ipmi: Fix IPMI errors due to timing problems
[linux-2.6.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69
70 #ifdef CONFIG_PPC_OF
71 #include <linux/of_device.h>
72 #include <linux/of_platform.h>
73 #include <linux/of_address.h>
74 #include <linux/of_irq.h>
75 #endif
76
77 #define PFX "ipmi_si: "
78
79 /* Measure times between events in the driver. */
80 #undef DEBUG_TIMING
81
82 /* Call every 10 ms. */
83 #define SI_TIMEOUT_TIME_USEC    10000
84 #define SI_USEC_PER_JIFFY       (1000000/HZ)
85 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
87                                       short timeout */
88
89 enum si_intf_state {
90         SI_NORMAL,
91         SI_GETTING_FLAGS,
92         SI_GETTING_EVENTS,
93         SI_CLEARING_FLAGS,
94         SI_CLEARING_FLAGS_THEN_SET_IRQ,
95         SI_GETTING_MESSAGES,
96         SI_ENABLE_INTERRUPTS1,
97         SI_ENABLE_INTERRUPTS2,
98         SI_DISABLE_INTERRUPTS1,
99         SI_DISABLE_INTERRUPTS2
100         /* FIXME - add watchdog stuff. */
101 };
102
103 /* Some BT-specific defines we need here. */
104 #define IPMI_BT_INTMASK_REG             2
105 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
106 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
107
108 enum si_type {
109     SI_KCS, SI_SMIC, SI_BT
110 };
111 static char *si_to_str[] = { "kcs", "smic", "bt" };
112
113 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
114                                         "ACPI", "SMBIOS", "PCI",
115                                         "device-tree", "default" };
116
117 #define DEVICE_NAME "ipmi_si"
118
119 static struct platform_driver ipmi_driver = {
120         .driver = {
121                 .name = DEVICE_NAME,
122                 .bus = &platform_bus_type
123         }
124 };
125
126
127 /*
128  * Indexes into stats[] in smi_info below.
129  */
130 enum si_stat_indexes {
131         /*
132          * Number of times the driver requested a timer while an operation
133          * was in progress.
134          */
135         SI_STAT_short_timeouts = 0,
136
137         /*
138          * Number of times the driver requested a timer while nothing was in
139          * progress.
140          */
141         SI_STAT_long_timeouts,
142
143         /* Number of times the interface was idle while being polled. */
144         SI_STAT_idles,
145
146         /* Number of interrupts the driver handled. */
147         SI_STAT_interrupts,
148
149         /* Number of time the driver got an ATTN from the hardware. */
150         SI_STAT_attentions,
151
152         /* Number of times the driver requested flags from the hardware. */
153         SI_STAT_flag_fetches,
154
155         /* Number of times the hardware didn't follow the state machine. */
156         SI_STAT_hosed_count,
157
158         /* Number of completed messages. */
159         SI_STAT_complete_transactions,
160
161         /* Number of IPMI events received from the hardware. */
162         SI_STAT_events,
163
164         /* Number of watchdog pretimeouts. */
165         SI_STAT_watchdog_pretimeouts,
166
167         /* Number of asyncronous messages received. */
168         SI_STAT_incoming_messages,
169
170
171         /* This *must* remain last, add new values above this. */
172         SI_NUM_STATS
173 };
174
175 struct smi_info {
176         int                    intf_num;
177         ipmi_smi_t             intf;
178         struct si_sm_data      *si_sm;
179         struct si_sm_handlers  *handlers;
180         enum si_type           si_type;
181         spinlock_t             si_lock;
182         spinlock_t             msg_lock;
183         struct list_head       xmit_msgs;
184         struct list_head       hp_xmit_msgs;
185         struct ipmi_smi_msg    *curr_msg;
186         enum si_intf_state     si_state;
187
188         /*
189          * Used to handle the various types of I/O that can occur with
190          * IPMI
191          */
192         struct si_sm_io io;
193         int (*io_setup)(struct smi_info *info);
194         void (*io_cleanup)(struct smi_info *info);
195         int (*irq_setup)(struct smi_info *info);
196         void (*irq_cleanup)(struct smi_info *info);
197         unsigned int io_size;
198         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
199         void (*addr_source_cleanup)(struct smi_info *info);
200         void *addr_source_data;
201
202         /*
203          * Per-OEM handler, called from handle_flags().  Returns 1
204          * when handle_flags() needs to be re-run or 0 indicating it
205          * set si_state itself.
206          */
207         int (*oem_data_avail_handler)(struct smi_info *smi_info);
208
209         /*
210          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
211          * is set to hold the flags until we are done handling everything
212          * from the flags.
213          */
214 #define RECEIVE_MSG_AVAIL       0x01
215 #define EVENT_MSG_BUFFER_FULL   0x02
216 #define WDT_PRE_TIMEOUT_INT     0x08
217 #define OEM0_DATA_AVAIL     0x20
218 #define OEM1_DATA_AVAIL     0x40
219 #define OEM2_DATA_AVAIL     0x80
220 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
221                              OEM1_DATA_AVAIL | \
222                              OEM2_DATA_AVAIL)
223         unsigned char       msg_flags;
224
225         /* Does the BMC have an event buffer? */
226         char                has_event_buffer;
227
228         /*
229          * If set to true, this will request events the next time the
230          * state machine is idle.
231          */
232         atomic_t            req_events;
233
234         /*
235          * If true, run the state machine to completion on every send
236          * call.  Generally used after a panic to make sure stuff goes
237          * out.
238          */
239         int                 run_to_completion;
240
241         /* The I/O port of an SI interface. */
242         int                 port;
243
244         /*
245          * The space between start addresses of the two ports.  For
246          * instance, if the first port is 0xca2 and the spacing is 4, then
247          * the second port is 0xca6.
248          */
249         unsigned int        spacing;
250
251         /* zero if no irq; */
252         int                 irq;
253
254         /* The timer for this si. */
255         struct timer_list   si_timer;
256
257         /* The time (in jiffies) the last timeout occurred at. */
258         unsigned long       last_timeout_jiffies;
259
260         /* Used to gracefully stop the timer without race conditions. */
261         atomic_t            stop_operation;
262
263         /*
264          * The driver will disable interrupts when it gets into a
265          * situation where it cannot handle messages due to lack of
266          * memory.  Once that situation clears up, it will re-enable
267          * interrupts.
268          */
269         int interrupt_disabled;
270
271         /* From the get device id response... */
272         struct ipmi_device_id device_id;
273
274         /* Driver model stuff. */
275         struct device *dev;
276         struct platform_device *pdev;
277
278         /*
279          * True if we allocated the device, false if it came from
280          * someplace else (like PCI).
281          */
282         int dev_registered;
283
284         /* Slave address, could be reported from DMI. */
285         unsigned char slave_addr;
286
287         /* Counters and things for the proc filesystem. */
288         atomic_t stats[SI_NUM_STATS];
289
290         struct task_struct *thread;
291
292         struct list_head link;
293         union ipmi_smi_info_union addr_info;
294 };
295
296 #define smi_inc_stat(smi, stat) \
297         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298 #define smi_get_stat(smi, stat) \
299         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
301 #define SI_MAX_PARMS 4
302
303 static int force_kipmid[SI_MAX_PARMS];
304 static int num_force_kipmid;
305 #ifdef CONFIG_PCI
306 static int pci_registered;
307 #endif
308 #ifdef CONFIG_ACPI
309 static int pnp_registered;
310 #endif
311 #ifdef CONFIG_PPC_OF
312 static int of_registered;
313 #endif
314
315 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
316 static int num_max_busy_us;
317
318 static int unload_when_empty = 1;
319
320 static int add_smi(struct smi_info *smi);
321 static int try_smi_init(struct smi_info *smi);
322 static void cleanup_one_si(struct smi_info *to_clean);
323 static void cleanup_ipmi_si(void);
324
325 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
326 static int register_xaction_notifier(struct notifier_block *nb)
327 {
328         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
329 }
330
331 static void deliver_recv_msg(struct smi_info *smi_info,
332                              struct ipmi_smi_msg *msg)
333 {
334         /* Deliver the message to the upper layer with the lock
335            released. */
336
337         if (smi_info->run_to_completion) {
338                 ipmi_smi_msg_received(smi_info->intf, msg);
339         } else {
340                 spin_unlock(&(smi_info->si_lock));
341                 ipmi_smi_msg_received(smi_info->intf, msg);
342                 spin_lock(&(smi_info->si_lock));
343         }
344 }
345
346 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
347 {
348         struct ipmi_smi_msg *msg = smi_info->curr_msg;
349
350         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
351                 cCode = IPMI_ERR_UNSPECIFIED;
352         /* else use it as is */
353
354         /* Make it a reponse */
355         msg->rsp[0] = msg->data[0] | 4;
356         msg->rsp[1] = msg->data[1];
357         msg->rsp[2] = cCode;
358         msg->rsp_size = 3;
359
360         smi_info->curr_msg = NULL;
361         deliver_recv_msg(smi_info, msg);
362 }
363
364 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
365 {
366         int              rv;
367         struct list_head *entry = NULL;
368 #ifdef DEBUG_TIMING
369         struct timeval t;
370 #endif
371
372         /*
373          * No need to save flags, we aleady have interrupts off and we
374          * already hold the SMI lock.
