Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[linux-2.6.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45
46 #include <asm/byteorder.h>
47 #include <asm/page.h>
48 #include <asm/system.h>
49
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
53
54 #include "core.h"
55 #include "ohci.h"
56
57 #define DESCRIPTOR_OUTPUT_MORE          0
58 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
61 #define DESCRIPTOR_STATUS               (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
63 #define DESCRIPTOR_PING                 (1 << 7)
64 #define DESCRIPTOR_YY                   (1 << 6)
65 #define DESCRIPTOR_NO_IRQ               (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
69 #define DESCRIPTOR_WAIT                 (3 << 0)
70
71 struct descriptor {
72         __le16 req_count;
73         __le16 control;
74         __le32 data_address;
75         __le32 branch_address;
76         __le16 res_count;
77         __le16 transfer_status;
78 } __attribute__((aligned(16)));
79
80 #define CONTROL_SET(regs)       (regs)
81 #define CONTROL_CLEAR(regs)     ((regs) + 4)
82 #define COMMAND_PTR(regs)       ((regs) + 12)
83 #define CONTEXT_MATCH(regs)     ((regs) + 16)
84
85 #define AR_BUFFER_SIZE  (32*1024)
86 #define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
89
90 #define MAX_ASYNC_PAYLOAD       4096
91 #define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93
94 struct ar_context {
95         struct fw_ohci *ohci;
96         struct page *pages[AR_BUFFERS];
97         void *buffer;
98         struct descriptor *descriptors;
99         dma_addr_t descriptors_bus;
100         void *pointer;
101         unsigned int last_buffer_index;
102         u32 regs;
103         struct tasklet_struct tasklet;
104 };
105
106 struct context;
107
108 typedef int (*descriptor_callback_t)(struct context *ctx,
109                                      struct descriptor *d,
110                                      struct descriptor *last);
111
112 /*
113  * A buffer that contains a block of DMA-able coherent memory used for
114  * storing a portion of a DMA descriptor program.
115  */
116 struct descriptor_buffer {
117         struct list_head list;
118         dma_addr_t buffer_bus;
119         size_t buffer_size;
120         size_t used;
121         struct descriptor buffer[0];
122 };
123
124 struct context {
125         struct fw_ohci *ohci;
126         u32 regs;
127         int total_allocation;
128         bool running;
129         bool flushing;
130
131         /*
132          * List of page-sized buffers for storing DMA descriptors.
133          * Head of list contains buffers in use and tail of list contains
134          * free buffers.
135          */
136         struct list_head buffer_list;
137
138         /*
139          * Pointer to a buffer inside buffer_list that contains the tail
140          * end of the current DMA program.
141          */
142         struct descriptor_buffer *buffer_tail;
143
144         /*
145          * The descriptor containing the branch address of the first
146          * descriptor that has not yet been filled by the device.
147          */
148         struct descriptor *last;
149
150         /*
151          * The last descriptor in the DMA program.  It contains the branch
152          * address that must be updated upon appending a new descriptor.
153          */
154         struct descriptor *prev;
155
156         descriptor_callback_t callback;
157
158         struct tasklet_struct tasklet;
159 };
160
161 #define IT_HEADER_SY(v)          ((v) <<  0)
162 #define IT_HEADER_TCODE(v)       ((v) <<  4)
163 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
164 #define IT_HEADER_TAG(v)         ((v) << 14)
165 #define IT_HEADER_SPEED(v)       ((v) << 16)
166 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
167
168 struct iso_context {
169         struct fw_iso_context base;
170         struct context context;
171         int excess_bytes;
172         void *header;
173         size_t header_length;
174
175         u8 sync;
176         u8 tags;
177 };
178
179 #define CONFIG_ROM_SIZE 1024
180
181 struct fw_ohci {
182         struct fw_card card;
183
184         __iomem char *registers;
185         int node_id;
186         int generation;
187         int request_generation; /* for timestamping incoming requests */
188         unsigned quirks;
189         unsigned int pri_req_max;
190         u32 bus_time;
191         bool is_root;
192         bool csr_state_setclear_abdicate;
193         int n_ir;
194         int n_it;
195         /*
196          * Spinlock for accessing fw_ohci data.  Never call out of
197          * this driver with this lock held.
198          */
199         spinlock_t lock;
200
201         struct mutex phy_reg_mutex;
202
203         void *misc_buffer;
204         dma_addr_t misc_buffer_bus;
205
206         struct ar_context ar_request_ctx;
207         struct ar_context ar_response_ctx;
208         struct context at_request_ctx;
209         struct context at_response_ctx;
210
211         u32 it_context_support;
212         u32 it_context_mask;     /* unoccupied IT contexts */
213         struct iso_context *it_context_list;
214         u64 ir_context_channels; /* unoccupied channels */
215         u32 ir_context_support;
216         u32 ir_context_mask;     /* unoccupied IR contexts */
217         struct iso_context *ir_context_list;
218         u64 mc_channels; /* channels in use by the multichannel IR context */
219         bool mc_allocated;
220
221         __be32    *config_rom;
222         dma_addr_t config_rom_bus;
223         __be32    *next_config_rom;
224         dma_addr_t next_config_rom_bus;
225         __be32     next_header;
226
227         __le32    *self_id_cpu;
228         dma_addr_t self_id_bus;
229         struct tasklet_struct bus_reset_tasklet;
230
231         u32 self_id_buffer[512];
232 };
233
234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 {
236         return container_of(card, struct fw_ohci, card);
237 }
238
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
240 #define IR_CONTEXT_BUFFER_FILL          0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
245
246 #define CONTEXT_RUN     0x8000
247 #define CONTEXT_WAKE    0x1000
248 #define CONTEXT_DEAD    0x0800
249 #define CONTEXT_ACTIVE  0x0400
250
251 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
254
255 #define OHCI1394_REGISTER_SIZE          0x800
256 #define OHCI_LOOP_COUNT                 500
257 #define OHCI1394_PCI_HCI_Control        0x40
258 #define SELF_ID_BUF_SIZE                0x800
259 #define OHCI_TCODE_PHY_PACKET           0x0e
260 #define OHCI_VERSION_1_1                0x010010
261
262 static char ohci_driver_name[] = KBUILD_MODNAME;
263
264 #define PCI_DEVICE_ID_AGERE_FW643       0x5901
265 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
266 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
267 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
268
269 #define QUIRK_CYCLE_TIMER               1
270 #define QUIRK_RESET_PACKET              2
271 #define QUIRK_BE_HEADERS                4
272 #define QUIRK_NO_1394A                  8
273 #define QUIRK_NO_MSI                    16
274
275 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
276 static const struct {
277         unsigned short vendor, device, revision, flags;
278 } ohci_quirks[] = {
279         {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
280                 QUIRK_CYCLE_TIMER},
281
282         {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
283                 QUIRK_BE_HEADERS},
284
285         {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
286                 QUIRK_NO_MSI},
287
288         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
289                 QUIRK_NO_MSI},
290
291         {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
292                 QUIRK_CYCLE_TIMER},
293
294         {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
295                 QUIRK_CYCLE_TIMER},
296
297         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
298                 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
299
300         {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
301                 QUIRK_RESET_PACKET},
302
303         {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
304                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
305 };
306
307 /* This overrides anything that was found in ohci_quirks[]. */
308 static int param_quirks;
309 module_param_named(quirks, param_quirks, int, 0644);
310 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
311         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
312         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
313         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
314         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
315         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
316         ")");
317
318 #define OHCI_PARAM_DEBUG_AT_AR          1
319 #define OHCI_PARAM_DEBUG_SELFIDS        2
320 #define OHCI_PARAM_DEBUG_IRQS           4
321 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
322
323 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
324
325 static int param_debug;
326 module_param_named(debug, param_debug, int, 0644);
327 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
328         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
329         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
330         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
331         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
332         ", or a combination, or all = -1)");
333
334 static void log_irqs(u32 evt)
335 {
336         if (likely(!(param_debug &
337                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
338                 return;
339
340         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
341             !(evt & OHCI1394_busReset))
342                 return;
343
344         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
345             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
346             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
347             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
348             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
349             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
350             evt & OHCI1394_isochRx              ? " IR"                 : "",
351             evt & OHCI1394_isochTx              ? " IT"                 : "",
352             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
353             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
354             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
355             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
356             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
357             evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
358             evt & OHCI1394_busReset             ? " busReset"           : "",
359             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
360                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
361                     OHCI1394_respTxComplete | OHCI1394_isochRx |
362                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
363                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
364                     OHCI1394_cycleInconsistent |
365                     OHCI1394_regAccessFail | OHCI1394_busReset)
366                                                 ? " ?"                  : "");
367 }
368
369 static const char *speed[] = {
370         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
371 };
372 static const char *power[] = {
373         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
374         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
375 };
376 static const char port[] = { '.', '-', 'p', 'c', };
377
378 static char _p(u32 *s, int shift)
379 {
380         return port[*s >> shift & 3];
381 }
382
383 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
384 {
385         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
386                 return;
387
388         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
389                   self_id_count, generation, node_id);
390
391         for (; self_id_count--; ++s)
392                 if ((*s & 1 << 23) == 0)
393                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
394                             "%s gc=%d %s %s%s%s\n",
395                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
396                             speed[*s >> 14 & 3], *s >> 16 & 63,
397                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
398                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
399                 else
400                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
401                             *s, *s >> 24 & 63,
402                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
403                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
404 }
405
406 static const char *evts[] = {
407         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
408         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
409         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
410         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
411         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
412         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
413         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
414         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
415         [0x10] = "-reserved-",          [0x11] = "ack_complete",
416         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
417         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
418         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
419         [0x18] = "-reserved-",          [0x19] = "-reserved-",
420         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
421         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
422         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
423         [0x20] = "pending/cancelled",
424 };
425 static const char *tcodes[] = {
426         [0x0] = "QW req",               [0x1] = "BW req",
427         [0x2] = "W resp",               [0x3] = "-reserved-",
428         [0x4] = "QR req",               [0x5] = "BR req",
429         [0x6] = "QR resp",              [0x7] = "BR resp",
430         [0x8] = "cycle start",          [0x9] = "Lk req",
431         [0xa] = "async stream packet",  [0xb] = "Lk resp",
432         [0xc] = "-reserved-",           [0xd] = "-reserved-",
433         [0xe] = "link internal",        [0xf] = "-reserved-",
434 };
435
436 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
437 {
438         int tcode = header[0] >> 4 & 0xf;
439         char specific[12];
440
441         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
442                 return;
443
444         if (unlikely(evt >= ARRAY_SIZE(evts)))
445                         evt = 0x1f;
446
447         if (evt == OHCI1394_evt_bus_reset) {
448                 fw_notify("A%c evt_bus_reset, generation %d\n",
449                     dir, (header[2] >> 16) & 0xff);
450                 return;
451         }
452
453         switch (tcode) {
454         case 0x0: case 0x6: case 0x8:
455                 snprintf(specific, sizeof(specific), " = %08x",
456                          be32_to_cpu((__force __be32)header[3]));
457                 break;
458         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
459                 snprintf(specific, sizeof(specific), " %x,%x",
460                          header[3] >> 16, header[3] & 0xffff);
461                 break;
462         default:
463                 specific[0] = '\0';
464         }
465
466         switch (tcode) {
467         case 0xa:
468                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
469                 break;
470         case 0xe:
471                 fw_notify("A%c %s, PHY %08x %08x\n",
472                           dir, evts[evt], header[1], header[2]);
473                 break;
474         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
475                 fw_notify("A%c spd %x tl %02x, "
476                     "%04x -> %04x, %s, "
477                     "%s, %04x%08x%s\n",
478                     dir, speed, header[0] >> 10 & 0x3f,
479                     header[1] >> 16, header[0] >> 16, evts[evt],
480                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
481                 break;
482         default:
483                 fw_notify("A%c spd %x tl %02x, "
484                     "%04x -> %04x, %s, "
485                     "%s%s\n",
486                     dir, speed, header[0] >> 10 & 0x3f,
487                     header[1] >> 16, header[0] >> 16, evts[evt],
488                     tcodes[tcode], specific);
489         }
490 }
491
492 #else
493
494 #define param_debug 0
495 static inline void log_irqs(u32 evt) {}
496 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
497 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
498
499 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
500
501 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
502 {
503         writel(data, ohci->registers + offset);
504 }
505
506 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
507 {
508         return readl(ohci->registers + offset);
509 }
510
511 static inline void flush_writes(const struct fw_ohci *ohci)
512 {
513         /* Do a dummy read to flush writes. */
514         reg_read(ohci, OHCI1394_Version);
515 }
516
517 static int read_phy_reg(struct fw_ohci *ohci, int addr)
518 {
519         u32 val;
520         int i;
521
522         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
523         for (i = 0; i < 3 + 100; i++) {
524                 val = reg_read(ohci, OHCI1394_PhyControl);
525                 if (val & OHCI1394_PhyControl_ReadDone)
526                         return OHCI1394_PhyControl_ReadData(val);
527
528                 /*
529                  * Try a few times without waiting.  Sleeping is necessary
530                  * only when the link/PHY interface is busy.
