73ebbb1a3269c3f2ef8e5380ba5800778fd74fef
[linux-2.6.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/seq_file.h>
47 #include <linux/timer.h>
48 #include <linux/errno.h>
49 #include <linux/spinlock.h>
50 #include <linux/slab.h>
51 #include <linux/delay.h>
52 #include <linux/list.h>
53 #include <linux/pci.h>
54 #include <linux/ioport.h>
55 #include <linux/notifier.h>
56 #include <linux/mutex.h>
57 #include <linux/kthread.h>
58 #include <asm/irq.h>
59 #include <linux/interrupt.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ipmi.h>
62 #include <linux/ipmi_smi.h>
63 #include <asm/io.h>
64 #include "ipmi_si_sm.h"
65 #include <linux/init.h>
66 #include <linux/dmi.h>
67 #include <linux/string.h>
68 #include <linux/ctype.h>
69 #include <linux/pnp.h>
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #include <linux/of_address.h>
73 #include <linux/of_irq.h>
74
75 #define PFX "ipmi_si: "
76
77 /* Measure times between events in the driver. */
78 #undef DEBUG_TIMING
79
80 /* Call every 10 ms. */
81 #define SI_TIMEOUT_TIME_USEC    10000
82 #define SI_USEC_PER_JIFFY       (1000000/HZ)
83 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
84 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
85                                       short timeout */
86
87 enum si_intf_state {
88         SI_NORMAL,
89         SI_GETTING_FLAGS,
90         SI_GETTING_EVENTS,
91         SI_CLEARING_FLAGS,
92         SI_CLEARING_FLAGS_THEN_SET_IRQ,
93         SI_GETTING_MESSAGES,
94         SI_ENABLE_INTERRUPTS1,
95         SI_ENABLE_INTERRUPTS2,
96         SI_DISABLE_INTERRUPTS1,
97         SI_DISABLE_INTERRUPTS2
98         /* FIXME - add watchdog stuff. */
99 };
100
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG             2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
105
106 enum si_type {
107     SI_KCS, SI_SMIC, SI_BT
108 };
109 static char *si_to_str[] = { "kcs", "smic", "bt" };
110
111 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
112                                         "ACPI", "SMBIOS", "PCI",
113                                         "device-tree", "default" };
114
115 #define DEVICE_NAME "ipmi_si"
116
117 static struct platform_driver ipmi_driver;
118
119 /*
120  * Indexes into stats[] in smi_info below.
121  */
122 enum si_stat_indexes {
123         /*
124          * Number of times the driver requested a timer while an operation
125          * was in progress.
126          */
127         SI_STAT_short_timeouts = 0,
128
129         /*
130          * Number of times the driver requested a timer while nothing was in
131          * progress.
132          */
133         SI_STAT_long_timeouts,
134
135         /* Number of times the interface was idle while being polled. */
136         SI_STAT_idles,
137
138         /* Number of interrupts the driver handled. */
139         SI_STAT_interrupts,
140
141         /* Number of time the driver got an ATTN from the hardware. */
142         SI_STAT_attentions,
143
144         /* Number of times the driver requested flags from the hardware. */
145         SI_STAT_flag_fetches,
146
147         /* Number of times the hardware didn't follow the state machine. */
148         SI_STAT_hosed_count,
149
150         /* Number of completed messages. */
151         SI_STAT_complete_transactions,
152
153         /* Number of IPMI events received from the hardware. */
154         SI_STAT_events,
155
156         /* Number of watchdog pretimeouts. */
157         SI_STAT_watchdog_pretimeouts,
158
159         /* Number of asyncronous messages received. */
160         SI_STAT_incoming_messages,
161
162
163         /* This *must* remain last, add new values above this. */
164         SI_NUM_STATS
165 };
166
167 struct smi_info {
168         int                    intf_num;
169         ipmi_smi_t             intf;
170         struct si_sm_data      *si_sm;
171         struct si_sm_handlers  *handlers;
172         enum si_type           si_type;
173         spinlock_t             si_lock;
174         spinlock_t             msg_lock;
175         struct list_head       xmit_msgs;
176         struct list_head       hp_xmit_msgs;
177         struct ipmi_smi_msg    *curr_msg;
178         enum si_intf_state     si_state;
179
180         /*
181          * Used to handle the various types of I/O that can occur with
182          * IPMI
183          */
184         struct si_sm_io io;
185         int (*io_setup)(struct smi_info *info);
186         void (*io_cleanup)(struct smi_info *info);
187         int (*irq_setup)(struct smi_info *info);
188         void (*irq_cleanup)(struct smi_info *info);
189         unsigned int io_size;
190         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
191         void (*addr_source_cleanup)(struct smi_info *info);
192         void *addr_source_data;
193
194         /*
195          * Per-OEM handler, called from handle_flags().  Returns 1
196          * when handle_flags() needs to be re-run or 0 indicating it
197          * set si_state itself.
198          */
199         int (*oem_data_avail_handler)(struct smi_info *smi_info);
200
201         /*
202          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
203          * is set to hold the flags until we are done handling everything
204          * from the flags.
205          */
206 #define RECEIVE_MSG_AVAIL       0x01
207 #define EVENT_MSG_BUFFER_FULL   0x02
208 #define WDT_PRE_TIMEOUT_INT     0x08
209 #define OEM0_DATA_AVAIL     0x20
210 #define OEM1_DATA_AVAIL     0x40
211 #define OEM2_DATA_AVAIL     0x80
212 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
213                              OEM1_DATA_AVAIL | \
214                              OEM2_DATA_AVAIL)
215         unsigned char       msg_flags;
216
217         /* Does the BMC have an event buffer? */
218         char                has_event_buffer;
219
220         /*
221          * If set to true, this will request events the next time the
222          * state machine is idle.
223          */
224         atomic_t            req_events;
225
226         /*
227          * If true, run the state machine to completion on every send
228          * call.  Generally used after a panic to make sure stuff goes
229          * out.
230          */
231         int                 run_to_completion;
232
233         /* The I/O port of an SI interface. */
234         int                 port;
235
236         /*
237          * The space between start addresses of the two ports.  For
238          * instance, if the first port is 0xca2 and the spacing is 4, then
239          * the second port is 0xca6.
240          */
241         unsigned int        spacing;
242
243         /* zero if no irq; */
244         int                 irq;
245
246         /* The timer for this si. */
247         struct timer_list   si_timer;
248
249         /* The time (in jiffies) the last timeout occurred at. */
250         unsigned long       last_timeout_jiffies;
251
252         /* Used to gracefully stop the timer without race conditions. */
253         atomic_t            stop_operation;
254
255         /*
256          * The driver will disable interrupts when it gets into a
257          * situation where it cannot handle messages due to lack of
258          * memory.  Once that situation clears up, it will re-enable
259          * interrupts.
260          */
261         int interrupt_disabled;
262
263         /* From the get device id response... */
264         struct ipmi_device_id device_id;
265
266         /* Driver model stuff. */
267         struct device *dev;
268         struct platform_device *pdev;
269
270         /*
271          * True if we allocated the device, false if it came from
272          * someplace else (like PCI).
273          */
274         int dev_registered;
275
276         /* Slave address, could be reported from DMI. */
277         unsigned char slave_addr;
278
279         /* Counters and things for the proc filesystem. */
280         atomic_t stats[SI_NUM_STATS];
281
282         struct task_struct *thread;
283
284         struct list_head link;
285         union ipmi_smi_info_union addr_info;
286 };
287
288 #define smi_inc_stat(smi, stat) \
289         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
290 #define smi_get_stat(smi, stat) \
291         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
292
293 #define SI_MAX_PARMS 4
294
295 static int force_kipmid[SI_MAX_PARMS];
296 static int num_force_kipmid;
297 #ifdef CONFIG_PCI
298 static int pci_registered;
299 #endif
300 #ifdef CONFIG_ACPI
301 static int pnp_registered;
302 #endif
303
304 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
305 static int num_max_busy_us;
306
307 static int unload_when_empty = 1;
308
309 static int add_smi(struct smi_info *smi);
310 static int try_smi_init(struct smi_info *smi);
311 static void cleanup_one_si(struct smi_info *to_clean);
312 static void cleanup_ipmi_si(void);
313
314 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
315 static int register_xaction_notifier(struct notifier_block *nb)
316 {
317         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
318 }
319
320 static void deliver_recv_msg(struct smi_info *smi_info,
321                              struct ipmi_smi_msg *msg)
322 {
323         /* Deliver the message to the upper layer with the lock
324            released. */
325
326         if (smi_info->run_to_completion) {
327                 ipmi_smi_msg_received(smi_info->intf, msg);
328         } else {
329                 spin_unlock(&(smi_info->si_lock));
330                 ipmi_smi_msg_received(smi_info->intf, msg);
331                 spin_lock(&(smi_info->si_lock));
332         }
333 }
334
335 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
336 {
337         struct ipmi_smi_msg *msg = smi_info->curr_msg;
338
339         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
340                 cCode = IPMI_ERR_UNSPECIFIED;
341         /* else use it as is */
342
343         /* Make it a response */
344         msg->rsp[0] = msg->data[0] | 4;
345         msg->rsp[1] = msg->data[1];
346         msg->rsp[2] = cCode;
347         msg->rsp_size = 3;
348
349         smi_info->curr_msg = NULL;
350         deliver_recv_msg(smi_info, msg);
351 }
352
353 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
354 {
355         int              rv;
356         struct list_head *entry = NULL;
357 #ifdef DEBUG_TIMING
358         struct timeval t;
359 #endif
360
361         /*
362          * No need to save flags, we aleady have interrupts off and we
363          * already hold the SMI lock.
364          */
365         if (!smi_info->run_to_completion)
366                 spin_lock(&(smi_info->msg_lock));
367
368         /* Pick the high priority queue first. */
369         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
370                 entry = smi_info->hp_xmit_msgs.next;
371         } else if (!list_empty(&(smi_info->xmit_msgs))) {
372                 entry = smi_info->xmit_msgs.next;
373         }
374
375         if (!entry) {
376                 smi_info->curr_msg = NULL;
377                 rv = SI_SM_IDLE;
378         } else {
379                 int err;
380
381                 list_del(entry);
382                 smi_info->curr_msg = list_entry(entry,
383                                                 struct ipmi_smi_msg,
384                                                 link);
385 #ifdef DEBUG_TIMING
386                 do_gettimeofday(&t);
387                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
388 #endif
389                 err = atomic_notifier_call_chain(&xaction_notifier_list,
390                                 0, smi_info);
391                 if (err & NOTIFY_STOP_MASK) {
392                         rv = SI_SM_CALL_WITHOUT_DELAY;
393                         goto out;
394                 }
395                 err = smi_info->handlers->start_transaction(
396                         smi_info->si_sm,
397                         smi_info->curr_msg->data,
398                         smi_info->curr_msg->data_size);
399                 if (err)
400                         return_hosed_msg(smi_info, err);
401
402                 rv = SI_SM_CALL_WITHOUT_DELAY;
403         }
404  out:
405         if (!smi_info->run_to_completion)
406                 spin_unlock(&(smi_info->msg_lock));
407
408         return rv;
409 }
410
411 static void start_enable_irq(struct smi_info *smi_info)
412 {
413         unsigned char msg[2];
414
415         /*
416          * If we are enabling interrupts, we have to tell the
417          * BMC to use them.
418          */
419         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
420         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
421
422         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
423         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
424 }
425
426 static void start_disable_irq(struct smi_info *smi_info)
427 {
428         unsigned char msg[2];
429
430         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
431         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
432
433         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
434         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
435 }
436
437 static void start_clear_flags(struct smi_info *smi_info)
438 {
439         unsigned char msg[3];
440
441         /* Make sure the watchdog pre-timeout flag is not set at startup. */
442         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
443         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
444         msg[2] = WDT_PRE_TIMEOUT_INT;
445
446         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
447         smi_info->si_state = SI_CLEARING_FLAGS;
448 }
449
450 /*
451  * When we have a situtaion where we run out of memory and cannot
452  * allocate messages, we just leave them in the BMC and run the system
453  * polled until we can allocate some memory.  Once we have some
454  * memory, we will re-enable the interrupt.
