         }
1794                 }
1795
1796                 if (HAS_eDP) {
1797                         /* enable eDP PLL */
1798                         ironlake_enable_pll_edp(crtc);
1799                 } else {
1800
1801                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1802                         temp = I915_READ(fdi_rx_reg);
1803                         /*
1804                          * make the BPC in FDI Rx be consistent with that in
1805                          * pipeconf reg.
1806                          */
1807                         temp &= ~(0x7 << 16);
1808                         temp |= (pipe_bpc << 11);
1809                         temp &= ~(7 << 19);
1810                         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1811                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1812                         I915_READ(fdi_rx_reg);
1813                         udelay(200);
1814
1815                         /* Switch from Rawclk to PCDclk */
1816                         temp = I915_READ(fdi_rx_reg);
1817                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
1818                         I915_READ(fdi_rx_reg);
1819                         udelay(200);
1820
1821                         /* Enable CPU FDI TX PLL, always on for Ironlake */
1822                         temp = I915_READ(fdi_tx_reg);
1823                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1824                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1825                                 I915_READ(fdi_tx_reg);
1826                                 udelay(100);
1827                         }
1828                 }
1829
1830                 /* Enable panel fitting for LVDS */
1831                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1832                         temp = I915_READ(pf_ctl_reg);
1833                         I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1834
1835                         /* currently full aspect */
1836                         I915_WRITE(pf_win_pos, 0);
1837
1838                         I915_WRITE(pf_win_size,
1839                                    (dev_priv->panel_fixed_mode->hdisplay << 16) |
1840                                    (dev_priv->panel_fixed_mode->vdisplay));
1841                 }
1842
1843                 /* Enable CPU pipe */
1844                 temp = I915_READ(pipeconf_reg);
1845                 if ((temp & PIPEACONF_ENABLE) == 0) {
1846                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1847                         I915_READ(pipeconf_reg);
1848                         udelay(100);
1849                 }
1850
1851                 /* configure and enable CPU plane */
1852                 temp = I915_READ(dspcntr_reg);
1853                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1854                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1855                         /* Flush the plane changes */
1856                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1857                 }
1858
1859                 if (!HAS_eDP) {
1860                         /* For PCH output, training FDI link */
1861                         if (IS_GEN6(dev))
1862                                 gen6_fdi_link_train(crtc);
1863                         else
1864                                 ironlake_fdi_link_train(crtc);
1865
1866                         /* enable PCH DPLL */
1867                         temp = I915_READ(pch_dpll_reg);
1868                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1869                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1870                                 I915_READ(pch_dpll_reg);
1871                         }
1872                         udelay(200);
1873
1874                         if (HAS_PCH_CPT(dev)) {
1875                                 /* Be sure PCH DPLL SEL is set */
1876                                 temp = I915_READ(PCH_DPLL_SEL);
1877                                 if (trans_dpll_sel == 0 &&
1878                                                 (temp & TRANSA_DPLL_ENABLE) == 0)
1879                                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
1880                                 else if (trans_dpll_sel == 1 &&
1881                                                 (temp & TRANSB_DPLL_ENABLE) == 0)
1882                                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
1883                                 I915_WRITE(PCH_DPLL_SEL, temp);
1884                                 I915_READ(PCH_DPLL_SEL);
1885                         }
1886
1887                         /* set transcoder timing */
1888                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1889                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1890                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1891
1892                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1893                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1894                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1895
1896                         /* enable normal train */
1897                         temp = I915_READ(fdi_tx_reg);
1898                         temp &= ~FDI_LINK_TRAIN_NONE;
1899                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1900                                         FDI_TX_ENHANCE_FRAME_ENABLE);
1901                         I915_READ(fdi_tx_reg);
1902
1903                         temp = I915_READ(fdi_rx_reg);
1904                         if (HAS_PCH_CPT(dev)) {
1905                                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1906                                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1907                         } else {
1908                                 temp &= ~FDI_LINK_TRAIN_NONE;
1909                                 temp |= FDI_LINK_TRAIN_NONE;
1910                         }
1911                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1912                         I915_READ(fdi_rx_reg);
1913
1914                         /* wait one idle pattern time */
1915                         udelay(100);
1916
1917                         /* For PCH DP, enable TRANS_DP_CTL */
1918                         if (HAS_PCH_CPT(dev) &&
1919                             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
1920                                 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
1921                                 int reg;
1922
1923                                 reg = I915_READ(trans_dp_ctl);
1924                                 reg &= ~TRANS_DP_PORT_SEL_MASK;
1925                                 reg = TRANS_DP_OUTPUT_ENABLE |
1926                                       TRANS_DP_ENH_FRAMING |
1927                                       TRANS_DP_VSYNC_ACTIVE_HIGH |
1928                                       TRANS_DP_HSYNC_ACTIVE_HIGH;
1929
1930                                 switch (intel_trans_dp_port_sel(crtc)) {
1931                                 case PCH_DP_B:
1932                                         reg |= TRANS_DP_PORT_SEL_B;
1933                                         break;
1934                                 case PCH_DP_C:
1935                                         reg |= TRANS_DP_PORT_SEL_C;
1936                                         break;
1937                                 case PCH_DP_D:
1938                                         reg |= TRANS_DP_PORT_SEL_D;
1939                                         break;
1940                                 default:
1941                                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
1942                                         reg |= TRANS_DP_PORT_SEL_B;
1943                                         break;
1944                                 }
1945
1946                                 I915_WRITE(trans_dp_ctl, reg);
1947                                 POSTING_READ(trans_dp_ctl);
1948                         }
1949
1950                         /* enable PCH transcoder */
1951                         temp = I915_READ(transconf_reg);
1952                         /*
1953                          * make the BPC in transcoder be consistent with
1954                          * that in pipeconf reg.
1955                          */
1956                         temp &= ~PIPE_BPC_MASK;
1957                         temp |= pipe_bpc;
1958                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1959                         I915_READ(transconf_reg);
1960
1961                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1962                                 ;
1963
1964                 }
1965
1966                 intel_crtc_load_lut(crtc);
1967
1968         break;
1969         case DRM_MODE_DPMS_OFF:
1970                 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1971
1972                 drm_vblank_off(dev, pipe);
1973                 /* Disable display plane */
1974                 temp = I915_READ(dspcntr_reg);
1975                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1976                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1977                         /* Flush the plane changes */
1978                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1979                         I915_READ(dspbase_reg);
1980                 }
1981
1982                 i915_disable_vga(dev);
1983
1984                 /* disable cpu pipe, disable after all planes disabled */
1985                 temp = I915_READ(pipeconf_reg);
1986                 if ((temp & PIPEACONF_ENABLE) != 0) {
1987                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1988                         I915_READ(pipeconf_reg);
1989                         n = 0;
1990                         /* wait for cpu pipe off, pipe state */
1991                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1992                                 n++;
1993                                 if (n < 60) {
1994                                         udelay(500);
1995                                         continue;
1996                                 } else {
1997                                         DRM_DEBUG_KMS("pipe %d off delay\n",
1998                                                                 pipe);
1999                                         break;
2000                                 }
2001                         }
2002                 } else
2003                         DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
2004
2005                 udelay(100);
2006
2007                 /* Disable PF */
2008                 temp = I915_READ(pf_ctl_reg);
2009                 if ((temp & PF_ENABLE) != 0) {
2010                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
2011                         I915_READ(pf_ctl_reg);
2012                 }
2013                 I915_WRITE(pf_win_size, 0);
2014                 POSTING_READ(pf_win_size);
2015
2016
2017                 /* disable CPU FDI tx and PCH FDI rx */
2018                 temp = I915_READ(fdi_tx_reg);
2019                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
2020                 I915_READ(fdi_tx_reg);
2021
2022                 temp = I915_READ(fdi_rx_reg);
2023                 /* BPC in FDI rx is consistent with that in pipeconf */
2024                 temp &= ~(0x07 << 16);
2025                 temp |= (pipe_bpc << 11);
2026                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
2027                 I915_READ(fdi_rx_reg);
2028
2029                 udelay(100);
2030
2031                 /* still set train pattern 1 */
2032                 temp = I915_READ(fdi_tx_reg);
2033                 temp &= ~FDI_LINK_TRAIN_NONE;
2034                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2035                 I915_WRITE(fdi_tx_reg, temp);
2036                 POSTING_READ(fdi_tx_reg);
2037
2038                 temp = I915_READ(fdi_rx_reg);
2039                 if (HAS_PCH_CPT(dev)) {
2040                         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2041                         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2042                 } else {
2043                         temp &= ~FDI_LINK_TRAIN_NONE;
2044                         temp |= FDI_LINK_TRAIN_PATTERN_1;
2045                 }
2046                 I915_WRITE(fdi_rx_reg, temp);
2047                 POSTING_READ(fdi_rx_reg);
2048
2049                 udelay(100);
2050
2051                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2052                         temp = I915_READ(PCH_LVDS);
2053                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2054                         I915_READ(PCH_LVDS);
2055                         udelay(100);
2056                 }
2057
2058                 /* disable PCH transcoder */
2059                 temp = I915_READ(transconf_reg);
2060                 if ((temp & TRANS_ENABLE) != 0) {
2061                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
2062                         I915_READ(transconf_reg);
2063                         n = 0;
2064                         /* wait for PCH transcoder off, transcoder state */
2065                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
2066                                 n++;
2067                                 if (n < 60) {
2068                                         udelay(500);
2069                                         continue;
2070                                 } else {
2071                                         DRM_DEBUG_KMS("transcoder %d off "
2072                                                         "delay\n", pipe);
2073                                         break;
2074                                 }
2075                         }
2076                 }
2077
2078                 temp = I915_READ(transconf_reg);
2079                 /* BPC in transcoder is consistent with that in pipeconf */
2080                 temp &= ~PIPE_BPC_MASK;
2081                 temp |= pipe_bpc;
2082                 I915_WRITE(transconf_reg, temp);
2083                 I915_READ(transconf_reg);
2084                 udelay(100);
2085
2086                 if (HAS_PCH_CPT(dev)) {
2087                         /* disable TRANS_DP_CTL */
2088                         int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2089                         int reg;
2090
2091                         reg = I915_READ(trans_dp_ctl);
2092                         reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2093                         I915_WRITE(trans_dp_ctl, reg);
2094                         POSTING_READ(trans_dp_ctl);
2095
2096                         /* disable DPLL_SEL */
2097                         temp = I915_READ(PCH_DPLL_SEL);
2098                         if (trans_dpll_sel == 0)
2099                                 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2100                         else
2101                                 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2102                         I915_WRITE(PCH_DPLL_SEL, temp);
2103                         I915_READ(PCH_DPLL_SEL);
2104
2105                 }
2106
2107                 /* disable PCH DPLL */
2108                 temp = I915_READ(pch_dpll_reg);
2109                 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
2110                 I915_READ(pch_dpll_reg);
2111
2112                 if (HAS_eDP) {
2113                         ironlake_disable_pll_edp(crtc);
2114                 }
2115
2116                 /* Switch from PCDclk to Rawclk */
2117                 temp = I915_READ(fdi_rx_reg);
2118                 temp &= ~FDI_SEL_PCDCLK;
2119                 I915_WRITE(fdi_rx_reg, temp);
2120                 I915_READ(fdi_rx_reg);
2121
2122                 /* Disable CPU FDI TX PLL */
2123                 temp = I915_READ(fdi_tx_reg);
2124                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
2125                 I915_READ(fdi_tx_reg);
2126                 udelay(100);
2127
2128                 temp = I915_READ(fdi_rx_reg);
2129                 temp &= ~FDI_RX_PLL_ENABLE;
2130                 I915_WRITE(fdi_rx_reg, temp);
2131                 I915_READ(fdi_rx_reg);
2132
2133                 /* Wait for the clocks to turn off. */
2134                 udelay(100);
2135                 break;
2136         }
2137 }
2138
2139 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2140 {
2141         struct intel_overlay *overlay;
2142         int ret;
2143
2144         if (!enable && intel_crtc->overlay) {
2145                 overlay = intel_crtc->overlay;
2146                 mutex_lock(&overlay->dev->struct_mutex);
2147                 for (;;) {
2148                         ret = intel_overlay_switch_off(overlay);
2149                         if (ret == 0)
2150                                 break;
2151
2152                         ret = intel_overlay_recover_from_interrupt(overlay, 0);
2153                         if (ret != 0) {
2154                                 /* overlay doesn't react anymore. Usually
2155                                  * results in a black screen and an unkillable
2156                                  * X server. */
2157                                 BUG();
2158                                 overlay->hw_wedged = HW_WEDGED;
2159                                 break;
2160                         }
2161                 }
2162                 mutex_unlock(&overlay->dev->struct_mutex);
2163         }
2164         /* Let userspace switch the overlay on again. In most cases userspace
2165          * has to recompute where to put it anyway. */
2166
2167         return;
2168 }
2169
2170 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2171 {
2172         struct drm_device *dev = crtc->dev;
2173         struct drm_i915_private *dev_priv = dev->dev_private;
2174         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2175         int pipe = intel_crtc->pipe;
2176         int plane = intel_crtc->plane;
2177         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2178         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2179         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
2180         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2181         u32 temp;
2182
2183         /* XXX: When our outputs are all unaware of DPMS modes other than off
2184          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2185          */
2186         switch (mode) {
2187         case DRM_MODE_DPMS_ON:
2188         case DRM_MODE_DPMS_STANDBY:
2189         case DRM_MODE_DPMS_SUSPEND:
2190                 intel_update_watermarks(dev);
2191
2192                 /* Enable the DPLL */
2193                 temp = I915_READ(dpll_reg);
2194                 if ((temp & DPLL_VCO_ENABLE) == 0) {
2195                         I915_WRITE(dpll_reg, temp);
2196                         I915_READ(dpll_reg);
2197                         /* Wait for the clocks to stabilize. */
2198                         udelay(150);
2199                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2200                         I915_READ(dpll_reg);
2201                         /* Wait for the clocks to stabilize. */
2202                         udelay(150);
2203                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2204                         I915_READ(dpll_reg);
2205                         /* Wait for the clocks to stabilize. */
2206                         udelay(150);
2207                 }
2208
2209                 /* Enable the pipe */
2210                 temp = I915_READ(pipeconf_reg);
2211                 if ((temp & PIPEACONF_ENABLE) == 0)
2212                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2213
2214                 /* Enable the plane */
2215                 temp = I915_READ(dspcntr_reg);
2216                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2217                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2218                         /* Flush the plane changes */
2219                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2220                 }
2221
2222                 intel_crtc_load_lut(crtc);
2223
2224                 if ((IS_I965G(dev) || plane == 0))
2225                         intel_update_fbc(crtc, &crtc->mode);
2226
2227                 /* Give the overlay scaler a chance to enable if it's on this pipe */
2228                 intel_crtc_dpms_overlay(intel_crtc, true);
2229         break;
2230         case DRM_MODE_DPMS_OFF:
2231                 intel_update_watermarks(dev);
2232
2233                 /* Give the overlay scaler a chance to disable if it's on this pipe */
2234                 intel_crtc_dpms_overlay(intel_crtc, false);
2235                 drm_vblank_off(dev, pipe);
2236
2237                 if (dev_priv->cfb_plane == plane &&
2238                     dev_priv->display.disable_fbc)
2239                         dev_priv->display.disable_fbc(dev);
2240
2241                 /* Disable the VGA plane that we never use */
2242                 i915_disable_vga(dev);
2243
2244                 /* Disable display plane */
2245                 temp = I915_READ(dspcntr_reg);
2246                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2247                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2248                         /* Flush the plane changes */
2249                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2250                         I915_READ(dspbase_reg);
2251                 }
2252
2253                 if (!IS_I9XX(dev)) {
2254                         /* Wait for vblank for the disable to take effect */
2255                         intel_wait_for_vblank(dev);
2256                 }
2257
2258                 /* Next, disable display pipes */
2259                 temp = I915_READ(pipeconf_reg);
2260                 if ((temp & PIPEACONF_ENABLE) != 0) {
2261                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2262                         I915_READ(pipeconf_reg);
2263                 }
2264
2265                 /* Wait for vblank for the disable to take effect. */
2266                 intel_wait_for_vblank(dev);
2267
2268                 temp = I915_READ(dpll_reg);
2269                 if ((temp & DPLL_VCO_ENABLE) != 0) {
2270                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2271                         I915_READ(dpll_reg);
2272                 }
2273
2274                 /* Wait for the clocks to turn off. */
2275                 udelay(150);
2276                 break;
2277         }
2278 }
2279
2280 /**
2281  * Sets the power management mode of the pipe and plane.