375          */
376         if (!smi_info->run_to_completion)
377                 spin_lock(&(smi_info->msg_lock));
378
379         /* Pick the high priority queue first. */
380         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
381                 entry = smi_info->hp_xmit_msgs.next;
382         } else if (!list_empty(&(smi_info->xmit_msgs))) {
383                 entry = smi_info->xmit_msgs.next;
384         }
385
386         if (!entry) {
387                 smi_info->curr_msg = NULL;
388                 rv = SI_SM_IDLE;
389         } else {
390                 int err;
391
392                 list_del(entry);
393                 smi_info->curr_msg = list_entry(entry,
394                                                 struct ipmi_smi_msg,
395                                                 link);
396 #ifdef DEBUG_TIMING
397                 do_gettimeofday(&t);
398                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
399 #endif
400                 err = atomic_notifier_call_chain(&xaction_notifier_list,
401                                 0, smi_info);
402                 if (err & NOTIFY_STOP_MASK) {
403                         rv = SI_SM_CALL_WITHOUT_DELAY;
404                         goto out;
405                 }
406                 err = smi_info->handlers->start_transaction(
407                         smi_info->si_sm,
408                         smi_info->curr_msg->data,
409                         smi_info->curr_msg->data_size);
410                 if (err)
411                         return_hosed_msg(smi_info, err);
412
413                 rv = SI_SM_CALL_WITHOUT_DELAY;
414         }
415  out:
416         if (!smi_info->run_to_completion)
417                 spin_unlock(&(smi_info->msg_lock));
418
419         return rv;
420 }
421
422 static void start_enable_irq(struct smi_info *smi_info)
423 {
424         unsigned char msg[2];
425
426         /*
427          * If we are enabling interrupts, we have to tell the
428          * BMC to use them.
429          */
430         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
431         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
432
433         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
434         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
435 }
436
437 static void start_disable_irq(struct smi_info *smi_info)
438 {
439         unsigned char msg[2];
440
441         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
442         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
443
444         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
445         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
446 }
447
448 static void start_clear_flags(struct smi_info *smi_info)
449 {
450         unsigned char msg[3];
451
452         /* Make sure the watchdog pre-timeout flag is not set at startup. */
453         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
454         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
455         msg[2] = WDT_PRE_TIMEOUT_INT;
456
457         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
458         smi_info->si_state = SI_CLEARING_FLAGS;
459 }
460
461 /*
462  * When we have a situtaion where we run out of memory and cannot
463  * allocate messages, we just leave them in the BMC and run the system
464  * polled until we can allocate some memory.  Once we have some
465  * memory, we will re-enable the interrupt.
466  */
467 static inline void disable_si_irq(struct smi_info *smi_info)
468 {
469         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
470                 start_disable_irq(smi_info);
471                 smi_info->interrupt_disabled = 1;
472                 if (!atomic_read(&smi_info->stop_operation))
473                         mod_timer(&smi_info->si_timer,
474                                   jiffies + SI_TIMEOUT_JIFFIES);
475         }
476 }
477
478 static inline void enable_si_irq(struct smi_info *smi_info)
479 {
480         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
481                 start_enable_irq(smi_info);
482                 smi_info->interrupt_disabled = 0;
483         }
484 }
485
486 static void handle_flags(struct smi_info *smi_info)
487 {
488  retry:
489         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
490                 /* Watchdog pre-timeout */
491                 smi_inc_stat(smi_info, watchdog_pretimeouts);
492
493                 start_clear_flags(smi_info);
494                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
495                 spin_unlock(&(smi_info->si_lock));
496                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
497                 spin_lock(&(smi_info->si_lock));
498         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
499                 /* Messages available. */
500                 smi_info->curr_msg = ipmi_alloc_smi_msg();
501                 if (!smi_info->curr_msg) {
502                         disable_si_irq(smi_info);
503                         smi_info->si_state = SI_NORMAL;
504                         return;
505                 }
506                 enable_si_irq(smi_info);
507
508                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
509                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
510                 smi_info->curr_msg->data_size = 2;
511
512                 smi_info->handlers->start_transaction(
513                         smi_info->si_sm,
514                         smi_info->curr_msg->data,
515                         smi_info->curr_msg->data_size);
516                 smi_info->si_state = SI_GETTING_MESSAGES;
517         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
518                 /* Events available. */
519                 smi_info->curr_msg = ipmi_alloc_smi_msg();
520                 if (!smi_info->curr_msg) {
521                         disable_si_irq(smi_info);
522                         smi_info->si_state = SI_NORMAL;
523                         return;
524                 }
525                 enable_si_irq(smi_info);
526
527                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
528                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
529                 smi_info->curr_msg->data_size = 2;
530
531                 smi_info->handlers->start_transaction(
532                         smi_info->si_sm,
533                         smi_info->curr_msg->data,
534                         smi_info->curr_msg->data_size);
535                 smi_info->si_state = SI_GETTING_EVENTS;
536         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
537                    smi_info->oem_data_avail_handler) {
538                 if (smi_info->oem_data_avail_handler(smi_info))
539                         goto retry;
540         } else
541                 smi_info->si_state = SI_NORMAL;
542 }
543
544 static void handle_transaction_done(struct smi_info *smi_info)
545 {
546         struct ipmi_smi_msg *msg;
547 #ifdef DEBUG_TIMING
548         struct timeval t;
549
550         do_gettimeofday(&t);
551         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
552 #endif
553         switch (smi_info->si_state) {
554         case SI_NORMAL:
555                 if (!smi_info->curr_msg)
556                         break;
557
558                 smi_info->curr_msg->rsp_size
559                         = smi_info->handlers->get_result(
560                                 smi_info->si_sm,
561                                 smi_info->curr_msg->rsp,
562                                 IPMI_MAX_MSG_LENGTH);
563
564                 /*
565                  * Do this here becase deliver_recv_msg() releases the
566                  * lock, and a new message can be put in during the
567                  * time the lock is released.
568                  */
569                 msg = smi_info->curr_msg;
570                 smi_info->curr_msg = NULL;
571                 deliver_recv_msg(smi_info, msg);
572                 break;
573
574         case SI_GETTING_FLAGS:
575         {
576                 unsigned char msg[4];
577                 unsigned int  len;
578
579                 /* We got the flags from the SMI, now handle them. */
580                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
581                 if (msg[2] != 0) {
582                         /* Error fetching flags, just give up for now. */
583                         smi_info->si_state = SI_NORMAL;
584                 } else if (len < 4) {
585                         /*
586                          * Hmm, no flags.  That's technically illegal, but
587                          * don't use uninitialized data.