455  */
456 static inline void disable_si_irq(struct smi_info *smi_info)
457 {
458         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
459                 start_disable_irq(smi_info);
460                 smi_info->interrupt_disabled = 1;
461                 if (!atomic_read(&smi_info->stop_operation))
462                         mod_timer(&smi_info->si_timer,
463                                   jiffies + SI_TIMEOUT_JIFFIES);
464         }
465 }
466
467 static inline void enable_si_irq(struct smi_info *smi_info)
468 {
469         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
470                 start_enable_irq(smi_info);
471                 smi_info->interrupt_disabled = 0;
472         }
473 }
474
475 static void handle_flags(struct smi_info *smi_info)
476 {
477  retry:
478         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
479                 /* Watchdog pre-timeout */
480                 smi_inc_stat(smi_info, watchdog_pretimeouts);
481
482                 start_clear_flags(smi_info);
483                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
484                 spin_unlock(&(smi_info->si_lock));
485                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
486                 spin_lock(&(smi_info->si_lock));
487         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
488                 /* Messages available. */
489                 smi_info->curr_msg = ipmi_alloc_smi_msg();
490                 if (!smi_info->curr_msg) {
491                         disable_si_irq(smi_info);
492                         smi_info->si_state = SI_NORMAL;
493                         return;
494                 }
495                 enable_si_irq(smi_info);
496
497                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
498                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
499                 smi_info->curr_msg->data_size = 2;
500
501                 smi_info->handlers->start_transaction(
502                         smi_info->si_sm,
503                         smi_info->curr_msg->data,
504                         smi_info->curr_msg->data_size);
505                 smi_info->si_state = SI_GETTING_MESSAGES;
506         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
507                 /* Events available. */
508                 smi_info->curr_msg = ipmi_alloc_smi_msg();
509                 if (!smi_info->curr_msg) {
510                         disable_si_irq(smi_info);
511                         smi_info->si_state = SI_NORMAL;
512                         return;
513                 }
514                 enable_si_irq(smi_info);
515
516                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
517                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
518                 smi_info->curr_msg->data_size = 2;
519
520                 smi_info->handlers->start_transaction(
521                         smi_info->si_sm,
522                         smi_info->curr_msg->data,
523                         smi_info->curr_msg->data_size);
524                 smi_info->si_state = SI_GETTING_EVENTS;
525         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
526                    smi_info->oem_data_avail_handler) {
527                 if (smi_info->oem_data_avail_handler(smi_info))
528                         goto retry;
529         } else
530                 smi_info->si_state = SI_NORMAL;
531 }
532
533 static void handle_transaction_done(struct smi_info *smi_info)
534 {
535         struct ipmi_smi_msg *msg;
536 #ifdef DEBUG_TIMING
537         struct timeval t;
538
539         do_gettimeofday(&t);
540         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
541 #endif
542         switch (smi_info->si_state) {
543         case SI_NORMAL:
544                 if (!smi_info->curr_msg)
545                         break;
546
547                 smi_info->curr_msg->rsp_size
548                         = smi_info->handlers->get_result(
549                                 smi_info->si_sm,
550                                 smi_info->curr_msg->rsp,
551                                 IPMI_MAX_MSG_LENGTH);
552
553                 /*
554                  * Do this here becase deliver_recv_msg() releases the
555                  * lock, and a new message can be put in during the
556                  * time the lock is released.
557                  */
558                 msg = smi_info->curr_msg;
559                 smi_info->curr_msg = NULL;
560                 deliver_recv_msg(smi_info, msg);
561                 break;
562
563         case SI_GETTING_FLAGS:
564         {
565                 unsigned char msg[4];
566                 unsigned int  len;
567
568                 /* We got the flags from the SMI, now handle them. */
569                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
570                 if (msg[2] != 0) {
571                         /* Error fetching flags, just give up for now. */
572                         smi_info->si_state = SI_NORMAL;
573                 } else if (len < 4) {
574                         /*
575                          * Hmm, no flags.  That's technically illegal, but
576                          * don't use uninitialized data.
577                          */
578                         smi_info->si_state = SI_NORMAL;
579                 } else {
580                         smi_info->msg_flags = msg[3];
581                         handle_flags(smi_info);
582                 }
583                 break;
584         }
585
586         case SI_CLEARING_FLAGS:
587         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
588         {
589                 unsigned char msg[3];
590
591                 /* We cleared the flags. */
592                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
593                 if (msg[2] != 0) {
594                         /* Error clearing flags */
595                         dev_warn(smi_info->dev,
596                                  "Error clearing flags: %2.2x\n", msg[2]);
597                 }
598                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
599                         start_enable_irq(smi_info);
600                 else
601                         smi_info->si_state = SI_NORMAL;
602                 break;
603         }
604
605         case SI_GETTING_EVENTS:
606         {
607                 smi_info->curr_msg->rsp_size
608                         = smi_info->handlers->get_result(
609                                 smi_info->si_sm,
610                                 smi_info->curr_msg->rsp,
611                                 IPMI_MAX_MSG_LENGTH);
612
613                 /*
614                  * Do this here becase deliver_recv_msg() releases the
615                  * lock, and a new message can be put in during the
616                  * time the lock is released.
617                  */
618                 msg = smi_info->curr_msg;
619                 smi_info->curr_msg = NULL;
620                 if (msg->rsp[2] != 0) {
621                         /* Error getting event, probably done. */
622                         msg->done(msg);
623
624                         /* Take off the event flag. */
625                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
626                         handle_flags(smi_info);
627                 } else {
628                         smi_inc_stat(smi_info, events);
629
630                         /*
631                          * Do this before we deliver the message
632                          * because delivering the message releases the
633                          * lock and something else can mess with the
634                          * state.
635                          */
636                         handle_flags(smi_info);
637
638                         deliver_recv_msg(smi_info, msg);
639                 }
640                 break;
641         }
642
643         case SI_GETTING_MESSAGES:
644         {
645                 smi_info->curr_msg->rsp_size
646                         = smi_info->handlers->get_result(
647                                 smi_info->si_sm,
648                                 smi_info->curr_msg->rsp,
649                                 IPMI_MAX_MSG_LENGTH);
650
651                 /*
652                  * Do this here becase deliver_recv_msg() releases the
653                  * lock, and a new message can be put in during the
654                  * time the lock is released.
655                  */
656                 msg = smi_info->curr_msg;
657                 smi_info->curr_msg = NULL;
658                 if (msg->rsp[2] != 0) {
659                         /* Error getting event, probably done. */
660                         msg->done(msg);
661
662                         /* Take off the msg flag. */
663                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
664                         handle_flags(smi_info);
665                 } else {
666                         smi_inc_stat(smi_info, incoming_messages);
667
668                         /*
669                          * Do this before we deliver the message
670                          * because delivering the message releases the
671                          * lock and something else can mess with the
672                          * state.
673                          */
674                         handle_flags(smi_info);
675
676                         deliver_recv_msg(smi_info, msg);
677                 }
678                 break;
679         }
680
681         case SI_ENABLE_INTERRUPTS1:
682         {
683                 unsigned char msg[4];
684
685                 /* We got the flags from the SMI, now handle them. */
686                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
687                 if (msg[2] != 0) {
688                         dev_warn(smi_info->dev, "Could not enable interrupts"
689                                  ", failed get, using polled mode.\n");
690                         smi_info->si_state = SI_NORMAL;
691                 } else {
692                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
693                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
694                         msg[2] = (msg[3] |
695                                   IPMI_BMC_RCV_MSG_INTR |
696                                   IPMI_BMC_EVT_MSG_INTR);
697                         smi_info->handlers->start_transaction(
698                                 smi_info->si_sm, msg, 3);
699                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
700                 }
701                 break;
702         }
703
704         case SI_ENABLE_INTERRUPTS2:
705         {
706                 unsigned char msg[4];
707
708                 /* We got the flags from the SMI, now handle them. */
709                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
710                 if (msg[2] != 0)
711                         dev_warn(smi_info->dev, "Could not enable interrupts"
712                                  ", failed set, using polled mode.\n");
713                 else
714                         smi_info->interrupt_disabled = 0;
715                 smi_info->si_state = SI_NORMAL;
716                 break;
717         }
718
719         case SI_DISABLE_INTERRUPTS1:
720         {
721                 unsigned char msg[4];
722
723                 /* We got the flags from the SMI, now handle them. */
724                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
725                 if (msg[2] != 0) {
726                         dev_warn(smi_info->dev, "Could not disable interrupts"
727                                  ", failed get.\n");
728                         smi_info->si_state = SI_NORMAL;
729                 } else {
730                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
731                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
732                         msg[2] = (msg[3] &
733                                   ~(IPMI_BMC_RCV_MSG_INTR |
734                                     IPMI_BMC_EVT_MSG_INTR));
735                         smi_info->handlers->start_transaction(
736                                 smi_info->si_sm, msg, 3);
737                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
738                 }
739                 break;
740         }
741
742         case SI_DISABLE_INTERRUPTS2:
743         {
744                 unsigned char msg[4];
745
746                 /* We got the flags from the SMI, now handle them. */
747                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
748                 if (msg[2] != 0) {
749                         dev_warn(smi_info->dev, "Could not disable interrupts"
750                                  ", failed set.\n");
751                 }
752                 smi_info->si_state = SI_NORMAL;
753                 break;
754         }
755         }
756 }
757
758 /*
759  * Called on timeouts and events.  Timeouts should pass the elapsed
760  * time, interrupts should pass in zero.  Must be called with
761  * si_lock held and interrupts disabled.
762  */
763 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
764                                            int time)
765 {
766         enum si_sm_result si_sm_result;
767
768  restart:
769         /*
770          * There used to be a loop here that waited a little while
771          * (around 25us) before giving up.  That turned out to be
772          * pointless, the minimum delays I was seeing were in the 300us
773          * range, which is far too long to wait in an interrupt.  So
774          * we just run until the state machine tells us something
775          * happened or it needs a delay.
776          */
777         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
778         time = 0;
779         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
780                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
781
782         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
783                 smi_inc_stat(smi_info, complete_transactions);
784
785                 handle_transaction_done(smi_info);
786                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
787         } else if (si_sm_result == SI_SM_HOSED) {
788                 smi_inc_stat(smi_info, hosed_count);
789
790                 /*
791                  * Do the before return_hosed_msg, because that
792                  * releases the lock.
793                  */
794                 smi_info->si_state = SI_NORMAL;
795                 if (smi_info->curr_msg != NULL) {
796                         /*
797                          * If we were handling a user message, format
798                          * a response to send to the upper layer to
799                          * tell it about the error.
800                          */
801                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
802                 }
803                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
804         }
805
806         /*
807          * We prefer handling attn over new messages.  But don't do
808          * this if there is not yet an upper layer to handle anything.
809          */
810         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
811                 unsigned char msg[2];
812
813                 smi_inc_stat(smi_info, attentions);
814
815                 /*
816                  * Got a attn, send down a get message flags to see
817                  * what's causing it.  It would be better to handle
818                  * this in the upper layer, but due to the way
819                  * interrupts work with the SMI, that's not really
820                  * possible.
821                  */
822                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
823                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
824
825                 smi_info->handlers->start_transaction(
826                         smi_info->si_sm, msg, 2);
827                 smi_info->si_state = SI_GETTING_FLAGS;
828                 goto restart;
829         }
830
831         /* If we are currently idle, try to start the next message. */
832         if (si_sm_result == SI_SM_IDLE) {
833                 smi_inc_stat(smi_info, idles);
834
835                 si_sm_result = start_next_msg(smi_info);
836                 if (si_sm_result != SI_SM_IDLE)
837                         goto restart;
838         }
839
840         if ((si_sm_result == SI_SM_IDLE)
841             && (atomic_read(&smi_info->req_events))) {
842                 /*
843                  * We are idle and the upper layer requested that I fetch
844                  * events, so do so.
845                  */
846                 atomic_set(&smi_info->req_events, 0);
847
848                 smi_info->curr_msg = ipmi_alloc_smi_msg();
849                 if (!smi_info->curr_msg)
850                         goto out;
851
852                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
853                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
854                 smi_info->curr_msg->data_size = 2;
855
856                 smi_info->handlers->start_transaction(
857                         smi_info->si_sm,
858                         smi_info->curr_msg->data,
859                         smi_info->curr_msg->data_size);
860                 smi_info->si_state = SI_GETTING_EVENTS;
861                 goto restart;
862         }
863  out:
864         return si_sm_result;
865 }
866
867 static void sender(void                *send_info,
868                    struct ipmi_smi_msg *msg,
869                    int                 priority)
870 {
871         struct smi_info   *smi_info = send_info;
872         enum si_sm_result result;
873         unsigned long     flags;
874 #ifdef DEBUG_TIMING
875         struct timeval    t;
876 #endif
877
878         if (atomic_read(&smi_info->stop_operation)) {
879                 msg->rsp[0] = msg->data[0] | 4;
880                 msg->rsp[1] = msg->data[1];
881                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
882                 msg->rsp_size = 3;
883                 deliver_recv_msg(smi_info, msg);
884                 return;
885         }
886
887 #ifdef DEBUG_TIMING
888         do_gettimeofday(&t);
889         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
890 #endif
891
892         /*
893          * last_timeout_jiffies is updated here to avoid
894          * smi_timeout() handler passing very large time_diff
895          * value to smi_event_handler() that causes
896          * the send command to abort.
897          */
898         smi_info->last_timeout_jiffies = jiffies;
899
900         mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
901
902         if (smi_info->thread)
903                 wake_up_process(smi_info->thread);
904
905         if (smi_info->run_to_completion) {
906                 /*
907                  * If we are running to completion, then throw it in
908                  * the list and run transactions until everything is
909                  * clear.  Priority doesn't matter here.
910                  */
911
912                 /*
913                  * Run to completion means we are single-threaded, no
914                  * need for locks.