2282  *
2283  * This code should probably grow support for turning the cursor off and back
2284  * on appropriately at the same time as we're turning the pipe off/on.
2285  */
2286 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2287 {
2288         struct drm_device *dev = crtc->dev;
2289         struct drm_i915_private *dev_priv = dev->dev_private;
2290         struct drm_i915_master_private *master_priv;
2291         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2292         int pipe = intel_crtc->pipe;
2293         bool enabled;
2294
2295         dev_priv->display.dpms(crtc, mode);
2296
2297         intel_crtc->dpms_mode = mode;
2298
2299         if (!dev->primary->master)
2300                 return;
2301
2302         master_priv = dev->primary->master->driver_priv;
2303         if (!master_priv->sarea_priv)
2304                 return;
2305
2306         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2307
2308         switch (pipe) {
2309         case 0:
2310                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2311                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2312                 break;
2313         case 1:
2314                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2315                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2316                 break;
2317         default:
2318                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2319                 break;
2320         }
2321 }
2322
2323 static void intel_crtc_prepare (struct drm_crtc *crtc)
2324 {
2325         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2326         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2327 }
2328
2329 static void intel_crtc_commit (struct drm_crtc *crtc)
2330 {
2331         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2332         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2333 }
2334
2335 void intel_encoder_prepare (struct drm_encoder *encoder)
2336 {
2337         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2338         /* lvds has its own version of prepare see intel_lvds_prepare */
2339         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2340 }
2341
2342 void intel_encoder_commit (struct drm_encoder *encoder)
2343 {
2344         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2345         /* lvds has its own version of commit see intel_lvds_commit */
2346         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2347 }
2348
2349 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2350                                   struct drm_display_mode *mode,
2351                                   struct drm_display_mode *adjusted_mode)
2352 {
2353         struct drm_device *dev = crtc->dev;
2354         if (HAS_PCH_SPLIT(dev)) {
2355                 /* FDI link clock is fixed at 2.7G */
2356                 if (mode->clock * 3 > 27000 * 4)
2357                         return MODE_CLOCK_HIGH;
2358         }
2359
2360         drm_mode_set_crtcinfo(adjusted_mode, 0);
2361         return true;
2362 }
2363
2364 static int i945_get_display_clock_speed(struct drm_device *dev)
2365 {
2366         return 400000;
2367 }
2368
2369 static int i915_get_display_clock_speed(struct drm_device *dev)
2370 {
2371         return 333000;
2372 }
2373
2374 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2375 {
2376         return 200000;
2377 }
2378
2379 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2380 {
2381         u16 gcfgc = 0;
2382
2383         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2384
2385         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2386                 return 133000;
2387         else {
2388                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2389                 case GC_DISPLAY_CLOCK_333_MHZ:
2390                         return 333000;
2391                 default:
2392                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2393                         return 190000;
2394                 }
2395         }
2396 }
2397
2398 static int i865_get_display_clock_speed(struct drm_device *dev)
2399 {
2400         return 266000;
2401 }
2402
2403 static int i855_get_display_clock_speed(struct drm_device *dev)
2404 {
2405         u16 hpllcc = 0;
2406         /* Assume that the hardware is in the high speed state.  This
2407          * should be the default.
2408          */
2409         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2410         case GC_CLOCK_133_200:
2411         case GC_CLOCK_100_200:
2412                 return 200000;
2413         case GC_CLOCK_166_250:
2414                 return 250000;
2415         case GC_CLOCK_100_133:
2416                 return 133000;
2417         }
2418
2419         /* Shouldn't happen */
2420         return 0;
2421 }
2422
2423 static int i830_get_display_clock_speed(struct drm_device *dev)
2424 {
2425         return 133000;
2426 }
2427
2428 /**
2429  * Return the pipe currently connected to the panel fitter,
2430  * or -1 if the panel fitter is not present or not in use
2431  */
2432 int intel_panel_fitter_pipe (struct drm_device *dev)
2433 {
2434         struct drm_i915_private *dev_priv = dev->dev_private;
2435         u32  pfit_control;
2436
2437         /* i830 doesn't have a panel fitter */
2438         if (IS_I830(dev))
2439                 return -1;
2440
2441         pfit_control = I915_READ(PFIT_CONTROL);
2442
2443         /* See if the panel fitter is in use */
2444         if ((pfit_control & PFIT_ENABLE) == 0)
2445                 return -1;
2446
2447         /* 965 can place panel fitter on either pipe */
2448         if (IS_I965G(dev))
2449                 return (pfit_control >> 29) & 0x3;
2450
2451         /* older chips can only use pipe 1 */
2452         return 1;
2453 }
2454
2455 struct fdi_m_n {
2456         u32        tu;
2457         u32        gmch_m;
2458         u32        gmch_n;
2459         u32        link_m;
2460         u32        link_n;
2461 };
2462
2463 static void
2464 fdi_reduce_ratio(u32 *num, u32 *den)
2465 {
2466         while (*num > 0xffffff || *den > 0xffffff) {
2467                 *num >>= 1;
2468                 *den >>= 1;
2469         }
2470 }
2471
2472 #define DATA_N 0x800000
2473 #define LINK_N 0x80000
2474
2475 static void
2476 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2477                      int link_clock, struct fdi_m_n *m_n)
2478 {
2479         u64 temp;
2480
2481         m_n->tu = 64; /* default size */
2482
2483         temp = (u64) DATA_N * pixel_clock;
2484         temp = div_u64(temp, link_clock);
2485         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2486         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2487         m_n->gmch_n = DATA_N;
2488         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2489
2490         temp = (u64) LINK_N * pixel_clock;
2491         m_n->link_m = div_u64(temp, link_clock);
2492         m_n->link_n = LINK_N;
2493         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2494 }
2495
2496
2497 struct intel_watermark_params {
2498         unsigned long fifo_size;
2499         unsigned long max_wm;
2500         unsigned long default_wm;
2501         unsigned long guard_size;
2502         unsigned long cacheline_size;
2503 };
2504
2505 /* Pineview has different values for various configs */
2506 static struct intel_watermark_params pineview_display_wm = {
2507         PINEVIEW_DISPLAY_FIFO,
2508         PINEVIEW_MAX_WM,
2509         PINEVIEW_DFT_WM,
2510         PINEVIEW_GUARD_WM,
2511         PINEVIEW_FIFO_LINE_SIZE
2512 };
2513 static struct intel_watermark_params pineview_display_hplloff_wm = {
2514         PINEVIEW_DISPLAY_FIFO,
2515         PINEVIEW_MAX_WM,
2516         PINEVIEW_DFT_HPLLOFF_WM,
2517         PINEVIEW_GUARD_WM,
2518         PINEVIEW_FIFO_LINE_SIZE
2519 };
2520 static struct intel_watermark_params pineview_cursor_wm = {
2521         PINEVIEW_CURSOR_FIFO,
2522         PINEVIEW_CURSOR_MAX_WM,
2523         PINEVIEW_CURSOR_DFT_WM,
2524         PINEVIEW_CURSOR_GUARD_WM,
2525         PINEVIEW_FIFO_LINE_SIZE,
2526 };
2527 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2528         PINEVIEW_CURSOR_FIFO,
2529         PINEVIEW_CURSOR_MAX_WM,
2530         PINEVIEW_CURSOR_DFT_WM,
2531         PINEVIEW_CURSOR_GUARD_WM,
2532         PINEVIEW_FIFO_LINE_SIZE
2533 };
2534 static struct intel_watermark_params g4x_wm_info = {
2535         G4X_FIFO_SIZE,
2536         G4X_MAX_WM,
2537         G4X_MAX_WM,
2538         2,
2539         G4X_FIFO_LINE_SIZE,
2540 };
2541 static struct intel_watermark_params i945_wm_info = {
2542         I945_FIFO_SIZE,
2543         I915_MAX_WM,
2544         1,
2545         2,
2546         I915_FIFO_LINE_SIZE
2547 };
2548 static struct intel_watermark_params i915_wm_info = {
2549         I915_FIFO_SIZE,
2550         I915_MAX_WM,
2551         1,
2552         2,
2553         I915_FIFO_LINE_SIZE
2554 };
2555 static struct intel_watermark_params i855_wm_info = {
2556         I855GM_FIFO_SIZE,
2557         I915_MAX_WM,
2558         1,
2559         2,
2560         I830_FIFO_LINE_SIZE
2561 };
2562 static struct intel_watermark_params i830_wm_info = {
2563         I830_FIFO_SIZE,
2564         I915_MAX_WM,
2565         1,
2566         2,
2567         I830_FIFO_LINE_SIZE
2568 };
2569
2570 static struct intel_watermark_params ironlake_display_wm_info = {
2571         ILK_DISPLAY_FIFO,
2572         ILK_DISPLAY_MAXWM,
2573         ILK_DISPLAY_DFTWM,
2574         2,
2575         ILK_FIFO_LINE_SIZE
2576 };
2577
2578 static struct intel_watermark_params ironlake_display_srwm_info = {
2579         ILK_DISPLAY_SR_FIFO,
2580         ILK_DISPLAY_MAX_SRWM,
2581         ILK_DISPLAY_DFT_SRWM,
2582         2,
2583         ILK_FIFO_LINE_SIZE
2584 };
2585
2586 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2587         ILK_CURSOR_SR_FIFO,
2588         ILK_CURSOR_MAX_SRWM,
2589         ILK_CURSOR_DFT_SRWM,
2590         2,
2591         ILK_FIFO_LINE_SIZE
2592 };
2593
2594 /**
2595  * intel_calculate_wm - calculate watermark level
2596  * @clock_in_khz: pixel clock
2597  * @wm: chip FIFO params
2598  * @pixel_size: display pixel size
2599  * @latency_ns: memory latency for the platform
2600  *
2601  * Calculate the watermark level (the level at which the display plane will
2602  * start fetching from memory again).  Each chip has a different display
2603  * FIFO size and allocation, so the caller needs to figure that out and pass
2604  * in the correct intel_watermark_params structure.
2605  *
2606  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2607  * on the pixel size.  When it reaches the watermark level, it'll start
2608  * fetching FIFO line sized based chunks from memory until the FIFO fills
2609  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2610  * will occur, and a display engine hang could result.
2611  */
2612 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2613                                         struct intel_watermark_params *wm,
2614                                         int pixel_size,
2615                                         unsigned long latency_ns)
2616 {
2617         long entries_required, wm_size;
2618
2619         /*
2620          * Note: we need to make sure we don't overflow for various clock &
2621          * latency values.
2622          * clocks go from a few thousand to several hundred thousand.
2623          * latency is usually a few thousand
2624          */
2625         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2626                 1000;
2627         entries_required /= wm->cacheline_size;
2628
2629         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2630
2631         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2632
2633         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2634
2635         /* Don't promote wm_size to unsigned... */
2636         if (wm_size > (long)wm->max_wm)
2637                 wm_size = wm->max_wm;
2638         if (wm_size <= 0)
2639                 wm_size = wm->default_wm;
2640         return wm_size;
2641 }
2642
2643 struct cxsr_latency {
2644         int is_desktop;
2645         int is_ddr3;
2646         unsigned long fsb_freq;
2647         unsigned long mem_freq;
2648         unsigned long display_sr;
2649         unsigned long display_hpll_disable;
2650         unsigned long cursor_sr;
2651         unsigned long cursor_hpll_disable;
2652 };
2653
2654 static struct cxsr_latency cxsr_latency_table[] = {
2655         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2656         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2657         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2658         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
2659         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
2660
2661         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2662         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2663         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2664         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
2665         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
2666
2667         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2668         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2669         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2670         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
2671         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
2672
2673         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2674         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2675         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2676         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
2677         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
2678
2679         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2680         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2681         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2682         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
2683         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
2684
2685         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2686         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2687         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2688         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
2689         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
2690 };
2691
2692 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int is_ddr3, 
2693                                                    int fsb, int mem)
2694 {
2695         int i;
2696         struct cxsr_latency *latency;
2697
2698         if (fsb == 0 || mem == 0)
2699                 return NULL;
2700
2701         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2702                 latency = &cxsr_latency_table[i];
2703                 if (is_desktop == latency->is_desktop &&
2704                     is_ddr3 == latency->is_ddr3 &&
2705                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2706                         return latency;
2707         }
2708
2709         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2710
2711         return NULL;
2712 }
2713
2714 static void pineview_disable_cxsr(struct drm_device *dev)
2715 {
2716         struct drm_i915_private *dev_priv = dev->dev_private;
2717         u32 reg;
2718
2719         /* deactivate cxsr */
2720         reg = I915_READ(DSPFW3);
2721         reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2722         I915_WRITE(DSPFW3, reg);
2723         DRM_INFO("Big FIFO is disabled\n");
2724 }
2725
2726 /*
2727  * Latency for FIFO fetches is dependent on several factors:
2728  *   - memory configuration (speed, channels)
2729  *   - chipset
2730  *   - current MCH state
2731  * It can be fairly high in some situations, so here we assume a fairly
2732  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2733  * set this value too high, the FIFO will fetch frequently to stay full)
2734  * and power consumption (set it too low to save power and we might see
2735  * FIFO underruns and display "flicker").
2736  *
2737  * A value of 5us seems to be a good balance; safe for very low end
2738  * platforms but not overly aggressive on lower latency configs.