588                          */
589                         smi_info->si_state = SI_NORMAL;
590                 } else {
591                         smi_info->msg_flags = msg[3];
592                         handle_flags(smi_info);
593                 }
594                 break;
595         }
596
597         case SI_CLEARING_FLAGS:
598         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
599         {
600                 unsigned char msg[3];
601
602                 /* We cleared the flags. */
603                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
604                 if (msg[2] != 0) {
605                         /* Error clearing flags */
606                         dev_warn(smi_info->dev,
607                                  "Error clearing flags: %2.2x\n", msg[2]);
608                 }
609                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
610                         start_enable_irq(smi_info);
611                 else
612                         smi_info->si_state = SI_NORMAL;
613                 break;
614         }
615
616         case SI_GETTING_EVENTS:
617         {
618                 smi_info->curr_msg->rsp_size
619                         = smi_info->handlers->get_result(
620                                 smi_info->si_sm,
621                                 smi_info->curr_msg->rsp,
622                                 IPMI_MAX_MSG_LENGTH);
623
624                 /*
625                  * Do this here becase deliver_recv_msg() releases the
626                  * lock, and a new message can be put in during the
627                  * time the lock is released.
628                  */
629                 msg = smi_info->curr_msg;
630                 smi_info->curr_msg = NULL;
631                 if (msg->rsp[2] != 0) {
632                         /* Error getting event, probably done. */
633                         msg->done(msg);
634
635                         /* Take off the event flag. */
636                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
637                         handle_flags(smi_info);
638                 } else {
639                         smi_inc_stat(smi_info, events);
640
641                         /*
642                          * Do this before we deliver the message
643                          * because delivering the message releases the
644                          * lock and something else can mess with the
645                          * state.
646                          */
647                         handle_flags(smi_info);
648
649                         deliver_recv_msg(smi_info, msg);
650                 }
651                 break;
652         }
653
654         case SI_GETTING_MESSAGES:
655         {
656                 smi_info->curr_msg->rsp_size
657                         = smi_info->handlers->get_result(
658                                 smi_info->si_sm,
659                                 smi_info->curr_msg->rsp,
660                                 IPMI_MAX_MSG_LENGTH);
661
662                 /*
663                  * Do this here becase deliver_recv_msg() releases the
664                  * lock, and a new message can be put in during the
665                  * time the lock is released.
666                  */
667                 msg = smi_info->curr_msg;
668                 smi_info->curr_msg = NULL;
669                 if (msg->rsp[2] != 0) {
670                         /* Error getting event, probably done. */
671                         msg->done(msg);
672
673                         /* Take off the msg flag. */
674                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
675                         handle_flags(smi_info);
676                 } else {
677                         smi_inc_stat(smi_info, incoming_messages);
678
679                         /*
680                          * Do this before we deliver the message
681                          * because delivering the message releases the
682                          * lock and something else can mess with the
683                          * state.
684                          */
685                         handle_flags(smi_info);
686
687                         deliver_recv_msg(smi_info, msg);
688                 }
689                 break;
690         }
691
692         case SI_ENABLE_INTERRUPTS1:
693         {
694                 unsigned char msg[4];
695
696                 /* We got the flags from the SMI, now handle them. */
697                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
698                 if (msg[2] != 0) {
699                         dev_warn(smi_info->dev, "Could not enable interrupts"
700                                  ", failed get, using polled mode.\n");
701                         smi_info->si_state = SI_NORMAL;
702                 } else {
703                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
704                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
705                         msg[2] = (msg[3] |
706                                   IPMI_BMC_RCV_MSG_INTR |
707                                   IPMI_BMC_EVT_MSG_INTR);
708                         smi_info->handlers->start_transaction(
709                                 smi_info->si_sm, msg, 3);
710                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
711                 }
712                 break;
713         }
714
715         case SI_ENABLE_INTERRUPTS2:
716         {
717                 unsigned char msg[4];
718
719                 /* We got the flags from the SMI, now handle them. */
720                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
721                 if (msg[2] != 0)
722                         dev_warn(smi_info->dev, "Could not enable interrupts"
723                                  ", failed set, using polled mode.\n");
724                 else
725                         smi_info->interrupt_disabled = 0;
726                 smi_info->si_state = SI_NORMAL;
727                 break;
728         }
729
730         case SI_DISABLE_INTERRUPTS1:
731         {
732                 unsigned char msg[4];
733
734                 /* We got the flags from the SMI, now handle them. */
735                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
736                 if (msg[2] != 0) {
737                         dev_warn(smi_info->dev, "Could not disable interrupts"
738                                  ", failed get.\n");
739                         smi_info->si_state = SI_NORMAL;
740                 } else {
741                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
742                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
743                         msg[2] = (msg[3] &
744                                   ~(IPMI_BMC_RCV_MSG_INTR |
745                                     IPMI_BMC_EVT_MSG_INTR));
746                         smi_info->handlers->start_transaction(
747                                 smi_info->si_sm, msg, 3);
748                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
749                 }
750                 break;
751         }
752
753         case SI_DISABLE_INTERRUPTS2:
754         {
755                 unsigned char msg[4];
756
757                 /* We got the flags from the SMI, now handle them. */
758                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
759                 if (msg[2] != 0) {
760                         dev_warn(smi_info->dev, "Could not disable interrupts"
761                                  ", failed set.\n");
762                 }
763                 smi_info->si_state = SI_NORMAL;
764                 break;
765         }
766         }
767 }
768
769 /*
770  * Called on timeouts and events.  Timeouts should pass the elapsed
771  * time, interrupts should pass in zero.  Must be called with
772  * si_lock held and interrupts disabled.
773  */
774 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
775                                            int time)
776 {
777         enum si_sm_result si_sm_result;
778
779  restart:
780         /*
781          * There used to be a loop here that waited a little while
782          * (around 25us) before giving up.  That turned out to be
783          * pointless, the minimum delays I was seeing were in the 300us
784          * range, which is far too long to wait in an interrupt.  So
785          * we just run until the state machine tells us something
786          * happened or it needs a delay.
787          */
788         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
789         time = 0;
790         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
791                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
792
793         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
794                 smi_inc_stat(smi_info, complete_transactions);
795
796                 handle_transaction_done(smi_info);
797                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
798         } else if (si_sm_result == SI_SM_HOSED) {
799                 smi_inc_stat(smi_info, hosed_count);
800
801                 /*
802                  * Do the before return_hosed_msg, because that
803                  * releases the lock.
804                  */
805                 smi_info->si_state = SI_NORMAL;
806                 if (smi_info->curr_msg != NULL) {
807                         /*
808                          * If we were handling a user message, format
809                          * a response to send to the upper layer to
810                          * tell it about the error.
811                          */
812                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
813                 }
814                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
815         }
816
817         /*
818          * We prefer handling attn over new messages.  But don't do
819          * this if there is not yet an upper layer to handle anything.
820          */
821         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
822                 unsigned char msg[2];
823
824                 smi_inc_stat(smi_info, attentions);
825
826                 /*
827                  * Got a attn, send down a get message flags to see
828                  * what's causing it.  It would be better to handle
829                  * this in the upper layer, but due to the way
830                  * interrupts work with the SMI, that's not really
831                  * possible.
832                  */
833                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
834                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
835
836                 smi_info->handlers->start_transaction(
837                         smi_info->si_sm, msg, 2);
838                 smi_info->si_state = SI_GETTING_FLAGS;
839                 goto restart;
840         }
841
842         /* If we are currently idle, try to start the next message. */
843         if (si_sm_result == SI_SM_IDLE) {
844                 smi_inc_stat(smi_info, idles);
845
846                 si_sm_result = start_next_msg(smi_info);
847                 if (si_sm_result != SI_SM_IDLE)
848                         goto restart;
849         }
850
851         if ((si_sm_result == SI_SM_IDLE)
852             && (atomic_read(&smi_info->req_events))) {
853                 /*
854                  * We are idle and the upper layer requested that I fetch
855                  * events, so do so.
856                  */
857                 atomic_set(&smi_info->req_events, 0);
858
859                 smi_info->curr_msg = ipmi_alloc_smi_msg();
860                 if (!smi_info->curr_msg)
861                         goto out;
862
863                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
864                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
865                 smi_info->curr_msg->data_size = 2;
866
867                 smi_info->handlers->start_transaction(
868                         smi_info->si_sm,
869                         smi_info->curr_msg->data,
870                         smi_info->curr_msg->data_size);
871                 smi_info->si_state = SI_GETTING_EVENTS;
872                 goto restart;
873         }
874  out:
875         return si_sm_result;
876 }
877
878 static void sender(void                *send_info,
879                    struct ipmi_smi_msg *msg,
880                    int                 priority)
881 {
882         struct smi_info   *smi_info = send_info;
883         enum si_sm_result result;
884         unsigned long     flags;
885 #ifdef DEBUG_TIMING
886         struct timeval    t;
887 #endif
888
889         if (atomic_read(&smi_info->stop_operation)) {
890                 msg->rsp[0] = msg->data[0] | 4;
891                 msg->rsp[1] = msg->data[1];
892                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
893                 msg->rsp_size = 3;
894                 deliver_recv_msg(smi_info, msg);
895                 return;
896         }
897
898 #ifdef DEBUG_TIMING
899         do_gettimeofday(&t);
900         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
901 #endif
902
903         /*
904          * last_timeout_jiffies is updated here to avoid
905          * smi_timeout() handler passing very large time_diff
906          * value to smi_event_handler() that causes
907          * the send command to abort.