915                  */
916                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
917
918                 result = smi_event_handler(smi_info, 0);
919                 while (result != SI_SM_IDLE) {
920                         udelay(SI_SHORT_TIMEOUT_USEC);
921                         result = smi_event_handler(smi_info,
922                                                    SI_SHORT_TIMEOUT_USEC);
923                 }
924                 return;
925         }
926
927         spin_lock_irqsave(&smi_info->msg_lock, flags);
928         if (priority > 0)
929                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
930         else
931                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
932         spin_unlock_irqrestore(&smi_info->msg_lock, flags);
933
934         spin_lock_irqsave(&smi_info->si_lock, flags);
935         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
936                 start_next_msg(smi_info);
937                 smi_event_handler(smi_info, 0);
938         }
939         spin_unlock_irqrestore(&smi_info->si_lock, flags);
940 }
941
942 static void set_run_to_completion(void *send_info, int i_run_to_completion)
943 {
944         struct smi_info   *smi_info = send_info;
945         enum si_sm_result result;
946
947         smi_info->run_to_completion = i_run_to_completion;
948         if (i_run_to_completion) {
949                 result = smi_event_handler(smi_info, 0);
950                 while (result != SI_SM_IDLE) {
951                         udelay(SI_SHORT_TIMEOUT_USEC);
952                         result = smi_event_handler(smi_info,
953                                                    SI_SHORT_TIMEOUT_USEC);
954                 }
955         }
956 }
957
958 /*
959  * Use -1 in the nsec value of the busy waiting timespec to tell that
960  * we are spinning in kipmid looking for something and not delaying
961  * between checks
962  */
963 static inline void ipmi_si_set_not_busy(struct timespec *ts)
964 {
965         ts->tv_nsec = -1;
966 }
967 static inline int ipmi_si_is_busy(struct timespec *ts)
968 {
969         return ts->tv_nsec != -1;
970 }
971
972 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
973                                  const struct smi_info *smi_info,
974                                  struct timespec *busy_until)
975 {
976         unsigned int max_busy_us = 0;
977
978         if (smi_info->intf_num < num_max_busy_us)
979                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
980         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
981                 ipmi_si_set_not_busy(busy_until);
982         else if (!ipmi_si_is_busy(busy_until)) {
983                 getnstimeofday(busy_until);
984                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
985         } else {
986                 struct timespec now;
987                 getnstimeofday(&now);
988                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
989                         ipmi_si_set_not_busy(busy_until);
990                         return 0;
991                 }
992         }
993         return 1;
994 }
995
996
997 /*
998  * A busy-waiting loop for speeding up IPMI operation.
999  *
1000  * Lousy hardware makes this hard.  This is only enabled for systems
1001  * that are not BT and do not have interrupts.  It starts spinning
1002  * when an operation is complete or until max_busy tells it to stop
1003  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1004  * Documentation/IPMI.txt for details.
1005  */
1006 static int ipmi_thread(void *data)
1007 {
1008         struct smi_info *smi_info = data;
1009         unsigned long flags;
1010         enum si_sm_result smi_result;
1011         struct timespec busy_until;
1012
1013         ipmi_si_set_not_busy(&busy_until);
1014         set_user_nice(current, 19);
1015         while (!kthread_should_stop()) {
1016                 int busy_wait;
1017
1018                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1019                 smi_result = smi_event_handler(smi_info, 0);
1020                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1021                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1022                                                   &busy_until);
1023                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1024                         ; /* do nothing */
1025                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1026                         schedule();
1027                 else if (smi_result == SI_SM_IDLE)
1028                         schedule_timeout_interruptible(100);
1029                 else
1030                         schedule_timeout_interruptible(1);
1031         }
1032         return 0;
1033 }
1034
1035
1036 static void poll(void *send_info)
1037 {
1038         struct smi_info *smi_info = send_info;
1039         unsigned long flags;
1040
1041         /*
1042          * Make sure there is some delay in the poll loop so we can
1043          * drive time forward and timeout things.
1044          */
1045         udelay(10);
1046         spin_lock_irqsave(&smi_info->si_lock, flags);
1047         smi_event_handler(smi_info, 10);
1048         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1049 }
1050
1051 static void request_events(void *send_info)
1052 {
1053         struct smi_info *smi_info = send_info;
1054
1055         if (atomic_read(&smi_info->stop_operation) ||
1056                                 !smi_info->has_event_buffer)
1057                 return;
1058
1059         atomic_set(&smi_info->req_events, 1);
1060 }
1061
1062 static int initialized;
1063
1064 static void smi_timeout(unsigned long data)
1065 {
1066         struct smi_info   *smi_info = (struct smi_info *) data;
1067         enum si_sm_result smi_result;
1068         unsigned long     flags;
1069         unsigned long     jiffies_now;
1070         long              time_diff;
1071         long              timeout;
1072 #ifdef DEBUG_TIMING
1073         struct timeval    t;
1074 #endif
1075
1076         spin_lock_irqsave(&(smi_info->si_lock), flags);
1077 #ifdef DEBUG_TIMING
1078         do_gettimeofday(&t);
1079         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1080 #endif
1081         jiffies_now = jiffies;
1082         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1083                      * SI_USEC_PER_JIFFY);
1084         smi_result = smi_event_handler(smi_info, time_diff);
1085
1086         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1087
1088         smi_info->last_timeout_jiffies = jiffies_now;
1089
1090         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1091                 /* Running with interrupts, only do long timeouts. */
1092                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1093                 smi_inc_stat(smi_info, long_timeouts);
1094                 goto do_mod_timer;
1095         }
1096
1097         /*
1098          * If the state machine asks for a short delay, then shorten
1099          * the timer timeout.
1100          */
1101         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1102                 smi_inc_stat(smi_info, short_timeouts);
1103                 timeout = jiffies + 1;
1104         } else {
1105                 smi_inc_stat(smi_info, long_timeouts);
1106                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1107         }
1108
1109  do_mod_timer:
1110         if (smi_result != SI_SM_IDLE)
1111                 mod_timer(&(smi_info->si_timer), timeout);
1112 }
1113
1114 static irqreturn_t si_irq_handler(int irq, void *data)
1115 {
1116         struct smi_info *smi_info = data;
1117         unsigned long   flags;
1118 #ifdef DEBUG_TIMING
1119         struct timeval  t;
1120 #endif
1121
1122         spin_lock_irqsave(&(smi_info->si_lock), flags);
1123
1124         smi_inc_stat(smi_info, interrupts);
1125
1126 #ifdef DEBUG_TIMING
1127         do_gettimeofday(&t);
1128         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1129 #endif
1130         smi_event_handler(smi_info, 0);
1131         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1132         return IRQ_HANDLED;
1133 }
1134
1135 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1136 {
1137         struct smi_info *smi_info = data;
1138         /* We need to clear the IRQ flag for the BT interface. */
1139         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1140                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1141                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1142         return si_irq_handler(irq, data);
1143 }
1144
1145 static int smi_start_processing(void       *send_info,
1146                                 ipmi_smi_t intf)
1147 {
1148         struct smi_info *new_smi = send_info;
1149         int             enable = 0;
1150
1151         new_smi->intf = intf;
1152
1153         /* Try to claim any interrupts. */
1154         if (new_smi->irq_setup)
1155                 new_smi->irq_setup(new_smi);
1156
1157         /* Set up the timer that drives the interface. */
1158         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1159         new_smi->last_timeout_jiffies = jiffies;
1160         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1161
1162         /*
1163          * Check if the user forcefully enabled the daemon.
1164          */
1165         if (new_smi->intf_num < num_force_kipmid)
1166                 enable = force_kipmid[new_smi->intf_num];
1167         /*
1168          * The BT interface is efficient enough to not need a thread,
1169          * and there is no need for a thread if we have interrupts.
1170          */
1171         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1172                 enable = 1;
1173
1174         if (enable) {
1175                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1176                                               "kipmi%d", new_smi->intf_num);
1177                 if (IS_ERR(new_smi->thread)) {
1178                         dev_notice(new_smi->dev, "Could not start"
1179                                    " kernel thread due to error %ld, only using"
1180                                    " timers to drive the interface\n",
1181                                    PTR_ERR(new_smi->thread));
1182                         new_smi->thread = NULL;
1183                 }
1184         }
1185
1186         return 0;
1187 }
1188
1189 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1190 {
1191         struct smi_info *smi = send_info;
1192
1193         data->addr_src = smi->addr_source;
1194         data->dev = smi->dev;
1195         data->addr_info = smi->addr_info;
1196         get_device(smi->dev);
1197
1198         return 0;
1199 }
1200
1201 static void set_maintenance_mode(void *send_info, int enable)
1202 {
1203         struct smi_info   *smi_info = send_info;
1204
1205         if (!enable)
1206                 atomic_set(&smi_info->req_events, 0);
1207 }
1208
1209 static struct ipmi_smi_handlers handlers = {
1210         .owner                  = THIS_MODULE,
1211         .start_processing       = smi_start_processing,
1212         .get_smi_info           = get_smi_info,
1213         .sender                 = sender,
1214         .request_events         = request_events,
1215         .set_maintenance_mode   = set_maintenance_mode,
1216         .set_run_to_completion  = set_run_to_completion,
1217         .poll                   = poll,
1218 };
1219
1220 /*
1221  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1222  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1223  */
1224
1225 static LIST_HEAD(smi_infos);
1226 static DEFINE_MUTEX(smi_infos_lock);
1227 static int smi_num; /* Used to sequence the SMIs */
1228
1229 #define DEFAULT_REGSPACING      1
1230 #define DEFAULT_REGSIZE         1
1231
1232 static bool          si_trydefaults = 1;
1233 static char          *si_type[SI_MAX_PARMS];
1234 #define MAX_SI_TYPE_STR 30
1235 static char          si_type_str[MAX_SI_TYPE_STR];
1236 static unsigned long addrs[SI_MAX_PARMS];
1237 static unsigned int num_addrs;
1238 static unsigned int  ports[SI_MAX_PARMS];
1239 static unsigned int num_ports;
1240 static int           irqs[SI_MAX_PARMS];
1241 static unsigned int num_irqs;
1242 static int           regspacings[SI_MAX_PARMS];
1243 static unsigned int num_regspacings;
1244 static int           regsizes[SI_MAX_PARMS];
1245 static unsigned int num_regsizes;
1246 static int           regshifts[SI_MAX_PARMS];
1247 static unsigned int num_regshifts;
1248 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1249 static unsigned int num_slave_addrs;
1250
1251 #define IPMI_IO_ADDR_SPACE  0
1252 #define IPMI_MEM_ADDR_SPACE 1
1253 static char *addr_space_to_str[] = { "i/o", "mem" };
1254
1255 static int hotmod_handler(const char *val, struct kernel_param *kp);
1256
1257 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1258 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1259                  " Documentation/IPMI.txt in the kernel sources for the"
1260                  " gory details.");
1261
1262 module_param_named(trydefaults, si_trydefaults, bool, 0);
1263 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1264                  " default scan of the KCS and SMIC interface at the standard"
1265                  " address");
1266 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1267 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1268                  " interface separated by commas.  The types are 'kcs',"
1269                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1270                  " the first interface to kcs and the second to bt");
1271 module_param_array(addrs, ulong, &num_addrs, 0);
1272 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1273                  " addresses separated by commas.  Only use if an interface"
1274                  " is in memory.  Otherwise, set it to zero or leave"
1275                  " it blank.");
1276 module_param_array(ports, uint, &num_ports, 0);
1277 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1278                  " addresses separated by commas.  Only use if an interface"
1279                  " is a port.  Otherwise, set it to zero or leave"
1280                  " it blank.");
1281 module_param_array(irqs, int, &num_irqs, 0);
1282 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1283                  " addresses separated by commas.  Only use if an interface"
1284                  " has an interrupt.  Otherwise, set it to zero or leave"
1285                  " it blank.");
1286 module_param_array(regspacings, int, &num_regspacings, 0);
1287 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1288                  " and each successive register used by the interface.  For"
1289                  " instance, if the start address is 0xca2 and the spacing"
1290                  " is 2, then the second address is at 0xca4.  Defaults"
1291                  " to 1.");
1292 module_param_array(regsizes, int, &num_regsizes, 0);
1293 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1294                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1295                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1296                  " the 8-bit IPMI register has to be read from a larger"
1297                  " register.");
1298 module_param_array(regshifts, int, &num_regshifts, 0);
1299 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1300                  " IPMI register, in bits.  For instance, if the data"
1301                  " is read from a 32-bit word and the IPMI data is in"
1302                  " bit 8-15, then the shift would be 8");
1303 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1304 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1305                  " the controller.  Normally this is 0x20, but can be"
1306                  " overridden by this parm.  This is an array indexed"
1307                  " by interface number.");
1308 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1309 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1310                  " disabled(0).  Normally the IPMI driver auto-detects"
1311                  " this, but the value may be overridden by this parm.");
1312 module_param(unload_when_empty, int, 0);
1313 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1314                  " specified or found, default is 1.  Setting to 0"
1315                  " is useful for hot add of devices using hotmod.");
1316 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1317 MODULE_PARM_DESC(kipmid_max_busy_us,
1318                  "Max time (in microseconds) to busy-wait for IPMI data before"
1319                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1320                  " if kipmid is using up a lot of CPU time.");
1321
1322
1323 static void std_irq_cleanup(struct smi_info *info)
1324 {
1325         if (info->si_type == SI_BT)
1326                 /* Disable the interrupt in the BT interface. */
1327                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1328         free_irq(info->irq, info);
1329 }
1330
1331 static int std_irq_setup(struct smi_info *info)
1332 {
1333         int rv;
1334
1335         if (!info->irq)
1336                 return 0;
1337
1338         if (info->si_type == SI_BT) {
1339                 rv = request_irq(info->irq,
1340                                  si_bt_irq_handler,
1341                                  IRQF_SHARED | IRQF_DISABLED,
1342                                  DEVICE_NAME,
1343                                  info);
1344                 if (!rv)
1345                         /* Enable the interrupt in the BT interface. */
1346                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1347                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1348         } else
1349                 rv = request_irq(info->irq,
1350                                  si_irq_handler,
1351                                  IRQF_SHARED | IRQF_DISABLED,
1352                                  DEVICE_NAME,
1353                                  info);
1354         if (rv) {
1355                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1356                          " running polled\n",
1357                          DEVICE_NAME, info->irq);
1358                 info->irq = 0;
1359         } else {
1360                 info->irq_cleanup = std_irq_cleanup;
1361                 dev_info(info->dev, "Using irq %d\n", info->irq);
1362         }
1363
1364         return rv;
1365 }
1366
1367 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1368 {
1369         unsigned int addr = io->addr_data;
1370
1371         return inb(addr + (offset * io->regspacing));
1372 }
1373
1374 static void port_outb(struct si_sm_io *io, unsigned int offset,
1375                       unsigned char b)
1376 {
1377         unsigned int addr = io->addr_data;
1378
1379         outb(b, addr + (offset * io->regspacing));
1380 }
1381
1382 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1383 {
1384         unsigned int addr = io->addr_data;
1385
1386         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1387 }
1388
1389 static void port_outw(struct si_sm_io *io, unsigned int offset,
1390                       unsigned char b)
1391 {
1392         unsigned int addr = io->addr_data;
1393
1394         outw(b << io->regshift, addr + (offset * io->regspacing));
1395 }
1396
1397 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1398 {
1399         unsigned int addr = io->addr_data;
1400
1401         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1402 }
1403
1404 static void port_outl(struct si_sm_io *io, unsigned int offset,
1405                       unsigned char b)
1406 {
1407         unsigned int addr = io->addr_data;
1408
1409         outl(b << io->regshift, addr+(offset * io->regspacing));
1410 }
1411
1412 static void port_cleanup(struct smi_info *info)
1413 {
1414         unsigned int addr = info->io.addr_data;
1415         int          idx;
1416
1417         if (addr) {
1418                 for (idx = 0; idx < info->io_size; idx++)
1419                         release_region(addr + idx * info->io.regspacing,
1420                                        info->io.regsize);
1421         }
1422 }
1423
1424 static int port_setup(struct smi_info *info)
1425 {
1426         unsigned int addr = info->io.addr_data;
1427         int          idx;
1428
1429         if (!addr)
1430                 return -ENODEV;
1431
1432         info->io_cleanup = port_cleanup;
1433
1434         /*
1435          * Figure out the actual inb/inw/inl/etc routine to use based
1436          * upon the register size.