2739  */
2740 static const int latency_ns = 5000;
2741
2742 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2743 {
2744         struct drm_i915_private *dev_priv = dev->dev_private;
2745         uint32_t dsparb = I915_READ(DSPARB);
2746         int size;
2747
2748         if (plane == 0)
2749                 size = dsparb & 0x7f;
2750         else
2751                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2752                         (dsparb & 0x7f);
2753
2754         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2755                         plane ? "B" : "A", size);
2756
2757         return size;
2758 }
2759
2760 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2761 {
2762         struct drm_i915_private *dev_priv = dev->dev_private;
2763         uint32_t dsparb = I915_READ(DSPARB);
2764         int size;
2765
2766         if (plane == 0)
2767                 size = dsparb & 0x1ff;
2768         else
2769                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2770                         (dsparb & 0x1ff);
2771         size >>= 1; /* Convert to cachelines */
2772
2773         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2774                         plane ? "B" : "A", size);
2775
2776         return size;
2777 }
2778
2779 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2780 {
2781         struct drm_i915_private *dev_priv = dev->dev_private;
2782         uint32_t dsparb = I915_READ(DSPARB);
2783         int size;
2784
2785         size = dsparb & 0x7f;
2786         size >>= 2; /* Convert to cachelines */
2787
2788         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2789                         plane ? "B" : "A",
2790                   size);
2791
2792         return size;
2793 }
2794
2795 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2796 {
2797         struct drm_i915_private *dev_priv = dev->dev_private;
2798         uint32_t dsparb = I915_READ(DSPARB);
2799         int size;
2800
2801         size = dsparb & 0x7f;
2802         size >>= 1; /* Convert to cachelines */
2803
2804         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2805                         plane ? "B" : "A", size);
2806
2807         return size;
2808 }
2809
2810 static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
2811                           int planeb_clock, int sr_hdisplay, int pixel_size)
2812 {
2813         struct drm_i915_private *dev_priv = dev->dev_private;
2814         u32 reg;
2815         unsigned long wm;
2816         struct cxsr_latency *latency;
2817         int sr_clock;
2818
2819         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3, 
2820                                          dev_priv->fsb_freq, dev_priv->mem_freq);
2821         if (!latency) {
2822                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2823                 pineview_disable_cxsr(dev);
2824                 return;
2825         }
2826
2827         if (!planea_clock || !planeb_clock) {
2828                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2829
2830                 /* Display SR */
2831                 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
2832                                         pixel_size, latency->display_sr);
2833                 reg = I915_READ(DSPFW1);
2834                 reg &= ~DSPFW_SR_MASK;
2835                 reg |= wm << DSPFW_SR_SHIFT;
2836                 I915_WRITE(DSPFW1, reg);
2837                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2838
2839                 /* cursor SR */
2840                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
2841                                         pixel_size, latency->cursor_sr);
2842                 reg = I915_READ(DSPFW3);
2843                 reg &= ~DSPFW_CURSOR_SR_MASK;
2844                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
2845                 I915_WRITE(DSPFW3, reg);
2846
2847                 /* Display HPLL off SR */
2848                 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
2849                                         pixel_size, latency->display_hpll_disable);
2850                 reg = I915_READ(DSPFW3);
2851                 reg &= ~DSPFW_HPLL_SR_MASK;
2852                 reg |= wm & DSPFW_HPLL_SR_MASK;
2853                 I915_WRITE(DSPFW3, reg);
2854
2855                 /* cursor HPLL off SR */
2856                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
2857                                         pixel_size, latency->cursor_hpll_disable);
2858                 reg = I915_READ(DSPFW3);
2859                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
2860                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
2861                 I915_WRITE(DSPFW3, reg);
2862                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2863
2864                 /* activate cxsr */
2865                 reg = I915_READ(DSPFW3);
2866                 reg |= PINEVIEW_SELF_REFRESH_EN;
2867                 I915_WRITE(DSPFW3, reg);
2868                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
2869         } else {
2870                 pineview_disable_cxsr(dev);
2871                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
2872         }
2873 }
2874
2875 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
2876                           int planeb_clock, int sr_hdisplay, int pixel_size)
2877 {
2878         struct drm_i915_private *dev_priv = dev->dev_private;
2879         int total_size, cacheline_size;
2880         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2881         struct intel_watermark_params planea_params, planeb_params;
2882         unsigned long line_time_us;
2883         int sr_clock, sr_entries = 0, entries_required;
2884
2885         /* Create copies of the base settings for each pipe */
2886         planea_params = planeb_params = g4x_wm_info;
2887
2888         /* Grab a couple of global values before we overwrite them */
2889         total_size = planea_params.fifo_size;
2890         cacheline_size = planea_params.cacheline_size;
2891
2892         /*
2893          * Note: we need to make sure we don't overflow for various clock &
2894          * latency values.
2895          * clocks go from a few thousand to several hundred thousand.
2896          * latency is usually a few thousand
2897          */
2898         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2899                 1000;
2900         entries_required /= G4X_FIFO_LINE_SIZE;
2901         planea_wm = entries_required + planea_params.guard_size;
2902
2903         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2904                 1000;
2905         entries_required /= G4X_FIFO_LINE_SIZE;
2906         planeb_wm = entries_required + planeb_params.guard_size;
2907
2908         cursora_wm = cursorb_wm = 16;
2909         cursor_sr = 32;
2910
2911         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2912
2913         /* Calc sr entries for one plane configs */
2914         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2915                 /* self-refresh has much higher latency */
2916                 static const int sr_latency_ns = 12000;
2917
2918                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2919                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2920
2921                 /* Use ns/us then divide to preserve precision */
2922                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2923                               pixel_size * sr_hdisplay) / 1000;
2924                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2925                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2926                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2927         } else {
2928                 /* Turn off self refresh if both pipes are enabled */
2929                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2930                                         & ~FW_BLC_SELF_EN);
2931         }
2932
2933         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2934                   planea_wm, planeb_wm, sr_entries);
2935
2936         planea_wm &= 0x3f;
2937         planeb_wm &= 0x3f;
2938
2939         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2940                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2941                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2942         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2943                    (cursora_wm << DSPFW_CURSORA_SHIFT));
2944         /* HPLL off in SR has some issues on G4x... disable it */
2945         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2946                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2947 }
2948
2949 static void i965_update_wm(struct drm_device *dev, int planea_clock,
2950                            int planeb_clock, int sr_hdisplay, int pixel_size)
2951 {
2952         struct drm_i915_private *dev_priv = dev->dev_private;
2953         unsigned long line_time_us;
2954         int sr_clock, sr_entries, srwm = 1;
2955
2956         /* Calc sr entries for one plane configs */
2957         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2958                 /* self-refresh has much higher latency */
2959                 static const int sr_latency_ns = 12000;
2960
2961                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2962                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2963
2964                 /* Use ns/us then divide to preserve precision */
2965                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2966                               pixel_size * sr_hdisplay) / 1000;
2967                 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
2968                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2969                 srwm = I945_FIFO_SIZE - sr_entries;
2970                 if (srwm < 0)
2971                         srwm = 1;
2972                 srwm &= 0x3f;
2973                 if (IS_I965GM(dev))
2974                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2975         } else {
2976                 /* Turn off self refresh if both pipes are enabled */
2977                 if (IS_I965GM(dev))
2978                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2979                                    & ~FW_BLC_SELF_EN);
2980         }
2981
2982         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2983                       srwm);
2984
2985         /* 965 has limitations... */
2986         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
2987                    (8 << 0));
2988         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2989 }
2990
2991 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2992                            int planeb_clock, int sr_hdisplay, int pixel_size)
2993 {
2994         struct drm_i915_private *dev_priv = dev->dev_private;
2995         uint32_t fwater_lo;
2996         uint32_t fwater_hi;
2997         int total_size, cacheline_size, cwm, srwm = 1;
2998         int planea_wm, planeb_wm;
2999         struct intel_watermark_params planea_params, planeb_params;
3000         unsigned long line_time_us;
3001         int sr_clock, sr_entries = 0;
3002
3003         /* Create copies of the base settings for each pipe */
3004         if (IS_I965GM(dev) || IS_I945GM(dev))
3005                 planea_params = planeb_params = i945_wm_info;
3006         else if (IS_I9XX(dev))
3007                 planea_params = planeb_params = i915_wm_info;
3008         else
3009                 planea_params = planeb_params = i855_wm_info;
3010
3011         /* Grab a couple of global values before we overwrite them */
3012         total_size = planea_params.fifo_size;
3013         cacheline_size = planea_params.cacheline_size;
3014
3015         /* Update per-plane FIFO sizes */
3016         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3017         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3018
3019         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3020                                        pixel_size, latency_ns);
3021         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3022                                        pixel_size, latency_ns);
3023         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3024
3025         /*
3026          * Overlay gets an aggressive default since video jitter is bad.
3027          */
3028         cwm = 2;
3029
3030         /* Calc sr entries for one plane configs */
3031         if (HAS_FW_BLC(dev) && sr_hdisplay &&
3032             (!planea_clock || !planeb_clock)) {
3033                 /* self-refresh has much higher latency */
3034                 static const int sr_latency_ns = 6000;
3035
3036                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3037                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
3038
3039                 /* Use ns/us then divide to preserve precision */
3040                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
3041                               pixel_size * sr_hdisplay) / 1000;
3042                 sr_entries = roundup(sr_entries / cacheline_size, 1);
3043                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3044                 srwm = total_size - sr_entries;
3045                 if (srwm < 0)
3046                         srwm = 1;
3047
3048                 if (IS_I945G(dev) || IS_I945GM(dev))
3049                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3050                 else if (IS_I915GM(dev)) {
3051                         /* 915M has a smaller SRWM field */
3052                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3053                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3054                 }
3055         } else {
3056                 /* Turn off self refresh if both pipes are enabled */
3057                 if (IS_I945G(dev) || IS_I945GM(dev)) {
3058                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3059                                    & ~FW_BLC_SELF_EN);
3060                 } else if (IS_I915GM(dev)) {
3061                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3062                 }
3063         }
3064
3065         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3066                   planea_wm, planeb_wm, cwm, srwm);
3067
3068         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3069         fwater_hi = (cwm & 0x1f);
3070
3071         /* Set request length to 8 cachelines per fetch */
3072         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3073         fwater_hi = fwater_hi | (1 << 8);
3074
3075         I915_WRITE(FW_BLC, fwater_lo);
3076         I915_WRITE(FW_BLC2, fwater_hi);
3077 }
3078
3079 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3080                            int unused2, int pixel_size)
3081 {
3082         struct drm_i915_private *dev_priv = dev->dev_private;
3083         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3084         int planea_wm;
3085
3086         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3087
3088         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3089                                        pixel_size, latency_ns);
3090         fwater_lo |= (3<<8) | planea_wm;
3091
3092         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3093
3094         I915_WRITE(FW_BLC, fwater_lo);
3095 }
3096
3097 #define ILK_LP0_PLANE_LATENCY           700
3098
3099 static void ironlake_update_wm(struct drm_device *dev,  int planea_clock,
3100                        int planeb_clock, int sr_hdisplay, int pixel_size)
3101 {
3102         struct drm_i915_private *dev_priv = dev->dev_private;
3103         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3104         int sr_wm, cursor_wm;
3105         unsigned long line_time_us;
3106         int sr_clock, entries_required;
3107         u32 reg_value;
3108
3109         /* Calculate and update the watermark for plane A */
3110         if (planea_clock) {
3111                 entries_required = ((planea_clock / 1000) * pixel_size *
3112                                      ILK_LP0_PLANE_LATENCY) / 1000;
3113                 entries_required = DIV_ROUND_UP(entries_required,
3114                                    ironlake_display_wm_info.cacheline_size);
3115                 planea_wm = entries_required +
3116                             ironlake_display_wm_info.guard_size;
3117
3118                 if (planea_wm > (int)ironlake_display_wm_info.max_wm)
3119                         planea_wm = ironlake_display_wm_info.max_wm;
3120
3121                 cursora_wm = 16;
3122                 reg_value = I915_READ(WM0_PIPEA_ILK);
3123                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3124                 reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
3125                              (cursora_wm & WM0_PIPE_CURSOR_MASK);
3126                 I915_WRITE(WM0_PIPEA_ILK, reg_value);
3127                 DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
3128                                 "cursor: %d\n", planea_wm, cursora_wm);
3129         }
3130         /* Calculate and update the watermark for plane B */
3131         if (planeb_clock) {
3132                 entries_required = ((planeb_clock / 1000) * pixel_size *
3133                                      ILK_LP0_PLANE_LATENCY) / 1000;
3134                 entries_required = DIV_ROUND_UP(entries_required,
3135                                    ironlake_display_wm_info.cacheline_size);
3136                 planeb_wm = entries_required +
3137                             ironlake_display_wm_info.guard_size;
3138
3139                 if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
3140                         planeb_wm = ironlake_display_wm_info.max_wm;
3141
3142                 cursorb_wm = 16;
3143                 reg_value = I915_READ(WM0_PIPEB_ILK);
3144                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3145                 reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
3146                              (cursorb_wm & WM0_PIPE_CURSOR_MASK);
3147                 I915_WRITE(WM0_PIPEB_ILK, reg_value);
3148                 DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
3149                                 "cursor: %d\n", planeb_wm, cursorb_wm);
3150         }
3151
3152         /*
3153          * Calculate and update the self-refresh watermark only when one
3154          * display plane is used.
3155          */
3156         if (!planea_clock || !planeb_clock) {
3157                 int line_count;
3158                 /* Read the self-refresh latency. The unit is 0.5us */
3159                 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3160
3161                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3162                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
3163
3164                 /* Use ns/us then divide to preserve precision */
3165                 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3166                                / 1000;
3167
3168                 /* calculate the self-refresh watermark for display plane */
3169                 entries_required = line_count * sr_hdisplay * pixel_size;
3170                 entries_required = DIV_ROUND_UP(entries_required,
3171                                    ironlake_display_srwm_info.cacheline_size);
3172                 sr_wm = entries_required +
3173                         ironlake_display_srwm_info.guard_size;
3174
3175                 /* calculate the self-refresh watermark for display cursor */
3176                 entries_required = line_count * pixel_size * 64;
3177                 entries_required = DIV_ROUND_UP(entries_required,
3178                                    ironlake_cursor_srwm_info.cacheline_size);
3179                 cursor_wm = entries_required +
3180                             ironlake_cursor_srwm_info.guard_size;
3181
3182                 /* configure watermark and enable self-refresh */
3183                 reg_value = I915_READ(WM1_LP_ILK);
3184                 reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
3185                                WM1_LP_CURSOR_MASK);
3186                 reg_value |= WM1_LP_SR_EN |
3187                              (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3188                              (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
3189
3190                 I915_WRITE(WM1_LP_ILK, reg_value);
3191                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3192                                 "cursor %d\n", sr_wm, cursor_wm);
3193
3194         } else {
3195                 /* Turn off self refresh if both pipes are enabled */
3196                 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
3197         }
3198 }
3199 /**
3200  * intel_update_watermarks - update FIFO watermark values based on current modes
3201  *
3202  * Calculate watermark values for the various WM regs based on current mode
3203  * and plane configuration.
3204  *
3205  * There are several cases to deal with here:
3206  *   - normal (i.e. non-self-refresh)
3207  *   - self-refresh (SR) mode
3208  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3209  *   - lines are small relative to FIFO size (buffer can hold more than 2
3210  *     lines), so need to account for TLB latency
3211  *
3212  *   The normal calculation is:
3213  *     watermark = dotclock * bytes per pixel * latency
3214  *   where latency is platform & configuration dependent (we assume pessimal
3215  *   values here).
3216  *
3217  *   The SR calculation is:
3218  *     watermark = (trunc(latency/line time)+1) * surface width *
3219  *       bytes per pixel
3220  *   where
3221  *     line time = htotal / dotclock
3222  *   and latency is assumed to be high, as above.
3223  *
3224  * The final value programmed to the register should always be rounded up,
3225  * and include an extra 2 entries to account for clock crossings.
3226  *
3227  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3228  * to set the non-SR watermarks to 8.