908          */
909         smi_info->last_timeout_jiffies = jiffies;
910
911         mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
912
913         if (smi_info->thread)
914                 wake_up_process(smi_info->thread);
915
916         if (smi_info->run_to_completion) {
917                 /*
918                  * If we are running to completion, then throw it in
919                  * the list and run transactions until everything is
920                  * clear.  Priority doesn't matter here.
921                  */
922
923                 /*
924                  * Run to completion means we are single-threaded, no
925                  * need for locks.
926                  */
927                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
928
929                 result = smi_event_handler(smi_info, 0);
930                 while (result != SI_SM_IDLE) {
931                         udelay(SI_SHORT_TIMEOUT_USEC);
932                         result = smi_event_handler(smi_info,
933                                                    SI_SHORT_TIMEOUT_USEC);
934                 }
935                 return;
936         }
937
938         spin_lock_irqsave(&smi_info->msg_lock, flags);
939         if (priority > 0)
940                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
941         else
942                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
943         spin_unlock_irqrestore(&smi_info->msg_lock, flags);
944
945         spin_lock_irqsave(&smi_info->si_lock, flags);
946         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
947                 start_next_msg(smi_info);
948         spin_unlock_irqrestore(&smi_info->si_lock, flags);
949 }
950
951 static void set_run_to_completion(void *send_info, int i_run_to_completion)
952 {
953         struct smi_info   *smi_info = send_info;
954         enum si_sm_result result;
955
956         smi_info->run_to_completion = i_run_to_completion;
957         if (i_run_to_completion) {
958                 result = smi_event_handler(smi_info, 0);
959                 while (result != SI_SM_IDLE) {
960                         udelay(SI_SHORT_TIMEOUT_USEC);
961                         result = smi_event_handler(smi_info,
962                                                    SI_SHORT_TIMEOUT_USEC);
963                 }
964         }
965 }
966
967 /*
968  * Use -1 in the nsec value of the busy waiting timespec to tell that
969  * we are spinning in kipmid looking for something and not delaying
970  * between checks
971  */
972 static inline void ipmi_si_set_not_busy(struct timespec *ts)
973 {
974         ts->tv_nsec = -1;
975 }
976 static inline int ipmi_si_is_busy(struct timespec *ts)
977 {
978         return ts->tv_nsec != -1;
979 }
980
981 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
982                                  const struct smi_info *smi_info,
983                                  struct timespec *busy_until)
984 {
985         unsigned int max_busy_us = 0;
986
987         if (smi_info->intf_num < num_max_busy_us)
988                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
989         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
990                 ipmi_si_set_not_busy(busy_until);
991         else if (!ipmi_si_is_busy(busy_until)) {
992                 getnstimeofday(busy_until);
993                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
994         } else {
995                 struct timespec now;
996                 getnstimeofday(&now);
997                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
998                         ipmi_si_set_not_busy(busy_until);
999                         return 0;
1000                 }
1001         }
1002         return 1;
1003 }
1004
1005
1006 /*
1007  * A busy-waiting loop for speeding up IPMI operation.
1008  *
1009  * Lousy hardware makes this hard.  This is only enabled for systems
1010  * that are not BT and do not have interrupts.  It starts spinning
1011  * when an operation is complete or until max_busy tells it to stop
1012  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1013  * Documentation/IPMI.txt for details.
1014  */
1015 static int ipmi_thread(void *data)
1016 {
1017         struct smi_info *smi_info = data;
1018         unsigned long flags;
1019         enum si_sm_result smi_result;
1020         struct timespec busy_until;
1021
1022         ipmi_si_set_not_busy(&busy_until);
1023         set_user_nice(current, 19);
1024         while (!kthread_should_stop()) {
1025                 int busy_wait;
1026
1027                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1028                 smi_result = smi_event_handler(smi_info, 0);
1029                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1030                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1031                                                   &busy_until);
1032                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1033                         ; /* do nothing */
1034                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1035                         schedule();
1036                 else if (smi_result == SI_SM_IDLE)
1037                         schedule_timeout_interruptible(100);
1038                 else
1039                         schedule_timeout_interruptible(1);
1040         }
1041         return 0;
1042 }
1043
1044
1045 static void poll(void *send_info)
1046 {
1047         struct smi_info *smi_info = send_info;
1048         unsigned long flags;
1049
1050         /*
1051          * Make sure there is some delay in the poll loop so we can
1052          * drive time forward and timeout things.
1053          */
1054         udelay(10);
1055         spin_lock_irqsave(&smi_info->si_lock, flags);
1056         smi_event_handler(smi_info, 10);
1057         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1058 }
1059
1060 static void request_events(void *send_info)
1061 {
1062         struct smi_info *smi_info = send_info;
1063
1064         if (atomic_read(&smi_info->stop_operation) ||
1065                                 !smi_info->has_event_buffer)
1066                 return;
1067
1068         atomic_set(&smi_info->req_events, 1);
1069 }
1070
1071 static int initialized;
1072
1073 static void smi_timeout(unsigned long data)
1074 {
1075         struct smi_info   *smi_info = (struct smi_info *) data;
1076         enum si_sm_result smi_result;
1077         unsigned long     flags;
1078         unsigned long     jiffies_now;
1079         long              time_diff;
1080         long              timeout;
1081 #ifdef DEBUG_TIMING
1082         struct timeval    t;
1083 #endif
1084
1085         spin_lock_irqsave(&(smi_info->si_lock), flags);
1086 #ifdef DEBUG_TIMING
1087         do_gettimeofday(&t);
1088         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1089 #endif
1090         jiffies_now = jiffies;
1091         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1092                      * SI_USEC_PER_JIFFY);
1093         smi_result = smi_event_handler(smi_info, time_diff);
1094
1095         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1096
1097         smi_info->last_timeout_jiffies = jiffies_now;
1098
1099         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1100                 /* Running with interrupts, only do long timeouts. */
1101                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1102                 smi_inc_stat(smi_info, long_timeouts);
1103                 goto do_mod_timer;
1104         }
1105
1106         /*
1107          * If the state machine asks for a short delay, then shorten
1108          * the timer timeout.
1109          */
1110         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1111                 smi_inc_stat(smi_info, short_timeouts);
1112                 timeout = jiffies + 1;
1113         } else {
1114                 smi_inc_stat(smi_info, long_timeouts);
1115                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1116         }
1117
1118  do_mod_timer:
1119         if (smi_result != SI_SM_IDLE)
1120                 mod_timer(&(smi_info->si_timer), timeout);
1121 }
1122
1123 static irqreturn_t si_irq_handler(int irq, void *data)
1124 {
1125         struct smi_info *smi_info = data;
1126         unsigned long   flags;
1127 #ifdef DEBUG_TIMING
1128         struct timeval  t;
1129 #endif
1130
1131         spin_lock_irqsave(&(smi_info->si_lock), flags);
1132
1133         smi_inc_stat(smi_info, interrupts);
1134
1135 #ifdef DEBUG_TIMING
1136         do_gettimeofday(&t);
1137         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1138 #endif
1139         smi_event_handler(smi_info, 0);
1140         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1141         return IRQ_HANDLED;
1142 }
1143
1144 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1145 {
1146         struct smi_info *smi_info = data;
1147         /* We need to clear the IRQ flag for the BT interface. */
1148         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1149                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1150                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1151         return si_irq_handler(irq, data);
1152 }
1153
1154 static int smi_start_processing(void       *send_info,
1155                                 ipmi_smi_t intf)
1156 {
1157         struct smi_info *new_smi = send_info;
1158         int             enable = 0;
1159
1160         new_smi->intf = intf;
1161
1162         /* Try to claim any interrupts. */
1163         if (new_smi->irq_setup)
1164                 new_smi->irq_setup(new_smi);
1165
1166         /* Set up the timer that drives the interface. */
1167         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1168         new_smi->last_timeout_jiffies = jiffies;
1169         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1170
1171         /*
1172          * Check if the user forcefully enabled the daemon.