1437          */
1438         switch (info->io.regsize) {
1439         case 1:
1440                 info->io.inputb = port_inb;
1441                 info->io.outputb = port_outb;
1442                 break;
1443         case 2:
1444                 info->io.inputb = port_inw;
1445                 info->io.outputb = port_outw;
1446                 break;
1447         case 4:
1448                 info->io.inputb = port_inl;
1449                 info->io.outputb = port_outl;
1450                 break;
1451         default:
1452                 dev_warn(info->dev, "Invalid register size: %d\n",
1453                          info->io.regsize);
1454                 return -EINVAL;
1455         }
1456
1457         /*
1458          * Some BIOSes reserve disjoint I/O regions in their ACPI
1459          * tables.  This causes problems when trying to register the
1460          * entire I/O region.  Therefore we must register each I/O
1461          * port separately.
1462          */
1463         for (idx = 0; idx < info->io_size; idx++) {
1464                 if (request_region(addr + idx * info->io.regspacing,
1465                                    info->io.regsize, DEVICE_NAME) == NULL) {
1466                         /* Undo allocations */
1467                         while (idx--) {
1468                                 release_region(addr + idx * info->io.regspacing,
1469                                                info->io.regsize);
1470                         }
1471                         return -EIO;
1472                 }
1473         }
1474         return 0;
1475 }
1476
1477 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1478 {
1479         return readb((io->addr)+(offset * io->regspacing));
1480 }
1481
1482 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1483                      unsigned char b)
1484 {
1485         writeb(b, (io->addr)+(offset * io->regspacing));
1486 }
1487
1488 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1489 {
1490         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1491                 & 0xff;
1492 }
1493
1494 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1495                      unsigned char b)
1496 {
1497         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1498 }
1499
1500 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1501 {
1502         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1503                 & 0xff;
1504 }
1505
1506 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1507                      unsigned char b)
1508 {
1509         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1510 }
1511
1512 #ifdef readq
1513 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1514 {
1515         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1516                 & 0xff;
1517 }
1518
1519 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1520                      unsigned char b)
1521 {
1522         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1523 }
1524 #endif
1525
1526 static void mem_cleanup(struct smi_info *info)
1527 {
1528         unsigned long addr = info->io.addr_data;
1529         int           mapsize;
1530
1531         if (info->io.addr) {
1532                 iounmap(info->io.addr);
1533
1534                 mapsize = ((info->io_size * info->io.regspacing)
1535                            - (info->io.regspacing - info->io.regsize));
1536
1537                 release_mem_region(addr, mapsize);
1538         }
1539 }
1540
1541 static int mem_setup(struct smi_info *info)
1542 {
1543         unsigned long addr = info->io.addr_data;
1544         int           mapsize;
1545
1546         if (!addr)
1547                 return -ENODEV;
1548
1549         info->io_cleanup = mem_cleanup;
1550
1551         /*
1552          * Figure out the actual readb/readw/readl/etc routine to use based
1553          * upon the register size.
1554          */
1555         switch (info->io.regsize) {
1556         case 1:
1557                 info->io.inputb = intf_mem_inb;
1558                 info->io.outputb = intf_mem_outb;
1559                 break;
1560         case 2:
1561                 info->io.inputb = intf_mem_inw;
1562                 info->io.outputb = intf_mem_outw;
1563                 break;
1564         case 4:
1565                 info->io.inputb = intf_mem_inl;
1566                 info->io.outputb = intf_mem_outl;
1567                 break;
1568 #ifdef readq
1569         case 8:
1570                 info->io.inputb = mem_inq;
1571                 info->io.outputb = mem_outq;
1572                 break;
1573 #endif
1574         default:
1575                 dev_warn(info->dev, "Invalid register size: %d\n",
1576                          info->io.regsize);
1577                 return -EINVAL;
1578         }
1579
1580         /*
1581          * Calculate the total amount of memory to claim.  This is an
1582          * unusual looking calculation, but it avoids claiming any
1583          * more memory than it has to.  It will claim everything
1584          * between the first address to the end of the last full
1585          * register.
1586          */
1587         mapsize = ((info->io_size * info->io.regspacing)
1588                    - (info->io.regspacing - info->io.regsize));
1589
1590         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1591                 return -EIO;
1592
1593         info->io.addr = ioremap(addr, mapsize);
1594         if (info->io.addr == NULL) {
1595                 release_mem_region(addr, mapsize);
1596                 return -EIO;
1597         }
1598         return 0;
1599 }
1600
1601 /*
1602  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1603  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1604  * Options are:
1605  *   rsp=<regspacing>
1606  *   rsi=<regsize>
1607  *   rsh=<regshift>
1608  *   irq=<irq>
1609  *   ipmb=<ipmb addr>
1610  */
1611 enum hotmod_op { HM_ADD, HM_REMOVE };
1612 struct hotmod_vals {
1613         char *name;
1614         int  val;
1615 };
1616 static struct hotmod_vals hotmod_ops[] = {
1617         { "add",        HM_ADD },
1618         { "remove",     HM_REMOVE },
1619         { NULL }
1620 };
1621 static struct hotmod_vals hotmod_si[] = {
1622         { "kcs",        SI_KCS },
1623         { "smic",       SI_SMIC },
1624         { "bt",         SI_BT },
1625         { NULL }
1626 };
1627 static struct hotmod_vals hotmod_as[] = {
1628         { "mem",        IPMI_MEM_ADDR_SPACE },
1629         { "i/o",        IPMI_IO_ADDR_SPACE },
1630         { NULL }
1631 };
1632
1633 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1634 {
1635         char *s;
1636         int  i;
1637
1638         s = strchr(*curr, ',');
1639         if (!s) {
1640                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1641                 return -EINVAL;
1642         }
1643         *s = '\0';
1644         s++;
1645         for (i = 0; hotmod_ops[i].name; i++) {
1646                 if (strcmp(*curr, v[i].name) == 0) {
1647                         *val = v[i].val;
1648                         *curr = s;
1649                         return 0;
1650                 }
1651         }
1652
1653         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1654         return -EINVAL;
1655 }
1656
1657 static int check_hotmod_int_op(const char *curr, const char *option,
1658                                const char *name, int *val)
1659 {
1660         char *n;
1661
1662         if (strcmp(curr, name) == 0) {
1663                 if (!option) {
1664                         printk(KERN_WARNING PFX
1665                                "No option given for '%s'\n",
1666                                curr);
1667                         return -EINVAL;
1668                 }
1669                 *val = simple_strtoul(option, &n, 0);
1670                 if ((*n != '\0') || (*option == '\0')) {
1671                         printk(KERN_WARNING PFX
1672                                "Bad option given for '%s'\n",
1673                                curr);
1674                         return -EINVAL;
1675                 }
1676                 return 1;
1677         }
1678         return 0;
1679 }
1680
1681 static struct smi_info *smi_info_alloc(void)
1682 {
1683         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1684
1685         if (info) {
1686                 spin_lock_init(&info->si_lock);
1687                 spin_lock_init(&info->msg_lock);
1688         }
1689         return info;
1690 }
1691
1692 static int hotmod_handler(const char *val, struct kernel_param *kp)
1693 {
1694         char *str = kstrdup(val, GFP_KERNEL);
1695         int  rv;
1696         char *next, *curr, *s, *n, *o;
1697         enum hotmod_op op;
1698         enum si_type si_type;
1699         int  addr_space;
1700         unsigned long addr;
1701         int regspacing;
1702         int regsize;
1703         int regshift;
1704         int irq;
1705         int ipmb;
1706         int ival;
1707         int len;
1708         struct smi_info *info;
1709
1710         if (!str)
1711                 return -ENOMEM;
1712
1713         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1714         len = strlen(str);
1715         ival = len - 1;
1716         while ((ival >= 0) && isspace(str[ival])) {
1717                 str[ival] = '\0';
1718                 ival--;
1719         }
1720
1721         for (curr = str; curr; curr = next) {
1722                 regspacing = 1;
1723                 regsize = 1;
1724                 regshift = 0;
1725                 irq = 0;
1726                 ipmb = 0; /* Choose the default if not specified */
1727
1728                 next = strchr(curr, ':');
1729                 if (next) {
1730                         *next = '\0';
1731                         next++;
1732                 }
1733
1734                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1735                 if (rv)
1736                         break;
1737                 op = ival;
1738
1739                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1740                 if (rv)
1741                         break;
1742                 si_type = ival;
1743
1744                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1745                 if (rv)
1746                         break;
1747
1748                 s = strchr(curr, ',');
1749                 if (s) {
1750                         *s = '\0';
1751                         s++;
1752                 }
1753                 addr = simple_strtoul(curr, &n, 0);
1754                 if ((*n != '\0') || (*curr == '\0')) {
1755                         printk(KERN_WARNING PFX "Invalid hotmod address"
1756                                " '%s'\n", curr);
1757                         break;
1758                 }
1759
1760                 while (s) {
1761                         curr = s;
1762                         s = strchr(curr, ',');
1763                         if (s) {
1764                                 *s = '\0';
1765                                 s++;
1766                         }
1767                         o = strchr(curr, '=');
1768                         if (o) {
1769                                 *o = '\0';
1770                                 o++;
1771                         }
1772                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1773                         if (rv < 0)
1774                                 goto out;
1775                         else if (rv)
1776                                 continue;
1777                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1778                         if (rv < 0)
1779                                 goto out;
1780                         else if (rv)
1781                                 continue;
1782                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1783                         if (rv < 0)
1784                                 goto out;
1785                         else if (rv)
1786                                 continue;
1787                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1788                         if (rv < 0)
1789                                 goto out;
1790                         else if (rv)
1791                                 continue;
1792                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1793                         if (rv < 0)
1794                                 goto out;
1795                         else if (rv)
1796                                 continue;
1797
1798                         rv = -EINVAL;
1799                         printk(KERN_WARNING PFX
1800                                "Invalid hotmod option '%s'\n",
1801                                curr);
1802                         goto out;
1803                 }
1804
1805                 if (op == HM_ADD) {
1806                         info = smi_info_alloc();
1807                         if (!info) {
1808                                 rv = -ENOMEM;
1809                                 goto out;
1810                         }
1811
1812                         info->addr_source = SI_HOTMOD;
1813                         info->si_type = si_type;
1814                         info->io.addr_data = addr;
1815                         info->io.addr_type = addr_space;
1816                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1817                                 info->io_setup = mem_setup;
1818                         else
1819                                 info->io_setup = port_setup;
1820
1821                         info->io.addr = NULL;
1822                         info->io.regspacing = regspacing;
1823                         if (!info->io.regspacing)
1824                                 info->io.regspacing = DEFAULT_REGSPACING;
1825                         info->io.regsize = regsize;
1826                         if (!info->io.regsize)
1827                                 info->io.regsize = DEFAULT_REGSPACING;
1828                         info->io.regshift = regshift;
1829                         info->irq = irq;
1830                         if (info->irq)
1831                                 info->irq_setup = std_irq_setup;
1832                         info->slave_addr = ipmb;
1833
1834                         if (!add_smi(info)) {
1835                                 if (try_smi_init(info))
1836                                         cleanup_one_si(info);
1837                         } else {
1838                                 kfree(info);
1839                         }
1840                 } else {
1841                         /* remove */
1842                         struct smi_info *e, *tmp_e;
1843
1844                         mutex_lock(&smi_infos_lock);
1845                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1846                                 if (e->io.addr_type != addr_space)
1847                                         continue;
1848                                 if (e->si_type != si_type)
1849                                         continue;
1850                                 if (e->io.addr_data == addr)
1851                                         cleanup_one_si(e);
1852                         }
1853                         mutex_unlock(&smi_infos_lock);
1854                 }
1855         }
1856         rv = len;
1857  out:
1858         kfree(str);
1859         return rv;
1860 }
1861
1862 static int __devinit hardcode_find_bmc(void)
1863 {
1864         int ret = -ENODEV;
1865         int             i;
1866         struct smi_info *info;
1867
1868         for (i = 0; i < SI_MAX_PARMS; i++) {
1869                 if (!ports[i] && !addrs[i])
1870                         continue;
1871
1872                 info = smi_info_alloc();
1873                 if (!info)
1874                         return -ENOMEM;
1875
1876                 info->addr_source = SI_HARDCODED;
1877                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1878
1879                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1880                         info->si_type = SI_KCS;
1881                 } else if (strcmp(si_type[i], "smic") == 0) {
1882                         info->si_type = SI_SMIC;
1883                 } else if (strcmp(si_type[i], "bt") == 0) {
1884                         info->si_type = SI_BT;
1885                 } else {
1886                         printk(KERN_WARNING PFX "Interface type specified "
1887                                "for interface %d, was invalid: %s\n",
1888                                i, si_type[i]);
1889                         kfree(info);
1890                         continue;
1891                 }
1892
1893                 if (ports[i]) {
1894                         /* An I/O port */
1895                         info->io_setup = port_setup;
1896                         info->io.addr_data = ports[i];
1897                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1898                 } else if (addrs[i]) {
1899                         /* A memory port */
1900                         info->io_setup = mem_setup;
1901                         info->io.addr_data = addrs[i];
1902                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1903                 } else {
1904                         printk(KERN_WARNING PFX "Interface type specified "
1905                                "for interface %d, but port and address were "
1906                                "not set or set to zero.\n", i);
1907                         kfree(info);
1908                         continue;
1909                 }
1910
1911                 info->io.addr = NULL;
1912                 info->io.regspacing = regspacings[i];
1913                 if (!info->io.regspacing)
1914                         info->io.regspacing = DEFAULT_REGSPACING;
1915                 info->io.regsize = regsizes[i];
1916                 if (!info->io.regsize)
1917                         info->io.regsize = DEFAULT_REGSPACING;
1918                 info->io.regshift = regshifts[i];
1919                 info->irq = irqs[i];
1920                 if (info->irq)
1921                         info->irq_setup = std_irq_setup;
1922                 info->slave_addr = slave_addrs[i];
1923
1924                 if (!add_smi(info)) {
1925                         if (try_smi_init(info))
1926                                 cleanup_one_si(info);
1927                         ret = 0;
1928                 } else {
1929                         kfree(info);
1930                 }
1931         }
1932         return ret;
1933 }
1934
1935 #ifdef CONFIG_ACPI
1936
1937 #include <linux/acpi.h>
1938
1939 /*
1940  * Once we get an ACPI failure, we don't try any more, because we go
1941  * through the tables sequentially.  Once we don't find a table, there
1942  * are no more.