531                  */
532                 if (i >= 3)
533                         msleep(1);
534         }
535         fw_error("failed to read phy reg\n");
536
537         return -EBUSY;
538 }
539
540 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
541 {
542         int i;
543
544         reg_write(ohci, OHCI1394_PhyControl,
545                   OHCI1394_PhyControl_Write(addr, val));
546         for (i = 0; i < 3 + 100; i++) {
547                 val = reg_read(ohci, OHCI1394_PhyControl);
548                 if (!(val & OHCI1394_PhyControl_WritePending))
549                         return 0;
550
551                 if (i >= 3)
552                         msleep(1);
553         }
554         fw_error("failed to write phy reg\n");
555
556         return -EBUSY;
557 }
558
559 static int update_phy_reg(struct fw_ohci *ohci, int addr,
560                           int clear_bits, int set_bits)
561 {
562         int ret = read_phy_reg(ohci, addr);
563         if (ret < 0)
564                 return ret;
565
566         /*
567          * The interrupt status bits are cleared by writing a one bit.
568          * Avoid clearing them unless explicitly requested in set_bits.
569          */
570         if (addr == 5)
571                 clear_bits |= PHY_INT_STATUS_BITS;
572
573         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
574 }
575
576 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
577 {
578         int ret;
579
580         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
581         if (ret < 0)
582                 return ret;
583
584         return read_phy_reg(ohci, addr);
585 }
586
587 static int ohci_read_phy_reg(struct fw_card *card, int addr)
588 {
589         struct fw_ohci *ohci = fw_ohci(card);
590         int ret;
591
592         mutex_lock(&ohci->phy_reg_mutex);
593         ret = read_phy_reg(ohci, addr);
594         mutex_unlock(&ohci->phy_reg_mutex);
595
596         return ret;
597 }
598
599 static int ohci_update_phy_reg(struct fw_card *card, int addr,
600                                int clear_bits, int set_bits)
601 {
602         struct fw_ohci *ohci = fw_ohci(card);
603         int ret;
604
605         mutex_lock(&ohci->phy_reg_mutex);
606         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
607         mutex_unlock(&ohci->phy_reg_mutex);
608
609         return ret;
610 }
611
612 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
613 {
614         return page_private(ctx->pages[i]);
615 }
616
617 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
618 {
619         struct descriptor *d;
620
621         d = &ctx->descriptors[index];
622         d->branch_address  &= cpu_to_le32(~0xf);
623         d->res_count       =  cpu_to_le16(PAGE_SIZE);
624         d->transfer_status =  0;
625
626         wmb(); /* finish init of new descriptors before branch_address update */
627         d = &ctx->descriptors[ctx->last_buffer_index];
628         d->branch_address  |= cpu_to_le32(1);
629
630         ctx->last_buffer_index = index;
631
632         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
633         flush_writes(ctx->ohci);
634 }
635
636 static void ar_context_release(struct ar_context *ctx)
637 {
638         unsigned int i;
639
640         if (ctx->buffer)
641                 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
642
643         for (i = 0; i < AR_BUFFERS; i++)
644                 if (ctx->pages[i]) {
645                         dma_unmap_page(ctx->ohci->card.device,
646                                        ar_buffer_bus(ctx, i),
647                                        PAGE_SIZE, DMA_FROM_DEVICE);
648                         __free_page(ctx->pages[i]);
649                 }
650 }
651
652 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
653 {
654         if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
655                 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
656                 flush_writes(ctx->ohci);
657
658                 fw_error("AR error: %s; DMA stopped\n", error_msg);
659         }
660         /* FIXME: restart? */
661 }
662
663 static inline unsigned int ar_next_buffer_index(unsigned int index)
664 {
665         return (index + 1) % AR_BUFFERS;
666 }
667
668 static inline unsigned int ar_prev_buffer_index(unsigned int index)
669 {
670         return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
671 }
672
673 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
674 {
675         return ar_next_buffer_index(ctx->last_buffer_index);
676 }
677
678 /*
679  * We search for the buffer that contains the last AR packet DMA data written
680  * by the controller.
681  */
682 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
683                                                  unsigned int *buffer_offset)
684 {
685         unsigned int i, next_i, last = ctx->last_buffer_index;
686         __le16 res_count, next_res_count;
687
688         i = ar_first_buffer_index(ctx);
689         res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
690
691         /* A buffer that is not yet completely filled must be the last one. */
692         while (i != last && res_count == 0) {
693
694                 /* Peek at the next descriptor. */
695                 next_i = ar_next_buffer_index(i);
696                 rmb(); /* read descriptors in order */
697                 next_res_count = ACCESS_ONCE(
698                                 ctx->descriptors[next_i].res_count);
699                 /*
700                  * If the next descriptor is still empty, we must stop at this
701                  * descriptor.
702                  */
703                 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
704                         /*
705                          * The exception is when the DMA data for one packet is
706                          * split over three buffers; in this case, the middle
707                          * buffer's descriptor might be never updated by the
708                          * controller and look still empty, and we have to peek
709                          * at the third one.
710                          */
711                         if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
712                                 next_i = ar_next_buffer_index(next_i);
713                                 rmb();
714                                 next_res_count = ACCESS_ONCE(
715                                         ctx->descriptors[next_i].res_count);
716                                 if (next_res_count != cpu_to_le16(PAGE_SIZE))
717                                         goto next_buffer_is_active;
718                         }
719
720                         break;
721                 }
722
723 next_buffer_is_active:
724                 i = next_i;
725                 res_count = next_res_count;
726         }
727
728         rmb(); /* read res_count before the DMA data */
729
730         *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
731         if (*buffer_offset > PAGE_SIZE) {
732                 *buffer_offset = 0;
733                 ar_context_abort(ctx, "corrupted descriptor");
734         }
735
736         return i;
737 }
738
739 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
740                                     unsigned int end_buffer_index,
741                                     unsigned int end_buffer_offset)
742 {
743         unsigned int i;
744
745         i = ar_first_buffer_index(ctx);
746         while (i != end_buffer_index) {
747                 dma_sync_single_for_cpu(ctx->ohci->card.device,
748                                         ar_buffer_bus(ctx, i),
749                                         PAGE_SIZE, DMA_FROM_DEVICE);
750                 i = ar_next_buffer_index(i);
751         }
752         if (end_buffer_offset > 0)
753                 dma_sync_single_for_cpu(ctx->ohci->card.device,
754                                         ar_buffer_bus(ctx, i),
755                                         end_buffer_offset, DMA_FROM_DEVICE);
756 }
757
758 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
759 #define cond_le32_to_cpu(v) \
760         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
761 #else
762 #define cond_le32_to_cpu(v) le32_to_cpu(v)
763 #endif
764
765 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
766 {
767         struct fw_ohci *ohci = ctx->ohci;
768         struct fw_packet p;
769         u32 status, length, tcode;
770         int evt;
771
772         p.header[0] = cond_le32_to_cpu(buffer[0]);
773         p.header[1] = cond_le32_to_cpu(buffer[1]);
774         p.header[2] = cond_le32_to_cpu(buffer[2]);
775
776         tcode = (p.header[0] >> 4) & 0x0f;
777         switch (tcode) {
778         case TCODE_WRITE_QUADLET_REQUEST:
779         case TCODE_READ_QUADLET_RESPONSE:
780                 p.header[3] = (__force __u32) buffer[3];
781                 p.header_length = 16;
782                 p.payload_length = 0;
783                 break;
784
785         case TCODE_READ_BLOCK_REQUEST :
786                 p.header[3] = cond_le32_to_cpu(buffer[3]);
787                 p.header_length = 16;
788                 p.payload_length = 0;
789                 break;
790
791         case TCODE_WRITE_BLOCK_REQUEST:
792         case TCODE_READ_BLOCK_RESPONSE:
793         case TCODE_LOCK_REQUEST:
794         case TCODE_LOCK_RESPONSE:
795                 p.header[3] = cond_le32_to_cpu(buffer[3]);
796                 p.header_length = 16;
797                 p.payload_length = p.header[3] >> 16;
798                 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
799                         ar_context_abort(ctx, "invalid packet length");
800                         return NULL;
801                 }
802                 break;
803
804         case TCODE_WRITE_RESPONSE:
805         case TCODE_READ_QUADLET_REQUEST:
806         case OHCI_TCODE_PHY_PACKET:
807                 p.header_length = 12;
808                 p.payload_length = 0;
809                 break;
810
811         default:
812                 ar_context_abort(ctx, "invalid tcode");
813                 return NULL;
814         }
815
816         p.payload = (void *) buffer + p.header_length;
817
818         /* FIXME: What to do about evt_* errors? */
819         length = (p.header_length + p.payload_length + 3) / 4;
820         status = cond_le32_to_cpu(buffer[length]);
821         evt    = (status >> 16) & 0x1f;
822
823         p.ack        = evt - 16;
824         p.speed      = (status >> 21) & 0x7;
825         p.timestamp  = status & 0xffff;
826         p.generation = ohci->request_generation;
827
828         log_ar_at_event('R', p.speed, p.header, evt);
829
830         /*
831          * Several controllers, notably from NEC and VIA, forget to
832          * write ack_complete status at PHY packet reception.
833          */
834         if (evt == OHCI1394_evt_no_status &&
835             (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
836                 p.ack = ACK_COMPLETE;
837
838         /*
839          * The OHCI bus reset handler synthesizes a PHY packet with
840          * the new generation number when a bus reset happens (see
841          * section 8.4.2.3).  This helps us determine when a request
842          * was received and make sure we send the response in the same
843          * generation.  We only need this for requests; for responses
844          * we use the unique tlabel for finding the matching
845          * request.
846          *
847          * Alas some chips sometimes emit bus reset packets with a
848          * wrong generation.  We set the correct generation for these
849          * at a slightly incorrect time (in bus_reset_tasklet).
850          */
851         if (evt == OHCI1394_evt_bus_reset) {
852                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
853                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
854         } else if (ctx == &ohci->ar_request_ctx) {
855                 fw_core_handle_request(&ohci->card, &p);
856         } else {
857                 fw_core_handle_response(&ohci->card, &p);
858         }
859
860         return buffer + length + 1;
861 }
862
863 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
864 {
865         void *next;
866
867         while (p < end) {
868                 next = handle_ar_packet(ctx, p);
869                 if (!next)
870                         return p;
871                 p = next;
872         }
873
874         return p;
875 }
876
877 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
878 {
879         unsigned int i;
880
881         i = ar_first_buffer_index(ctx);
882         while (i != end_buffer) {
883                 dma_sync_single_for_device(ctx->ohci->card.device,
884                                            ar_buffer_bus(ctx, i),
885                                            PAGE_SIZE, DMA_FROM_DEVICE);
886                 ar_context_link_page(ctx, i);
887                 i = ar_next_buffer_index(i);
888         }
889 }
890
891 static void ar_context_tasklet(unsigned long data)
892 {
893         struct ar_context *ctx = (struct ar_context *)data;
894         unsigned int end_buffer_index, end_buffer_offset;
895         void *p, *end;
896
897         p = ctx->pointer;
898         if (!p)
899                 return;
900
901         end_buffer_index = ar_search_last_active_buffer(ctx,
902                                                         &end_buffer_offset);
903         ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
904         end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
905
906         if (end_buffer_index < ar_first_buffer_index(ctx)) {
907                 /*
908                  * The filled part of the overall buffer wraps around; handle
909                  * all packets up to the buffer end here.  If the last packet
910                  * wraps around, its tail will be visible after the buffer end
911                  * because the buffer start pages are mapped there again.