1173          */
1174         if (new_smi->intf_num < num_force_kipmid)
1175                 enable = force_kipmid[new_smi->intf_num];
1176         /*
1177          * The BT interface is efficient enough to not need a thread,
1178          * and there is no need for a thread if we have interrupts.
1179          */
1180         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1181                 enable = 1;
1182
1183         if (enable) {
1184                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1185                                               "kipmi%d", new_smi->intf_num);
1186                 if (IS_ERR(new_smi->thread)) {
1187                         dev_notice(new_smi->dev, "Could not start"
1188                                    " kernel thread due to error %ld, only using"
1189                                    " timers to drive the interface\n",
1190                                    PTR_ERR(new_smi->thread));
1191                         new_smi->thread = NULL;
1192                 }
1193         }
1194
1195         return 0;
1196 }
1197
1198 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1199 {
1200         struct smi_info *smi = send_info;
1201
1202         data->addr_src = smi->addr_source;
1203         data->dev = smi->dev;
1204         data->addr_info = smi->addr_info;
1205         get_device(smi->dev);
1206
1207         return 0;
1208 }
1209
1210 static void set_maintenance_mode(void *send_info, int enable)
1211 {
1212         struct smi_info   *smi_info = send_info;
1213
1214         if (!enable)
1215                 atomic_set(&smi_info->req_events, 0);
1216 }
1217
1218 static struct ipmi_smi_handlers handlers = {
1219         .owner                  = THIS_MODULE,
1220         .start_processing       = smi_start_processing,
1221         .get_smi_info           = get_smi_info,
1222         .sender                 = sender,
1223         .request_events         = request_events,
1224         .set_maintenance_mode   = set_maintenance_mode,
1225         .set_run_to_completion  = set_run_to_completion,
1226         .poll                   = poll,
1227 };
1228
1229 /*
1230  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1231  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1232  */
1233
1234 static LIST_HEAD(smi_infos);
1235 static DEFINE_MUTEX(smi_infos_lock);
1236 static int smi_num; /* Used to sequence the SMIs */
1237
1238 #define DEFAULT_REGSPACING      1
1239 #define DEFAULT_REGSIZE         1
1240
1241 static int           si_trydefaults = 1;
1242 static char          *si_type[SI_MAX_PARMS];
1243 #define MAX_SI_TYPE_STR 30
1244 static char          si_type_str[MAX_SI_TYPE_STR];
1245 static unsigned long addrs[SI_MAX_PARMS];
1246 static unsigned int num_addrs;
1247 static unsigned int  ports[SI_MAX_PARMS];
1248 static unsigned int num_ports;
1249 static int           irqs[SI_MAX_PARMS];
1250 static unsigned int num_irqs;
1251 static int           regspacings[SI_MAX_PARMS];
1252 static unsigned int num_regspacings;
1253 static int           regsizes[SI_MAX_PARMS];
1254 static unsigned int num_regsizes;
1255 static int           regshifts[SI_MAX_PARMS];
1256 static unsigned int num_regshifts;
1257 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1258 static unsigned int num_slave_addrs;
1259
1260 #define IPMI_IO_ADDR_SPACE  0
1261 #define IPMI_MEM_ADDR_SPACE 1
1262 static char *addr_space_to_str[] = { "i/o", "mem" };
1263
1264 static int hotmod_handler(const char *val, struct kernel_param *kp);
1265
1266 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1267 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1268                  " Documentation/IPMI.txt in the kernel sources for the"
1269                  " gory details.");
1270
1271 module_param_named(trydefaults, si_trydefaults, bool, 0);
1272 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1273                  " default scan of the KCS and SMIC interface at the standard"
1274                  " address");
1275 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1276 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1277                  " interface separated by commas.  The types are 'kcs',"
1278                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1279                  " the first interface to kcs and the second to bt");
1280 module_param_array(addrs, ulong, &num_addrs, 0);
1281 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1282                  " addresses separated by commas.  Only use if an interface"
1283                  " is in memory.  Otherwise, set it to zero or leave"
1284                  " it blank.");
1285 module_param_array(ports, uint, &num_ports, 0);
1286 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1287                  " addresses separated by commas.  Only use if an interface"
1288                  " is a port.  Otherwise, set it to zero or leave"
1289                  " it blank.");
1290 module_param_array(irqs, int, &num_irqs, 0);
1291 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1292                  " addresses separated by commas.  Only use if an interface"
1293                  " has an interrupt.  Otherwise, set it to zero or leave"
1294                  " it blank.");
1295 module_param_array(regspacings, int, &num_regspacings, 0);
1296 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1297                  " and each successive register used by the interface.  For"
1298                  " instance, if the start address is 0xca2 and the spacing"
1299                  " is 2, then the second address is at 0xca4.  Defaults"
1300                  " to 1.");
1301 module_param_array(regsizes, int, &num_regsizes, 0);
1302 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1303                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1304                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1305                  " the 8-bit IPMI register has to be read from a larger"
1306                  " register.");
1307 module_param_array(regshifts, int, &num_regshifts, 0);
1308 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1309                  " IPMI register, in bits.  For instance, if the data"
1310                  " is read from a 32-bit word and the IPMI data is in"
1311                  " bit 8-15, then the shift would be 8");
1312 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1313 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1314                  " the controller.  Normally this is 0x20, but can be"
1315                  " overridden by this parm.  This is an array indexed"
1316                  " by interface number.");
1317 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1318 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1319                  " disabled(0).  Normally the IPMI driver auto-detects"
1320                  " this, but the value may be overridden by this parm.");
1321 module_param(unload_when_empty, int, 0);
1322 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1323                  " specified or found, default is 1.  Setting to 0"
1324                  " is useful for hot add of devices using hotmod.");
1325 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1326 MODULE_PARM_DESC(kipmid_max_busy_us,
1327                  "Max time (in microseconds) to busy-wait for IPMI data before"
1328                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1329                  " if kipmid is using up a lot of CPU time.");
1330
1331
1332 static void std_irq_cleanup(struct smi_info *info)
1333 {
1334         if (info->si_type == SI_BT)
1335                 /* Disable the interrupt in the BT interface. */
1336                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1337         free_irq(info->irq, info);
1338 }
1339
1340 static int std_irq_setup(struct smi_info *info)
1341 {
1342         int rv;
1343
1344         if (!info->irq)
1345                 return 0;
1346
1347         if (info->si_type == SI_BT) {
1348                 rv = request_irq(info->irq,
1349                                  si_bt_irq_handler,
1350                                  IRQF_SHARED | IRQF_DISABLED,
1351                                  DEVICE_NAME,
1352                                  info);
1353                 if (!rv)
1354                         /* Enable the interrupt in the BT interface. */
1355                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1356                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1357         } else
1358                 rv = request_irq(info->irq,
1359                                  si_irq_handler,
1360                                  IRQF_SHARED | IRQF_DISABLED,
1361                                  DEVICE_NAME,
1362                                  info);
1363         if (rv) {
1364                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1365                          " running polled\n",
1366                          DEVICE_NAME, info->irq);
1367                 info->irq = 0;
1368         } else {
1369                 info->irq_cleanup = std_irq_cleanup;
1370                 dev_info(info->dev, "Using irq %d\n", info->irq);
1371         }
1372
1373         return rv;
1374 }
1375
1376 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1377 {
1378         unsigned int addr = io->addr_data;
1379
1380         return inb(addr + (offset * io->regspacing));
1381 }
1382
1383 static void port_outb(struct si_sm_io *io, unsigned int offset,
1384                       unsigned char b)
1385 {
1386         unsigned int addr = io->addr_data;
1387
1388         outb(b, addr + (offset * io->regspacing));
1389 }
1390
1391 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1392 {
1393         unsigned int addr = io->addr_data;
1394
1395         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1396 }
1397
1398 static void port_outw(struct si_sm_io *io, unsigned int offset,
1399                       unsigned char b)
1400 {
1401         unsigned int addr = io->addr_data;
1402
1403         outw(b << io->regshift, addr + (offset * io->regspacing));
1404 }
1405
1406 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1407 {
1408         unsigned int addr = io->addr_data;
1409
1410         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1411 }
1412
1413 static void port_outl(struct si_sm_io *io, unsigned int offset,
1414                       unsigned char b)
1415 {
1416         unsigned int addr = io->addr_data;
1417
1418         outl(b << io->regshift, addr+(offset * io->regspacing));
1419 }
1420
1421 static void port_cleanup(struct smi_info *info)
1422 {
1423         unsigned int addr = info->io.addr_data;
1424         int          idx;
1425
1426         if (addr) {
1427                 for (idx = 0; idx < info->io_size; idx++)
1428                         release_region(addr + idx * info->io.regspacing,
1429                                        info->io.regsize);
1430         }
1431 }
1432
1433 static int port_setup(struct smi_info *info)
1434 {
1435         unsigned int addr = info->io.addr_data;
1436         int          idx;
1437
1438         if (!addr)
1439                 return -ENODEV;
1440
1441         info->io_cleanup = port_cleanup;
1442
1443         /*
1444          * Figure out the actual inb/inw/inl/etc routine to use based
1445          * upon the register size.