1943  */
1944 static int acpi_failure;
1945
1946 /* For GPE-type interrupts. */
1947 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1948         u32 gpe_number, void *context)
1949 {
1950         struct smi_info *smi_info = context;
1951         unsigned long   flags;
1952 #ifdef DEBUG_TIMING
1953         struct timeval t;
1954 #endif
1955
1956         spin_lock_irqsave(&(smi_info->si_lock), flags);
1957
1958         smi_inc_stat(smi_info, interrupts);
1959
1960 #ifdef DEBUG_TIMING
1961         do_gettimeofday(&t);
1962         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1963 #endif
1964         smi_event_handler(smi_info, 0);
1965         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1966
1967         return ACPI_INTERRUPT_HANDLED;
1968 }
1969
1970 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1971 {
1972         if (!info->irq)
1973                 return;
1974
1975         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1976 }
1977
1978 static int acpi_gpe_irq_setup(struct smi_info *info)
1979 {
1980         acpi_status status;
1981
1982         if (!info->irq)
1983                 return 0;
1984
1985         /* FIXME - is level triggered right? */
1986         status = acpi_install_gpe_handler(NULL,
1987                                           info->irq,
1988                                           ACPI_GPE_LEVEL_TRIGGERED,
1989                                           &ipmi_acpi_gpe,
1990                                           info);
1991         if (status != AE_OK) {
1992                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1993                          " running polled\n", DEVICE_NAME, info->irq);
1994                 info->irq = 0;
1995                 return -EINVAL;
1996         } else {
1997                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1998                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1999                 return 0;
2000         }
2001 }
2002
2003 /*
2004  * Defined at
2005  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2006  */
2007 struct SPMITable {
2008         s8      Signature[4];
2009         u32     Length;
2010         u8      Revision;
2011         u8      Checksum;
2012         s8      OEMID[6];
2013         s8      OEMTableID[8];
2014         s8      OEMRevision[4];
2015         s8      CreatorID[4];
2016         s8      CreatorRevision[4];
2017         u8      InterfaceType;
2018         u8      IPMIlegacy;
2019         s16     SpecificationRevision;
2020
2021         /*
2022          * Bit 0 - SCI interrupt supported
2023          * Bit 1 - I/O APIC/SAPIC
2024          */
2025         u8      InterruptType;
2026
2027         /*
2028          * If bit 0 of InterruptType is set, then this is the SCI
2029          * interrupt in the GPEx_STS register.
2030          */
2031         u8      GPE;
2032
2033         s16     Reserved;
2034
2035         /*
2036          * If bit 1 of InterruptType is set, then this is the I/O
2037          * APIC/SAPIC interrupt.
2038          */
2039         u32     GlobalSystemInterrupt;
2040
2041         /* The actual register address. */
2042         struct acpi_generic_address addr;
2043
2044         u8      UID[4];
2045
2046         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2047 };
2048
2049 static int __devinit try_init_spmi(struct SPMITable *spmi)
2050 {
2051         struct smi_info  *info;
2052
2053         if (spmi->IPMIlegacy != 1) {
2054                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2055                 return -ENODEV;
2056         }
2057
2058         info = smi_info_alloc();
2059         if (!info) {
2060                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2061                 return -ENOMEM;
2062         }
2063
2064         info->addr_source = SI_SPMI;
2065         printk(KERN_INFO PFX "probing via SPMI\n");
2066
2067         /* Figure out the interface type. */
2068         switch (spmi->InterfaceType) {
2069         case 1: /* KCS */
2070                 info->si_type = SI_KCS;
2071                 break;
2072         case 2: /* SMIC */
2073                 info->si_type = SI_SMIC;
2074                 break;
2075         case 3: /* BT */
2076                 info->si_type = SI_BT;
2077                 break;
2078         default:
2079                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2080                        spmi->InterfaceType);
2081                 kfree(info);
2082                 return -EIO;
2083         }
2084
2085         if (spmi->InterruptType & 1) {
2086                 /* We've got a GPE interrupt. */
2087                 info->irq = spmi->GPE;
2088                 info->irq_setup = acpi_gpe_irq_setup;
2089         } else if (spmi->InterruptType & 2) {
2090                 /* We've got an APIC/SAPIC interrupt. */
2091                 info->irq = spmi->GlobalSystemInterrupt;
2092                 info->irq_setup = std_irq_setup;
2093         } else {
2094                 /* Use the default interrupt setting. */
2095                 info->irq = 0;
2096                 info->irq_setup = NULL;
2097         }
2098
2099         if (spmi->addr.bit_width) {
2100                 /* A (hopefully) properly formed register bit width. */
2101                 info->io.regspacing = spmi->addr.bit_width / 8;
2102         } else {
2103                 info->io.regspacing = DEFAULT_REGSPACING;
2104         }
2105         info->io.regsize = info->io.regspacing;
2106         info->io.regshift = spmi->addr.bit_offset;
2107
2108         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2109                 info->io_setup = mem_setup;
2110                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2111         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2112                 info->io_setup = port_setup;
2113                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2114         } else {
2115                 kfree(info);
2116                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2117                 return -EIO;
2118         }
2119         info->io.addr_data = spmi->addr.address;
2120
2121         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2122                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2123                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2124                  info->irq);
2125
2126         if (add_smi(info))
2127                 kfree(info);
2128
2129         return 0;
2130 }
2131
2132 static void __devinit spmi_find_bmc(void)
2133 {
2134         acpi_status      status;
2135         struct SPMITable *spmi;
2136         int              i;
2137
2138         if (acpi_disabled)
2139                 return;
2140
2141         if (acpi_failure)
2142                 return;
2143
2144         for (i = 0; ; i++) {
2145                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2146                                         (struct acpi_table_header **)&spmi);
2147                 if (status != AE_OK)
2148                         return;
2149
2150                 try_init_spmi(spmi);
2151         }
2152 }
2153
2154 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2155                                     const struct pnp_device_id *dev_id)
2156 {
2157         struct acpi_device *acpi_dev;
2158         struct smi_info *info;
2159         struct resource *res, *res_second;
2160         acpi_handle handle;
2161         acpi_status status;
2162         unsigned long long tmp;
2163
2164         acpi_dev = pnp_acpi_device(dev);
2165         if (!acpi_dev)
2166                 return -ENODEV;
2167
2168         info = smi_info_alloc();
2169         if (!info)
2170                 return -ENOMEM;
2171
2172         info->addr_source = SI_ACPI;
2173         printk(KERN_INFO PFX "probing via ACPI\n");
2174
2175         handle = acpi_dev->handle;
2176         info->addr_info.acpi_info.acpi_handle = handle;
2177
2178         /* _IFT tells us the interface type: KCS, BT, etc */
2179         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2180         if (ACPI_FAILURE(status))
2181                 goto err_free;
2182
2183         switch (tmp) {
2184         case 1:
2185                 info->si_type = SI_KCS;
2186                 break;
2187         case 2:
2188                 info->si_type = SI_SMIC;
2189                 break;
2190         case 3:
2191                 info->si_type = SI_BT;
2192                 break;
2193         default:
2194                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2195                 goto err_free;
2196         }
2197
2198         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2199         if (res) {
2200                 info->io_setup = port_setup;
2201                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2202         } else {
2203                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2204                 if (res) {
2205                         info->io_setup = mem_setup;
2206                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2207                 }
2208         }
2209         if (!res) {
2210                 dev_err(&dev->dev, "no I/O or memory address\n");
2211                 goto err_free;
2212         }
2213         info->io.addr_data = res->start;
2214
2215         info->io.regspacing = DEFAULT_REGSPACING;
2216         res_second = pnp_get_resource(dev,
2217                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2218                                         IORESOURCE_IO : IORESOURCE_MEM,
2219                                1);
2220         if (res_second) {
2221                 if (res_second->start > info->io.addr_data)
2222                         info->io.regspacing = res_second->start - info->io.addr_data;
2223         }
2224         info->io.regsize = DEFAULT_REGSPACING;
2225         info->io.regshift = 0;
2226
2227         /* If _GPE exists, use it; otherwise use standard interrupts */
2228         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2229         if (ACPI_SUCCESS(status)) {
2230                 info->irq = tmp;
2231                 info->irq_setup = acpi_gpe_irq_setup;
2232         } else if (pnp_irq_valid(dev, 0)) {
2233                 info->irq = pnp_irq(dev, 0);
2234                 info->irq_setup = std_irq_setup;
2235         }
2236
2237         info->dev = &dev->dev;
2238         pnp_set_drvdata(dev, info);
2239
2240         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2241                  res, info->io.regsize, info->io.regspacing,
2242                  info->irq);
2243
2244         if (add_smi(info))
2245                 goto err_free;
2246
2247         return 0;
2248
2249 err_free:
2250         kfree(info);
2251         return -EINVAL;
2252 }
2253
2254 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2255 {
2256         struct smi_info *info = pnp_get_drvdata(dev);
2257
2258         cleanup_one_si(info);
2259 }
2260
2261 static const struct pnp_device_id pnp_dev_table[] = {
2262         {"IPI0001", 0},
2263         {"", 0},
2264 };
2265
2266 static struct pnp_driver ipmi_pnp_driver = {
2267         .name           = DEVICE_NAME,
2268         .probe          = ipmi_pnp_probe,
2269         .remove         = __devexit_p(ipmi_pnp_remove),
2270         .id_table       = pnp_dev_table,
2271 };
2272 #endif
2273
2274 #ifdef CONFIG_DMI
2275 struct dmi_ipmi_data {
2276         u8              type;
2277         u8              addr_space;
2278         unsigned long   base_addr;
2279         u8              irq;
2280         u8              offset;
2281         u8              slave_addr;
2282 };
2283
2284 static int __devinit decode_dmi(const struct dmi_header *dm,
2285                                 struct dmi_ipmi_data *dmi)
2286 {
2287         const u8        *data = (const u8 *)dm;
2288         unsigned long   base_addr;
2289         u8              reg_spacing;
2290         u8              len = dm->length;
2291
2292         dmi->type = data[4];
2293
2294         memcpy(&base_addr, data+8, sizeof(unsigned long));
2295         if (len >= 0x11) {
2296                 if (base_addr & 1) {
2297                         /* I/O */
2298                         base_addr &= 0xFFFE;
2299                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2300                 } else
2301                         /* Memory */
2302                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2303
2304                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2305                    is odd. */
2306                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2307
2308                 dmi->irq = data[0x11];
2309
2310                 /* The top two bits of byte 0x10 hold the register spacing. */
2311                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2312                 switch (reg_spacing) {
2313                 case 0x00: /* Byte boundaries */
2314                     dmi->offset = 1;
2315                     break;
2316                 case 0x01: /* 32-bit boundaries */
2317                     dmi->offset = 4;
2318                     break;
2319                 case 0x02: /* 16-byte boundaries */
2320                     dmi->offset = 16;
2321                     break;
2322                 default:
2323                     /* Some other interface, just ignore it. */
2324                     return -EIO;
2325                 }
2326         } else {
2327                 /* Old DMI spec. */
2328                 /*
2329                  * Note that technically, the lower bit of the base
2330                  * address should be 1 if the address is I/O and 0 if
2331                  * the address is in memory.  So many systems get that
2332                  * wrong (and all that I have seen are I/O) so we just
2333                  * ignore that bit and assume I/O.  Systems that use
2334                  * memory should use the newer spec, anyway.