912                  */
913                 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
914                 p = handle_ar_packets(ctx, p, buffer_end);
915                 if (p < buffer_end)
916                         goto error;
917                 /* adjust p to point back into the actual buffer */
918                 p -= AR_BUFFERS * PAGE_SIZE;
919         }
920
921         p = handle_ar_packets(ctx, p, end);
922         if (p != end) {
923                 if (p > end)
924                         ar_context_abort(ctx, "inconsistent descriptor");
925                 goto error;
926         }
927
928         ctx->pointer = p;
929         ar_recycle_buffers(ctx, end_buffer_index);
930
931         return;
932
933 error:
934         ctx->pointer = NULL;
935 }
936
937 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
938                            unsigned int descriptors_offset, u32 regs)
939 {
940         unsigned int i;
941         dma_addr_t dma_addr;
942         struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
943         struct descriptor *d;
944
945         ctx->regs        = regs;
946         ctx->ohci        = ohci;
947         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
948
949         for (i = 0; i < AR_BUFFERS; i++) {
950                 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
951                 if (!ctx->pages[i])
952                         goto out_of_memory;
953                 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
954                                         0, PAGE_SIZE, DMA_FROM_DEVICE);
955                 if (dma_mapping_error(ohci->card.device, dma_addr)) {
956                         __free_page(ctx->pages[i]);
957                         ctx->pages[i] = NULL;
958                         goto out_of_memory;
959                 }
960                 set_page_private(ctx->pages[i], dma_addr);
961         }
962
963         for (i = 0; i < AR_BUFFERS; i++)
964                 pages[i]              = ctx->pages[i];
965         for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
966                 pages[AR_BUFFERS + i] = ctx->pages[i];
967         ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
968                                  -1, PAGE_KERNEL);
969         if (!ctx->buffer)
970                 goto out_of_memory;
971
972         ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
973         ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
974
975         for (i = 0; i < AR_BUFFERS; i++) {
976                 d = &ctx->descriptors[i];
977                 d->req_count      = cpu_to_le16(PAGE_SIZE);
978                 d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
979                                                 DESCRIPTOR_STATUS |
980                                                 DESCRIPTOR_BRANCH_ALWAYS);
981                 d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
982                 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
983                         ar_next_buffer_index(i) * sizeof(struct descriptor));
984         }
985
986         return 0;
987
988 out_of_memory:
989         ar_context_release(ctx);
990
991         return -ENOMEM;
992 }
993
994 static void ar_context_run(struct ar_context *ctx)
995 {
996         unsigned int i;
997
998         for (i = 0; i < AR_BUFFERS; i++)
999                 ar_context_link_page(ctx, i);
1000
1001         ctx->pointer = ctx->buffer;
1002
1003         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1004         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1005         flush_writes(ctx->ohci);
1006 }
1007
1008 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1009 {
1010         __le16 branch;
1011
1012         branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1013
1014         /* figure out which descriptor the branch address goes in */
1015         if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1016                 return d;
1017         else
1018                 return d + z - 1;
1019 }
1020
1021 static void context_tasklet(unsigned long data)
1022 {
1023         struct context *ctx = (struct context *) data;
1024         struct descriptor *d, *last;
1025         u32 address;
1026         int z;
1027         struct descriptor_buffer *desc;
1028
1029         desc = list_entry(ctx->buffer_list.next,
1030                         struct descriptor_buffer, list);
1031         last = ctx->last;
1032         while (last->branch_address != 0) {
1033                 struct descriptor_buffer *old_desc = desc;
1034                 address = le32_to_cpu(last->branch_address);
1035                 z = address & 0xf;
1036                 address &= ~0xf;
1037
1038                 /* If the branch address points to a buffer outside of the
1039                  * current buffer, advance to the next buffer. */
1040                 if (address < desc->buffer_bus ||
1041                                 address >= desc->buffer_bus + desc->used)
1042                         desc = list_entry(desc->list.next,
1043                                         struct descriptor_buffer, list);
1044                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1045                 last = find_branch_descriptor(d, z);
1046
1047                 if (!ctx->callback(ctx, d, last))
1048                         break;
1049
1050                 if (old_desc != desc) {
1051                         /* If we've advanced to the next buffer, move the
1052                          * previous buffer to the free list. */
1053                         unsigned long flags;
1054                         old_desc->used = 0;
1055                         spin_lock_irqsave(&ctx->ohci->lock, flags);
1056                         list_move_tail(&old_desc->list, &ctx->buffer_list);
1057                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1058                 }
1059                 ctx->last = last;
1060         }
1061 }
1062
1063 /*
1064  * Allocate a new buffer and add it to the list of free buffers for this
1065  * context.  Must be called with ohci->lock held.
1066  */
1067 static int context_add_buffer(struct context *ctx)
1068 {
1069         struct descriptor_buffer *desc;
1070         dma_addr_t uninitialized_var(bus_addr);
1071         int offset;
1072
1073         /*
1074          * 16MB of descriptors should be far more than enough for any DMA
1075          * program.  This will catch run-away userspace or DoS attacks.
1076          */
1077         if (ctx->total_allocation >= 16*1024*1024)
1078                 return -ENOMEM;
1079
1080         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1081                         &bus_addr, GFP_ATOMIC);
1082         if (!desc)
1083                 return -ENOMEM;
1084
1085         offset = (void *)&desc->buffer - (void *)desc;
1086         desc->buffer_size = PAGE_SIZE - offset;
1087         desc->buffer_bus = bus_addr + offset;
1088         desc->used = 0;
1089
1090         list_add_tail(&desc->list, &ctx->buffer_list);
1091         ctx->total_allocation += PAGE_SIZE;
1092
1093         return 0;
1094 }
1095
1096 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1097                         u32 regs, descriptor_callback_t callback)
1098 {
1099         ctx->ohci = ohci;
1100         ctx->regs = regs;
1101         ctx->total_allocation = 0;
1102
1103         INIT_LIST_HEAD(&ctx->buffer_list);
1104         if (context_add_buffer(ctx) < 0)
1105                 return -ENOMEM;
1106
1107         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1108                         struct descriptor_buffer, list);
1109
1110         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1111         ctx->callback = callback;
1112
1113         /*
1114          * We put a dummy descriptor in the buffer that has a NULL
1115          * branch address and looks like it's been sent.  That way we
1116          * have a descriptor to append DMA programs to.
1117          */
1118         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1119         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1120         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1121         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1122         ctx->last = ctx->buffer_tail->buffer;
1123         ctx->prev = ctx->buffer_tail->buffer;
1124
1125         return 0;
1126 }
1127
1128 static void context_release(struct context *ctx)
1129 {
1130         struct fw_card *card = &ctx->ohci->card;
1131         struct descriptor_buffer *desc, *tmp;
1132
1133         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1134                 dma_free_coherent(card->device, PAGE_SIZE, desc,
1135                         desc->buffer_bus -
1136                         ((void *)&desc->buffer - (void *)desc));
1137 }
1138
1139 /* Must be called with ohci->lock held */
1140 static struct descriptor *context_get_descriptors(struct context *ctx,
1141                                                   int z, dma_addr_t *d_bus)
1142 {
1143         struct descriptor *d = NULL;
1144         struct descriptor_buffer *desc = ctx->buffer_tail;
1145
1146         if (z * sizeof(*d) > desc->buffer_size)
1147                 return NULL;
1148
1149         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1150                 /* No room for the descriptor in this buffer, so advance to the
1151                  * next one. */
1152
1153                 if (desc->list.next == &ctx->buffer_list) {
1154                         /* If there is no free buffer next in the list,
1155                          * allocate one. */
1156                         if (context_add_buffer(ctx) < 0)
1157                                 return NULL;
1158                 }
1159                 desc = list_entry(desc->list.next,
1160                                 struct descriptor_buffer, list);
1161                 ctx->buffer_tail = desc;
1162         }
1163
1164         d = desc->buffer + desc->used / sizeof(*d);
1165         memset(d, 0, z * sizeof(*d));
1166         *d_bus = desc->buffer_bus + desc->used;
1167
1168         return d;
1169 }
1170
1171 static void context_run(struct context *ctx, u32 extra)
1172 {
1173         struct fw_ohci *ohci = ctx->ohci;
1174
1175         reg_write(ohci, COMMAND_PTR(ctx->regs),
1176                   le32_to_cpu(ctx->last->branch_address));
1177         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1178         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1179         ctx->running = true;
1180         flush_writes(ohci);
1181 }
1182
1183 static void context_append(struct context *ctx,
1184                            struct descriptor *d, int z, int extra)
1185 {
1186         dma_addr_t d_bus;
1187         struct descriptor_buffer *desc = ctx->buffer_tail;
1188
1189         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1190
1191         desc->used += (z + extra) * sizeof(*d);
1192
1193         wmb(); /* finish init of new descriptors before branch_address update */
1194         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1195         ctx->prev = find_branch_descriptor(d, z);
1196 }
1197
1198 static void context_stop(struct context *ctx)
1199 {
1200         u32 reg;
1201         int i;
1202
1203         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1204         ctx->running = false;
1205         flush_writes(ctx->ohci);
1206
1207         for (i = 0; i < 10; i++) {
1208                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1209                 if ((reg & CONTEXT_ACTIVE) == 0)
1210                         return;
1211
1212                 mdelay(1);
1213         }
1214         fw_error("Error: DMA context still active (0x%08x)\n", reg);
1215 }
1216
1217 struct driver_data {
1218         u8 inline_data[8];
1219         struct fw_packet *packet;
1220 };
1221
1222 /*
1223  * This function apppends a packet to the DMA queue for transmission.
1224  * Must always be called with the ochi->lock held to ensure proper
1225  * generation handling and locking around packet queue manipulation.
1226  */
1227 static int at_context_queue_packet(struct context *ctx,
1228                                    struct fw_packet *packet)
1229 {
1230         struct fw_ohci *ohci = ctx->ohci;
1231         dma_addr_t d_bus, uninitialized_var(payload_bus);
1232         struct driver_data *driver_data;
1233         struct descriptor *d, *last;
1234         __le32 *header;
1235         int z, tcode;
1236
1237         d = context_get_descriptors(ctx, 4, &d_bus);
1238         if (d == NULL) {
1239                 packet->ack = RCODE_SEND_ERROR;
1240                 return -1;
1241         }
1242
1243         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1244         d[0].res_count = cpu_to_le16(packet->timestamp);
1245
1246         /*
1247          * The DMA format for asyncronous link packets is different
1248          * from the IEEE1394 layout, so shift the fields around
1249          * accordingly.
1250          */
1251
1252         tcode = (packet->header[0] >> 4) & 0x0f;
1253         header = (__le32 *) &d[1];
1254         switch (tcode) {
1255         case TCODE_WRITE_QUADLET_REQUEST:
1256         case TCODE_WRITE_BLOCK_REQUEST:
1257         case TCODE_WRITE_RESPONSE:
1258         case TCODE_READ_QUADLET_REQUEST:
1259         case TCODE_READ_BLOCK_REQUEST:
1260         case TCODE_READ_QUADLET_RESPONSE:
1261         case TCODE_READ_BLOCK_RESPONSE:
1262         case TCODE_LOCK_REQUEST:
1263         case TCODE_LOCK_RESPONSE:
1264                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1265                                         (packet->speed << 16));
1266                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1267                                         (packet->header[0] & 0xffff0000));
1268                 header[2] = cpu_to_le32(packet->header[2]);
1269
1270                 if (TCODE_IS_BLOCK_PACKET(tcode))
1271                         header[3] = cpu_to_le32(packet->header[3]);
1272                 else
1273                         header[3] = (__force __le32) packet->header[3];
1274
1275                 d[0].req_count = cpu_to_le16(packet->header_length);
1276                 break;
1277
1278         case TCODE_LINK_INTERNAL:
1279                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1280                                         (packet->speed << 16));
1281                 header[1] = cpu_to_le32(packet->header[1]);
1282                 header[2] = cpu_to_le32(packet->header[2]);
1283                 d[0].req_count = cpu_to_le16(12);
1284
1285                 if (is_ping_packet(&packet->header[1]))
1286                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1287                 break;
1288
1289         case TCODE_STREAM_DATA:
1290                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1291                                         (packet->speed << 16));
1292                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1293                 d[0].req_count = cpu_to_le16(8);
1294                 break;
1295
1296         default:
1297                 /* BUG(); */
1298                 packet->ack = RCODE_SEND_ERROR;
1299                 return -1;
1300         }
1301
1302         BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1303         driver_data = (struct driver_data *) &d[3];
1304         driver_data->packet = packet;
1305         packet->driver_data = driver_data;
1306
1307         if (packet->payload_length > 0) {
1308                 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1309                         payload_bus = dma_map_single(ohci->card.device,
1310                                                      packet->payload,
1311                                                      packet->payload_length,
1312                                                      DMA_TO_DEVICE);
1313                         if (dma_mapping_error(ohci->card.device, payload_bus)) {
1314                                 packet->ack = RCODE_SEND_ERROR;
1315                                 return -1;
1316                         }
1317                         packet->payload_bus     = payload_bus;
1318                         packet->payload_mapped  = true;
1319                 } else {
1320                         memcpy(driver_data->inline_data, packet->payload,
1321                                packet->payload_length);
1322                         payload_bus = d_bus + 3 * sizeof(*d);
1323                 }
1324
1325                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1326                 d[2].data_address = cpu_to_le32(payload_bus);
1327                 last = &d[2];
1328                 z = 3;
1329         } else {
1330                 last = &d[0];
1331                 z = 2;
1332         }
1333
1334         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1335                                      DESCRIPTOR_IRQ_ALWAYS |
1336                                      DESCRIPTOR_BRANCH_ALWAYS);
1337
1338         /* FIXME: Document how the locking works. */
1339         if (ohci->generation != packet->generation) {
1340                 if (packet->payload_mapped)
1341                         dma_unmap_single(ohci->card.device, payload_bus,
1342                                          packet->payload_length, DMA_TO_DEVICE);
1343                 packet->ack = RCODE_GENERATION;
1344                 return -1;
1345         }
1346
1347         context_append(ctx, d, z, 4 - z);
1348
1349         if (ctx->running) {
1350                 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1351                 flush_writes(ohci);
1352         } else {
1353                 context_run(ctx, 0);
1354         }
1355
1356         return 0;
1357 }
1358
1359 static void at_context_flush(struct context *ctx)
1360 {
1361         tasklet_disable(&ctx->tasklet);
1362
1363         ctx->flushing = true;
1364         context_tasklet((unsigned long)ctx);
1365         ctx->flushing = false;
1366
1367         tasklet_enable(&ctx->tasklet);
1368 }
1369
1370 static int handle_at_packet(struct context *context,
1371                             struct descriptor *d,
1372                             struct descriptor *last)
1373 {
1374         struct driver_data *driver_data;
1375         struct fw_packet *packet;
1376         struct fw_ohci *ohci = context->ohci;
1377         int evt;
1378
1379         if (last->transfer_status == 0 && !context->flushing)
1380                 /* This descriptor isn't done yet, stop iteration. */
1381                 return 0;
1382
1383         driver_data = (struct driver_data *) &d[3];
1384         packet = driver_data->packet;
1385         if (packet == NULL)
1386                 /* This packet was cancelled, just continue. */
1387                 return 1;
1388
1389         if (packet->payload_mapped)
1390                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1391                                  packet->payload_length, DMA_TO_DEVICE);
1392
1393         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1394         packet->timestamp = le16_to_cpu(last->res_count);
1395
1396         log_ar_at_event('T', packet->speed, packet->header, evt);
1397
1398         switch (evt) {
1399         case OHCI1394_evt_timeout:
1400                 /* Async response transmit timed out. */
1401                 packet->ack = RCODE_CANCELLED;
1402                 break;
1403
1404         case OHCI1394_evt_flushed:
1405                 /*
1406                  * The packet was flushed should give same error as
1407                  * when we try to use a stale generation count.