3229   */
3230 static void intel_update_watermarks(struct drm_device *dev)
3231 {
3232         struct drm_i915_private *dev_priv = dev->dev_private;
3233         struct drm_crtc *crtc;
3234         struct intel_crtc *intel_crtc;
3235         int sr_hdisplay = 0;
3236         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3237         int enabled = 0, pixel_size = 0;
3238
3239         if (!dev_priv->display.update_wm)
3240                 return;
3241
3242         /* Get the clock config from both planes */
3243         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3244                 intel_crtc = to_intel_crtc(crtc);
3245                 if (crtc->enabled) {
3246                         enabled++;
3247                         if (intel_crtc->plane == 0) {
3248                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3249                                           intel_crtc->pipe, crtc->mode.clock);
3250                                 planea_clock = crtc->mode.clock;
3251                         } else {
3252                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3253                                           intel_crtc->pipe, crtc->mode.clock);
3254                                 planeb_clock = crtc->mode.clock;
3255                         }
3256                         sr_hdisplay = crtc->mode.hdisplay;
3257                         sr_clock = crtc->mode.clock;
3258                         if (crtc->fb)
3259                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3260                         else
3261                                 pixel_size = 4; /* by default */
3262                 }
3263         }
3264
3265         if (enabled <= 0)
3266                 return;
3267
3268         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3269                                     sr_hdisplay, pixel_size);
3270 }
3271
3272 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3273                                struct drm_display_mode *mode,
3274                                struct drm_display_mode *adjusted_mode,
3275                                int x, int y,
3276                                struct drm_framebuffer *old_fb)
3277 {
3278         struct drm_device *dev = crtc->dev;
3279         struct drm_i915_private *dev_priv = dev->dev_private;
3280         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3281         int pipe = intel_crtc->pipe;
3282         int plane = intel_crtc->plane;
3283         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
3284         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3285         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
3286         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
3287         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
3288         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
3289         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
3290         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
3291         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
3292         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
3293         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
3294         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
3295         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
3296         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
3297         int refclk, num_connectors = 0;
3298         intel_clock_t clock, reduced_clock;
3299         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
3300         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3301         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3302         bool is_edp = false;
3303         struct drm_mode_config *mode_config = &dev->mode_config;
3304         struct drm_encoder *encoder;
3305         struct intel_encoder *intel_encoder = NULL;
3306         const intel_limit_t *limit;
3307         int ret;
3308         struct fdi_m_n m_n = {0};
3309         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
3310         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
3311         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
3312         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
3313         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
3314         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
3315         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
3316         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
3317         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
3318         int lvds_reg = LVDS;
3319         u32 temp;
3320         int sdvo_pixel_multiply;
3321         int target_clock;
3322
3323         drm_vblank_pre_modeset(dev, pipe);
3324
3325         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
3326
3327                 if (!encoder || encoder->crtc != crtc)
3328                         continue;
3329
3330                 intel_encoder = enc_to_intel_encoder(encoder);
3331
3332                 switch (intel_encoder->type) {
3333                 case INTEL_OUTPUT_LVDS:
3334                         is_lvds = true;
3335                         break;
3336                 case INTEL_OUTPUT_SDVO:
3337                 case INTEL_OUTPUT_HDMI:
3338                         is_sdvo = true;
3339                         if (intel_encoder->needs_tv_clock)
3340                                 is_tv = true;
3341                         break;
3342                 case INTEL_OUTPUT_DVO:
3343                         is_dvo = true;
3344                         break;
3345                 case INTEL_OUTPUT_TVOUT:
3346                         is_tv = true;
3347                         break;
3348                 case INTEL_OUTPUT_ANALOG:
3349                         is_crt = true;
3350                         break;
3351                 case INTEL_OUTPUT_DISPLAYPORT:
3352                         is_dp = true;
3353                         break;
3354                 case INTEL_OUTPUT_EDP:
3355                         is_edp = true;
3356                         break;
3357                 }
3358
3359                 num_connectors++;
3360         }
3361
3362         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3363                 refclk = dev_priv->lvds_ssc_freq * 1000;
3364                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3365                                         refclk / 1000);
3366         } else if (IS_I9XX(dev)) {
3367                 refclk = 96000;
3368                 if (HAS_PCH_SPLIT(dev))
3369                         refclk = 120000; /* 120Mhz refclk */
3370         } else {
3371                 refclk = 48000;
3372         }
3373         
3374
3375         /*
3376          * Returns a set of divisors for the desired target clock with the given
3377          * refclk, or FALSE.  The returned values represent the clock equation:
3378          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3379          */
3380         limit = intel_limit(crtc);
3381         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3382         if (!ok) {
3383                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3384                 drm_vblank_post_modeset(dev, pipe);
3385                 return -EINVAL;
3386         }
3387
3388         if (is_lvds && dev_priv->lvds_downclock_avail) {
3389                 has_reduced_clock = limit->find_pll(limit, crtc,
3390                                                             dev_priv->lvds_downclock,
3391                                                             refclk,
3392                                                             &reduced_clock);
3393                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3394                         /*
3395                          * If the different P is found, it means that we can't
3396                          * switch the display clock by using the FP0/FP1.
3397                          * In such case we will disable the LVDS downclock
3398                          * feature.
3399                          */
3400                         DRM_DEBUG_KMS("Different P is found for "
3401                                                 "LVDS clock/downclock\n");
3402                         has_reduced_clock = 0;
3403                 }
3404         }
3405         /* SDVO TV has fixed PLL values depend on its clock range,
3406            this mirrors vbios setting. */
3407         if (is_sdvo && is_tv) {
3408                 if (adjusted_mode->clock >= 100000
3409                                 && adjusted_mode->clock < 140500) {
3410                         clock.p1 = 2;
3411                         clock.p2 = 10;
3412                         clock.n = 3;
3413                         clock.m1 = 16;
3414                         clock.m2 = 8;
3415                 } else if (adjusted_mode->clock >= 140500
3416                                 && adjusted_mode->clock <= 200000) {
3417                         clock.p1 = 1;
3418                         clock.p2 = 10;
3419                         clock.n = 6;
3420                         clock.m1 = 12;
3421                         clock.m2 = 8;
3422                 }
3423         }
3424
3425         /* FDI link */
3426         if (HAS_PCH_SPLIT(dev)) {
3427                 int lane = 0, link_bw, bpp;
3428                 /* eDP doesn't require FDI link, so just set DP M/N
3429                    according to current link config */
3430                 if (is_edp) {
3431                         target_clock = mode->clock;
3432                         intel_edp_link_config(intel_encoder,
3433                                         &lane, &link_bw);
3434                 } else {
3435                         /* DP over FDI requires target mode clock
3436                            instead of link clock */
3437                         if (is_dp)
3438                                 target_clock = mode->clock;
3439                         else
3440                                 target_clock = adjusted_mode->clock;
3441                         link_bw = 270000;
3442                 }
3443
3444                 /* determine panel color depth */
3445                 temp = I915_READ(pipeconf_reg);
3446                 temp &= ~PIPE_BPC_MASK;
3447                 if (is_lvds) {
3448                         int lvds_reg = I915_READ(PCH_LVDS);
3449                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3450                         if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3451                                 temp |= PIPE_8BPC;
3452                         else
3453                                 temp |= PIPE_6BPC;
3454                 } else if (is_edp) {
3455                         switch (dev_priv->edp_bpp/3) {
3456                         case 8:
3457                                 temp |= PIPE_8BPC;
3458                                 break;
3459                         case 10:
3460                                 temp |= PIPE_10BPC;
3461                                 break;
3462                         case 6:
3463                                 temp |= PIPE_6BPC;
3464                                 break;
3465                         case 12:
3466                                 temp |= PIPE_12BPC;
3467                                 break;
3468                         }
3469                 } else
3470                         temp |= PIPE_8BPC;
3471                 I915_WRITE(pipeconf_reg, temp);
3472                 I915_READ(pipeconf_reg);
3473
3474                 switch (temp & PIPE_BPC_MASK) {
3475                 case PIPE_8BPC:
3476                         bpp = 24;
3477                         break;
3478                 case PIPE_10BPC:
3479                         bpp = 30;
3480                         break;
3481                 case PIPE_6BPC:
3482                         bpp = 18;
3483                         break;
3484                 case PIPE_12BPC:
3485                         bpp = 36;
3486                         break;
3487                 default:
3488                         DRM_ERROR("unknown pipe bpc value\n");
3489                         bpp = 24;
3490                 }
3491
3492                 if (!lane) {
3493                         /* 
3494                          * Account for spread spectrum to avoid
3495                          * oversubscribing the link. Max center spread
3496                          * is 2.5%; use 5% for safety's sake.
3497                          */
3498                         u32 bps = target_clock * bpp * 21 / 20;
3499                         lane = bps / (link_bw * 8) + 1;
3500                 }
3501
3502                 intel_crtc->fdi_lanes = lane;
3503
3504                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3505         }
3506
3507         /* Ironlake: try to setup display ref clock before DPLL
3508          * enabling. This is only under driver's control after
3509          * PCH B stepping, previous chipset stepping should be
3510          * ignoring this setting.
3511          */
3512         if (HAS_PCH_SPLIT(dev)) {
3513                 temp = I915_READ(PCH_DREF_CONTROL);
3514                 /* Always enable nonspread source */
3515                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3516                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3517                 I915_WRITE(PCH_DREF_CONTROL, temp);
3518                 POSTING_READ(PCH_DREF_CONTROL);
3519
3520                 temp &= ~DREF_SSC_SOURCE_MASK;
3521                 temp |= DREF_SSC_SOURCE_ENABLE;
3522                 I915_WRITE(PCH_DREF_CONTROL, temp);
3523                 POSTING_READ(PCH_DREF_CONTROL);
3524
3525                 udelay(200);
3526
3527                 if (is_edp) {
3528                         if (dev_priv->lvds_use_ssc) {
3529                                 temp |= DREF_SSC1_ENABLE;
3530                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3531                                 POSTING_READ(PCH_DREF_CONTROL);
3532
3533                                 udelay(200);
3534
3535                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3536                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3537                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3538                                 POSTING_READ(PCH_DREF_CONTROL);
3539                         } else {
3540                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3541                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3542                                 POSTING_READ(PCH_DREF_CONTROL);
3543                         }
3544                 }
3545         }
3546
3547         if (IS_PINEVIEW(dev)) {
3548                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3549                 if (has_reduced_clock)
3550                         fp2 = (1 << reduced_clock.n) << 16 |
3551                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3552         } else {
3553                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3554                 if (has_reduced_clock)
3555                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3556                                 reduced_clock.m2;
3557         }
3558
3559         if (!HAS_PCH_SPLIT(dev))
3560                 dpll = DPLL_VGA_MODE_DIS;
3561
3562         if (IS_I9XX(dev)) {
3563                 if (is_lvds)
3564                         dpll |= DPLLB_MODE_LVDS;
3565                 else
3566                         dpll |= DPLLB_MODE_DAC_SERIAL;
3567                 if (is_sdvo) {
3568                         dpll |= DPLL_DVO_HIGH_SPEED;
3569                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3570                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3571                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3572                         else if (HAS_PCH_SPLIT(dev))
3573                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3574                 }
3575                 if (is_dp)
3576                         dpll |= DPLL_DVO_HIGH_SPEED;
3577
3578                 /* compute bitmask from p1 value */
3579                 if (IS_PINEVIEW(dev))
3580                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3581                 else {
3582                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3583                         /* also FPA1 */
3584                         if (HAS_PCH_SPLIT(dev))
3585                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3586                         if (IS_G4X(dev) && has_reduced_clock)
3587                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3588                 }
3589                 switch (clock.p2) {
3590                 case 5:
3591                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3592                         break;
3593                 case 7:
3594                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3595                         break;
3596                 case 10:
3597                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3598                         break;
3599                 case 14:
3600                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3601                         break;
3602                 }
3603                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3604                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3605         } else {
3606                 if (is_lvds) {
3607                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3608                 } else {
3609                         if (clock.p1 == 2)
3610                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3611                         else
3612                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3613                         if (clock.p2 == 4)
3614                                 dpll |= PLL_P2_DIVIDE_BY_4;
3615                 }
3616         }
3617
3618         if (is_sdvo && is_tv)
3619                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3620         else if (is_tv)
3621                 /* XXX: just matching BIOS for now */
3622                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3623                 dpll |= 3;
3624         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3625                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3626         else
3627                 dpll |= PLL_REF_INPUT_DREFCLK;
3628
3629         /* setup pipeconf */
3630         pipeconf = I915_READ(pipeconf_reg);
3631
3632         /* Set up the display plane register */
3633         dspcntr = DISPPLANE_GAMMA_ENABLE;
3634
3635         /* Ironlake's plane is forced to pipe, bit 24 is to
3636            enable color space conversion */
3637         if (!HAS_PCH_SPLIT(dev)) {
3638                 if (pipe == 0)
3639                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3640                 else
3641                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3642         }
3643
3644         if (pipe == 0 && !IS_I965G(dev)) {
3645                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3646                  * core speed.
3647                  *
3648                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3649                  * pipe == 0 check?
3650                  */
3651                 if (mode->clock >
3652                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3653                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
3654                 else
3655                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3656         }
3657
3658         dspcntr |= DISPLAY_PLANE_ENABLE;
3659         pipeconf |= PIPEACONF_ENABLE;
3660         dpll |= DPLL_VCO_ENABLE;
3661
3662
3663         /* Disable the panel fitter if it was on our pipe */
3664         if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3665                 I915_WRITE(PFIT_CONTROL, 0);
3666
3667         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3668         drm_mode_debug_printmodeline(mode);
3669
3670         /* assign to Ironlake registers */
3671         if (HAS_PCH_SPLIT(dev)) {
3672                 fp_reg = pch_fp_reg;
3673                 dpll_reg = pch_dpll_reg;
3674         }
3675
3676         if (is_edp) {
3677                 ironlake_disable_pll_edp(crtc);
3678         } else if ((dpll & DPLL_VCO_ENABLE)) {
3679                 I915_WRITE(fp_reg, fp);
3680                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3681                 I915_READ(dpll_reg);
3682                 udelay(150);
3683         }
3684
3685         /* enable transcoder DPLL */
3686         if (HAS_PCH_CPT(dev)) {
3687                 temp = I915_READ(PCH_DPLL_SEL);
3688                 if (trans_dpll_sel == 0)
3689                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3690                 else
3691                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3692                 I915_WRITE(PCH_DPLL_SEL, temp);
3693                 I915_READ(PCH_DPLL_SEL);
3694                 udelay(150);
3695         }
3696
3697         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3698          * This is an exception to the general rule that mode_set doesn't turn
3699          * things on.
3700          */
3701         if (is_lvds) {
3702                 u32 lvds;
3703
3704                 if (HAS_PCH_SPLIT(dev))
3705                         lvds_reg = PCH_LVDS;
3706
3707                 lvds = I915_READ(lvds_reg);
3708                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3709                 if (pipe == 1) {
3710                         if (HAS_PCH_CPT(dev))
3711                                 lvds |= PORT_TRANS_B_SEL_CPT;
3712                         else
3713                                 lvds |= LVDS_PIPEB_SELECT;
3714                 } else {
3715                         if (HAS_PCH_CPT(dev))
3716                                 lvds &= ~PORT_TRANS_SEL_MASK;
3717                         else
3718                                 lvds &= ~LVDS_PIPEB_SELECT;
3719                 }
3720                 /* set the corresponsding LVDS_BORDER bit */
3721                 lvds |= dev_priv->lvds_border_bits;
3722                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3723                  * set the DPLLs for dual-channel mode or not.