2335                  */
2336                 dmi->base_addr = base_addr & 0xfffe;
2337                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2338                 dmi->offset = 1;
2339         }
2340
2341         dmi->slave_addr = data[6];
2342
2343         return 0;
2344 }
2345
2346 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2347 {
2348         struct smi_info *info;
2349
2350         info = smi_info_alloc();
2351         if (!info) {
2352                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2353                 return;
2354         }
2355
2356         info->addr_source = SI_SMBIOS;
2357         printk(KERN_INFO PFX "probing via SMBIOS\n");
2358
2359         switch (ipmi_data->type) {
2360         case 0x01: /* KCS */
2361                 info->si_type = SI_KCS;
2362                 break;
2363         case 0x02: /* SMIC */
2364                 info->si_type = SI_SMIC;
2365                 break;
2366         case 0x03: /* BT */
2367                 info->si_type = SI_BT;
2368                 break;
2369         default:
2370                 kfree(info);
2371                 return;
2372         }
2373
2374         switch (ipmi_data->addr_space) {
2375         case IPMI_MEM_ADDR_SPACE:
2376                 info->io_setup = mem_setup;
2377                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2378                 break;
2379
2380         case IPMI_IO_ADDR_SPACE:
2381                 info->io_setup = port_setup;
2382                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2383                 break;
2384
2385         default:
2386                 kfree(info);
2387                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2388                        ipmi_data->addr_space);
2389                 return;
2390         }
2391         info->io.addr_data = ipmi_data->base_addr;
2392
2393         info->io.regspacing = ipmi_data->offset;
2394         if (!info->io.regspacing)
2395                 info->io.regspacing = DEFAULT_REGSPACING;
2396         info->io.regsize = DEFAULT_REGSPACING;
2397         info->io.regshift = 0;
2398
2399         info->slave_addr = ipmi_data->slave_addr;
2400
2401         info->irq = ipmi_data->irq;
2402         if (info->irq)
2403                 info->irq_setup = std_irq_setup;
2404
2405         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2406                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2407                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2408                  info->irq);
2409
2410         if (add_smi(info))
2411                 kfree(info);
2412 }
2413
2414 static void __devinit dmi_find_bmc(void)
2415 {
2416         const struct dmi_device *dev = NULL;
2417         struct dmi_ipmi_data data;
2418         int                  rv;
2419
2420         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2421                 memset(&data, 0, sizeof(data));
2422                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2423                                 &data);
2424                 if (!rv)
2425                         try_init_dmi(&data);
2426         }
2427 }
2428 #endif /* CONFIG_DMI */
2429
2430 #ifdef CONFIG_PCI
2431
2432 #define PCI_ERMC_CLASSCODE              0x0C0700
2433 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2434 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2435 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2436 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2437 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2438
2439 #define PCI_HP_VENDOR_ID    0x103C
2440 #define PCI_MMC_DEVICE_ID   0x121A
2441 #define PCI_MMC_ADDR_CW     0x10
2442
2443 static void ipmi_pci_cleanup(struct smi_info *info)
2444 {
2445         struct pci_dev *pdev = info->addr_source_data;
2446
2447         pci_disable_device(pdev);
2448 }
2449
2450 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2451                                     const struct pci_device_id *ent)
2452 {
2453         int rv;
2454         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2455         struct smi_info *info;
2456
2457         info = smi_info_alloc();
2458         if (!info)
2459                 return -ENOMEM;
2460
2461         info->addr_source = SI_PCI;
2462         dev_info(&pdev->dev, "probing via PCI");
2463
2464         switch (class_type) {
2465         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2466                 info->si_type = SI_SMIC;
2467                 break;
2468
2469         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2470                 info->si_type = SI_KCS;
2471                 break;
2472
2473         case PCI_ERMC_CLASSCODE_TYPE_BT:
2474                 info->si_type = SI_BT;
2475                 break;
2476
2477         default:
2478                 kfree(info);
2479                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2480                 return -ENOMEM;
2481         }
2482
2483         rv = pci_enable_device(pdev);
2484         if (rv) {
2485                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2486                 kfree(info);
2487                 return rv;
2488         }
2489
2490         info->addr_source_cleanup = ipmi_pci_cleanup;
2491         info->addr_source_data = pdev;
2492
2493         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2494                 info->io_setup = port_setup;
2495                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2496         } else {
2497                 info->io_setup = mem_setup;
2498                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2499         }
2500         info->io.addr_data = pci_resource_start(pdev, 0);
2501
2502         info->io.regspacing = DEFAULT_REGSPACING;
2503         info->io.regsize = DEFAULT_REGSPACING;
2504         info->io.regshift = 0;
2505
2506         info->irq = pdev->irq;
2507         if (info->irq)
2508                 info->irq_setup = std_irq_setup;
2509
2510         info->dev = &pdev->dev;
2511         pci_set_drvdata(pdev, info);
2512
2513         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2514                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2515                 info->irq);
2516
2517         if (add_smi(info))
2518                 kfree(info);
2519
2520         return 0;
2521 }
2522
2523 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2524 {
2525         struct smi_info *info = pci_get_drvdata(pdev);
2526         cleanup_one_si(info);
2527 }
2528
2529 #ifdef CONFIG_PM
2530 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2531 {
2532         return 0;
2533 }
2534
2535 static int ipmi_pci_resume(struct pci_dev *pdev)
2536 {
2537         return 0;
2538 }
2539 #endif
2540
2541 static struct pci_device_id ipmi_pci_devices[] = {
2542         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2543         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2544         { 0, }
2545 };
2546 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2547
2548 static struct pci_driver ipmi_pci_driver = {
2549         .name =         DEVICE_NAME,
2550         .id_table =     ipmi_pci_devices,
2551         .probe =        ipmi_pci_probe,
2552         .remove =       __devexit_p(ipmi_pci_remove),
2553 #ifdef CONFIG_PM
2554         .suspend =      ipmi_pci_suspend,
2555         .resume =       ipmi_pci_resume,
2556 #endif
2557 };
2558 #endif /* CONFIG_PCI */
2559
2560 static struct of_device_id ipmi_match[];
2561 static int __devinit ipmi_probe(struct platform_device *dev)
2562 {
2563 #ifdef CONFIG_OF
2564         const struct of_device_id *match;
2565         struct smi_info *info;
2566         struct resource resource;
2567         const __be32 *regsize, *regspacing, *regshift;
2568         struct device_node *np = dev->dev.of_node;
2569         int ret;
2570         int proplen;
2571
2572         dev_info(&dev->dev, "probing via device tree\n");
2573
2574         match = of_match_device(ipmi_match, &dev->dev);
2575         if (!match)
2576                 return -EINVAL;
2577
2578         ret = of_address_to_resource(np, 0, &resource);
2579         if (ret) {
2580                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2581                 return ret;
2582         }
2583
2584         regsize = of_get_property(np, "reg-size", &proplen);
2585         if (regsize && proplen != 4) {
2586                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2587                 return -EINVAL;
2588         }
2589
2590         regspacing = of_get_property(np, "reg-spacing", &proplen);
2591         if (regspacing && proplen != 4) {
2592                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2593                 return -EINVAL;
2594         }
2595
2596         regshift = of_get_property(np, "reg-shift", &proplen);
2597         if (regshift && proplen != 4) {
2598                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2599                 return -EINVAL;
2600         }
2601
2602         info = smi_info_alloc();
2603
2604         if (!info) {
2605                 dev_err(&dev->dev,
2606                         "could not allocate memory for OF probe\n");
2607                 return -ENOMEM;
2608         }
2609
2610         info->si_type           = (enum si_type) match->data;
2611         info->addr_source       = SI_DEVICETREE;
2612         info->irq_setup         = std_irq_setup;
2613
2614         if (resource.flags & IORESOURCE_IO) {
2615                 info->io_setup          = port_setup;
2616                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2617         } else {
2618                 info->io_setup          = mem_setup;
2619                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2620         }
2621
2622         info->io.addr_data      = resource.start;
2623
2624         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2625         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2626         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2627
2628         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2629         info->dev               = &dev->dev;
2630
2631         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2632                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2633                 info->irq);
2634
2635         dev_set_drvdata(&dev->dev, info);
2636
2637         if (add_smi(info)) {
2638                 kfree(info);
2639                 return -EBUSY;
2640         }
2641 #endif
2642         return 0;
2643 }
2644
2645 static int __devexit ipmi_remove(struct platform_device *dev)
2646 {
2647 #ifdef CONFIG_OF
2648         cleanup_one_si(dev_get_drvdata(&dev->dev));
2649 #endif
2650         return 0;
2651 }
2652
2653 static struct of_device_id ipmi_match[] =
2654 {
2655         { .type = "ipmi", .compatible = "ipmi-kcs",
2656           .data = (void *)(unsigned long) SI_KCS },
2657         { .type = "ipmi", .compatible = "ipmi-smic",
2658           .data = (void *)(unsigned long) SI_SMIC },
2659         { .type = "ipmi", .compatible = "ipmi-bt",
2660           .data = (void *)(unsigned long) SI_BT },
2661         {},
2662 };
2663
2664 static struct platform_driver ipmi_driver = {
2665         .driver = {
2666                 .name = DEVICE_NAME,
2667                 .owner = THIS_MODULE,
2668                 .of_match_table = ipmi_match,
2669         },
2670         .probe          = ipmi_probe,
2671         .remove         = __devexit_p(ipmi_remove),
2672 };
2673
2674 static int wait_for_msg_done(struct smi_info *smi_info)
2675 {
2676         enum si_sm_result     smi_result;
2677
2678         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2679         for (;;) {
2680                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2681                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2682                         schedule_timeout_uninterruptible(1);
2683                         smi_result = smi_info->handlers->event(
2684                                 smi_info->si_sm, 100);
2685                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2686                         smi_result = smi_info->handlers->event(
2687                                 smi_info->si_sm, 0);
2688                 } else
2689                         break;
2690         }
2691         if (smi_result == SI_SM_HOSED)
2692                 /*
2693                  * We couldn't get the state machine to run, so whatever's at
2694                  * the port is probably not an IPMI SMI interface.
2695                  */
2696                 return -ENODEV;
2697
2698         return 0;
2699 }
2700
2701 static int try_get_dev_id(struct smi_info *smi_info)
2702 {
2703         unsigned char         msg[2];
2704         unsigned char         *resp;
2705         unsigned long         resp_len;
2706         int                   rv = 0;
2707
2708         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2709         if (!resp)
2710                 return -ENOMEM;
2711
2712         /*
2713          * Do a Get Device ID command, since it comes back with some
2714          * useful info.