1408                  */
1409                 packet->ack = RCODE_GENERATION;
1410                 break;
1411
1412         case OHCI1394_evt_missing_ack:
1413                 if (context->flushing)
1414                         packet->ack = RCODE_GENERATION;
1415                 else {
1416                         /*
1417                          * Using a valid (current) generation count, but the
1418                          * node is not on the bus or not sending acks.
1419                          */
1420                         packet->ack = RCODE_NO_ACK;
1421                 }
1422                 break;
1423
1424         case ACK_COMPLETE + 0x10:
1425         case ACK_PENDING + 0x10:
1426         case ACK_BUSY_X + 0x10:
1427         case ACK_BUSY_A + 0x10:
1428         case ACK_BUSY_B + 0x10:
1429         case ACK_DATA_ERROR + 0x10:
1430         case ACK_TYPE_ERROR + 0x10:
1431                 packet->ack = evt - 0x10;
1432                 break;
1433
1434         case OHCI1394_evt_no_status:
1435                 if (context->flushing) {
1436                         packet->ack = RCODE_GENERATION;
1437                         break;
1438                 }
1439                 /* fall through */
1440
1441         default:
1442                 packet->ack = RCODE_SEND_ERROR;
1443                 break;
1444         }
1445
1446         packet->callback(packet, &ohci->card, packet->ack);
1447
1448         return 1;
1449 }
1450
1451 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1452 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1453 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1454 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1455 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1456
1457 static void handle_local_rom(struct fw_ohci *ohci,
1458                              struct fw_packet *packet, u32 csr)
1459 {
1460         struct fw_packet response;
1461         int tcode, length, i;
1462
1463         tcode = HEADER_GET_TCODE(packet->header[0]);
1464         if (TCODE_IS_BLOCK_PACKET(tcode))
1465                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1466         else
1467                 length = 4;
1468
1469         i = csr - CSR_CONFIG_ROM;
1470         if (i + length > CONFIG_ROM_SIZE) {
1471                 fw_fill_response(&response, packet->header,
1472                                  RCODE_ADDRESS_ERROR, NULL, 0);
1473         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1474                 fw_fill_response(&response, packet->header,
1475                                  RCODE_TYPE_ERROR, NULL, 0);
1476         } else {
1477                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1478                                  (void *) ohci->config_rom + i, length);
1479         }
1480
1481         fw_core_handle_response(&ohci->card, &response);
1482 }
1483
1484 static void handle_local_lock(struct fw_ohci *ohci,
1485                               struct fw_packet *packet, u32 csr)
1486 {
1487         struct fw_packet response;
1488         int tcode, length, ext_tcode, sel, try;
1489         __be32 *payload, lock_old;
1490         u32 lock_arg, lock_data;
1491
1492         tcode = HEADER_GET_TCODE(packet->header[0]);
1493         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1494         payload = packet->payload;
1495         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1496
1497         if (tcode == TCODE_LOCK_REQUEST &&
1498             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1499                 lock_arg = be32_to_cpu(payload[0]);
1500                 lock_data = be32_to_cpu(payload[1]);
1501         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1502                 lock_arg = 0;
1503                 lock_data = 0;
1504         } else {
1505                 fw_fill_response(&response, packet->header,
1506                                  RCODE_TYPE_ERROR, NULL, 0);
1507                 goto out;
1508         }
1509
1510         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1511         reg_write(ohci, OHCI1394_CSRData, lock_data);
1512         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1513         reg_write(ohci, OHCI1394_CSRControl, sel);
1514
1515         for (try = 0; try < 20; try++)
1516                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1517                         lock_old = cpu_to_be32(reg_read(ohci,
1518                                                         OHCI1394_CSRData));
1519                         fw_fill_response(&response, packet->header,
1520                                          RCODE_COMPLETE,
1521                                          &lock_old, sizeof(lock_old));
1522                         goto out;
1523                 }
1524
1525         fw_error("swap not done (CSR lock timeout)\n");
1526         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1527
1528  out:
1529         fw_core_handle_response(&ohci->card, &response);
1530 }
1531
1532 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1533 {
1534         u64 offset, csr;
1535
1536         if (ctx == &ctx->ohci->at_request_ctx) {
1537                 packet->ack = ACK_PENDING;
1538                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1539         }
1540
1541         offset =
1542                 ((unsigned long long)
1543                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1544                 packet->header[2];
1545         csr = offset - CSR_REGISTER_BASE;
1546
1547         /* Handle config rom reads. */
1548         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1549                 handle_local_rom(ctx->ohci, packet, csr);
1550         else switch (csr) {
1551         case CSR_BUS_MANAGER_ID:
1552         case CSR_BANDWIDTH_AVAILABLE:
1553         case CSR_CHANNELS_AVAILABLE_HI:
1554         case CSR_CHANNELS_AVAILABLE_LO:
1555                 handle_local_lock(ctx->ohci, packet, csr);
1556                 break;
1557         default:
1558                 if (ctx == &ctx->ohci->at_request_ctx)
1559                         fw_core_handle_request(&ctx->ohci->card, packet);
1560                 else
1561                         fw_core_handle_response(&ctx->ohci->card, packet);
1562                 break;
1563         }
1564
1565         if (ctx == &ctx->ohci->at_response_ctx) {
1566                 packet->ack = ACK_COMPLETE;
1567                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1568         }
1569 }
1570
1571 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1572 {
1573         unsigned long flags;
1574         int ret;
1575
1576         spin_lock_irqsave(&ctx->ohci->lock, flags);
1577
1578         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1579             ctx->ohci->generation == packet->generation) {
1580                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1581                 handle_local_request(ctx, packet);
1582                 return;
1583         }
1584
1585         ret = at_context_queue_packet(ctx, packet);
1586         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1587
1588         if (ret < 0)
1589                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1590
1591 }
1592
1593 static void detect_dead_context(struct fw_ohci *ohci,
1594                                 const char *name, unsigned int regs)
1595 {
1596         u32 ctl;
1597
1598         ctl = reg_read(ohci, CONTROL_SET(regs));
1599         if (ctl & CONTEXT_DEAD) {
1600 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1601                 fw_error("DMA context %s has stopped, error code: %s\n",
1602                          name, evts[ctl & 0x1f]);
1603 #else
1604                 fw_error("DMA context %s has stopped, error code: %#x\n",
1605                          name, ctl & 0x1f);
1606 #endif
1607         }
1608 }
1609
1610 static void handle_dead_contexts(struct fw_ohci *ohci)
1611 {
1612         unsigned int i;
1613         char name[8];
1614
1615         detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1616         detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1617         detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1618         detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1619         for (i = 0; i < 32; ++i) {
1620                 if (!(ohci->it_context_support & (1 << i)))
1621                         continue;
1622                 sprintf(name, "IT%u", i);
1623                 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1624         }
1625         for (i = 0; i < 32; ++i) {
1626                 if (!(ohci->ir_context_support & (1 << i)))
1627                         continue;
1628                 sprintf(name, "IR%u", i);
1629                 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1630         }
1631         /* TODO: maybe try to flush and restart the dead contexts */
1632 }
1633
1634 static u32 cycle_timer_ticks(u32 cycle_timer)
1635 {
1636         u32 ticks;
1637
1638         ticks = cycle_timer & 0xfff;
1639         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1640         ticks += (3072 * 8000) * (cycle_timer >> 25);
1641
1642         return ticks;
1643 }
1644
1645 /*
1646  * Some controllers exhibit one or more of the following bugs when updating the
1647  * iso cycle timer register:
1648  *  - When the lowest six bits are wrapping around to zero, a read that happens
1649  *    at the same time will return garbage in the lowest ten bits.
1650  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1651  *    not incremented for about 60 ns.
1652  *  - Occasionally, the entire register reads zero.
1653  *
1654  * To catch these, we read the register three times and ensure that the
1655  * difference between each two consecutive reads is approximately the same, i.e.
1656  * less than twice the other.  Furthermore, any negative difference indicates an
1657  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1658  * execute, so we have enough precision to compute the ratio of the differences.)
1659  */
1660 static u32 get_cycle_time(struct fw_ohci *ohci)
1661 {
1662         u32 c0, c1, c2;
1663         u32 t0, t1, t2;
1664         s32 diff01, diff12;
1665         int i;
1666
1667         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1668
1669         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1670                 i = 0;
1671                 c1 = c2;
1672                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1673                 do {
1674                         c0 = c1;
1675                         c1 = c2;
1676                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1677                         t0 = cycle_timer_ticks(c0);
1678                         t1 = cycle_timer_ticks(c1);
1679                         t2 = cycle_timer_ticks(c2);
1680                         diff01 = t1 - t0;
1681                         diff12 = t2 - t1;
1682                 } while ((diff01 <= 0 || diff12 <= 0 ||
1683                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1684                          && i++ < 20);
1685         }
1686
1687         return c2;
1688 }
1689
1690 /*
1691  * This function has to be called at least every 64 seconds.  The bus_time
1692  * field stores not only the upper 25 bits of the BUS_TIME register but also
1693  * the most significant bit of the cycle timer in bit 6 so that we can detect
1694  * changes in this bit.
1695  */
1696 static u32 update_bus_time(struct fw_ohci *ohci)
1697 {
1698         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1699
1700         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1701                 ohci->bus_time += 0x40;
1702
1703         return ohci->bus_time | cycle_time_seconds;
1704 }
1705
1706 static void bus_reset_tasklet(unsigned long data)
1707 {
1708         struct fw_ohci *ohci = (struct fw_ohci *)data;
1709         int self_id_count, i, j, reg;
1710         int generation, new_generation;
1711         unsigned long flags;
1712         void *free_rom = NULL;
1713         dma_addr_t free_rom_bus = 0;
1714         bool is_new_root;
1715
1716         reg = reg_read(ohci, OHCI1394_NodeID);
1717         if (!(reg & OHCI1394_NodeID_idValid)) {
1718                 fw_notify("node ID not valid, new bus reset in progress\n");
1719                 return;
1720         }
1721         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1722                 fw_notify("malconfigured bus\n");
1723                 return;
1724         }
1725         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1726                                OHCI1394_NodeID_nodeNumber);
1727
1728         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1729         if (!(ohci->is_root && is_new_root))
1730                 reg_write(ohci, OHCI1394_LinkControlSet,
1731                           OHCI1394_LinkControl_cycleMaster);
1732         ohci->is_root = is_new_root;
1733
1734         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1735         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1736                 fw_notify("inconsistent self IDs\n");
1737                 return;
1738         }
1739         /*
1740          * The count in the SelfIDCount register is the number of
1741          * bytes in the self ID receive buffer.  Since we also receive
1742          * the inverted quadlets and a header quadlet, we shift one
1743          * bit extra to get the actual number of self IDs.
1744          */
1745         self_id_count = (reg >> 3) & 0xff;
1746         if (self_id_count == 0 || self_id_count > 252) {
1747                 fw_notify("inconsistent self IDs\n");
1748                 return;
1749         }
1750         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1751         rmb();
1752
1753         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1754                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1755                         fw_notify("inconsistent self IDs\n");
1756                         return;
1757                 }
1758                 ohci->self_id_buffer[j] =
1759                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1760         }
1761         rmb();
1762
1763         /*
1764          * Check the consistency of the self IDs we just read.  The
1765          * problem we face is that a new bus reset can start while we
1766          * read out the self IDs from the DMA buffer. If this happens,
1767          * the DMA buffer will be overwritten with new self IDs and we
1768          * will read out inconsistent data.  The OHCI specification
1769          * (section 11.2) recommends a technique similar to
1770          * linux/seqlock.h, where we remember the generation of the
1771          * self IDs in the buffer before reading them out and compare
1772          * it to the current generation after reading them out.  If
1773          * the two generations match we know we have a consistent set
1774          * of self IDs.
1775          */
1776
1777         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1778         if (new_generation != generation) {
1779                 fw_notify("recursive bus reset detected, "
1780                           "discarding self ids\n");
1781                 return;
1782         }
1783
1784         /* FIXME: Document how the locking works. */
1785         spin_lock_irqsave(&ohci->lock, flags);
1786
1787         ohci->generation = -1; /* prevent AT packet queueing */
1788         context_stop(&ohci->at_request_ctx);
1789         context_stop(&ohci->at_response_ctx);
1790
1791         spin_unlock_irqrestore(&ohci->lock, flags);
1792
1793         /*
1794          * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1795          * packets in the AT queues and software needs to drain them.
1796          * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1797          */
1798         at_context_flush(&ohci->at_request_ctx);
1799         at_context_flush(&ohci->at_response_ctx);
1800
1801         spin_lock_irqsave(&ohci->lock, flags);
1802
1803         ohci->generation = generation;
1804         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1805
1806         if (ohci->quirks & QUIRK_RESET_PACKET)
1807                 ohci->request_generation = generation;
1808
1809         /*
1810          * This next bit is unrelated to the AT context stuff but we
1811          * have to do it under the spinlock also.  If a new config rom
1812          * was set up before this reset, the old one is now no longer
1813          * in use and we can free it. Update the config rom pointers
1814          * to point to the current config rom and clear the
1815          * next_config_rom pointer so a new update can take place.