1446          */
1447         switch (info->io.regsize) {
1448         case 1:
1449                 info->io.inputb = port_inb;
1450                 info->io.outputb = port_outb;
1451                 break;
1452         case 2:
1453                 info->io.inputb = port_inw;
1454                 info->io.outputb = port_outw;
1455                 break;
1456         case 4:
1457                 info->io.inputb = port_inl;
1458                 info->io.outputb = port_outl;
1459                 break;
1460         default:
1461                 dev_warn(info->dev, "Invalid register size: %d\n",
1462                          info->io.regsize);
1463                 return -EINVAL;
1464         }
1465
1466         /*
1467          * Some BIOSes reserve disjoint I/O regions in their ACPI
1468          * tables.  This causes problems when trying to register the
1469          * entire I/O region.  Therefore we must register each I/O
1470          * port separately.
1471          */
1472         for (idx = 0; idx < info->io_size; idx++) {
1473                 if (request_region(addr + idx * info->io.regspacing,
1474                                    info->io.regsize, DEVICE_NAME) == NULL) {
1475                         /* Undo allocations */
1476                         while (idx--) {
1477                                 release_region(addr + idx * info->io.regspacing,
1478                                                info->io.regsize);
1479                         }
1480                         return -EIO;
1481                 }
1482         }
1483         return 0;
1484 }
1485
1486 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1487 {
1488         return readb((io->addr)+(offset * io->regspacing));
1489 }
1490
1491 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1492                      unsigned char b)
1493 {
1494         writeb(b, (io->addr)+(offset * io->regspacing));
1495 }
1496
1497 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1498 {
1499         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1500                 & 0xff;
1501 }
1502
1503 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1504                      unsigned char b)
1505 {
1506         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1507 }
1508
1509 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1510 {
1511         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1512                 & 0xff;
1513 }
1514
1515 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1516                      unsigned char b)
1517 {
1518         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1519 }
1520
1521 #ifdef readq
1522 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1523 {
1524         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1525                 & 0xff;
1526 }
1527
1528 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1529                      unsigned char b)
1530 {
1531         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1532 }
1533 #endif
1534
1535 static void mem_cleanup(struct smi_info *info)
1536 {
1537         unsigned long addr = info->io.addr_data;
1538         int           mapsize;
1539
1540         if (info->io.addr) {
1541                 iounmap(info->io.addr);
1542
1543                 mapsize = ((info->io_size * info->io.regspacing)
1544                            - (info->io.regspacing - info->io.regsize));
1545
1546                 release_mem_region(addr, mapsize);
1547         }
1548 }
1549
1550 static int mem_setup(struct smi_info *info)
1551 {
1552         unsigned long addr = info->io.addr_data;
1553         int           mapsize;
1554
1555         if (!addr)
1556                 return -ENODEV;
1557
1558         info->io_cleanup = mem_cleanup;
1559
1560         /*
1561          * Figure out the actual readb/readw/readl/etc routine to use based
1562          * upon the register size.
1563          */
1564         switch (info->io.regsize) {
1565         case 1:
1566                 info->io.inputb = intf_mem_inb;
1567                 info->io.outputb = intf_mem_outb;
1568                 break;
1569         case 2:
1570                 info->io.inputb = intf_mem_inw;
1571                 info->io.outputb = intf_mem_outw;
1572                 break;
1573         case 4:
1574                 info->io.inputb = intf_mem_inl;
1575                 info->io.outputb = intf_mem_outl;
1576                 break;
1577 #ifdef readq
1578         case 8:
1579                 info->io.inputb = mem_inq;
1580                 info->io.outputb = mem_outq;
1581                 break;
1582 #endif
1583         default:
1584                 dev_warn(info->dev, "Invalid register size: %d\n",
1585                          info->io.regsize);
1586                 return -EINVAL;
1587         }
1588
1589         /*
1590          * Calculate the total amount of memory to claim.  This is an
1591          * unusual looking calculation, but it avoids claiming any
1592          * more memory than it has to.  It will claim everything
1593          * between the first address to the end of the last full
1594          * register.
1595          */
1596         mapsize = ((info->io_size * info->io.regspacing)
1597                    - (info->io.regspacing - info->io.regsize));
1598
1599         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1600                 return -EIO;
1601
1602         info->io.addr = ioremap(addr, mapsize);
1603         if (info->io.addr == NULL) {
1604                 release_mem_region(addr, mapsize);
1605                 return -EIO;
1606         }
1607         return 0;
1608 }
1609
1610 /*
1611  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1612  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1613  * Options are:
1614  *   rsp=<regspacing>
1615  *   rsi=<regsize>
1616  *   rsh=<regshift>
1617  *   irq=<irq>
1618  *   ipmb=<ipmb addr>
1619  */
1620 enum hotmod_op { HM_ADD, HM_REMOVE };
1621 struct hotmod_vals {
1622         char *name;
1623         int  val;
1624 };
1625 static struct hotmod_vals hotmod_ops[] = {
1626         { "add",        HM_ADD },
1627         { "remove",     HM_REMOVE },
1628         { NULL }
1629 };
1630 static struct hotmod_vals hotmod_si[] = {
1631         { "kcs",        SI_KCS },
1632         { "smic",       SI_SMIC },
1633         { "bt",         SI_BT },
1634         { NULL }
1635 };
1636 static struct hotmod_vals hotmod_as[] = {
1637         { "mem",        IPMI_MEM_ADDR_SPACE },
1638         { "i/o",        IPMI_IO_ADDR_SPACE },
1639         { NULL }
1640 };
1641
1642 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1643 {
1644         char *s;
1645         int  i;
1646
1647         s = strchr(*curr, ',');
1648         if (!s) {
1649                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1650                 return -EINVAL;
1651         }
1652         *s = '\0';
1653         s++;
1654         for (i = 0; hotmod_ops[i].name; i++) {
1655                 if (strcmp(*curr, v[i].name) == 0) {
1656                         *val = v[i].val;
1657                         *curr = s;
1658                         return 0;
1659                 }
1660         }
1661
1662         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1663         return -EINVAL;
1664 }
1665
1666 static int check_hotmod_int_op(const char *curr, const char *option,
1667                                const char *name, int *val)
1668 {
1669         char *n;
1670
1671         if (strcmp(curr, name) == 0) {
1672                 if (!option) {
1673                         printk(KERN_WARNING PFX
1674                                "No option given for '%s'\n",
1675                                curr);
1676                         return -EINVAL;
1677                 }
1678                 *val = simple_strtoul(option, &n, 0);
1679                 if ((*n != '\0') || (*option == '\0')) {
1680                         printk(KERN_WARNING PFX
1681                                "Bad option given for '%s'\n",
1682                                curr);
1683                         return -EINVAL;
1684                 }
1685                 return 1;
1686         }
1687         return 0;
1688 }
1689
1690 static struct smi_info *smi_info_alloc(void)
1691 {
1692         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1693
1694         if (info) {
1695                 spin_lock_init(&info->si_lock);
1696                 spin_lock_init(&info->msg_lock);
1697         }
1698         return info;
1699 }
1700
1701 static int hotmod_handler(const char *val, struct kernel_param *kp)
1702 {
1703         char *str = kstrdup(val, GFP_KERNEL);
1704         int  rv;
1705         char *next, *curr, *s, *n, *o;
1706         enum hotmod_op op;
1707         enum si_type si_type;
1708         int  addr_space;
1709         unsigned long addr;
1710         int regspacing;
1711         int regsize;
1712         int regshift;
1713         int irq;
1714         int ipmb;
1715         int ival;
1716         int len;
1717         struct smi_info *info;
1718
1719         if (!str)
1720                 return -ENOMEM;
1721
1722         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1723         len = strlen(str);
1724         ival = len - 1;
1725         while ((ival >= 0) && isspace(str[ival])) {
1726                 str[ival] = '\0';
1727                 ival--;
1728         }
1729