3724                  */
3725                 if (clock.p2 == 7)
3726                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3727                 else
3728                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3729
3730                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3731                  * appropriately here, but we need to look more thoroughly into how
3732                  * panels behave in the two modes.
3733                  */
3734                 /* set the dithering flag */
3735                 if (IS_I965G(dev)) {
3736                         if (dev_priv->lvds_dither) {
3737                                 if (HAS_PCH_SPLIT(dev)) {
3738                                         pipeconf |= PIPE_ENABLE_DITHER;
3739                                         pipeconf |= PIPE_DITHER_TYPE_ST01;
3740                                 } else
3741                                         lvds |= LVDS_ENABLE_DITHER;
3742                         } else {
3743                                 if (HAS_PCH_SPLIT(dev)) {
3744                                         pipeconf &= ~PIPE_ENABLE_DITHER;
3745                                         pipeconf &= ~PIPE_DITHER_TYPE_MASK;
3746                                 } else
3747                                         lvds &= ~LVDS_ENABLE_DITHER;
3748                         }
3749                 }
3750                 I915_WRITE(lvds_reg, lvds);
3751                 I915_READ(lvds_reg);
3752         }
3753         if (is_dp)
3754                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3755         else if (HAS_PCH_SPLIT(dev)) {
3756                 /* For non-DP output, clear any trans DP clock recovery setting.*/
3757                 if (pipe == 0) {
3758                         I915_WRITE(TRANSA_DATA_M1, 0);
3759                         I915_WRITE(TRANSA_DATA_N1, 0);
3760                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
3761                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
3762                 } else {
3763                         I915_WRITE(TRANSB_DATA_M1, 0);
3764                         I915_WRITE(TRANSB_DATA_N1, 0);
3765                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
3766                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
3767                 }
3768         }
3769
3770         if (!is_edp) {
3771                 I915_WRITE(fp_reg, fp);
3772                 I915_WRITE(dpll_reg, dpll);
3773                 I915_READ(dpll_reg);
3774                 /* Wait for the clocks to stabilize. */
3775                 udelay(150);
3776
3777                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
3778                         if (is_sdvo) {
3779                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3780                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3781                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3782                         } else
3783                                 I915_WRITE(dpll_md_reg, 0);
3784                 } else {
3785                         /* write it again -- the BIOS does, after all */
3786                         I915_WRITE(dpll_reg, dpll);
3787                 }
3788                 I915_READ(dpll_reg);
3789                 /* Wait for the clocks to stabilize. */
3790                 udelay(150);
3791         }
3792
3793         if (is_lvds && has_reduced_clock && i915_powersave) {
3794                 I915_WRITE(fp_reg + 4, fp2);
3795                 intel_crtc->lowfreq_avail = true;
3796                 if (HAS_PIPE_CXSR(dev)) {
3797                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3798                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3799                 }
3800         } else {
3801                 I915_WRITE(fp_reg + 4, fp);
3802                 intel_crtc->lowfreq_avail = false;
3803                 if (HAS_PIPE_CXSR(dev)) {
3804                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3805                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3806                 }
3807         }
3808
3809         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
3810                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
3811                 /* the chip adds 2 halflines automatically */
3812                 adjusted_mode->crtc_vdisplay -= 1;
3813                 adjusted_mode->crtc_vtotal -= 1;
3814                 adjusted_mode->crtc_vblank_start -= 1;
3815                 adjusted_mode->crtc_vblank_end -= 1;
3816                 adjusted_mode->crtc_vsync_end -= 1;
3817                 adjusted_mode->crtc_vsync_start -= 1;
3818         } else
3819                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
3820
3821         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3822                    ((adjusted_mode->crtc_htotal - 1) << 16));
3823         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3824                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3825         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3826                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3827         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3828                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3829         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3830                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3831         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3832                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3833         /* pipesrc and dspsize control the size that is scaled from, which should
3834          * always be the user's requested size.
3835          */
3836         if (!HAS_PCH_SPLIT(dev)) {
3837                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3838                                 (mode->hdisplay - 1));
3839                 I915_WRITE(dsppos_reg, 0);
3840         }
3841         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3842
3843         if (HAS_PCH_SPLIT(dev)) {
3844                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3845                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3846                 I915_WRITE(link_m1_reg, m_n.link_m);
3847                 I915_WRITE(link_n1_reg, m_n.link_n);
3848
3849                 if (is_edp) {
3850                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
3851                 } else {
3852                         /* enable FDI RX PLL too */
3853                         temp = I915_READ(fdi_rx_reg);
3854                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3855                         I915_READ(fdi_rx_reg);
3856                         udelay(200);
3857
3858                         /* enable FDI TX PLL too */
3859                         temp = I915_READ(fdi_tx_reg);
3860                         I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
3861                         I915_READ(fdi_tx_reg);
3862
3863                         /* enable FDI RX PCDCLK */
3864                         temp = I915_READ(fdi_rx_reg);
3865                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
3866                         I915_READ(fdi_rx_reg);
3867                         udelay(200);
3868                 }
3869         }
3870
3871         I915_WRITE(pipeconf_reg, pipeconf);
3872         I915_READ(pipeconf_reg);
3873
3874         intel_wait_for_vblank(dev);
3875
3876         if (IS_IRONLAKE(dev)) {
3877                 /* enable address swizzle for tiling buffer */
3878                 temp = I915_READ(DISP_ARB_CTL);
3879                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3880         }
3881
3882         I915_WRITE(dspcntr_reg, dspcntr);
3883
3884         /* Flush the plane changes */
3885         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3886
3887         if ((IS_I965G(dev) || plane == 0))
3888                 intel_update_fbc(crtc, &crtc->mode);
3889
3890         intel_update_watermarks(dev);
3891
3892         drm_vblank_post_modeset(dev, pipe);
3893
3894         return ret;
3895 }
3896
3897 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3898 void intel_crtc_load_lut(struct drm_crtc *crtc)
3899 {
3900         struct drm_device *dev = crtc->dev;
3901         struct drm_i915_private *dev_priv = dev->dev_private;
3902         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3903         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3904         int i;
3905
3906         /* The clocks have to be on to load the palette. */
3907         if (!crtc->enabled)
3908                 return;
3909
3910         /* use legacy palette for Ironlake */
3911         if (HAS_PCH_SPLIT(dev))
3912                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3913                                                    LGC_PALETTE_B;
3914
3915         for (i = 0; i < 256; i++) {
3916                 I915_WRITE(palreg + 4 * i,
3917                            (intel_crtc->lut_r[i] << 16) |
3918                            (intel_crtc->lut_g[i] << 8) |
3919                            intel_crtc->lut_b[i]);
3920         }
3921 }
3922
3923 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3924                                  struct drm_file *file_priv,
3925                                  uint32_t handle,
3926                                  uint32_t width, uint32_t height)
3927 {
3928         struct drm_device *dev = crtc->dev;
3929         struct drm_i915_private *dev_priv = dev->dev_private;
3930         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3931         struct drm_gem_object *bo;
3932         struct drm_i915_gem_object *obj_priv;
3933         int pipe = intel_crtc->pipe;
3934         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3935         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3936         uint32_t temp = I915_READ(control);
3937         size_t addr;
3938         int ret;
3939
3940         DRM_DEBUG_KMS("\n");
3941
3942         /* if we want to turn off the cursor ignore width and height */
3943         if (!handle) {
3944                 DRM_DEBUG_KMS("cursor off\n");
3945                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3946                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3947                         temp |= CURSOR_MODE_DISABLE;
3948                 } else {
3949                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3950                 }
3951                 addr = 0;
3952                 bo = NULL;
3953                 mutex_lock(&dev->struct_mutex);
3954                 goto finish;
3955         }
3956
3957         /* Currently we only support 64x64 cursors */
3958         if (width != 64 || height != 64) {
3959                 DRM_ERROR("we currently only support 64x64 cursors\n");
3960                 return -EINVAL;
3961         }
3962
3963         bo = drm_gem_object_lookup(dev, file_priv, handle);
3964         if (!bo)
3965                 return -ENOENT;
3966
3967         obj_priv = to_intel_bo(bo);
3968
3969         if (bo->size < width * height * 4) {
3970                 DRM_ERROR("buffer is to small\n");
3971                 ret = -ENOMEM;
3972                 goto fail;
3973         }
3974
3975         /* we only need to pin inside GTT if cursor is non-phy */
3976         mutex_lock(&dev->struct_mutex);
3977         if (!dev_priv->info->cursor_needs_physical) {
3978                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3979                 if (ret) {
3980                         DRM_ERROR("failed to pin cursor bo\n");
3981                         goto fail_locked;
3982                 }
3983
3984                 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
3985                 if (ret) {
3986                         DRM_ERROR("failed to move cursor bo into the GTT\n");
3987                         goto fail_unpin;
3988                 }
3989
3990                 addr = obj_priv->gtt_offset;
3991         } else {
3992                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3993                 if (ret) {
3994                         DRM_ERROR("failed to attach phys object\n");
3995                         goto fail_locked;
3996                 }
3997                 addr = obj_priv->phys_obj->handle->busaddr;
3998         }
3999
4000         if (!IS_I9XX(dev))
4001                 I915_WRITE(CURSIZE, (height << 12) | width);
4002
4003         /* Hooray for CUR*CNTR differences */
4004         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
4005                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4006                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4007                 temp |= (pipe << 28); /* Connect to correct pipe */
4008         } else {
4009                 temp &= ~(CURSOR_FORMAT_MASK);
4010                 temp |= CURSOR_ENABLE;
4011                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
4012         }
4013
4014  finish:
4015         I915_WRITE(control, temp);
4016         I915_WRITE(base, addr);
4017
4018         if (intel_crtc->cursor_bo) {
4019                 if (dev_priv->info->cursor_needs_physical) {
4020                         if (intel_crtc->cursor_bo != bo)
4021                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4022                 } else
4023                         i915_gem_object_unpin(intel_crtc->cursor_bo);
4024                 drm_gem_object_unreference(intel_crtc->cursor_bo);
4025         }
4026
4027         mutex_unlock(&dev->struct_mutex);
4028
4029         intel_crtc->cursor_addr = addr;
4030         intel_crtc->cursor_bo = bo;
4031
4032         return 0;
4033 fail_unpin:
4034         i915_gem_object_unpin(bo);
4035 fail_locked:
4036         mutex_unlock(&dev->struct_mutex);
4037 fail:
4038         drm_gem_object_unreference_unlocked(bo);
4039         return ret;
4040 }
4041
4042 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4043 {
4044         struct drm_device *dev = crtc->dev;
4045         struct drm_i915_private *dev_priv = dev->dev_private;
4046         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4047         struct intel_framebuffer *intel_fb;
4048         int pipe = intel_crtc->pipe;
4049         uint32_t temp = 0;
4050         uint32_t adder;
4051
4052         if (crtc->fb) {
4053                 intel_fb = to_intel_framebuffer(crtc->fb);
4054                 intel_mark_busy(dev, intel_fb->obj);
4055         }
4056
4057         if (x < 0) {
4058                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4059                 x = -x;
4060         }
4061         if (y < 0) {
4062                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4063                 y = -y;
4064         }
4065
4066         temp |= x << CURSOR_X_SHIFT;
4067         temp |= y << CURSOR_Y_SHIFT;
4068
4069         adder = intel_crtc->cursor_addr;
4070         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
4071         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
4072
4073         return 0;
4074 }
4075
4076 /** Sets the color ramps on behalf of RandR */
4077 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4078                                  u16 blue, int regno)
4079 {
4080         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4081
4082         intel_crtc->lut_r[regno] = red >> 8;
4083         intel_crtc->lut_g[regno] = green >> 8;
4084         intel_crtc->lut_b[regno] = blue >> 8;
4085 }
4086
4087 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4088                              u16 *blue, int regno)
4089 {
4090         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4091
4092         *red = intel_crtc->lut_r[regno] << 8;
4093         *green = intel_crtc->lut_g[regno] << 8;
4094         *blue = intel_crtc->lut_b[regno] << 8;
4095 }
4096
4097 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4098                                  u16 *blue, uint32_t size)
4099 {
4100         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4101         int i;
4102
4103         if (size != 256)
4104                 return;
4105
4106         for (i = 0; i < 256; i++) {
4107                 intel_crtc->lut_r[i] = red[i] >> 8;
4108                 intel_crtc->lut_g[i] = green[i] >> 8;
4109                 intel_crtc->lut_b[i] = blue[i] >> 8;
4110         }
4111
4112         intel_crtc_load_lut(crtc);
4113 }
4114
4115 /**
4116  * Get a pipe with a simple mode set on it for doing load-based monitor
4117  * detection.
4118  *
4119  * It will be up to the load-detect code to adjust the pipe as appropriate for
4120  * its requirements.  The pipe will be connected to no other encoders.
4121  *
4122  * Currently this code will only succeed if there is a pipe with no encoders
4123  * configured for it.  In the future, it could choose to temporarily disable
4124  * some outputs to free up a pipe for its use.
4125  *
4126  * \return crtc, or NULL if no pipes are available.
4127  */
4128
4129 /* VESA 640x480x72Hz mode to set on the pipe */
4130 static struct drm_display_mode load_detect_mode = {
4131         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4132                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4133 };
4134
4135 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4136                                             struct drm_connector *connector,
4137                                             struct drm_display_mode *mode,
4138                                             int *dpms_mode)
4139 {
4140         struct intel_crtc *intel_crtc;
4141         struct drm_crtc *possible_crtc;
4142         struct drm_crtc *supported_crtc =NULL;
4143         struct drm_encoder *encoder = &intel_encoder->enc;
4144         struct drm_crtc *crtc = NULL;
4145         struct drm_device *dev = encoder->dev;
4146         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4147         struct drm_crtc_helper_funcs *crtc_funcs;
4148         int i = -1;
4149
4150         /*
4151          * Algorithm gets a little messy:
4152          *   - if the connector already has an assigned crtc, use it (but make
4153          *     sure it's on first)
4154          *   - try to find the first unused crtc that can drive this connector,
4155          *     and use that if we find one
4156          *   - if there are no unused crtcs available, try to use the first
4157          *     one we found that supports the connector
4158          */
4159
4160         /* See if we already have a CRTC for this connector */
4161         if (encoder->crtc) {
4162                 crtc = encoder->crtc;
4163                 /* Make sure the crtc and connector are running */
4164                 intel_crtc = to_intel_crtc(crtc);
4165                 *dpms_mode = intel_crtc->dpms_mode;
4166                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4167                         crtc_funcs = crtc->helper_private;
4168                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4169                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4170                 }
4171                 return crtc;
4172         }
4173
4174         /* Find an unused one (if possible) */
4175         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4176                 i++;
4177                 if (!(encoder->possible_crtcs & (1 << i)))
4178                         continue;
4179                 if (!possible_crtc->enabled) {
4180                         crtc = possible_crtc;
4181                         break;
4182                 }
4183                 if (!supported_crtc)
4184                         supported_crtc = possible_crtc;
4185         }
4186
4187         /*
4188          * If we didn't find an unused CRTC, don't use any.