1816          */
1817
1818         if (ohci->next_config_rom != NULL) {
1819                 if (ohci->next_config_rom != ohci->config_rom) {
1820                         free_rom      = ohci->config_rom;
1821                         free_rom_bus  = ohci->config_rom_bus;
1822                 }
1823                 ohci->config_rom      = ohci->next_config_rom;
1824                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1825                 ohci->next_config_rom = NULL;
1826
1827                 /*
1828                  * Restore config_rom image and manually update
1829                  * config_rom registers.  Writing the header quadlet
1830                  * will indicate that the config rom is ready, so we
1831                  * do that last.
1832                  */
1833                 reg_write(ohci, OHCI1394_BusOptions,
1834                           be32_to_cpu(ohci->config_rom[2]));
1835                 ohci->config_rom[0] = ohci->next_header;
1836                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1837                           be32_to_cpu(ohci->next_header));
1838         }
1839
1840 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1841         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1842         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1843 #endif
1844
1845         spin_unlock_irqrestore(&ohci->lock, flags);
1846
1847         if (free_rom)
1848                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1849                                   free_rom, free_rom_bus);
1850
1851         log_selfids(ohci->node_id, generation,
1852                     self_id_count, ohci->self_id_buffer);
1853
1854         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1855                                  self_id_count, ohci->self_id_buffer,
1856                                  ohci->csr_state_setclear_abdicate);
1857         ohci->csr_state_setclear_abdicate = false;
1858 }
1859
1860 static irqreturn_t irq_handler(int irq, void *data)
1861 {
1862         struct fw_ohci *ohci = data;
1863         u32 event, iso_event;
1864         int i;
1865
1866         event = reg_read(ohci, OHCI1394_IntEventClear);
1867
1868         if (!event || !~event)
1869                 return IRQ_NONE;
1870
1871         /*
1872          * busReset and postedWriteErr must not be cleared yet
1873          * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1874          */
1875         reg_write(ohci, OHCI1394_IntEventClear,
1876                   event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1877         log_irqs(event);
1878
1879         if (event & OHCI1394_selfIDComplete)
1880                 tasklet_schedule(&ohci->bus_reset_tasklet);
1881
1882         if (event & OHCI1394_RQPkt)
1883                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1884
1885         if (event & OHCI1394_RSPkt)
1886                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1887
1888         if (event & OHCI1394_reqTxComplete)
1889                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1890
1891         if (event & OHCI1394_respTxComplete)
1892                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1893
1894         if (event & OHCI1394_isochRx) {
1895                 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1896                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1897
1898                 while (iso_event) {
1899                         i = ffs(iso_event) - 1;
1900                         tasklet_schedule(
1901                                 &ohci->ir_context_list[i].context.tasklet);
1902                         iso_event &= ~(1 << i);
1903                 }
1904         }
1905
1906         if (event & OHCI1394_isochTx) {
1907                 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1908                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1909
1910                 while (iso_event) {
1911                         i = ffs(iso_event) - 1;
1912                         tasklet_schedule(
1913                                 &ohci->it_context_list[i].context.tasklet);
1914                         iso_event &= ~(1 << i);
1915                 }
1916         }
1917
1918         if (unlikely(event & OHCI1394_regAccessFail))
1919                 fw_error("Register access failure - "
1920                          "please notify linux1394-devel@lists.sf.net\n");
1921
1922         if (unlikely(event & OHCI1394_postedWriteErr)) {
1923                 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
1924                 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
1925                 reg_write(ohci, OHCI1394_IntEventClear,
1926                           OHCI1394_postedWriteErr);
1927                 fw_error("PCI posted write error\n");
1928         }
1929
1930         if (unlikely(event & OHCI1394_cycleTooLong)) {
1931                 if (printk_ratelimit())
1932                         fw_notify("isochronous cycle too long\n");
1933                 reg_write(ohci, OHCI1394_LinkControlSet,
1934                           OHCI1394_LinkControl_cycleMaster);
1935         }
1936
1937         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1938                 /*
1939                  * We need to clear this event bit in order to make
1940                  * cycleMatch isochronous I/O work.  In theory we should
1941                  * stop active cycleMatch iso contexts now and restart
1942                  * them at least two cycles later.  (FIXME?)
1943                  */
1944                 if (printk_ratelimit())
1945                         fw_notify("isochronous cycle inconsistent\n");
1946         }
1947
1948         if (unlikely(event & OHCI1394_unrecoverableError))
1949                 handle_dead_contexts(ohci);
1950
1951         if (event & OHCI1394_cycle64Seconds) {
1952                 spin_lock(&ohci->lock);
1953                 update_bus_time(ohci);
1954                 spin_unlock(&ohci->lock);
1955         } else
1956                 flush_writes(ohci);
1957
1958         return IRQ_HANDLED;
1959 }
1960
1961 static int software_reset(struct fw_ohci *ohci)
1962 {
1963         int i;
1964
1965         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1966
1967         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1968                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1969                      OHCI1394_HCControl_softReset) == 0)
1970                         return 0;
1971                 msleep(1);
1972         }
1973
1974         return -EBUSY;
1975 }
1976
1977 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1978 {
1979         size_t size = length * 4;
1980
1981         memcpy(dest, src, size);
1982         if (size < CONFIG_ROM_SIZE)
1983                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1984 }
1985
1986 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1987 {
1988         bool enable_1394a;
1989         int ret, clear, set, offset;
1990
1991         /* Check if the driver should configure link and PHY. */
1992         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1993               OHCI1394_HCControl_programPhyEnable))
1994                 return 0;
1995
1996         /* Paranoia: check whether the PHY supports 1394a, too. */
1997         enable_1394a = false;
1998         ret = read_phy_reg(ohci, 2);
1999         if (ret < 0)
2000                 return ret;
2001         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2002                 ret = read_paged_phy_reg(ohci, 1, 8);
2003                 if (ret < 0)
2004                         return ret;
2005                 if (ret >= 1)
2006                         enable_1394a = true;
2007         }
2008
2009         if (ohci->quirks & QUIRK_NO_1394A)
2010                 enable_1394a = false;
2011
2012         /* Configure PHY and link consistently. */
2013         if (enable_1394a) {
2014                 clear = 0;
2015                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2016         } else {
2017                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2018                 set = 0;
2019         }
2020         ret = update_phy_reg(ohci, 5, clear, set);
2021         if (ret < 0)
2022                 return ret;
2023
2024         if (enable_1394a)
2025                 offset = OHCI1394_HCControlSet;
2026         else
2027                 offset = OHCI1394_HCControlClear;
2028         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2029
2030         /* Clean up: configuration has been taken care of. */
2031         reg_write(ohci, OHCI1394_HCControlClear,
2032                   OHCI1394_HCControl_programPhyEnable);
2033
2034         return 0;
2035 }
2036
2037 static int ohci_enable(struct fw_card *card,
2038                        const __be32 *config_rom, size_t length)
2039 {
2040         struct fw_ohci *ohci = fw_ohci(card);
2041         struct pci_dev *dev = to_pci_dev(card->device);
2042         u32 lps, seconds, version, irqs;
2043         int i, ret;
2044
2045         if (software_reset(ohci)) {
2046                 fw_error("Failed to reset ohci card.\n");
2047                 return -EBUSY;
2048         }
2049
2050         /*
2051          * Now enable LPS, which we need in order to start accessing
2052          * most of the registers.  In fact, on some cards (ALI M5251),
2053          * accessing registers in the SClk domain without LPS enabled
2054          * will lock up the machine.  Wait 50msec to make sure we have
2055          * full link enabled.  However, with some cards (well, at least
2056          * a JMicron PCIe card), we have to try again sometimes.
2057          */
2058         reg_write(ohci, OHCI1394_HCControlSet,
2059                   OHCI1394_HCControl_LPS |
2060                   OHCI1394_HCControl_postedWriteEnable);
2061         flush_writes(ohci);
2062
2063         for (lps = 0, i = 0; !lps && i < 3; i++) {
2064                 msleep(50);
2065                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2066                       OHCI1394_HCControl_LPS;
2067         }
2068
2069         if (!lps) {
2070                 fw_error("Failed to set Link Power Status\n");
2071                 return -EIO;
2072         }
2073
2074         reg_write(ohci, OHCI1394_HCControlClear,
2075                   OHCI1394_HCControl_noByteSwapData);
2076
2077         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2078         reg_write(ohci, OHCI1394_LinkControlSet,
2079                   OHCI1394_LinkControl_cycleTimerEnable |
2080                   OHCI1394_LinkControl_cycleMaster);
2081
2082         reg_write(ohci, OHCI1394_ATRetries,
2083                   OHCI1394_MAX_AT_REQ_RETRIES |
2084                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2085                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2086                   (200 << 16));
2087
2088         seconds = lower_32_bits(get_seconds());
2089         reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2090         ohci->bus_time = seconds & ~0x3f;
2091
2092         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2093         if (version >= OHCI_VERSION_1_1) {
2094                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2095                           0xfffffffe);
2096                 card->broadcast_channel_auto_allocated = true;
2097         }
2098
2099         /* Get implemented bits of the priority arbitration request counter. */
2100         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2101         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2102         reg_write(ohci, OHCI1394_FairnessControl, 0);
2103         card->priority_budget_implemented = ohci->pri_req_max != 0;
2104
2105         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2106         reg_write(ohci, OHCI1394_IntEventClear, ~0);
2107         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2108
2109         ret = configure_1394a_enhancements(ohci);
2110         if (ret < 0)
2111                 return ret;
2112
2113         /* Activate link_on bit and contender bit in our self ID packets.*/
2114         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2115         if (ret < 0)
2116                 return ret;
2117
2118         /*
2119          * When the link is not yet enabled, the atomic config rom
2120          * update mechanism described below in ohci_set_config_rom()
2121          * is not active.  We have to update ConfigRomHeader and
2122          * BusOptions manually, and the write to ConfigROMmap takes
2123          * effect immediately.  We tie this to the enabling of the
2124          * link, so we have a valid config rom before enabling - the
2125          * OHCI requires that ConfigROMhdr and BusOptions have valid
2126          * values before enabling.
2127          *
2128          * However, when the ConfigROMmap is written, some controllers
2129          * always read back quadlets 0 and 2 from the config rom to
2130          * the ConfigRomHeader and BusOptions registers on bus reset.
2131          * They shouldn't do that in this initial case where the link
2132          * isn't enabled.  This means we have to use the same
2133          * workaround here, setting the bus header to 0 and then write
2134          * the right values in the bus reset tasklet.
2135          */
2136
2137         if (config_rom) {
2138                 ohci->next_config_rom =
2139                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2140                                            &ohci->next_config_rom_bus,
2141                                            GFP_KERNEL);
2142                 if (ohci->next_config_rom == NULL)
2143                         return -ENOMEM;
2144
2145                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2146         } else {
2147                 /*
2148                  * In the suspend case, config_rom is NULL, which
2149                  * means that we just reuse the old config rom.
2150                  */
2151                 ohci->next_config_rom = ohci->config_rom;
2152                 ohci->next_config_rom_bus = ohci->config_rom_bus;
2153         }
2154
2155         ohci->next_header = ohci->next_config_rom[0];
2156         ohci->next_config_rom[0] = 0;
2157         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2158         reg_write(ohci, OHCI1394_BusOptions,
2159                   be32_to_cpu(ohci->next_config_rom[2]));
2160         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2161
2162         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2163
2164         if (!(ohci->quirks & QUIRK_NO_MSI))
2165                 pci_enable_msi(dev);
2166         if (request_irq(dev->irq, irq_handler,
2167                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2168                         ohci_driver_name, ohci)) {
2169                 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2170                 pci_disable_msi(dev);
2171                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2172                                   ohci->config_rom, ohci->config_rom_bus);
2173                 return -EIO;
2174         }
2175
2176         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2177                 OHCI1394_RQPkt | OHCI1394_RSPkt |
2178                 OHCI1394_isochTx | OHCI1394_isochRx |
2179                 OHCI1394_postedWriteErr |
2180                 OHCI1394_selfIDComplete |
2181                 OHCI1394_regAccessFail |
2182                 OHCI1394_cycle64Seconds |
2183                 OHCI1394_cycleInconsistent |
2184                 OHCI1394_unrecoverableError |
2185                 OHCI1394_cycleTooLong |
2186                 OHCI1394_masterIntEnable;
2187         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2188                 irqs |= OHCI1394_busReset;
2189         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2190
2191         reg_write(ohci, OHCI1394_HCControlSet,
2192                   OHCI1394_HCControl_linkEnable |
2193                   OHCI1394_HCControl_BIBimageValid);
2194
2195         reg_write(ohci, OHCI1394_LinkControlSet,
2196                   OHCI1394_LinkControl_rcvSelfID |
2197                   OHCI1394_LinkControl_rcvPhyPkt);
2198
2199         ar_context_run(&ohci->ar_request_ctx);
2200         ar_context_run(&ohci->ar_response_ctx); /* also flushes writes */
2201
2202         /* We are ready to go, reset bus to finish initialization. */
2203         fw_schedule_bus_reset(&ohci->card, false, true);
2204
2205         return 0;
2206 }
2207
2208 static int ohci_set_config_rom(struct fw_card *card,
2209                                const __be32 *config_rom, size_t length)
2210 {
2211         struct fw_ohci *ohci;
2212         unsigned long flags;
2213         __be32 *next_config_rom;
2214         dma_addr_t uninitialized_var(next_config_rom_bus);
2215
2216         ohci = fw_ohci(card);
2217
2218         /*
2219          * When the OHCI controller is enabled, the config rom update
2220          * mechanism is a bit tricky, but easy enough to use.  See
2221          * section 5.5.6 in the OHCI specification.