2715          */
2716         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2717         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2718         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2719
2720         rv = wait_for_msg_done(smi_info);
2721         if (rv)
2722                 goto out;
2723
2724         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2725                                                   resp, IPMI_MAX_MSG_LENGTH);
2726
2727         /* Check and record info from the get device id, in case we need it. */
2728         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2729
2730  out:
2731         kfree(resp);
2732         return rv;
2733 }
2734
2735 static int try_enable_event_buffer(struct smi_info *smi_info)
2736 {
2737         unsigned char         msg[3];
2738         unsigned char         *resp;
2739         unsigned long         resp_len;
2740         int                   rv = 0;
2741
2742         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2743         if (!resp)
2744                 return -ENOMEM;
2745
2746         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2747         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2748         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2749
2750         rv = wait_for_msg_done(smi_info);
2751         if (rv) {
2752                 printk(KERN_WARNING PFX "Error getting response from get"
2753                        " global enables command, the event buffer is not"
2754                        " enabled.\n");
2755                 goto out;
2756         }
2757
2758         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2759                                                   resp, IPMI_MAX_MSG_LENGTH);
2760
2761         if (resp_len < 4 ||
2762                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2763                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2764                         resp[2] != 0) {
2765                 printk(KERN_WARNING PFX "Invalid return from get global"
2766                        " enables command, cannot enable the event buffer.\n");
2767                 rv = -EINVAL;
2768                 goto out;
2769         }
2770
2771         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2772                 /* buffer is already enabled, nothing to do. */
2773                 goto out;
2774
2775         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2776         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2777         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2778         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2779
2780         rv = wait_for_msg_done(smi_info);
2781         if (rv) {
2782                 printk(KERN_WARNING PFX "Error getting response from set"
2783                        " global, enables command, the event buffer is not"
2784                        " enabled.\n");
2785                 goto out;
2786         }
2787
2788         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2789                                                   resp, IPMI_MAX_MSG_LENGTH);
2790
2791         if (resp_len < 3 ||
2792                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2793                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2794                 printk(KERN_WARNING PFX "Invalid return from get global,"
2795                        "enables command, not enable the event buffer.\n");
2796                 rv = -EINVAL;
2797                 goto out;
2798         }
2799
2800         if (resp[2] != 0)
2801                 /*
2802                  * An error when setting the event buffer bit means
2803                  * that the event buffer is not supported.
2804                  */
2805                 rv = -ENOENT;
2806  out:
2807         kfree(resp);
2808         return rv;
2809 }
2810
2811 static int smi_type_proc_show(struct seq_file *m, void *v)
2812 {
2813         struct smi_info *smi = m->private;
2814
2815         return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2816 }
2817
2818 static int smi_type_proc_open(struct inode *inode, struct file *file)
2819 {
2820         return single_open(file, smi_type_proc_show, PDE(inode)->data);
2821 }
2822
2823 static const struct file_operations smi_type_proc_ops = {
2824         .open           = smi_type_proc_open,
2825         .read           = seq_read,
2826         .llseek         = seq_lseek,
2827         .release        = single_release,
2828 };
2829
2830 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2831 {
2832         struct smi_info *smi = m->private;
2833
2834         seq_printf(m, "interrupts_enabled:    %d\n",
2835                        smi->irq && !smi->interrupt_disabled);
2836         seq_printf(m, "short_timeouts:        %u\n",
2837                        smi_get_stat(smi, short_timeouts));
2838         seq_printf(m, "long_timeouts:         %u\n",
2839                        smi_get_stat(smi, long_timeouts));
2840         seq_printf(m, "idles:                 %u\n",
2841                        smi_get_stat(smi, idles));
2842         seq_printf(m, "interrupts:            %u\n",
2843                        smi_get_stat(smi, interrupts));
2844         seq_printf(m, "attentions:            %u\n",
2845                        smi_get_stat(smi, attentions));
2846         seq_printf(m, "flag_fetches:          %u\n",
2847                        smi_get_stat(smi, flag_fetches));
2848         seq_printf(m, "hosed_count:           %u\n",
2849                        smi_get_stat(smi, hosed_count));
2850         seq_printf(m, "complete_transactions: %u\n",
2851                        smi_get_stat(smi, complete_transactions));
2852         seq_printf(m, "events:                %u\n",
2853                        smi_get_stat(smi, events));
2854         seq_printf(m, "watchdog_pretimeouts:  %u\n",
2855                        smi_get_stat(smi, watchdog_pretimeouts));
2856         seq_printf(m, "incoming_messages:     %u\n",
2857                        smi_get_stat(smi, incoming_messages));
2858         return 0;
2859 }
2860
2861 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2862 {
2863         return single_open(file, smi_si_stats_proc_show, PDE(inode)->data);
2864 }
2865
2866 static const struct file_operations smi_si_stats_proc_ops = {
2867         .open           = smi_si_stats_proc_open,
2868         .read           = seq_read,
2869         .llseek         = seq_lseek,
2870         .release        = single_release,
2871 };
2872
2873 static int smi_params_proc_show(struct seq_file *m, void *v)
2874 {
2875         struct smi_info *smi = m->private;
2876
2877         return seq_printf(m,
2878                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2879                        si_to_str[smi->si_type],
2880                        addr_space_to_str[smi->io.addr_type],
2881                        smi->io.addr_data,
2882                        smi->io.regspacing,
2883                        smi->io.regsize,
2884                        smi->io.regshift,
2885                        smi->irq,
2886                        smi->slave_addr);
2887 }
2888
2889 static int smi_params_proc_open(struct inode *inode, struct file *file)
2890 {
2891         return single_open(file, smi_params_proc_show, PDE(inode)->data);
2892 }
2893
2894 static const struct file_operations smi_params_proc_ops = {
2895         .open           = smi_params_proc_open,
2896         .read           = seq_read,
2897         .llseek         = seq_lseek,
2898         .release        = single_release,
2899 };
2900
2901 /*
2902  * oem_data_avail_to_receive_msg_avail
2903  * @info - smi_info structure with msg_flags set
2904  *
2905  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2906  * Returns 1 indicating need to re-run handle_flags().
2907  */
2908 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2909 {
2910         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2911                                RECEIVE_MSG_AVAIL);
2912         return 1;
2913 }
2914
2915 /*
2916  * setup_dell_poweredge_oem_data_handler
2917  * @info - smi_info.device_id must be populated
2918  *
2919  * Systems that match, but have firmware version < 1.40 may assert
2920  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2921  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2922  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2923  * as RECEIVE_MSG_AVAIL instead.
2924  *
2925  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2926  * assert the OEM[012] bits, and if it did, the driver would have to
2927  * change to handle that properly, we don't actually check for the
2928  * firmware version.
2929  * Device ID = 0x20                BMC on PowerEdge 8G servers
2930  * Device Revision = 0x80
2931  * Firmware Revision1 = 0x01       BMC version 1.40
2932  * Firmware Revision2 = 0x40       BCD encoded
2933  * IPMI Version = 0x51             IPMI 1.5
2934  * Manufacturer ID = A2 02 00      Dell IANA
2935  *
2936  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2937  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2938  *
2939  */
2940 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2941 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2942 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2943 #define DELL_IANA_MFR_ID 0x0002a2
2944 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2945 {
2946         struct ipmi_device_id *id = &smi_info->device_id;
2947         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2948                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2949                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2950                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2951                         smi_info->oem_data_avail_handler =
2952                                 oem_data_avail_to_receive_msg_avail;
2953                 } else if (ipmi_version_major(id) < 1 ||
2954                            (ipmi_version_major(id) == 1 &&
2955                             ipmi_version_minor(id) < 5)) {
2956                         smi_info->oem_data_avail_handler =
2957                                 oem_data_avail_to_receive_msg_avail;
2958                 }
2959         }
2960 }
2961
2962 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2963 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2964 {
2965         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2966
2967         /* Make it a response */
2968         msg->rsp[0] = msg->data[0] | 4;
2969         msg->rsp[1] = msg->data[1];
2970         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2971         msg->rsp_size = 3;
2972         smi_info->curr_msg = NULL;
2973         deliver_recv_msg(smi_info, msg);
2974 }
2975
2976 /*
2977  * dell_poweredge_bt_xaction_handler
2978  * @info - smi_info.device_id must be populated
2979  *
2980  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2981  * not respond to a Get SDR command if the length of the data
2982  * requested is exactly 0x3A, which leads to command timeouts and no
2983  * data returned.  This intercepts such commands, and causes userspace
2984  * callers to try again with a different-sized buffer, which succeeds.
2985  */
2986
2987 #define STORAGE_NETFN 0x0A
2988 #define STORAGE_CMD_GET_SDR 0x23
2989 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2990                                              unsigned long unused,
2991                                              void *in)
2992 {
2993         struct smi_info *smi_info = in;
2994         unsigned char *data = smi_info->curr_msg->data;
2995         unsigned int size   = smi_info->curr_msg->data_size;
2996         if (size >= 8 &&
2997             (data[0]>>2) == STORAGE_NETFN &&
2998             data[1] == STORAGE_CMD_GET_SDR &&
2999             data[7] == 0x3A) {
3000                 return_hosed_msg_badsize(smi_info);
3001                 return NOTIFY_STOP;
3002         }
3003         return NOTIFY_DONE;
3004 }
3005
3006 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3007         .notifier_call  = dell_poweredge_bt_xaction_handler,
3008 };
3009
3010 /*
3011  * setup_dell_poweredge_bt_xaction_handler
3012  * @info - smi_info.device_id must be filled in already
3013  *
3014  * Fills in smi_info.device_id.start_transaction_pre_hook
3015  * when we know what function to use there.
3016  */
3017 static void
3018 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3019 {
3020         struct ipmi_device_id *id = &smi_info->device_id;
3021         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3022             smi_info->si_type == SI_BT)
3023                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3024 }
3025
3026 /*
3027  * setup_oem_data_handler
3028  * @info - smi_info.device_id must be filled in already
3029  *
3030  * Fills in smi_info.device_id.oem_data_available_handler
3031  * when we know what function to use there.
3032  */
3033
3034 static void setup_oem_data_handler(struct smi_info *smi_info)
3035 {
3036         setup_dell_poweredge_oem_data_handler(smi_info);
3037 }
3038
3039 static void setup_xaction_handlers(struct smi_info *smi_info)
3040 {
3041         setup_dell_poweredge_bt_xaction_handler(smi_info);
3042 }
3043
3044 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3045 {
3046         if (smi_info->intf) {
3047                 /*
3048                  * The timer and thread are only running if the
3049                  * interface has been started up and registered.
3050                  */
3051                 if (smi_info->thread != NULL)
3052                         kthread_stop(smi_info->thread);
3053                 del_timer_sync(&smi_info->si_timer);
3054         }
3055 }
3056
3057 static __devinitdata struct ipmi_default_vals
3058 {
3059         int type;
3060         int port;
3061 } ipmi_defaults[] =
3062 {
3063         { .type = SI_KCS, .port = 0xca2 },
3064         { .type = SI_SMIC, .port = 0xca9 },
3065         { .type = SI_BT, .port = 0xe4 },
3066         { .port = 0 }
3067 };
3068
3069 static void __devinit default_find_bmc(void)
3070 {
3071         struct smi_info *info;
3072         int             i;
3073
3074         for (i = 0; ; i++) {
3075                 if (!ipmi_defaults[i].port)
3076                         break;
3077 #ifdef CONFIG_PPC
3078                 if (check_legacy_ioport(ipmi_defaults[i].port))
3079                         continue;
3080 #endif
3081                 info = smi_info_alloc();
3082                 if (!info)
3083                         return;
3084
3085                 info->addr_source = SI_DEFAULT;
3086
3087                 info->si_type = ipmi_defaults[i].type;
3088                 info->io_setup = port_setup;
3089                 info->io.addr_data = ipmi_defaults[i].port;
3090                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3091
3092                 info->io.addr = NULL;
3093                 info->io.regspacing = DEFAULT_REGSPACING;
3094                 info->io.regsize = DEFAULT_REGSPACING;
3095                 info->io.regshift = 0;
3096
3097                 if (add_smi(info) == 0) {
3098                         if ((try_smi_init(info)) == 0) {
3099                                 /* Found one... */
3100                                 printk(KERN_INFO PFX "Found default %s"
3101                                 " state machine at %s address 0x%lx\n",
3102                                 si_to_str[info->si_type],
3103                                 addr_space_to_str[info->io.addr_type],
3104                                 info->io.addr_data);
3105                         } else
3106                                 cleanup_one_si(info);
3107                 } else {
3108                         kfree(info);
3109                 }
3110         }
3111 }
3112
3113 static int is_new_interface(struct smi_info *info)
3114 {
3115         struct smi_info *e;
3116
3117         list_for_each_entry(e, &smi_infos, link) {
3118                 if (e->io.addr_type != info->io.addr_type)
3119                         continue;
3120                 if (e->io.addr_data == info->io.addr_data)
3121                         return 0;
3122         }
3123
3124         return 1;
3125 }
3126
3127 static int add_smi(struct smi_info *new_smi)
3128 {
3129         int rv = 0;
3130
3131         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3132                         ipmi_addr_src_to_str[new_smi->addr_source],
3133                         si_to_str[new_smi->si_type]);
3134         mutex_lock(&smi_infos_lock);
3135         if (!is_new_interface(new_smi)) {
3136                 printk(KERN_CONT " duplicate interface\n");
3137                 rv = -EBUSY;
3138                 goto out_err;
3139         }
3140
3141         printk(KERN_CONT "\n");
3142
3143         /* So we know not to free it unless we have allocated one. */
3144         new_smi->intf = NULL;
3145         new_smi->si_sm = NULL;
3146         new_smi->handlers = NULL;
3147
3148         list_add_tail(&new_smi->link, &smi_infos);
3149
3150 out_err:
3151         mutex_unlock(&smi_infos_lock);
3152         return rv;
3153 }
3154
3155 static int try_smi_init(struct smi_info *new_smi)
3156 {
3157         int rv = 0;
3158         int i;
3159
3160         printk(KERN_INFO PFX "Trying %s-specified %s state"
3161                " machine at %s address 0x%lx, slave address 0x%x,"
3162                " irq %d\n",
3163                ipmi_addr_src_to_str[new_smi->addr_source],
3164                si_to_str[new_smi->si_type],
3165                addr_space_to_str[new_smi->io.addr_type],
3166                new_smi->io.addr_data,
3167                new_smi->slave_addr, new_smi->irq);
3168
3169         switch (new_smi->si_type) {
3170         case SI_KCS:
3171                 new_smi->handlers = &kcs_smi_handlers;
3172                 break;
3173
3174         case SI_SMIC:
3175                 new_smi->handlers = &smic_smi_handlers;
3176                 break;
3177
3178         case SI_BT:
3179                 new_smi->handlers = &bt_smi_handlers;
3180                 break;
3181
3182         default:
3183                 /* No support for anything else yet. */
3184                 rv = -EIO;
3185                 goto out_err;
3186         }
3187
3188         /* Allocate the state machine's data and initialize it. */
3189         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3190         if (!new_smi->si_sm) {
3191                 printk(KERN_ERR PFX
3192                        "Could not allocate state machine memory\n");
3193                 rv = -ENOMEM;
3194                 goto out_err;
3195         }
3196         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3197                                                         &new_smi->io);
3198
3199         /* Now that we know the I/O size, we can set up the I/O. */
3200         rv = new_smi->io_setup(new_smi);
3201         if (rv) {
3202                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3203                 goto out_err;
3204         }
3205
3206         /* Do low-level detection first. */
3207         if (new_smi->handlers->detect(new_smi->si_sm)) {
3208                 if (new_smi->addr_source)
3209                         printk(KERN_INFO PFX "Interface detection failed\n");
3210                 rv = -ENODEV;
3211                 goto out_err;
3212         }
3213
3214         /*
3215          * Attempt a get device id command.  If it fails, we probably
3216          * don't have a BMC here.