4189          */
4190         if (!crtc) {
4191                 return NULL;
4192         }
4193
4194         encoder->crtc = crtc;
4195         connector->encoder = encoder;
4196         intel_encoder->load_detect_temp = true;
4197
4198         intel_crtc = to_intel_crtc(crtc);
4199         *dpms_mode = intel_crtc->dpms_mode;
4200
4201         if (!crtc->enabled) {
4202                 if (!mode)
4203                         mode = &load_detect_mode;
4204                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4205         } else {
4206                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4207                         crtc_funcs = crtc->helper_private;
4208                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4209                 }
4210
4211                 /* Add this connector to the crtc */
4212                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4213                 encoder_funcs->commit(encoder);
4214         }
4215         /* let the connector get through one full cycle before testing */
4216         intel_wait_for_vblank(dev);
4217
4218         return crtc;
4219 }
4220
4221 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4222                                     struct drm_connector *connector, int dpms_mode)
4223 {
4224         struct drm_encoder *encoder = &intel_encoder->enc;
4225         struct drm_device *dev = encoder->dev;
4226         struct drm_crtc *crtc = encoder->crtc;
4227         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4228         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4229
4230         if (intel_encoder->load_detect_temp) {
4231                 encoder->crtc = NULL;
4232                 connector->encoder = NULL;
4233                 intel_encoder->load_detect_temp = false;
4234                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4235                 drm_helper_disable_unused_functions(dev);
4236         }
4237
4238         /* Switch crtc and encoder back off if necessary */
4239         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4240                 if (encoder->crtc == crtc)
4241                         encoder_funcs->dpms(encoder, dpms_mode);
4242                 crtc_funcs->dpms(crtc, dpms_mode);
4243         }
4244 }
4245
4246 /* Returns the clock of the currently programmed mode of the given pipe. */
4247 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4248 {
4249         struct drm_i915_private *dev_priv = dev->dev_private;
4250         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4251         int pipe = intel_crtc->pipe;
4252         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4253         u32 fp;
4254         intel_clock_t clock;
4255
4256         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4257                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4258         else
4259                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4260
4261         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4262         if (IS_PINEVIEW(dev)) {
4263                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4264                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4265         } else {
4266                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4267                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4268         }
4269
4270         if (IS_I9XX(dev)) {
4271                 if (IS_PINEVIEW(dev))
4272                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4273                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4274                 else
4275                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4276                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4277
4278                 switch (dpll & DPLL_MODE_MASK) {
4279                 case DPLLB_MODE_DAC_SERIAL:
4280                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4281                                 5 : 10;
4282                         break;
4283                 case DPLLB_MODE_LVDS:
4284                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4285                                 7 : 14;
4286                         break;
4287                 default:
4288                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4289                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4290                         return 0;
4291                 }
4292
4293                 /* XXX: Handle the 100Mhz refclk */
4294                 intel_clock(dev, 96000, &clock);
4295         } else {
4296                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4297
4298                 if (is_lvds) {
4299                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4300                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4301                         clock.p2 = 14;
4302
4303                         if ((dpll & PLL_REF_INPUT_MASK) ==
4304                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4305                                 /* XXX: might not be 66MHz */
4306                                 intel_clock(dev, 66000, &clock);
4307                         } else
4308                                 intel_clock(dev, 48000, &clock);
4309                 } else {
4310                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4311                                 clock.p1 = 2;
4312                         else {
4313                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4314                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4315                         }
4316                         if (dpll & PLL_P2_DIVIDE_BY_4)
4317                                 clock.p2 = 4;
4318                         else
4319                                 clock.p2 = 2;
4320
4321                         intel_clock(dev, 48000, &clock);
4322                 }
4323         }
4324
4325         /* XXX: It would be nice to validate the clocks, but we can't reuse
4326          * i830PllIsValid() because it relies on the xf86_config connector
4327          * configuration being accurate, which it isn't necessarily.
4328          */
4329
4330         return clock.dot;
4331 }
4332
4333 /** Returns the currently programmed mode of the given pipe. */
4334 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4335                                              struct drm_crtc *crtc)
4336 {
4337         struct drm_i915_private *dev_priv = dev->dev_private;
4338         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4339         int pipe = intel_crtc->pipe;
4340         struct drm_display_mode *mode;
4341         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4342         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4343         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4344         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4345
4346         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4347         if (!mode)
4348                 return NULL;
4349
4350         mode->clock = intel_crtc_clock_get(dev, crtc);
4351         mode->hdisplay = (htot & 0xffff) + 1;
4352         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4353         mode->hsync_start = (hsync & 0xffff) + 1;
4354         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4355         mode->vdisplay = (vtot & 0xffff) + 1;
4356         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4357         mode->vsync_start = (vsync & 0xffff) + 1;
4358         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4359
4360         drm_mode_set_name(mode);
4361         drm_mode_set_crtcinfo(mode, 0);
4362
4363         return mode;
4364 }
4365
4366 #define GPU_IDLE_TIMEOUT 500 /* ms */
4367
4368 /* When this timer fires, we've been idle for awhile */
4369 static void intel_gpu_idle_timer(unsigned long arg)
4370 {
4371         struct drm_device *dev = (struct drm_device *)arg;
4372         drm_i915_private_t *dev_priv = dev->dev_private;
4373
4374         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4375
4376         dev_priv->busy = false;
4377
4378         queue_work(dev_priv->wq, &dev_priv->idle_work);
4379 }
4380
4381 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4382
4383 static void intel_crtc_idle_timer(unsigned long arg)
4384 {
4385         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4386         struct drm_crtc *crtc = &intel_crtc->base;
4387         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4388
4389         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4390
4391         intel_crtc->busy = false;
4392
4393         queue_work(dev_priv->wq, &dev_priv->idle_work);
4394 }
4395
4396 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
4397 {
4398         struct drm_device *dev = crtc->dev;
4399         drm_i915_private_t *dev_priv = dev->dev_private;
4400         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4401         int pipe = intel_crtc->pipe;
4402         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4403         int dpll = I915_READ(dpll_reg);
4404
4405         if (HAS_PCH_SPLIT(dev))
4406                 return;
4407
4408         if (!dev_priv->lvds_downclock_avail)
4409                 return;
4410
4411         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4412                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4413
4414                 /* Unlock panel regs */
4415                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4416
4417                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4418                 I915_WRITE(dpll_reg, dpll);
4419                 dpll = I915_READ(dpll_reg);
4420                 intel_wait_for_vblank(dev);
4421                 dpll = I915_READ(dpll_reg);
4422                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4423                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4424
4425                 /* ...and lock them again */
4426                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4427         }
4428
4429         /* Schedule downclock */
4430         if (schedule)
4431                 mod_timer(&intel_crtc->idle_timer, jiffies +
4432                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4433 }
4434
4435 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4436 {
4437         struct drm_device *dev = crtc->dev;
4438         drm_i915_private_t *dev_priv = dev->dev_private;
4439         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4440         int pipe = intel_crtc->pipe;
4441         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4442         int dpll = I915_READ(dpll_reg);
4443
4444         if (HAS_PCH_SPLIT(dev))
4445                 return;
4446
4447         if (!dev_priv->lvds_downclock_avail)
4448                 return;
4449
4450         /*
4451          * Since this is called by a timer, we should never get here in
4452          * the manual case.
4453          */
4454         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4455                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4456
4457                 /* Unlock panel regs */
4458                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4459
4460                 dpll |= DISPLAY_RATE_SELECT_FPA1;
4461                 I915_WRITE(dpll_reg, dpll);
4462                 dpll = I915_READ(dpll_reg);
4463                 intel_wait_for_vblank(dev);
4464                 dpll = I915_READ(dpll_reg);
4465                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4466                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4467
4468                 /* ...and lock them again */
4469                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4470         }
4471
4472 }
4473
4474 /**
4475  * intel_idle_update - adjust clocks for idleness
4476  * @work: work struct
4477  *
4478  * Either the GPU or display (or both) went idle.  Check the busy status
4479  * here and adjust the CRTC and GPU clocks as necessary.
4480  */
4481 static void intel_idle_update(struct work_struct *work)
4482 {
4483         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4484                                                     idle_work);
4485         struct drm_device *dev = dev_priv->dev;
4486         struct drm_crtc *crtc;
4487         struct intel_crtc *intel_crtc;
4488         int enabled = 0;
4489
4490         if (!i915_powersave)
4491                 return;
4492
4493         mutex_lock(&dev->struct_mutex);
4494
4495         i915_update_gfx_val(dev_priv);
4496
4497         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4498                 /* Skip inactive CRTCs */
4499                 if (!crtc->fb)
4500                         continue;
4501
4502                 enabled++;
4503                 intel_crtc = to_intel_crtc(crtc);
4504                 if (!intel_crtc->busy)
4505                         intel_decrease_pllclock(crtc);
4506         }
4507
4508         if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4509                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4510                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4511         }
4512
4513         mutex_unlock(&dev->struct_mutex);
4514 }
4515
4516 /**
4517  * intel_mark_busy - mark the GPU and possibly the display busy
4518  * @dev: drm device
4519  * @obj: object we're operating on
4520  *
4521  * Callers can use this function to indicate that the GPU is busy processing
4522  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4523  * buffer), we'll also mark the display as busy, so we know to increase its
4524  * clock frequency.
4525  */
4526 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4527 {
4528         drm_i915_private_t *dev_priv = dev->dev_private;
4529         struct drm_crtc *crtc = NULL;
4530         struct intel_framebuffer *intel_fb;
4531         struct intel_crtc *intel_crtc;
4532
4533         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4534                 return;
4535
4536         if (!dev_priv->busy) {
4537                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4538                         u32 fw_blc_self;
4539
4540                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4541                         fw_blc_self = I915_READ(FW_BLC_SELF);
4542                         fw_blc_self &= ~FW_BLC_SELF_EN;
4543                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4544                 }
4545                 dev_priv->busy = true;
4546         } else
4547                 mod_timer(&dev_priv->idle_timer, jiffies +
4548                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4549
4550         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4551                 if (!crtc->fb)
4552                         continue;
4553
4554                 intel_crtc = to_intel_crtc(crtc);
4555                 intel_fb = to_intel_framebuffer(crtc->fb);
4556                 if (intel_fb->obj == obj) {
4557                         if (!intel_crtc->busy) {
4558                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4559                                         u32 fw_blc_self;
4560
4561                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4562                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4563                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4564                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4565                                 }
4566                                 /* Non-busy -> busy, upclock */
4567                                 intel_increase_pllclock(crtc, true);
4568                                 intel_crtc->busy = true;
4569                         } else {
4570                                 /* Busy -> busy, put off timer */
4571                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4572                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4573                         }
4574                 }
4575         }
4576 }
4577
4578 static void intel_crtc_destroy(struct drm_crtc *crtc)
4579 {
4580         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4581
4582         drm_crtc_cleanup(crtc);
4583         kfree(intel_crtc);
4584 }
4585
4586 struct intel_unpin_work {
4587         struct work_struct work;
4588         struct drm_device *dev;
4589         struct drm_gem_object *old_fb_obj;
4590         struct drm_gem_object *pending_flip_obj;
4591         struct drm_pending_vblank_event *event;
4592         int pending;
4593 };
4594
4595 static void intel_unpin_work_fn(struct work_struct *__work)
4596 {
4597         struct intel_unpin_work *work =
4598                 container_of(__work, struct intel_unpin_work, work);
4599
4600         mutex_lock(&work->dev->struct_mutex);
4601         i915_gem_object_unpin(work->old_fb_obj);
4602         drm_gem_object_unreference(work->pending_flip_obj);
4603         drm_gem_object_unreference(work->old_fb_obj);
4604         mutex_unlock(&work->dev->struct_mutex);
4605         kfree(work);
4606 }
4607
4608 static void do_intel_finish_page_flip(struct drm_device *dev,
4609                                       struct drm_crtc *crtc)
4610 {
4611         drm_i915_private_t *dev_priv = dev->dev_private;
4612         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4613         struct intel_unpin_work *work;
4614         struct drm_i915_gem_object *obj_priv;
4615         struct drm_pending_vblank_event *e;
4616         struct timeval now;
4617         unsigned long flags;
4618
4619         /* Ignore early vblank irqs */
4620         if (intel_crtc == NULL)
4621                 return;
4622
4623         spin_lock_irqsave(&dev->event_lock, flags);
4624         work = intel_crtc->unpin_work;
4625         if (work == NULL || !work->pending) {
4626                 spin_unlock_irqrestore(&dev->event_lock, flags);
4627                 return;
4628         }
4629
4630         intel_crtc->unpin_work = NULL;
4631         drm_vblank_put(dev, intel_crtc->pipe);
4632
4633         if (work->event) {
4634                 e = work->event;
4635                 do_gettimeofday(&now);
4636                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4637                 e->event.tv_sec = now.tv_sec;
4638                 e->event.tv_usec = now.tv_usec;
4639                 list_add_tail(&e->base.link,
4640                               &e->base.file_priv->event_list);
4641                 wake_up_interruptible(&e->base.file_priv->event_wait);
4642         }
4643
4644         spin_unlock_irqrestore(&dev->event_lock, flags);
4645
4646         obj_priv = to_intel_bo(work->pending_flip_obj);
4647
4648         /* Initial scanout buffer will have a 0 pending flip count */
4649         if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4650             atomic_dec_and_test(&obj_priv->pending_flip))
4651                 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4652         schedule_work(&work->work);
4653 }
4654
4655 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4656 {
4657         drm_i915_private_t *dev_priv = dev->dev_private;
4658         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4659
4660         do_intel_finish_page_flip(dev, crtc);
4661 }
4662
4663 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
4664 {
4665         drm_i915_private_t *dev_priv = dev->dev_private;
4666         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
4667
4668         do_intel_finish_page_flip(dev, crtc);
4669 }
4670
4671 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4672 {
4673         drm_i915_private_t *dev_priv = dev->dev_private;
4674         struct intel_crtc *intel_crtc =
4675                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4676         unsigned long flags;
4677
4678         spin_lock_irqsave(&dev->event_lock, flags);
4679         if (intel_crtc->unpin_work) {
4680                 intel_crtc->unpin_work->pending = 1;
4681         } else {
4682                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4683         }
4684         spin_unlock_irqrestore(&dev->event_lock, flags);
4685 }
4686
4687 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4688                                 struct drm_framebuffer *fb,
4689                                 struct drm_pending_vblank_event *event)
4690 {
4691         struct drm_device *dev = crtc->dev;
4692         struct drm_i915_private *dev_priv = dev->dev_private;
4693         struct intel_framebuffer *intel_fb;
4694         struct drm_i915_gem_object *obj_priv;
4695         struct drm_gem_object *obj;
4696         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4697         struct intel_unpin_work *work;
4698         unsigned long flags;
4699         int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
4700         int ret, pipesrc;
4701         u32 flip_mask;
4702
4703         work = kzalloc(sizeof *work, GFP_KERNEL);
4704         if (work == NULL)
4705                 return -ENOMEM;
4706
4707         work->event = event;
4708         work->dev = crtc->dev;
4709         intel_fb = to_intel_framebuffer(crtc->fb);
4710         work->old_fb_obj = intel_fb->obj;
4711         INIT_WORK(&work->work, intel_unpin_work_fn);
4712
4713         /* We borrow the event spin lock for protecting unpin_work */
4714         spin_lock_irqsave(&dev->event_lock, flags);
4715         if (intel_crtc->unpin_work) {
4716                 spin_unlock_irqrestore(&dev->event_lock, flags);
4717                 kfree(work);
4718
4719                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4720                 return -EBUSY;
4721         }
4722         intel_crtc->unpin_work = work;
4723         spin_unlock_irqrestore(&dev->event_lock, flags);
4724
4725         intel_fb = to_intel_framebuffer(fb);