2222          *
2223          * The OHCI controller caches the new config rom address in a
2224          * shadow register (ConfigROMmapNext) and needs a bus reset
2225          * for the changes to take place.  When the bus reset is
2226          * detected, the controller loads the new values for the
2227          * ConfigRomHeader and BusOptions registers from the specified
2228          * config rom and loads ConfigROMmap from the ConfigROMmapNext
2229          * shadow register. All automatically and atomically.
2230          *
2231          * Now, there's a twist to this story.  The automatic load of
2232          * ConfigRomHeader and BusOptions doesn't honor the
2233          * noByteSwapData bit, so with a be32 config rom, the
2234          * controller will load be32 values in to these registers
2235          * during the atomic update, even on litte endian
2236          * architectures.  The workaround we use is to put a 0 in the
2237          * header quadlet; 0 is endian agnostic and means that the
2238          * config rom isn't ready yet.  In the bus reset tasklet we
2239          * then set up the real values for the two registers.
2240          *
2241          * We use ohci->lock to avoid racing with the code that sets
2242          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2243          */
2244
2245         next_config_rom =
2246                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2247                                    &next_config_rom_bus, GFP_KERNEL);
2248         if (next_config_rom == NULL)
2249                 return -ENOMEM;
2250
2251         spin_lock_irqsave(&ohci->lock, flags);
2252
2253         /*
2254          * If there is not an already pending config_rom update,
2255          * push our new allocation into the ohci->next_config_rom
2256          * and then mark the local variable as null so that we
2257          * won't deallocate the new buffer.
2258          *
2259          * OTOH, if there is a pending config_rom update, just
2260          * use that buffer with the new config_rom data, and
2261          * let this routine free the unused DMA allocation.
2262          */
2263
2264         if (ohci->next_config_rom == NULL) {
2265                 ohci->next_config_rom = next_config_rom;
2266                 ohci->next_config_rom_bus = next_config_rom_bus;
2267                 next_config_rom = NULL;
2268         }
2269
2270         copy_config_rom(ohci->next_config_rom, config_rom, length);
2271
2272         ohci->next_header = config_rom[0];
2273         ohci->next_config_rom[0] = 0;
2274
2275         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2276
2277         spin_unlock_irqrestore(&ohci->lock, flags);
2278
2279         /* If we didn't use the DMA allocation, delete it. */
2280         if (next_config_rom != NULL)
2281                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2282                                   next_config_rom, next_config_rom_bus);
2283
2284         /*
2285          * Now initiate a bus reset to have the changes take
2286          * effect. We clean up the old config rom memory and DMA
2287          * mappings in the bus reset tasklet, since the OHCI
2288          * controller could need to access it before the bus reset
2289          * takes effect.
2290          */
2291
2292         fw_schedule_bus_reset(&ohci->card, true, true);
2293
2294         return 0;
2295 }
2296
2297 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2298 {
2299         struct fw_ohci *ohci = fw_ohci(card);
2300
2301         at_context_transmit(&ohci->at_request_ctx, packet);
2302 }
2303
2304 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2305 {
2306         struct fw_ohci *ohci = fw_ohci(card);
2307
2308         at_context_transmit(&ohci->at_response_ctx, packet);
2309 }
2310
2311 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2312 {
2313         struct fw_ohci *ohci = fw_ohci(card);
2314         struct context *ctx = &ohci->at_request_ctx;
2315         struct driver_data *driver_data = packet->driver_data;
2316         int ret = -ENOENT;
2317
2318         tasklet_disable(&ctx->tasklet);
2319
2320         if (packet->ack != 0)
2321                 goto out;
2322
2323         if (packet->payload_mapped)
2324                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2325                                  packet->payload_length, DMA_TO_DEVICE);
2326
2327         log_ar_at_event('T', packet->speed, packet->header, 0x20);
2328         driver_data->packet = NULL;
2329         packet->ack = RCODE_CANCELLED;
2330         packet->callback(packet, &ohci->card, packet->ack);
2331         ret = 0;
2332  out:
2333         tasklet_enable(&ctx->tasklet);
2334
2335         return ret;
2336 }
2337
2338 static int ohci_enable_phys_dma(struct fw_card *card,
2339                                 int node_id, int generation)
2340 {
2341 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2342         return 0;
2343 #else
2344         struct fw_ohci *ohci = fw_ohci(card);
2345         unsigned long flags;
2346         int n, ret = 0;
2347
2348         /*
2349          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2350          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2351          */
2352
2353         spin_lock_irqsave(&ohci->lock, flags);
2354
2355         if (ohci->generation != generation) {
2356                 ret = -ESTALE;
2357                 goto out;
2358         }
2359
2360         /*
2361          * Note, if the node ID contains a non-local bus ID, physical DMA is
2362          * enabled for _all_ nodes on remote buses.
2363          */
2364
2365         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2366         if (n < 32)
2367                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2368         else
2369                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2370
2371         flush_writes(ohci);
2372  out:
2373         spin_unlock_irqrestore(&ohci->lock, flags);
2374
2375         return ret;
2376 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2377 }
2378
2379 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2380 {
2381         struct fw_ohci *ohci = fw_ohci(card);
2382         unsigned long flags;
2383         u32 value;
2384
2385         switch (csr_offset) {
2386         case CSR_STATE_CLEAR:
2387         case CSR_STATE_SET:
2388                 if (ohci->is_root &&
2389                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2390                      OHCI1394_LinkControl_cycleMaster))
2391                         value = CSR_STATE_BIT_CMSTR;
2392                 else
2393                         value = 0;
2394                 if (ohci->csr_state_setclear_abdicate)
2395                         value |= CSR_STATE_BIT_ABDICATE;
2396
2397                 return value;
2398
2399         case CSR_NODE_IDS:
2400                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2401
2402         case CSR_CYCLE_TIME:
2403                 return get_cycle_time(ohci);
2404
2405         case CSR_BUS_TIME:
2406                 /*
2407                  * We might be called just after the cycle timer has wrapped
2408                  * around but just before the cycle64Seconds handler, so we
2409                  * better check here, too, if the bus time needs to be updated.
2410                  */
2411                 spin_lock_irqsave(&ohci->lock, flags);
2412                 value = update_bus_time(ohci);
2413                 spin_unlock_irqrestore(&ohci->lock, flags);
2414                 return value;
2415
2416         case CSR_BUSY_TIMEOUT:
2417                 value = reg_read(ohci, OHCI1394_ATRetries);
2418                 return (value >> 4) & 0x0ffff00f;
2419
2420         case CSR_PRIORITY_BUDGET:
2421                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2422                         (ohci->pri_req_max << 8);
2423
2424         default:
2425                 WARN_ON(1);
2426                 return 0;
2427         }
2428 }
2429
2430 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2431 {
2432         struct fw_ohci *ohci = fw_ohci(card);
2433         unsigned long flags;
2434
2435         switch (csr_offset) {
2436         case CSR_STATE_CLEAR:
2437                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2438                         reg_write(ohci, OHCI1394_LinkControlClear,
2439                                   OHCI1394_LinkControl_cycleMaster);
2440                         flush_writes(ohci);
2441                 }
2442                 if (value & CSR_STATE_BIT_ABDICATE)
2443                         ohci->csr_state_setclear_abdicate = false;
2444                 break;
2445
2446         case CSR_STATE_SET:
2447                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2448                         reg_write(ohci, OHCI1394_LinkControlSet,
2449                                   OHCI1394_LinkControl_cycleMaster);
2450                         flush_writes(ohci);
2451                 }
2452                 if (value & CSR_STATE_BIT_ABDICATE)
2453                         ohci->csr_state_setclear_abdicate = true;
2454                 break;
2455
2456         case CSR_NODE_IDS:
2457                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2458                 flush_writes(ohci);
2459                 break;
2460
2461         case CSR_CYCLE_TIME:
2462                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2463                 reg_write(ohci, OHCI1394_IntEventSet,
2464                           OHCI1394_cycleInconsistent);
2465                 flush_writes(ohci);
2466                 break;
2467
2468         case CSR_BUS_TIME:
2469                 spin_lock_irqsave(&ohci->lock, flags);
2470                 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2471                 spin_unlock_irqrestore(&ohci->lock, flags);
2472                 break;
2473
2474         case CSR_BUSY_TIMEOUT:
2475                 value = (value & 0xf) | ((value & 0xf) << 4) |
2476                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2477                 reg_write(ohci, OHCI1394_ATRetries, value);
2478                 flush_writes(ohci);
2479                 break;
2480
2481         case CSR_PRIORITY_BUDGET:
2482                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2483                 flush_writes(ohci);
2484                 break;
2485
2486         default:
2487                 WARN_ON(1);
2488                 break;
2489         }
2490 }
2491
2492 static void copy_iso_headers(struct iso_context *ctx, void *p)
2493 {
2494         int i = ctx->header_length;
2495
2496         if (i + ctx->base.header_size > PAGE_SIZE)
2497                 return;
2498
2499         /*
2500          * The iso header is byteswapped to little endian by
2501          * the controller, but the remaining header quadlets
2502          * are big endian.  We want to present all the headers
2503          * as big endian, so we have to swap the first quadlet.