1730         for (curr = str; curr; curr = next) {
1731                 regspacing = 1;
1732                 regsize = 1;
1733                 regshift = 0;
1734                 irq = 0;
1735                 ipmb = 0; /* Choose the default if not specified */
1736
1737                 next = strchr(curr, ':');
1738                 if (next) {
1739                         *next = '\0';
1740                         next++;
1741                 }
1742
1743                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1744                 if (rv)
1745                         break;
1746                 op = ival;
1747
1748                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1749                 if (rv)
1750                         break;
1751                 si_type = ival;
1752
1753                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1754                 if (rv)
1755                         break;
1756
1757                 s = strchr(curr, ',');
1758                 if (s) {
1759                         *s = '\0';
1760                         s++;
1761                 }
1762                 addr = simple_strtoul(curr, &n, 0);
1763                 if ((*n != '\0') || (*curr == '\0')) {
1764                         printk(KERN_WARNING PFX "Invalid hotmod address"
1765                                " '%s'\n", curr);
1766                         break;
1767                 }
1768
1769                 while (s) {
1770                         curr = s;
1771                         s = strchr(curr, ',');
1772                         if (s) {
1773                                 *s = '\0';
1774                                 s++;
1775                         }
1776                         o = strchr(curr, '=');
1777                         if (o) {
1778                                 *o = '\0';
1779                                 o++;
1780                         }
1781                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1782                         if (rv < 0)
1783                                 goto out;
1784                         else if (rv)
1785                                 continue;
1786                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1787                         if (rv < 0)
1788                                 goto out;
1789                         else if (rv)
1790                                 continue;
1791                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1792                         if (rv < 0)
1793                                 goto out;
1794                         else if (rv)
1795                                 continue;
1796                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1797                         if (rv < 0)
1798                                 goto out;
1799                         else if (rv)
1800                                 continue;
1801                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1802                         if (rv < 0)
1803                                 goto out;
1804                         else if (rv)
1805                                 continue;
1806
1807                         rv = -EINVAL;
1808                         printk(KERN_WARNING PFX
1809                                "Invalid hotmod option '%s'\n",
1810                                curr);
1811                         goto out;
1812                 }
1813
1814                 if (op == HM_ADD) {
1815                         info = smi_info_alloc();
1816                         if (!info) {
1817                                 rv = -ENOMEM;
1818                                 goto out;
1819                         }
1820
1821                         info->addr_source = SI_HOTMOD;
1822                         info->si_type = si_type;
1823                         info->io.addr_data = addr;
1824                         info->io.addr_type = addr_space;
1825                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1826                                 info->io_setup = mem_setup;
1827                         else
1828                                 info->io_setup = port_setup;
1829
1830                         info->io.addr = NULL;
1831                         info->io.regspacing = regspacing;
1832                         if (!info->io.regspacing)
1833                                 info->io.regspacing = DEFAULT_REGSPACING;
1834                         info->io.regsize = regsize;
1835                         if (!info->io.regsize)
1836                                 info->io.regsize = DEFAULT_REGSPACING;
1837                         info->io.regshift = regshift;
1838                         info->irq = irq;
1839                         if (info->irq)
1840                                 info->irq_setup = std_irq_setup;
1841                         info->slave_addr = ipmb;
1842
1843                         if (!add_smi(info)) {
1844                                 if (try_smi_init(info))
1845                                         cleanup_one_si(info);
1846                         } else {
1847                                 kfree(info);
1848                         }
1849                 } else {
1850                         /* remove */
1851                         struct smi_info *e, *tmp_e;
1852
1853                         mutex_lock(&smi_infos_lock);
1854                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1855                                 if (e->io.addr_type != addr_space)
1856                                         continue;
1857                                 if (e->si_type != si_type)
1858                                         continue;
1859                                 if (e->io.addr_data == addr)
1860                                         cleanup_one_si(e);
1861                         }
1862                         mutex_unlock(&smi_infos_lock);
1863                 }
1864         }
1865         rv = len;
1866  out:
1867         kfree(str);
1868         return rv;
1869 }
1870
1871 static void __devinit hardcode_find_bmc(void)
1872 {
1873         int             i;
1874         struct smi_info *info;
1875
1876         for (i = 0; i < SI_MAX_PARMS; i++) {
1877                 if (!ports[i] && !addrs[i])
1878                         continue;
1879
1880                 info = smi_info_alloc();
1881                 if (!info)
1882                         return;
1883
1884                 info->addr_source = SI_HARDCODED;
1885                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1886
1887                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1888                         info->si_type = SI_KCS;
1889                 } else if (strcmp(si_type[i], "smic") == 0) {
1890                         info->si_type = SI_SMIC;
1891                 } else if (strcmp(si_type[i], "bt") == 0) {
1892                         info->si_type = SI_BT;
1893                 } else {
1894                         printk(KERN_WARNING PFX "Interface type specified "
1895                                "for interface %d, was invalid: %s\n",
1896                                i, si_type[i]);
1897                         kfree(info);
1898                         continue;
1899                 }
1900
1901                 if (ports[i]) {
1902                         /* An I/O port */
1903                         info->io_setup = port_setup;
1904                         info->io.addr_data = ports[i];
1905                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1906                 } else if (addrs[i]) {
1907                         /* A memory port */
1908                         info->io_setup = mem_setup;
1909                         info->io.addr_data = addrs[i];
1910                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1911                 } else {
1912                         printk(KERN_WARNING PFX "Interface type specified "
1913                                "for interface %d, but port and address were "
1914                                "not set or set to zero.\n", i);
1915                         kfree(info);
1916                         continue;
1917                 }
1918
1919                 info->io.addr = NULL;
1920                 info->io.regspacing = regspacings[i];
1921                 if (!info->io.regspacing)
1922                         info->io.regspacing = DEFAULT_REGSPACING;
1923                 info->io.regsize = regsizes[i];
1924                 if (!info->io.regsize)
1925                         info->io.regsize = DEFAULT_REGSPACING;
1926                 info->io.regshift = regshifts[i];
1927                 info->irq = irqs[i];
1928                 if (info->irq)
1929                         info->irq_setup = std_irq_setup;
1930                 info->slave_addr = slave_addrs[i];
1931
1932                 if (!add_smi(info)) {
1933                         if (try_smi_init(info))
1934                                 cleanup_one_si(info);
1935                 } else {
1936                         kfree(info);
1937                 }
1938         }
1939 }
1940
1941 #ifdef CONFIG_ACPI
1942
1943 #include <linux/acpi.h>
1944
1945 /*
1946  * Once we get an ACPI failure, we don't try any more, because we go
1947  * through the tables sequentially.  Once we don't find a table, there
1948  * are no more.