4726         obj = intel_fb->obj;
4727
4728         mutex_lock(&dev->struct_mutex);
4729         ret = intel_pin_and_fence_fb_obj(dev, obj);
4730         if (ret != 0) {
4731                 mutex_unlock(&dev->struct_mutex);
4732
4733                 spin_lock_irqsave(&dev->event_lock, flags);
4734                 intel_crtc->unpin_work = NULL;
4735                 spin_unlock_irqrestore(&dev->event_lock, flags);
4736
4737                 kfree(work);
4738
4739                 DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
4740                                  to_intel_bo(obj));
4741                 return ret;
4742         }
4743
4744         /* Reference the objects for the scheduled work. */
4745         drm_gem_object_reference(work->old_fb_obj);
4746         drm_gem_object_reference(obj);
4747
4748         crtc->fb = fb;
4749         i915_gem_object_flush_write_domain(obj);
4750         drm_vblank_get(dev, intel_crtc->pipe);
4751         obj_priv = to_intel_bo(obj);
4752         atomic_inc(&obj_priv->pending_flip);
4753         work->pending_flip_obj = obj;
4754
4755         if (intel_crtc->plane)
4756                 flip_mask = I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4757         else
4758                 flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT;
4759
4760         /* Wait for any previous flip to finish */
4761         if (IS_GEN3(dev))
4762                 while (I915_READ(ISR) & flip_mask)
4763                         ;
4764
4765         BEGIN_LP_RING(4);
4766         if (IS_I965G(dev)) {
4767                 OUT_RING(MI_DISPLAY_FLIP |
4768                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4769                 OUT_RING(fb->pitch);
4770                 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
4771                 pipesrc = I915_READ(pipesrc_reg); 
4772                 OUT_RING(pipesrc & 0x0fff0fff);
4773         } else {
4774                 OUT_RING(MI_DISPLAY_FLIP_I915 |
4775                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4776                 OUT_RING(fb->pitch);
4777                 OUT_RING(obj_priv->gtt_offset);
4778                 OUT_RING(MI_NOOP);
4779         }
4780         ADVANCE_LP_RING();
4781
4782         mutex_unlock(&dev->struct_mutex);
4783
4784         return 0;
4785 }
4786
4787 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4788         .dpms = intel_crtc_dpms,
4789         .mode_fixup = intel_crtc_mode_fixup,
4790         .mode_set = intel_crtc_mode_set,
4791         .mode_set_base = intel_pipe_set_base,
4792         .prepare = intel_crtc_prepare,
4793         .commit = intel_crtc_commit,
4794         .load_lut = intel_crtc_load_lut,
4795 };
4796
4797 static const struct drm_crtc_funcs intel_crtc_funcs = {
4798         .cursor_set = intel_crtc_cursor_set,
4799         .cursor_move = intel_crtc_cursor_move,
4800         .gamma_set = intel_crtc_gamma_set,
4801         .set_config = drm_crtc_helper_set_config,
4802         .destroy = intel_crtc_destroy,
4803         .page_flip = intel_crtc_page_flip,
4804 };
4805
4806
4807 static void intel_crtc_init(struct drm_device *dev, int pipe)
4808 {
4809         drm_i915_private_t *dev_priv = dev->dev_private;
4810         struct intel_crtc *intel_crtc;
4811         int i;
4812
4813         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4814         if (intel_crtc == NULL)
4815                 return;
4816
4817         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4818
4819         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4820         intel_crtc->pipe = pipe;
4821         intel_crtc->plane = pipe;
4822         for (i = 0; i < 256; i++) {
4823                 intel_crtc->lut_r[i] = i;
4824                 intel_crtc->lut_g[i] = i;
4825                 intel_crtc->lut_b[i] = i;
4826         }
4827
4828         /* Swap pipes & planes for FBC on pre-965 */
4829         intel_crtc->pipe = pipe;
4830         intel_crtc->plane = pipe;
4831         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4832                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4833                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4834         }
4835
4836         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
4837                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
4838         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
4839         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
4840
4841         intel_crtc->cursor_addr = 0;
4842         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4843         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4844
4845         intel_crtc->busy = false;
4846
4847         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4848                     (unsigned long)intel_crtc);
4849 }
4850
4851 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4852                                 struct drm_file *file_priv)
4853 {
4854         drm_i915_private_t *dev_priv = dev->dev_private;
4855         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4856         struct drm_mode_object *drmmode_obj;
4857         struct intel_crtc *crtc;
4858
4859         if (!dev_priv) {
4860                 DRM_ERROR("called with no initialization\n");
4861                 return -EINVAL;
4862         }
4863
4864         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4865                         DRM_MODE_OBJECT_CRTC);
4866
4867         if (!drmmode_obj) {
4868                 DRM_ERROR("no such CRTC id\n");
4869                 return -EINVAL;
4870         }
4871
4872         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4873         pipe_from_crtc_id->pipe = crtc->pipe;
4874
4875         return 0;
4876 }
4877
4878 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4879 {
4880         struct drm_crtc *crtc = NULL;
4881
4882         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4883                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4884                 if (intel_crtc->pipe == pipe)
4885                         break;
4886         }
4887         return crtc;
4888 }
4889
4890 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
4891 {
4892         int index_mask = 0;
4893         struct drm_encoder *encoder;
4894         int entry = 0;
4895
4896         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4897                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4898                 if (type_mask & intel_encoder->clone_mask)
4899                         index_mask |= (1 << entry);
4900                 entry++;
4901         }
4902         return index_mask;
4903 }
4904
4905
4906 static void intel_setup_outputs(struct drm_device *dev)
4907 {
4908         struct drm_i915_private *dev_priv = dev->dev_private;
4909         struct drm_encoder *encoder;
4910
4911         intel_crt_init(dev);
4912
4913         /* Set up integrated LVDS */
4914         if (IS_MOBILE(dev) && !IS_I830(dev))
4915                 intel_lvds_init(dev);
4916
4917         if (HAS_PCH_SPLIT(dev)) {
4918                 int found;
4919
4920                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4921                         intel_dp_init(dev, DP_A);
4922
4923                 if (I915_READ(HDMIB) & PORT_DETECTED) {
4924                         /* PCH SDVOB multiplex with HDMIB */
4925                         found = intel_sdvo_init(dev, PCH_SDVOB);
4926                         if (!found)
4927                                 intel_hdmi_init(dev, HDMIB);
4928                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4929                                 intel_dp_init(dev, PCH_DP_B);
4930                 }
4931
4932                 if (I915_READ(HDMIC) & PORT_DETECTED)
4933                         intel_hdmi_init(dev, HDMIC);
4934
4935                 if (I915_READ(HDMID) & PORT_DETECTED)
4936                         intel_hdmi_init(dev, HDMID);
4937
4938                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4939                         intel_dp_init(dev, PCH_DP_C);
4940
4941                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4942                         intel_dp_init(dev, PCH_DP_D);
4943
4944         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
4945                 bool found = false;
4946
4947                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4948                         DRM_DEBUG_KMS("probing SDVOB\n");
4949                         found = intel_sdvo_init(dev, SDVOB);
4950                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
4951                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
4952                                 intel_hdmi_init(dev, SDVOB);
4953                         }
4954
4955                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
4956                                 DRM_DEBUG_KMS("probing DP_B\n");
4957                                 intel_dp_init(dev, DP_B);
4958                         }
4959                 }
4960
4961                 /* Before G4X SDVOC doesn't have its own detect register */
4962
4963                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4964                         DRM_DEBUG_KMS("probing SDVOC\n");
4965                         found = intel_sdvo_init(dev, SDVOC);
4966                 }
4967
4968                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4969
4970                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
4971                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
4972                                 intel_hdmi_init(dev, SDVOC);
4973                         }
4974                         if (SUPPORTS_INTEGRATED_DP(dev)) {
4975                                 DRM_DEBUG_KMS("probing DP_C\n");
4976                                 intel_dp_init(dev, DP_C);
4977                         }
4978                 }
4979
4980                 if (SUPPORTS_INTEGRATED_DP(dev) &&
4981                     (I915_READ(DP_D) & DP_DETECTED)) {
4982                         DRM_DEBUG_KMS("probing DP_D\n");
4983                         intel_dp_init(dev, DP_D);
4984                 }
4985         } else if (IS_GEN2(dev))
4986                 intel_dvo_init(dev);
4987
4988         if (SUPPORTS_TV(dev))
4989                 intel_tv_init(dev);
4990
4991         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4992                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4993
4994                 encoder->possible_crtcs = intel_encoder->crtc_mask;
4995                 encoder->possible_clones = intel_encoder_clones(dev,
4996                                                 intel_encoder->clone_mask);
4997         }
4998 }
4999
5000 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5001 {
5002         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5003
5004         drm_framebuffer_cleanup(fb);
5005         drm_gem_object_unreference_unlocked(intel_fb->obj);
5006
5007         kfree(intel_fb);
5008 }
5009
5010 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5011                                                 struct drm_file *file_priv,
5012                                                 unsigned int *handle)
5013 {
5014         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5015         struct drm_gem_object *object = intel_fb->obj;
5016
5017         return drm_gem_handle_create(file_priv, object, handle);
5018 }
5019
5020 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5021         .destroy = intel_user_framebuffer_destroy,
5022         .create_handle = intel_user_framebuffer_create_handle,
5023 };
5024
5025 int intel_framebuffer_init(struct drm_device *dev,
5026                            struct intel_framebuffer *intel_fb,
5027                            struct drm_mode_fb_cmd *mode_cmd,
5028                            struct drm_gem_object *obj)
5029 {
5030         int ret;
5031
5032         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5033         if (ret) {
5034                 DRM_ERROR("framebuffer init failed %d\n", ret);
5035                 return ret;
5036         }
5037
5038         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5039         intel_fb->obj = obj;
5040         return 0;
5041 }
5042
5043 static struct drm_framebuffer *
5044 intel_user_framebuffer_create(struct drm_device *dev,
5045                               struct drm_file *filp,
5046                               struct drm_mode_fb_cmd *mode_cmd)
5047 {
5048         struct drm_gem_object *obj;
5049         struct intel_framebuffer *intel_fb;
5050         int ret;
5051
5052         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5053         if (!obj)
5054                 return NULL;
5055
5056         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5057         if (!intel_fb)
5058                 return NULL;
5059
5060         ret = intel_framebuffer_init(dev, intel_fb,
5061                                      mode_cmd, obj);
5062         if (ret) {
5063                 drm_gem_object_unreference_unlocked(obj);
5064                 kfree(intel_fb);
5065                 return NULL;
5066         }
5067
5068         return &intel_fb->base;
5069 }
5070
5071 static const struct drm_mode_config_funcs intel_mode_funcs = {
5072         .fb_create = intel_user_framebuffer_create,
5073         .output_poll_changed = intel_fb_output_poll_changed,
5074 };
5075
5076 static struct drm_gem_object *
5077 intel_alloc_power_context(struct drm_device *dev)
5078 {
5079         struct drm_gem_object *pwrctx;
5080         int ret;
5081
5082         pwrctx = i915_gem_alloc_object(dev, 4096);
5083         if (!pwrctx) {
5084                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5085                 return NULL;
5086         }
5087
5088         mutex_lock(&dev->struct_mutex);
5089         ret = i915_gem_object_pin(pwrctx, 4096);
5090         if (ret) {
5091                 DRM_ERROR("failed to pin power context: %d\n", ret);
5092                 goto err_unref;
5093         }
5094
5095         ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
5096         if (ret) {
5097                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5098                 goto err_unpin;
5099         }
5100         mutex_unlock(&dev->struct_mutex);
5101
5102         return pwrctx;
5103
5104 err_unpin:
5105         i915_gem_object_unpin(pwrctx);
5106 err_unref:
5107         drm_gem_object_unreference(pwrctx);
5108         mutex_unlock(&dev->struct_mutex);
5109         return NULL;
5110 }
5111
5112 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5113 {
5114         struct drm_i915_private *dev_priv = dev->dev_private;
5115         u16 rgvswctl;
5116
5117         rgvswctl = I915_READ16(MEMSWCTL);
5118         if (rgvswctl & MEMCTL_CMD_STS) {
5119                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5120                 return false; /* still busy with another command */
5121         }
5122
5123         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5124                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5125         I915_WRITE16(MEMSWCTL, rgvswctl);
5126         POSTING_READ16(MEMSWCTL);
5127
5128         rgvswctl |= MEMCTL_CMD_STS;
5129         I915_WRITE16(MEMSWCTL, rgvswctl);
5130
5131         return true;
5132 }
5133
5134 void ironlake_enable_drps(struct drm_device *dev)
5135 {
5136         struct drm_i915_private *dev_priv = dev->dev_private;
5137         u32 rgvmodectl = I915_READ(MEMMODECTL);
5138         u8 fmax, fmin, fstart, vstart;
5139         int i = 0;
5140
5141         /* 100ms RC evaluation intervals */
5142         I915_WRITE(RCUPEI, 100000);
5143         I915_WRITE(RCDNEI, 100000);
5144
5145         /* Set max/min thresholds to 90ms and 80ms respectively */
5146         I915_WRITE(RCBMAXAVG, 90000);
5147         I915_WRITE(RCBMINAVG, 80000);
5148
5149         I915_WRITE(MEMIHYST, 1);
5150
5151         /* Set up min, max, and cur for interrupt handling */
5152         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5153         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5154         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5155                 MEMMODE_FSTART_SHIFT;
5156         fstart = fmax;
5157
5158         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5159                 PXVFREQ_PX_SHIFT;
5160
5161         dev_priv->fmax = fstart; /* IPS callback will increase this */
5162         dev_priv->fstart = fstart;
5163
5164         dev_priv->max_delay = fmax;
5165         dev_priv->min_delay = fmin;
5166         dev_priv->cur_delay = fstart;
5167
5168         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5169                          fstart);
5170
5171         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5172
5173         /*
5174          * Interrupts will be enabled in ironlake_irq_postinstall
5175          */
5176
5177         I915_WRITE(VIDSTART, vstart);
5178         POSTING_READ(VIDSTART);
5179
5180         rgvmodectl |= MEMMODE_SWMODE_EN;
5181         I915_WRITE(MEMMODECTL, rgvmodectl);
5182
5183         while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
5184                 if (i++ > 100) {
5185                         DRM_ERROR("stuck trying to change perf mode\n");
5186                         break;
5187                 }
5188                 msleep(1);
5189         }
5190         msleep(1);
5191
5192         ironlake_set_drps(dev, fstart);
5193
5194         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5195                 I915_READ(0x112e0);
5196         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5197         dev_priv->last_count2 = I915_READ(0x112f4);
5198         getrawmonotonic(&dev_priv->last_time2);
5199 }
5200
5201 void ironlake_disable_drps(struct drm_device *dev)
5202 {
5203         struct drm_i915_private *dev_priv = dev->dev_private;
5204         u16 rgvswctl = I915_READ16(MEMSWCTL);
5205
5206         /* Ack interrupts, disable EFC interrupt */
5207         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5208         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5209         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5210         I915_WRITE(DEIIR, DE_PCU_EVENT);
5211         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5212
5213         /* Go back to the starting frequency */
5214         ironlake_set_drps(dev, dev_priv->fstart);
5215         msleep(1);
5216         rgvswctl |= MEMCTL_CMD_STS;
5217         I915_WRITE(MEMSWCTL, rgvswctl);
5218         msleep(1);
5219
5220 }
5221
5222 static unsigned long intel_pxfreq(u32 vidfreq)
5223 {
5224         unsigned long freq;
5225         int div = (vidfreq & 0x3f0000) >> 16;
5226         int post = (vidfreq & 0x3000) >> 12;
5227         int pre = (vidfreq & 0x7);
5228
5229         if (!pre)
5230                 return 0;
5231
5232         freq = ((div * 133333) / ((1<<post) * pre));
5233
5234         return freq;
5235 }
5236
5237 void intel_init_emon(struct drm_device *dev)
5238 {
5239         struct drm_i915_private *dev_priv = dev->dev_private;
5240         u32 lcfuse;
5241         u8 pxw[16];
5242         int i;
5243
5244         /* Disable to program */
5245         I915_WRITE(ECR, 0);
5246         POSTING_READ(ECR);
5247
5248         /* Program energy weights for various events */
5249         I915_WRITE(SDEW, 0x15040d00);
5250         I915_WRITE(CSIEW0, 0x007f0000);
5251         I915_WRITE(CSIEW1, 0x1e220004);
5252         I915_WRITE(CSIEW2, 0x04000004);
5253
5254         for (i = 0; i < 5; i++)
5255                 I915_WRITE(PEW + (i * 4), 0);
5256         for (i = 0; i < 3; i++)
5257                 I915_WRITE(DEW + (i * 4), 0);
5258
5259         /* Program P-state weights to account for frequency power adjustment */
5260         for (i = 0; i < 16; i++) {
5261                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5262                 unsigned long freq = intel_pxfreq(pxvidfreq);
5263                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5264                         PXVFREQ_PX_SHIFT;
5265                 unsigned long val;
5266
5267                 val = vid * vid;
5268                 val *= (freq / 1000);
5269                 val *= 255;
5270                 val /= (127*127*900);
5271                 if (val > 0xff)
5272                         DRM_ERROR("bad pxval: %ld\n", val);
5273                 pxw[i] = val;
5274         }
5275         /* Render standby states get 0 weight */
5276         pxw[14] = 0;
5277         pxw[15] = 0;
5278
5279         for (i = 0; i < 4; i++) {
5280                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5281                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5282                 I915_WRITE(PXW + (i * 4), val);
5283         }
5284
5285         /* Adjust magic regs to magic values (more experimental results) */
5286         I915_WRITE(OGW0, 0);
5287         I915_WRITE(OGW1, 0);
5288         I915_WRITE(EG0, 0x00007f00);
5289         I915_WRITE(EG1, 0x0000000e);
5290         I915_WRITE(EG2, 0x000e0000);
5291         I915_WRITE(EG3, 0x68000300);
5292         I915_WRITE(EG4, 0x42000000);
5293         I915_WRITE(EG5, 0x00140031);
5294         I915_WRITE(EG6, 0);
5295         I915_WRITE(EG7, 0);
5296
5297         for (i = 0; i < 8; i++)
5298                 I915_WRITE(PXWL + (i * 4), 0);
5299
5300         /* Enable PMON + select events */
5301         I915_WRITE(ECR, 0x80000019);
5302
5303         lcfuse = I915_READ(LCFUSE02);
5304
5305         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5306 }
5307
5308 void intel_init_clock_gating(struct drm_device *dev)
5309 {
5310         struct drm_i915_private *dev_priv = dev->dev_private;
5311
5312         /*
5313          * Disable clock gating reported to work incorrectly according to the
5314          * specs, but enable as much else as we can.