3217          */
3218         rv = try_get_dev_id(new_smi);
3219         if (rv) {
3220                 if (new_smi->addr_source)
3221                         printk(KERN_INFO PFX "There appears to be no BMC"
3222                                " at this location\n");
3223                 goto out_err;
3224         }
3225
3226         setup_oem_data_handler(new_smi);
3227         setup_xaction_handlers(new_smi);
3228
3229         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3230         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3231         new_smi->curr_msg = NULL;
3232         atomic_set(&new_smi->req_events, 0);
3233         new_smi->run_to_completion = 0;
3234         for (i = 0; i < SI_NUM_STATS; i++)
3235                 atomic_set(&new_smi->stats[i], 0);
3236
3237         new_smi->interrupt_disabled = 1;
3238         atomic_set(&new_smi->stop_operation, 0);
3239         new_smi->intf_num = smi_num;
3240         smi_num++;
3241
3242         rv = try_enable_event_buffer(new_smi);
3243         if (rv == 0)
3244                 new_smi->has_event_buffer = 1;
3245
3246         /*
3247          * Start clearing the flags before we enable interrupts or the
3248          * timer to avoid racing with the timer.
3249          */
3250         start_clear_flags(new_smi);
3251         /* IRQ is defined to be set when non-zero. */
3252         if (new_smi->irq)
3253                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3254
3255         if (!new_smi->dev) {
3256                 /*
3257                  * If we don't already have a device from something
3258                  * else (like PCI), then register a new one.
3259                  */
3260                 new_smi->pdev = platform_device_alloc("ipmi_si",
3261                                                       new_smi->intf_num);
3262                 if (!new_smi->pdev) {
3263                         printk(KERN_ERR PFX
3264                                "Unable to allocate platform device\n");
3265                         goto out_err;
3266                 }
3267                 new_smi->dev = &new_smi->pdev->dev;
3268                 new_smi->dev->driver = &ipmi_driver.driver;
3269
3270                 rv = platform_device_add(new_smi->pdev);
3271                 if (rv) {
3272                         printk(KERN_ERR PFX
3273                                "Unable to register system interface device:"
3274                                " %d\n",
3275                                rv);
3276                         goto out_err;
3277                 }
3278                 new_smi->dev_registered = 1;
3279         }
3280
3281         rv = ipmi_register_smi(&handlers,
3282                                new_smi,
3283                                &new_smi->device_id,
3284                                new_smi->dev,
3285                                "bmc",
3286                                new_smi->slave_addr);
3287         if (rv) {
3288                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3289                         rv);
3290                 goto out_err_stop_timer;
3291         }
3292
3293         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3294                                      &smi_type_proc_ops,
3295                                      new_smi);
3296         if (rv) {
3297                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3298                 goto out_err_stop_timer;
3299         }
3300
3301         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3302                                      &smi_si_stats_proc_ops,
3303                                      new_smi);
3304         if (rv) {
3305                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3306                 goto out_err_stop_timer;
3307         }
3308
3309         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3310                                      &smi_params_proc_ops,
3311                                      new_smi);
3312         if (rv) {
3313                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3314                 goto out_err_stop_timer;
3315         }
3316
3317         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3318                  si_to_str[new_smi->si_type]);
3319
3320         return 0;
3321
3322  out_err_stop_timer:
3323         atomic_inc(&new_smi->stop_operation);
3324         wait_for_timer_and_thread(new_smi);
3325
3326  out_err:
3327         new_smi->interrupt_disabled = 1;
3328
3329         if (new_smi->intf) {
3330                 ipmi_unregister_smi(new_smi->intf);
3331                 new_smi->intf = NULL;
3332         }
3333
3334         if (new_smi->irq_cleanup) {
3335                 new_smi->irq_cleanup(new_smi);
3336                 new_smi->irq_cleanup = NULL;
3337         }
3338
3339         /*
3340          * Wait until we know that we are out of any interrupt
3341          * handlers might have been running before we freed the
3342          * interrupt.
3343          */
3344         synchronize_sched();
3345
3346         if (new_smi->si_sm) {
3347                 if (new_smi->handlers)
3348                         new_smi->handlers->cleanup(new_smi->si_sm);
3349                 kfree(new_smi->si_sm);
3350                 new_smi->si_sm = NULL;
3351         }
3352         if (new_smi->addr_source_cleanup) {
3353                 new_smi->addr_source_cleanup(new_smi);
3354                 new_smi->addr_source_cleanup = NULL;
3355         }
3356         if (new_smi->io_cleanup) {
3357                 new_smi->io_cleanup(new_smi);
3358                 new_smi->io_cleanup = NULL;
3359         }
3360
3361         if (new_smi->dev_registered) {
3362                 platform_device_unregister(new_smi->pdev);
3363                 new_smi->dev_registered = 0;
3364         }
3365
3366         return rv;
3367 }
3368
3369 static int __devinit init_ipmi_si(void)
3370 {
3371         int  i;
3372         char *str;
3373         int  rv;
3374         struct smi_info *e;
3375         enum ipmi_addr_src type = SI_INVALID;
3376
3377         if (initialized)
3378                 return 0;
3379         initialized = 1;
3380
3381         rv = platform_driver_register(&ipmi_driver);
3382         if (rv) {
3383                 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3384                 return rv;
3385         }
3386
3387
3388         /* Parse out the si_type string into its components. */
3389         str = si_type_str;
3390         if (*str != '\0') {
3391                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3392                         si_type[i] = str;
3393                         str = strchr(str, ',');
3394                         if (str) {
3395                                 *str = '\0';
3396                                 str++;
3397                         } else {
3398                                 break;
3399                         }
3400                 }
3401         }
3402
3403         printk(KERN_INFO "IPMI System Interface driver.\n");
3404
3405         /* If the user gave us a device, they presumably want us to use it */
3406         if (!hardcode_find_bmc())
3407                 return 0;
3408
3409 #ifdef CONFIG_PCI
3410         rv = pci_register_driver(&ipmi_pci_driver);
3411         if (rv)
3412                 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3413         else
3414                 pci_registered = 1;
3415 #endif
3416
3417 #ifdef CONFIG_ACPI
3418         pnp_register_driver(&ipmi_pnp_driver);
3419         pnp_registered = 1;
3420 #endif
3421
3422 #ifdef CONFIG_DMI
3423         dmi_find_bmc();
3424 #endif
3425
3426 #ifdef CONFIG_ACPI
3427         spmi_find_bmc();
3428 #endif
3429
3430         /* We prefer devices with interrupts, but in the case of a machine
3431            with multiple BMCs we assume that there will be several instances
3432            of a given type so if we succeed in registering a type then also
3433            try to register everything else of the same type */
3434
3435         mutex_lock(&smi_infos_lock);
3436         list_for_each_entry(e, &smi_infos, link) {
3437                 /* Try to register a device if it has an IRQ and we either
3438                    haven't successfully registered a device yet or this
3439                    device has the same type as one we successfully registered */
3440                 if (e->irq && (!type || e->addr_source == type)) {
3441                         if (!try_smi_init(e)) {
3442                                 type = e->addr_source;
3443                         }
3444                 }
3445         }
3446
3447         /* type will only have been set if we successfully registered an si */
3448         if (type) {
3449                 mutex_unlock(&smi_infos_lock);
3450                 return 0;
3451         }
3452
3453         /* Fall back to the preferred device */
3454
3455         list_for_each_entry(e, &smi_infos, link) {
3456                 if (!e->irq && (!type || e->addr_source == type)) {
3457                         if (!try_smi_init(e)) {
3458                                 type = e->addr_source;
3459                         }
3460                 }
3461         }
3462         mutex_unlock(&smi_infos_lock);
3463
3464         if (type)
3465                 return 0;
3466
3467         if (si_trydefaults) {
3468                 mutex_lock(&smi_infos_lock);
3469                 if (list_empty(&smi_infos)) {
3470                         /* No BMC was found, try defaults. */
3471                         mutex_unlock(&smi_infos_lock);
3472                         default_find_bmc();
3473                 } else
3474                         mutex_unlock(&smi_infos_lock);
3475         }
3476
3477         mutex_lock(&smi_infos_lock);
3478         if (unload_when_empty && list_empty(&smi_infos)) {
3479                 mutex_unlock(&smi_infos_lock);
3480                 cleanup_ipmi_si();
3481                 printk(KERN_WARNING PFX
3482                        "Unable to find any System Interface(s)\n");
3483                 return -ENODEV;
3484         } else {
3485                 mutex_unlock(&smi_infos_lock);
3486                 return 0;
3487         }
3488 }
3489 module_init(init_ipmi_si);
3490
3491 static void cleanup_one_si(struct smi_info *to_clean)
3492 {
3493         int           rv = 0;
3494         unsigned long flags;
3495
3496         if (!to_clean)
3497                 return;
3498
3499         list_del(&to_clean->link);
3500
3501         /* Tell the driver that we are shutting down. */
3502         atomic_inc(&to_clean->stop_operation);
3503
3504         /*
3505          * Make sure the timer and thread are stopped and will not run
3506          * again.
3507          */
3508         wait_for_timer_and_thread(to_clean);
3509
3510         /*
3511          * Timeouts are stopped, now make sure the interrupts are off
3512          * for the device.  A little tricky with locks to make sure
3513          * there are no races.
3514          */
3515         spin_lock_irqsave(&to_clean->si_lock, flags);
3516         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3517                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3518                 poll(to_clean);
3519                 schedule_timeout_uninterruptible(1);
3520                 spin_lock_irqsave(&to_clean->si_lock, flags);
3521         }
3522         disable_si_irq(to_clean);
3523         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3524         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3525                 poll(to_clean);
3526                 schedule_timeout_uninterruptible(1);
3527         }
3528
3529         /* Clean up interrupts and make sure that everything is done. */
3530         if (to_clean->irq_cleanup)
3531                 to_clean->irq_cleanup(to_clean);
3532         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3533                 poll(to_clean);
3534                 schedule_timeout_uninterruptible(1);
3535         }
3536
3537         if (to_clean->intf)
3538                 rv = ipmi_unregister_smi(to_clean->intf);
3539
3540         if (rv) {
3541                 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3542                        rv);
3543         }
3544
3545         if (to_clean->handlers)
3546                 to_clean->handlers->cleanup(to_clean->si_sm);
3547
3548         kfree(to_clean->si_sm);
3549
3550         if (to_clean->addr_source_cleanup)
3551                 to_clean->addr_source_cleanup(to_clean);
3552         if (to_clean->io_cleanup)
3553                 to_clean->io_cleanup(to_clean);
3554
3555         if (to_clean->dev_registered)
3556                 platform_device_unregister(to_clean->pdev);
3557
3558         kfree(to_clean);
3559 }
3560
3561 static void cleanup_ipmi_si(void)
3562 {
3563         struct smi_info *e, *tmp_e;
3564
3565         if (!initialized)
3566                 return;
3567
3568 #ifdef CONFIG_PCI
3569         if (pci_registered)
3570                 pci_unregister_driver(&ipmi_pci_driver);
3571 #endif
3572 #ifdef CONFIG_ACPI
3573         if (pnp_registered)
3574                 pnp_unregister_driver(&ipmi_pnp_driver);
3575 #endif
3576
3577         platform_driver_unregister(&ipmi_driver);
3578
3579         mutex_lock(&smi_infos_lock);
3580         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3581                 cleanup_one_si(e);
3582         mutex_unlock(&smi_infos_lock);
3583 }
3584 module_exit(cleanup_ipmi_si);
3585
3586 MODULE_LICENSE("GPL");
3587 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3588 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3589                    " system interfaces.");