2504          */
2505         if (ctx->base.header_size > 0)
2506                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2507         if (ctx->base.header_size > 4)
2508                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2509         if (ctx->base.header_size > 8)
2510                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2511         ctx->header_length += ctx->base.header_size;
2512 }
2513
2514 static int handle_ir_packet_per_buffer(struct context *context,
2515                                        struct descriptor *d,
2516                                        struct descriptor *last)
2517 {
2518         struct iso_context *ctx =
2519                 container_of(context, struct iso_context, context);
2520         struct descriptor *pd;
2521         __le32 *ir_header;
2522         void *p;
2523
2524         for (pd = d; pd <= last; pd++)
2525                 if (pd->transfer_status)
2526                         break;
2527         if (pd > last)
2528                 /* Descriptor(s) not done yet, stop iteration */
2529                 return 0;
2530
2531         p = last + 1;
2532         copy_iso_headers(ctx, p);
2533
2534         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2535                 ir_header = (__le32 *) p;
2536                 ctx->base.callback.sc(&ctx->base,
2537                                       le32_to_cpu(ir_header[0]) & 0xffff,
2538                                       ctx->header_length, ctx->header,
2539                                       ctx->base.callback_data);
2540                 ctx->header_length = 0;
2541         }
2542
2543         return 1;
2544 }
2545
2546 /* d == last because each descriptor block is only a single descriptor. */
2547 static int handle_ir_buffer_fill(struct context *context,
2548                                  struct descriptor *d,
2549                                  struct descriptor *last)
2550 {
2551         struct iso_context *ctx =
2552                 container_of(context, struct iso_context, context);
2553
2554         if (!last->transfer_status)
2555                 /* Descriptor(s) not done yet, stop iteration */
2556                 return 0;
2557
2558         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2559                 ctx->base.callback.mc(&ctx->base,
2560                                       le32_to_cpu(last->data_address) +
2561                                       le16_to_cpu(last->req_count) -
2562                                       le16_to_cpu(last->res_count),
2563                                       ctx->base.callback_data);
2564
2565         return 1;
2566 }
2567
2568 static int handle_it_packet(struct context *context,
2569                             struct descriptor *d,
2570                             struct descriptor *last)
2571 {
2572         struct iso_context *ctx =
2573                 container_of(context, struct iso_context, context);
2574         int i;
2575         struct descriptor *pd;
2576
2577         for (pd = d; pd <= last; pd++)
2578                 if (pd->transfer_status)
2579                         break;
2580         if (pd > last)
2581                 /* Descriptor(s) not done yet, stop iteration */
2582                 return 0;
2583
2584         i = ctx->header_length;
2585         if (i + 4 < PAGE_SIZE) {
2586                 /* Present this value as big-endian to match the receive code */
2587                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2588                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2589                                 le16_to_cpu(pd->res_count));
2590                 ctx->header_length += 4;
2591         }
2592         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2593                 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2594                                       ctx->header_length, ctx->header,
2595                                       ctx->base.callback_data);
2596                 ctx->header_length = 0;
2597         }
2598         return 1;
2599 }
2600
2601 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2602 {
2603         u32 hi = channels >> 32, lo = channels;
2604
2605         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2606         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2607         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2608         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2609         mmiowb();
2610         ohci->mc_channels = channels;
2611 }
2612
2613 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2614                                 int type, int channel, size_t header_size)
2615 {
2616         struct fw_ohci *ohci = fw_ohci(card);
2617         struct iso_context *uninitialized_var(ctx);
2618         descriptor_callback_t uninitialized_var(callback);
2619         u64 *uninitialized_var(channels);
2620         u32 *uninitialized_var(mask), uninitialized_var(regs);
2621         unsigned long flags;
2622         int index, ret = -EBUSY;
2623
2624         spin_lock_irqsave(&ohci->lock, flags);
2625
2626         switch (type) {
2627         case FW_ISO_CONTEXT_TRANSMIT:
2628                 mask     = &ohci->it_context_mask;
2629                 callback = handle_it_packet;
2630                 index    = ffs(*mask) - 1;
2631                 if (index >= 0) {
2632                         *mask &= ~(1 << index);
2633                         regs = OHCI1394_IsoXmitContextBase(index);
2634                         ctx  = &ohci->it_context_list[index];
2635                 }
2636                 break;
2637
2638         case FW_ISO_CONTEXT_RECEIVE:
2639                 channels = &ohci->ir_context_channels;
2640                 mask     = &ohci->ir_context_mask;
2641                 callback = handle_ir_packet_per_buffer;
2642                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2643                 if (index >= 0) {
2644                         *channels &= ~(1ULL << channel);
2645                         *mask     &= ~(1 << index);
2646                         regs = OHCI1394_IsoRcvContextBase(index);
2647                         ctx  = &ohci->ir_context_list[index];
2648                 }
2649                 break;
2650
2651         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2652                 mask     = &ohci->ir_context_mask;
2653                 callback = handle_ir_buffer_fill;
2654                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2655                 if (index >= 0) {
2656                         ohci->mc_allocated = true;
2657                         *mask &= ~(1 << index);
2658                         regs = OHCI1394_IsoRcvContextBase(index);
2659                         ctx  = &ohci->ir_context_list[index];
2660                 }
2661                 break;
2662
2663         default:
2664                 index = -1;
2665                 ret = -ENOSYS;
2666         }
2667
2668         spin_unlock_irqrestore(&ohci->lock, flags);
2669
2670         if (index < 0)
2671                 return ERR_PTR(ret);
2672
2673         memset(ctx, 0, sizeof(*ctx));
2674         ctx->header_length = 0;
2675         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2676         if (ctx->header == NULL) {
2677                 ret = -ENOMEM;
2678                 goto out;
2679         }
2680         ret = context_init(&ctx->context, ohci, regs, callback);
2681         if (ret < 0)
2682                 goto out_with_header;
2683
2684         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2685                 set_multichannel_mask(ohci, 0);
2686
2687         return &ctx->base;
2688
2689  out_with_header:
2690         free_page((unsigned long)ctx->header);
2691  out:
2692         spin_lock_irqsave(&ohci->lock, flags);
2693
2694         switch (type) {
2695         case FW_ISO_CONTEXT_RECEIVE:
2696                 *channels |= 1ULL << channel;
2697                 break;
2698
2699         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2700                 ohci->mc_allocated = false;
2701                 break;
2702         }
2703         *mask |= 1 << index;
2704
2705         spin_unlock_irqrestore(&ohci->lock, flags);
2706
2707         return ERR_PTR(ret);
2708 }
2709
2710 static int ohci_start_iso(struct fw_iso_context *base,
2711                           s32 cycle, u32 sync, u32 tags)
2712 {
2713         struct iso_context *ctx = container_of(base, struct iso_context, base);
2714         struct fw_ohci *ohci = ctx->context.ohci;
2715         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2716         int index;
2717
2718         /* the controller cannot start without any queued packets */
2719         if (ctx->context.last->branch_address == 0)
2720                 return -ENODATA;
2721
2722         switch (ctx->base.type) {
2723         case FW_ISO_CONTEXT_TRANSMIT:
2724                 index = ctx - ohci->it_context_list;
2725                 match = 0;
2726                 if (cycle >= 0)
2727                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2728                                 (cycle & 0x7fff) << 16;
2729
2730                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2731                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2732                 context_run(&ctx->context, match);
2733                 break;
2734
2735         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2736                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2737                 /* fall through */
2738         case FW_ISO_CONTEXT_RECEIVE:
2739                 index = ctx - ohci->ir_context_list;
2740                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2741                 if (cycle >= 0) {
2742                         match |= (cycle & 0x07fff) << 12;
2743                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2744                 }
2745
2746                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2747                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2748                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2749                 context_run(&ctx->context, control);
2750
2751                 ctx->sync = sync;
2752                 ctx->tags = tags;
2753
2754                 break;
2755         }
2756
2757         return 0;
2758 }
2759
2760 static int ohci_stop_iso(struct fw_iso_context *base)
2761 {
2762         struct fw_ohci *ohci = fw_ohci(base->card);
2763         struct iso_context *ctx = container_of(base, struct iso_context, base);
2764         int index;
2765
2766         switch (ctx->base.type) {
2767         case FW_ISO_CONTEXT_TRANSMIT:
2768                 index = ctx - ohci->it_context_list;
2769                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2770                 break;
2771
2772         case FW_ISO_CONTEXT_RECEIVE:
2773         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2774                 index = ctx - ohci->ir_context_list;
2775                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2776                 break;
2777         }
2778         flush_writes(ohci);
2779         context_stop(&ctx->context);
2780         tasklet_kill(&ctx->context.tasklet);
2781
2782         return 0;
2783 }
2784
2785 static void ohci_free_iso_context(struct fw_iso_context *base)
2786 {
2787         struct fw_ohci *ohci = fw_ohci(base->card);
2788         struct iso_context *ctx = container_of(base, struct iso_context, base);
2789         unsigned long flags;
2790         int index;
2791
2792         ohci_stop_iso(base);
2793         context_release(&ctx->context);
2794         free_page((unsigned long)ctx->header);
2795
2796         spin_lock_irqsave(&ohci->lock, flags);
2797
2798         switch (base->type) {
2799         case FW_ISO_CONTEXT_TRANSMIT:
2800                 index = ctx - ohci->it_context_list;
2801                 ohci->it_context_mask |= 1 << index;
2802                 break;
2803
2804         case FW_ISO_CONTEXT_RECEIVE:
2805                 index = ctx - ohci->ir_context_list;
2806                 ohci->ir_context_mask |= 1 << index;
2807                 ohci->ir_context_channels |= 1ULL << base->channel;
2808                 break;
2809
2810         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2811                 index = ctx - ohci->ir_context_list;
2812                 ohci->ir_context_mask |= 1 << index;
2813                 ohci->ir_context_channels |= ohci->mc_channels;
2814                 ohci->mc_channels = 0;
2815                 ohci->mc_allocated = false;
2816                 break;
2817         }
2818
2819         spin_unlock_irqrestore(&ohci->lock, flags);
2820 }
2821
2822 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2823 {
2824         struct fw_ohci *ohci = fw_ohci(base->card);
2825         unsigned long flags;
2826         int ret;
2827
2828         switch (base->type) {
2829         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2830
2831                 spin_lock_irqsave(&ohci->lock, flags);
2832
2833                 /* Don't allow multichannel to grab other contexts' channels. */
2834                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2835                         *channels = ohci->ir_context_channels;
2836                         ret = -EBUSY;
2837                 } else {
2838                         set_multichannel_mask(ohci, *channels);
2839                         ret = 0;
2840                 }
2841
2842                 spin_unlock_irqrestore(&ohci->lock, flags);
2843
2844                 break;
2845         default:
2846                 ret = -EINVAL;
2847         }
2848
2849         return ret;
2850 }
2851
2852 #ifdef CONFIG_PM
2853 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
2854 {
2855         int i;
2856         struct iso_context *ctx;
2857
2858         for (i = 0 ; i < ohci->n_ir ; i++) {
2859                 ctx = &ohci->ir_context_list[i];
2860                 if (ctx->context.running)
2861                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2862         }
2863
2864         for (i = 0 ; i < ohci->n_it ; i++) {
2865                 ctx = &ohci->it_context_list[i];
2866                 if (ctx->context.running)
2867                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2868         }
2869 }
2870 #endif
2871
2872 static int queue_iso_transmit(struct iso_context *ctx,
2873                               struct fw_iso_packet *packet,
2874                               struct fw_iso_buffer *buffer,
2875                               unsigned long payload)
2876 {
2877         struct descriptor *d, *last, *pd;
2878         struct fw_iso_packet *p;
2879         __le32 *header;
2880         dma_addr_t d_bus, page_bus;
2881         u32 z, header_z, payload_z, irq;
2882         u32 payload_index, payload_end_index, next_page_index;
2883         int page, end_page, i, length, offset;
2884
2885         p = packet;
2886         payload_index = payload;
2887
2888         if (p->skip)
2889                 z = 1;
2890         else
2891                 z = 2;
2892         if (p->header_length > 0)
2893                 z++;
2894
2895         /* Determine the first page the payload isn't contained in. */
2896         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2897         if (p->payload_length > 0)
2898                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2899         else
2900                 payload_z = 0;
2901
2902         z += payload_z;
2903
2904         /* Get header size in number of descriptors. */
2905         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2906
2907         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2908         if (d == NULL)
2909                 return -ENOMEM;
2910
2911         if (!p->skip) {
2912                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2913                 d[0].req_count = cpu_to_le16(8);
2914                 /*
2915                  * Link the skip address to this descriptor itself.  This causes
2916                  * a context to skip a cycle whenever lost cycles or FIFO
2917                  * overruns occur, without dropping the data.  The application
2918                  * should then decide whether this is an error condition or not.
2919                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2920                  */
2921                 d[0].branch_address = cpu_to_le32(d_bus | z);
2922
2923                 header = (__le32 *) &d[1];
2924                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2925                                         IT_HEADER_TAG(p->tag) |
2926                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2927                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2928                                         IT_HEADER_SPEED(ctx->base.speed));
2929                 header[1] =
2930                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2931                                                           p->payload_length));
2932         }
2933
2934         if (p->header_length > 0) {
2935                 d[2].req_count    = cpu_to_le16(p->header_length);
2936                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2937                 memcpy(&d[z], p->header, p->header_length);
2938         }
2939
2940         pd = d + z - payload_z;
2941         payload_end_index = payload_index + p->payload_length;
2942         for (i = 0; i < payload_z; i++) {
2943                 page               = payload_index >> PAGE_SHIFT;
2944                 offset             = payload_index & ~PAGE_MASK;
2945                 next_page_index    = (page + 1) << PAGE_SHIFT;
2946                 length             =
2947                         min(next_page_index, payload_end_index) - payload_index;
2948                 pd[i].req_count    = cpu_to_le16(length);
2949
2950                 page_bus = page_private(buffer->pages[page]);
2951                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2952
2953                 payload_index += length;
2954         }
2955
2956         if (p->interrupt)
2957                 irq = DESCRIPTOR_IRQ_ALWAYS;
2958         else
2959                 irq = DESCRIPTOR_NO_IRQ;
2960
2961         last = z == 2 ? d : d + z - 1;
2962         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2963                                      DESCRIPTOR_STATUS |
2964                                      DESCRIPTOR_BRANCH_ALWAYS |
2965                                      irq);
2966
2967         context_append(&ctx->context, d, z, header_z);
2968
2969         return 0;
2970 }
2971
2972 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2973                                        struct fw_iso_packet *packet,
2974                                        struct fw_iso_buffer *buffer,
2975                                        unsigned long payload)
2976 {
2977         struct descriptor *d, *pd;
2978         dma_addr_t d_bus, page_bus;
2979         u32 z, header_z, rest;
2980         int i, j, length;
2981         int page, offset, packet_count, header_size, payload_per_buffer;
2982
2983         /*
2984          * The OHCI controller puts the isochronous header and trailer in the
2985          * buffer, so we need at least 8 bytes.