5315          */
5316         if (HAS_PCH_SPLIT(dev)) {
5317                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5318
5319                 if (IS_IRONLAKE(dev)) {
5320                         /* Required for FBC */
5321                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5322                         /* Required for CxSR */
5323                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5324
5325                         I915_WRITE(PCH_3DCGDIS0,
5326                                    MARIUNIT_CLOCK_GATE_DISABLE |
5327                                    SVSMUNIT_CLOCK_GATE_DISABLE);
5328                 }
5329
5330                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5331
5332                 /*
5333                  * According to the spec the following bits should be set in
5334                  * order to enable memory self-refresh
5335                  * The bit 22/21 of 0x42004
5336                  * The bit 5 of 0x42020
5337                  * The bit 15 of 0x45000
5338                  */
5339                 if (IS_IRONLAKE(dev)) {
5340                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5341                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
5342                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5343                         I915_WRITE(ILK_DSPCLK_GATE,
5344                                         (I915_READ(ILK_DSPCLK_GATE) |
5345                                                 ILK_DPARB_CLK_GATE));
5346                         I915_WRITE(DISP_ARB_CTL,
5347                                         (I915_READ(DISP_ARB_CTL) |
5348                                                 DISP_FBC_WM_DIS));
5349                 }
5350                 return;
5351         } else if (IS_G4X(dev)) {
5352                 uint32_t dspclk_gate;
5353                 I915_WRITE(RENCLK_GATE_D1, 0);
5354                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5355                        GS_UNIT_CLOCK_GATE_DISABLE |
5356                        CL_UNIT_CLOCK_GATE_DISABLE);
5357                 I915_WRITE(RAMCLK_GATE_D, 0);
5358                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5359                         OVRUNIT_CLOCK_GATE_DISABLE |
5360                         OVCUNIT_CLOCK_GATE_DISABLE;
5361                 if (IS_GM45(dev))
5362                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5363                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5364         } else if (IS_I965GM(dev)) {
5365                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5366                 I915_WRITE(RENCLK_GATE_D2, 0);
5367                 I915_WRITE(DSPCLK_GATE_D, 0);
5368                 I915_WRITE(RAMCLK_GATE_D, 0);
5369                 I915_WRITE16(DEUC, 0);
5370         } else if (IS_I965G(dev)) {
5371                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5372                        I965_RCC_CLOCK_GATE_DISABLE |
5373                        I965_RCPB_CLOCK_GATE_DISABLE |
5374                        I965_ISC_CLOCK_GATE_DISABLE |
5375                        I965_FBC_CLOCK_GATE_DISABLE);
5376                 I915_WRITE(RENCLK_GATE_D2, 0);
5377         } else if (IS_I9XX(dev)) {
5378                 u32 dstate = I915_READ(D_STATE);
5379
5380                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5381                         DSTATE_DOT_CLOCK_GATING;
5382                 I915_WRITE(D_STATE, dstate);
5383         } else if (IS_I85X(dev) || IS_I865G(dev)) {
5384                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5385         } else if (IS_I830(dev)) {
5386                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5387         }
5388
5389         /*
5390          * GPU can automatically power down the render unit if given a page
5391          * to save state.
5392          */
5393         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5394                 struct drm_i915_gem_object *obj_priv = NULL;
5395
5396                 if (dev_priv->pwrctx) {
5397                         obj_priv = to_intel_bo(dev_priv->pwrctx);
5398                 } else {
5399                         struct drm_gem_object *pwrctx;
5400
5401                         pwrctx = intel_alloc_power_context(dev);
5402                         if (pwrctx) {
5403                                 dev_priv->pwrctx = pwrctx;
5404                                 obj_priv = to_intel_bo(pwrctx);
5405                         }
5406                 }
5407
5408                 if (obj_priv) {
5409                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5410                         I915_WRITE(MCHBAR_RENDER_STANDBY,
5411                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5412                 }
5413         }
5414 }
5415
5416 /* Set up chip specific display functions */
5417 static void intel_init_display(struct drm_device *dev)
5418 {
5419         struct drm_i915_private *dev_priv = dev->dev_private;
5420
5421         /* We always want a DPMS function */
5422         if (HAS_PCH_SPLIT(dev))
5423                 dev_priv->display.dpms = ironlake_crtc_dpms;
5424         else
5425                 dev_priv->display.dpms = i9xx_crtc_dpms;
5426
5427         if (I915_HAS_FBC(dev)) {
5428                 if (IS_GM45(dev)) {
5429                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5430                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5431                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5432                 } else if (IS_I965GM(dev)) {
5433                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5434                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5435                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5436                 }
5437                 /* 855GM needs testing */
5438         }
5439
5440         /* Returns the core display clock speed */
5441         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5442                 dev_priv->display.get_display_clock_speed =
5443                         i945_get_display_clock_speed;
5444         else if (IS_I915G(dev))
5445                 dev_priv->display.get_display_clock_speed =
5446                         i915_get_display_clock_speed;
5447         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5448                 dev_priv->display.get_display_clock_speed =
5449                         i9xx_misc_get_display_clock_speed;
5450         else if (IS_I915GM(dev))
5451                 dev_priv->display.get_display_clock_speed =
5452                         i915gm_get_display_clock_speed;
5453         else if (IS_I865G(dev))
5454                 dev_priv->display.get_display_clock_speed =
5455                         i865_get_display_clock_speed;
5456         else if (IS_I85X(dev))
5457                 dev_priv->display.get_display_clock_speed =
5458                         i855_get_display_clock_speed;
5459         else /* 852, 830 */
5460                 dev_priv->display.get_display_clock_speed =
5461                         i830_get_display_clock_speed;
5462
5463         /* For FIFO watermark updates */
5464         if (HAS_PCH_SPLIT(dev)) {
5465                 if (IS_IRONLAKE(dev)) {
5466                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5467                                 dev_priv->display.update_wm = ironlake_update_wm;
5468                         else {
5469                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5470                                               "Disable CxSR\n");
5471                                 dev_priv->display.update_wm = NULL;
5472                         }
5473                 } else
5474                         dev_priv->display.update_wm = NULL;
5475         } else if (IS_PINEVIEW(dev)) {
5476                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5477                                             dev_priv->is_ddr3,
5478                                             dev_priv->fsb_freq,
5479                                             dev_priv->mem_freq)) {
5480                         DRM_INFO("failed to find known CxSR latency "
5481                                  "(found ddr%s fsb freq %d, mem freq %d), "
5482                                  "disabling CxSR\n",
5483                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
5484                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5485                         /* Disable CxSR and never update its watermark again */
5486                         pineview_disable_cxsr(dev);
5487                         dev_priv->display.update_wm = NULL;
5488                 } else
5489                         dev_priv->display.update_wm = pineview_update_wm;
5490         } else if (IS_G4X(dev))
5491                 dev_priv->display.update_wm = g4x_update_wm;
5492         else if (IS_I965G(dev))
5493                 dev_priv->display.update_wm = i965_update_wm;
5494         else if (IS_I9XX(dev)) {
5495                 dev_priv->display.update_wm = i9xx_update_wm;
5496                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5497         } else if (IS_I85X(dev)) {
5498                 dev_priv->display.update_wm = i9xx_update_wm;
5499                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5500         } else {
5501                 dev_priv->display.update_wm = i830_update_wm;
5502                 if (IS_845G(dev))
5503                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5504                 else
5505                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5506         }
5507 }
5508
5509 void intel_modeset_init(struct drm_device *dev)
5510 {
5511         struct drm_i915_private *dev_priv = dev->dev_private;
5512         int i;
5513
5514         drm_mode_config_init(dev);
5515
5516         dev->mode_config.min_width = 0;
5517         dev->mode_config.min_height = 0;
5518
5519         dev->mode_config.funcs = (void *)&intel_mode_funcs;
5520
5521         intel_init_display(dev);
5522
5523         if (IS_I965G(dev)) {
5524                 dev->mode_config.max_width = 8192;
5525                 dev->mode_config.max_height = 8192;
5526         } else if (IS_I9XX(dev)) {
5527                 dev->mode_config.max_width = 4096;
5528                 dev->mode_config.max_height = 4096;
5529         } else {
5530                 dev->mode_config.max_width = 2048;
5531                 dev->mode_config.max_height = 2048;
5532         }
5533
5534         /* set memory base */
5535         if (IS_I9XX(dev))
5536                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
5537         else
5538                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
5539
5540         if (IS_MOBILE(dev) || IS_I9XX(dev))
5541                 dev_priv->num_pipe = 2;
5542         else
5543                 dev_priv->num_pipe = 1;
5544         DRM_DEBUG_KMS("%d display pipe%s available.\n",
5545                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
5546
5547         for (i = 0; i < dev_priv->num_pipe; i++) {
5548                 intel_crtc_init(dev, i);
5549         }
5550
5551         intel_setup_outputs(dev);
5552
5553         intel_init_clock_gating(dev);
5554
5555         if (IS_IRONLAKE_M(dev)) {
5556                 ironlake_enable_drps(dev);
5557                 intel_init_emon(dev);
5558         }
5559
5560         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
5561         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
5562                     (unsigned long)dev);
5563
5564         intel_setup_overlay(dev);
5565 }
5566
5567 void intel_modeset_cleanup(struct drm_device *dev)
5568 {
5569         struct drm_i915_private *dev_priv = dev->dev_private;
5570         struct drm_crtc *crtc;
5571         struct intel_crtc *intel_crtc;
5572
5573         mutex_lock(&dev->struct_mutex);
5574
5575         drm_kms_helper_poll_fini(dev);
5576         intel_fbdev_fini(dev);
5577
5578         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5579                 /* Skip inactive CRTCs */
5580                 if (!crtc->fb)
5581                         continue;
5582
5583                 intel_crtc = to_intel_crtc(crtc);
5584                 intel_increase_pllclock(crtc, false);
5585                 del_timer_sync(&intel_crtc->idle_timer);
5586         }
5587
5588         del_timer_sync(&dev_priv->idle_timer);
5589
5590         if (dev_priv->display.disable_fbc)
5591                 dev_priv->display.disable_fbc(dev);
5592
5593         if (dev_priv->pwrctx) {
5594                 struct drm_i915_gem_object *obj_priv;
5595
5596                 obj_priv = to_intel_bo(dev_priv->pwrctx);
5597                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
5598                 I915_READ(PWRCTXA);
5599                 i915_gem_object_unpin(dev_priv->pwrctx);
5600                 drm_gem_object_unreference(dev_priv->pwrctx);
5601         }
5602
5603         if (IS_IRONLAKE_M(dev))
5604                 ironlake_disable_drps(dev);
5605
5606         mutex_unlock(&dev->struct_mutex);
5607
5608         drm_mode_config_cleanup(dev);
5609 }
5610
5611
5612 /*
5613  * Return which encoder is currently attached for connector.
5614  */
5615 struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
5616 {
5617         struct drm_mode_object *obj;
5618         struct drm_encoder *encoder;
5619         int i;
5620
5621         for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
5622                 if (connector->encoder_ids[i] == 0)
5623                         break;
5624
5625                 obj = drm_mode_object_find(connector->dev,
5626                                            connector->encoder_ids[i],
5627                                            DRM_MODE_OBJECT_ENCODER);
5628                 if (!obj)
5629                         continue;
5630
5631                 encoder = obj_to_encoder(obj);
5632                 return encoder;
5633         }
5634         return NULL;
5635 }
5636
5637 /*
5638  * set vga decode state - true == enable VGA decode
5639  */
5640 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
5641 {
5642         struct drm_i915_private *dev_priv = dev->dev_private;
5643         u16 gmch_ctrl;
5644
5645         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
5646         if (state)
5647                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
5648         else
5649                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
5650         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
5651         return 0;
5652 }