2986          */
2987         packet_count = packet->header_length / ctx->base.header_size;
2988         header_size  = max(ctx->base.header_size, (size_t)8);
2989
2990         /* Get header size in number of descriptors. */
2991         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2992         page     = payload >> PAGE_SHIFT;
2993         offset   = payload & ~PAGE_MASK;
2994         payload_per_buffer = packet->payload_length / packet_count;
2995
2996         for (i = 0; i < packet_count; i++) {
2997                 /* d points to the header descriptor */
2998                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2999                 d = context_get_descriptors(&ctx->context,
3000                                 z + header_z, &d_bus);
3001                 if (d == NULL)
3002                         return -ENOMEM;
3003
3004                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3005                                               DESCRIPTOR_INPUT_MORE);
3006                 if (packet->skip && i == 0)
3007                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3008                 d->req_count    = cpu_to_le16(header_size);
3009                 d->res_count    = d->req_count;
3010                 d->transfer_status = 0;
3011                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3012
3013                 rest = payload_per_buffer;
3014                 pd = d;
3015                 for (j = 1; j < z; j++) {
3016                         pd++;
3017                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3018                                                   DESCRIPTOR_INPUT_MORE);
3019
3020                         if (offset + rest < PAGE_SIZE)
3021                                 length = rest;
3022                         else
3023                                 length = PAGE_SIZE - offset;
3024                         pd->req_count = cpu_to_le16(length);
3025                         pd->res_count = pd->req_count;
3026                         pd->transfer_status = 0;
3027
3028                         page_bus = page_private(buffer->pages[page]);
3029                         pd->data_address = cpu_to_le32(page_bus + offset);
3030
3031                         offset = (offset + length) & ~PAGE_MASK;
3032                         rest -= length;
3033                         if (offset == 0)
3034                                 page++;
3035                 }
3036                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3037                                           DESCRIPTOR_INPUT_LAST |
3038                                           DESCRIPTOR_BRANCH_ALWAYS);
3039                 if (packet->interrupt && i == packet_count - 1)
3040                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3041
3042                 context_append(&ctx->context, d, z, header_z);
3043         }
3044
3045         return 0;
3046 }
3047
3048 static int queue_iso_buffer_fill(struct iso_context *ctx,
3049                                  struct fw_iso_packet *packet,
3050                                  struct fw_iso_buffer *buffer,
3051                                  unsigned long payload)
3052 {
3053         struct descriptor *d;
3054         dma_addr_t d_bus, page_bus;
3055         int page, offset, rest, z, i, length;
3056
3057         page   = payload >> PAGE_SHIFT;
3058         offset = payload & ~PAGE_MASK;
3059         rest   = packet->payload_length;
3060
3061         /* We need one descriptor for each page in the buffer. */
3062         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3063
3064         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3065                 return -EFAULT;
3066
3067         for (i = 0; i < z; i++) {
3068                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3069                 if (d == NULL)
3070                         return -ENOMEM;
3071
3072                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3073                                          DESCRIPTOR_BRANCH_ALWAYS);
3074                 if (packet->skip && i == 0)
3075                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3076                 if (packet->interrupt && i == z - 1)
3077                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3078
3079                 if (offset + rest < PAGE_SIZE)
3080                         length = rest;
3081                 else
3082                         length = PAGE_SIZE - offset;
3083                 d->req_count = cpu_to_le16(length);
3084                 d->res_count = d->req_count;
3085                 d->transfer_status = 0;
3086
3087                 page_bus = page_private(buffer->pages[page]);
3088                 d->data_address = cpu_to_le32(page_bus + offset);
3089
3090                 rest -= length;
3091                 offset = 0;
3092                 page++;
3093
3094                 context_append(&ctx->context, d, 1, 0);
3095         }
3096
3097         return 0;
3098 }
3099
3100 static int ohci_queue_iso(struct fw_iso_context *base,
3101                           struct fw_iso_packet *packet,
3102                           struct fw_iso_buffer *buffer,
3103                           unsigned long payload)
3104 {
3105         struct iso_context *ctx = container_of(base, struct iso_context, base);
3106         unsigned long flags;
3107         int ret = -ENOSYS;
3108
3109         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3110         switch (base->type) {
3111         case FW_ISO_CONTEXT_TRANSMIT:
3112                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3113                 break;
3114         case FW_ISO_CONTEXT_RECEIVE:
3115                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3116                 break;
3117         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3118                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3119                 break;
3120         }
3121         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3122
3123         return ret;
3124 }
3125
3126 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3127 {
3128         struct context *ctx =
3129                         &container_of(base, struct iso_context, base)->context;
3130
3131         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3132         flush_writes(ctx->ohci);
3133 }
3134
3135 static const struct fw_card_driver ohci_driver = {
3136         .enable                 = ohci_enable,
3137         .read_phy_reg           = ohci_read_phy_reg,
3138         .update_phy_reg         = ohci_update_phy_reg,
3139         .set_config_rom         = ohci_set_config_rom,
3140         .send_request           = ohci_send_request,
3141         .send_response          = ohci_send_response,
3142         .cancel_packet          = ohci_cancel_packet,
3143         .enable_phys_dma        = ohci_enable_phys_dma,
3144         .read_csr               = ohci_read_csr,
3145         .write_csr              = ohci_write_csr,
3146
3147         .allocate_iso_context   = ohci_allocate_iso_context,
3148         .free_iso_context       = ohci_free_iso_context,
3149         .set_iso_channels       = ohci_set_iso_channels,
3150         .queue_iso              = ohci_queue_iso,
3151         .flush_queue_iso        = ohci_flush_queue_iso,
3152         .start_iso              = ohci_start_iso,
3153         .stop_iso               = ohci_stop_iso,
3154 };
3155
3156 #ifdef CONFIG_PPC_PMAC
3157 static void pmac_ohci_on(struct pci_dev *dev)
3158 {
3159         if (machine_is(powermac)) {
3160                 struct device_node *ofn = pci_device_to_OF_node(dev);
3161
3162                 if (ofn) {
3163                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3164                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3165                 }
3166         }
3167 }
3168
3169 static void pmac_ohci_off(struct pci_dev *dev)
3170 {
3171         if (machine_is(powermac)) {
3172                 struct device_node *ofn = pci_device_to_OF_node(dev);
3173
3174                 if (ofn) {
3175                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3176                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3177                 }
3178         }
3179 }
3180 #else
3181 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3182 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3183 #endif /* CONFIG_PPC_PMAC */
3184
3185 static int __devinit pci_probe(struct pci_dev *dev,
3186                                const struct pci_device_id *ent)
3187 {
3188         struct fw_ohci *ohci;
3189         u32 bus_options, max_receive, link_speed, version;
3190         u64 guid;
3191         int i, err;
3192         size_t size;
3193
3194         if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3195                 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3196                 return -ENOSYS;
3197         }
3198
3199         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3200         if (ohci == NULL) {
3201                 err = -ENOMEM;
3202                 goto fail;
3203         }
3204
3205         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3206
3207         pmac_ohci_on(dev);
3208
3209         err = pci_enable_device(dev);
3210         if (err) {
3211                 fw_error("Failed to enable OHCI hardware\n");
3212                 goto fail_free;
3213         }
3214
3215         pci_set_master(dev);
3216         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3217         pci_set_drvdata(dev, ohci);
3218
3219         spin_lock_init(&ohci->lock);
3220         mutex_init(&ohci->phy_reg_mutex);
3221
3222         tasklet_init(&ohci->bus_reset_tasklet,
3223                      bus_reset_tasklet, (unsigned long)ohci);
3224
3225         err = pci_request_region(dev, 0, ohci_driver_name);
3226         if (err) {
3227                 fw_error("MMIO resource unavailable\n");
3228                 goto fail_disable;
3229         }
3230
3231         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3232         if (ohci->registers == NULL) {
3233                 fw_error("Failed to remap registers\n");
3234                 err = -ENXIO;
3235                 goto fail_iomem;
3236         }
3237
3238         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3239                 if ((ohci_quirks[i].vendor == dev->vendor) &&
3240                     (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3241                      ohci_quirks[i].device == dev->device) &&
3242                     (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3243                      ohci_quirks[i].revision >= dev->revision)) {
3244                         ohci->quirks = ohci_quirks[i].flags;
3245                         break;
3246                 }
3247         if (param_quirks)
3248                 ohci->quirks = param_quirks;
3249
3250         /*
3251          * Because dma_alloc_coherent() allocates at least one page,
3252          * we save space by using a common buffer for the AR request/
3253          * response descriptors and the self IDs buffer.
3254          */
3255         BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3256         BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3257         ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3258                                                PAGE_SIZE,
3259                                                &ohci->misc_buffer_bus,
3260                                                GFP_KERNEL);
3261         if (!ohci->misc_buffer) {
3262                 err = -ENOMEM;
3263                 goto fail_iounmap;
3264         }
3265
3266         err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3267                               OHCI1394_AsReqRcvContextControlSet);
3268         if (err < 0)
3269                 goto fail_misc_buf;
3270
3271         err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3272                               OHCI1394_AsRspRcvContextControlSet);
3273         if (err < 0)
3274                 goto fail_arreq_ctx;
3275
3276         err = context_init(&ohci->at_request_ctx, ohci,
3277                            OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3278         if (err < 0)
3279                 goto fail_arrsp_ctx;
3280
3281         err = context_init(&ohci->at_response_ctx, ohci,
3282                            OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3283         if (err < 0)
3284                 goto fail_atreq_ctx;
3285
3286         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3287         ohci->ir_context_channels = ~0ULL;
3288         ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3289         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3290         ohci->ir_context_mask = ohci->ir_context_support;
3291         ohci->n_ir = hweight32(ohci->ir_context_mask);
3292         size = sizeof(struct iso_context) * ohci->n_ir;
3293         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3294
3295         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3296         ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3297         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3298         ohci->it_context_mask = ohci->it_context_support;
3299         ohci->n_it = hweight32(ohci->it_context_mask);
3300         size = sizeof(struct iso_context) * ohci->n_it;
3301         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3302
3303         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3304                 err = -ENOMEM;
3305                 goto fail_contexts;
3306         }
3307
3308         ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
3309         ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3310
3311         bus_options = reg_read(ohci, OHCI1394_BusOptions);
3312         max_receive = (bus_options >> 12) & 0xf;
3313         link_speed = bus_options & 0x7;
3314         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3315                 reg_read(ohci, OHCI1394_GUIDLo);
3316
3317         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3318         if (err)
3319                 goto fail_contexts;
3320
3321         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3322         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3323                   "%d IR + %d IT contexts, quirks 0x%x\n",
3324                   dev_name(&dev->dev), version >> 16, version & 0xff,
3325                   ohci->n_ir, ohci->n_it, ohci->quirks);
3326
3327         return 0;
3328
3329  fail_contexts:
3330         kfree(ohci->ir_context_list);
3331         kfree(ohci->it_context_list);
3332         context_release(&ohci->at_response_ctx);
3333  fail_atreq_ctx:
3334         context_release(&ohci->at_request_ctx);
3335  fail_arrsp_ctx:
3336         ar_context_release(&ohci->ar_response_ctx);
3337  fail_arreq_ctx:
3338         ar_context_release(&ohci->ar_request_ctx);
3339  fail_misc_buf:
3340         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3341                           ohci->misc_buffer, ohci->misc_buffer_bus);
3342  fail_iounmap:
3343         pci_iounmap(dev, ohci->registers);
3344  fail_iomem:
3345         pci_release_region(dev, 0);
3346  fail_disable:
3347         pci_disable_device(dev);
3348  fail_free:
3349         kfree(ohci);
3350         pmac_ohci_off(dev);
3351  fail:
3352         if (err == -ENOMEM)
3353                 fw_error("Out of memory\n");
3354
3355         return err;
3356 }
3357
3358 static void pci_remove(struct pci_dev *dev)
3359 {
3360         struct fw_ohci *ohci;
3361
3362         ohci = pci_get_drvdata(dev);
3363         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3364         flush_writes(ohci);
3365         fw_core_remove_card(&ohci->card);
3366
3367         /*
3368          * FIXME: Fail all pending packets here, now that the upper
3369          * layers can't queue any more.
3370          */
3371
3372         software_reset(ohci);
3373         free_irq(dev->irq, ohci);
3374
3375         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3376                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3377                                   ohci->next_config_rom, ohci->next_config_rom_bus);
3378         if (ohci->config_rom)
3379                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3380                                   ohci->config_rom, ohci->config_rom_bus);
3381         ar_context_release(&ohci->ar_request_ctx);
3382         ar_context_release(&ohci->ar_response_ctx);
3383         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3384                           ohci->misc_buffer, ohci->misc_buffer_bus);
3385         context_release(&ohci->at_request_ctx);
3386         context_release(&ohci->at_response_ctx);
3387         kfree(ohci->it_context_list);
3388         kfree(ohci->ir_context_list);
3389         pci_disable_msi(dev);
3390         pci_iounmap(dev, ohci->registers);
3391         pci_release_region(dev, 0);
3392         pci_disable_device(dev);
3393         kfree(ohci);
3394         pmac_ohci_off(dev);
3395
3396         fw_notify("Removed fw-ohci device.\n");
3397 }
3398
3399 #ifdef CONFIG_PM
3400 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3401 {
3402         struct fw_ohci *ohci = pci_get_drvdata(dev);
3403         int err;
3404
3405         software_reset(ohci);
3406         free_irq(dev->irq, ohci);
3407         pci_disable_msi(dev);
3408         err = pci_save_state(dev);
3409         if (err) {
3410                 fw_error("pci_save_state failed\n");
3411                 return err;
3412         }
3413         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3414         if (err)
3415                 fw_error("pci_set_power_state failed with %d\n", err);
3416         pmac_ohci_off(dev);
3417
3418         return 0;
3419 }
3420
3421 static int pci_resume(struct pci_dev *dev)
3422 {
3423         struct fw_ohci *ohci = pci_get_drvdata(dev);
3424         int err;
3425
3426         pmac_ohci_on(dev);
3427         pci_set_power_state(dev, PCI_D0);
3428         pci_restore_state(dev);
3429         err = pci_enable_device(dev);
3430         if (err) {
3431                 fw_error("pci_enable_device failed\n");
3432                 return err;
3433         }
3434
3435         /* Some systems don't setup GUID register on resume from ram  */
3436         if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3437                                         !reg_read(ohci, OHCI1394_GUIDHi)) {
3438                 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3439                 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3440         }
3441
3442         err = ohci_enable(&ohci->card, NULL, 0);
3443         if (err)
3444                 return err;
3445
3446         ohci_resume_iso_dma(ohci);
3447
3448         return 0;
3449 }
3450 #endif
3451
3452 static const struct pci_device_id pci_table[] = {
3453         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3454         { }
3455 };
3456
3457 MODULE_DEVICE_TABLE(pci, pci_table);
3458
3459 static struct pci_driver fw_ohci_pci_driver = {
3460         .name           = ohci_driver_name,
3461         .id_table       = pci_table,
3462         .probe          = pci_probe,
3463         .remove         = pci_remove,
3464 #ifdef CONFIG_PM
3465         .resume         = pci_resume,
3466         .suspend        = pci_suspend,
3467 #endif
3468 };
3469
3470 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3471 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3472 MODULE_LICENSE("GPL");
3473
3474 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3475 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3476 MODULE_ALIAS("ohci1394");
3477 #endif
3478
3479 static int __init fw_ohci_init(void)
3480 {
3481         return pci_register_driver(&fw_ohci_pci_driver);
3482 }
3483
3484 static void __exit fw_ohci_cleanup(void)
3485 {
3486         pci_unregister_driver(&fw_ohci_pci_driver);
3487 }
3488
3489 module_init(fw_ohci_init);
3490 module_exit(fw_ohci_cleanup);