1949  */
1950 static int acpi_failure;
1951
1952 /* For GPE-type interrupts. */
1953 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1954         u32 gpe_number, void *context)
1955 {
1956         struct smi_info *smi_info = context;
1957         unsigned long   flags;
1958 #ifdef DEBUG_TIMING
1959         struct timeval t;
1960 #endif
1961
1962         spin_lock_irqsave(&(smi_info->si_lock), flags);
1963
1964         smi_inc_stat(smi_info, interrupts);
1965
1966 #ifdef DEBUG_TIMING
1967         do_gettimeofday(&t);
1968         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1969 #endif
1970         smi_event_handler(smi_info, 0);
1971         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1972
1973         return ACPI_INTERRUPT_HANDLED;
1974 }
1975
1976 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1977 {
1978         if (!info->irq)
1979                 return;
1980
1981         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1982 }
1983
1984 static int acpi_gpe_irq_setup(struct smi_info *info)
1985 {
1986         acpi_status status;
1987
1988         if (!info->irq)
1989                 return 0;
1990
1991         /* FIXME - is level triggered right? */
1992         status = acpi_install_gpe_handler(NULL,
1993                                           info->irq,
1994                                           ACPI_GPE_LEVEL_TRIGGERED,
1995                                           &ipmi_acpi_gpe,
1996                                           info);
1997         if (status != AE_OK) {
1998                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1999                          " running polled\n", DEVICE_NAME, info->irq);
2000                 info->irq = 0;
2001                 return -EINVAL;
2002         } else {
2003                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2004                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2005                 return 0;
2006         }
2007 }
2008
2009 /*
2010  * Defined at
2011  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2012  */
2013 struct SPMITable {
2014         s8      Signature[4];
2015         u32     Length;
2016         u8      Revision;
2017         u8      Checksum;
2018         s8      OEMID[6];
2019         s8      OEMTableID[8];
2020         s8      OEMRevision[4];
2021         s8      CreatorID[4];
2022         s8      CreatorRevision[4];
2023         u8      InterfaceType;
2024         u8      IPMIlegacy;
2025         s16     SpecificationRevision;
2026
2027         /*
2028          * Bit 0 - SCI interrupt supported
2029          * Bit 1 - I/O APIC/SAPIC
2030          */
2031         u8      InterruptType;
2032
2033         /*
2034          * If bit 0 of InterruptType is set, then this is the SCI
2035          * interrupt in the GPEx_STS register.
2036          */
2037         u8      GPE;
2038
2039         s16     Reserved;
2040
2041         /*
2042          * If bit 1 of InterruptType is set, then this is the I/O
2043          * APIC/SAPIC interrupt.
2044          */
2045         u32     GlobalSystemInterrupt;
2046
2047         /* The actual register address. */
2048         struct acpi_generic_address addr;
2049
2050         u8      UID[4];
2051
2052         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2053 };
2054
2055 static int __devinit try_init_spmi(struct SPMITable *spmi)
2056 {
2057         struct smi_info  *info;
2058
2059         if (spmi->IPMIlegacy != 1) {
2060                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2061                 return -ENODEV;
2062         }
2063
2064         info = smi_info_alloc();
2065         if (!info) {
2066                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2067                 return -ENOMEM;
2068         }
2069
2070         info->addr_source = SI_SPMI;
2071         printk(KERN_INFO PFX "probing via SPMI\n");
2072
2073         /* Figure out the interface type. */
2074         switch (spmi->InterfaceType) {
2075         case 1: /* KCS */
2076                 info->si_type = SI_KCS;
2077                 break;
2078         case 2: /* SMIC */
2079                 info->si_type = SI_SMIC;
2080                 break;
2081         case 3: /* BT */
2082                 info->si_type = SI_BT;
2083                 break;
2084         default:
2085                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2086                        spmi->InterfaceType);
2087                 kfree(info);
2088                 return -EIO;
2089         }
2090
2091         if (spmi->InterruptType & 1) {
2092                 /* We've got a GPE interrupt. */
2093                 info->irq = spmi->GPE;
2094                 info->irq_setup = acpi_gpe_irq_setup;
2095         } else if (spmi->InterruptType & 2) {
2096                 /* We've got an APIC/SAPIC interrupt. */
2097                 info->irq = spmi->GlobalSystemInterrupt;
2098                 info->irq_setup = std_irq_setup;
2099         } else {
2100                 /* Use the default interrupt setting. */
2101                 info->irq = 0;
2102                 info->irq_setup = NULL;
2103         }
2104
2105         if (spmi->addr.bit_width) {
2106                 /* A (hopefully) properly formed register bit width. */
2107                 info->io.regspacing = spmi->addr.bit_width / 8;
2108         } else {
2109                 info->io.regspacing = DEFAULT_REGSPACING;
2110         }
2111         info->io.regsize = info->io.regspacing;
2112         info->io.regshift = spmi->addr.bit_offset;
2113
2114         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2115                 info->io_setup = mem_setup;
2116                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2117         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2118                 info->io_setup = port_setup;
2119                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2120         } else {
2121                 kfree(info);
2122                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2123                 return -EIO;
2124         }
2125         info->io.addr_data = spmi->addr.address;
2126
2127         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2128                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2129                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2130                  info->irq);
2131
2132         if (add_smi(info))
2133                 kfree(info);
2134
2135         return 0;
2136 }
2137
2138 static void __devinit spmi_find_bmc(void)
2139 {
2140         acpi_status      status;
2141         struct SPMITable *spmi;
2142         int              i;
2143
2144         if (acpi_disabled)
2145                 return;
2146
2147         if (acpi_failure)
2148                 return;
2149
2150         for (i = 0; ; i++) {
2151                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2152                                         (struct acpi_table_header **)&spmi);
2153                 if (status != AE_OK)
2154                         return;
2155
2156                 try_init_spmi(spmi);
2157         }
2158 }
2159
2160 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2161                                     const struct pnp_device_id *dev_id)
2162 {
2163         struct acpi_device *acpi_dev;
2164         struct smi_info *info;
2165         struct resource *res, *res_second;
2166         acpi_handle handle;
2167         acpi_status status;
2168         unsigned long long tmp;
2169
2170         acpi_dev = pnp_acpi_device(dev);
2171         if (!acpi_dev)
2172                 return -ENODEV;
2173
2174         info = smi_info_alloc();
2175         if (!info)
2176                 return -ENOMEM;
2177
2178         info->addr_source = SI_ACPI;
2179         printk(KERN_INFO PFX "probing via ACPI\n");
2180
2181         handle = acpi_dev->handle;
2182         info->addr_info.acpi_info.acpi_handle = handle;
2183
2184         /* _IFT tells us the interface type: KCS, BT, etc */
2185         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2186         if (ACPI_FAILURE(status))
2187                 goto err_free;
2188
2189         switch (tmp) {
2190         case 1:
2191                 info->si_type = SI_KCS;
2192                 break;
2193         case 2:
2194                 info->si_type = SI_SMIC;
2195                 break;
2196         case 3:
2197                 info->si_type = SI_BT;
2198                 break;
2199         default:
2200                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2201                 goto err_free;
2202         }
2203
2204         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2205         if (res) {
2206                 info->io_setup = port_setup;
2207                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2208         } else {
2209                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2210                 if (res) {
2211                         info->io_setup = mem_setup;
2212                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2213                 }
2214         }
2215         if (!res) {
2216                 dev_err(&dev->dev, "no I/O or memory address\n");
2217                 goto err_free;
2218         }
2219         info->io.addr_data = res->start;
2220
2221         info->io.regspacing = DEFAULT_REGSPACING;
2222         res_second = pnp_get_resource(dev,
2223                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2224                                         IORESOURCE_IO : IORESOURCE_MEM,
2225                                1);
2226         if (res_second) {
2227                 if (res_second->start > info->io.addr_data)
2228                         info->io.regspacing = res_second->start - info->io.addr_data;
2229         }
2230         info->io.regsize = DEFAULT_REGSPACING;
2231         info->io.regshift = 0;
2232
2233         /* If _GPE exists, use it; otherwise use standard interrupts */
2234         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2235         if (ACPI_SUCCESS(status)) {
2236                 info->irq = tmp;
2237                 info->irq_setup = acpi_gpe_irq_setup;
2238         } else if (pnp_irq_valid(dev, 0)) {
2239                 info->irq = pnp_irq(dev, 0);
2240                 info->irq_setup = std_irq_setup;
2241         }
2242
2243         info->dev = &dev->dev;
2244         pnp_set_drvdata(dev, info);
2245
2246         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2247                  res, info->io.regsize, info->io.regspacing,
2248                  info->irq);
2249
2250         if (add_smi(info))
2251                 goto err_free;
2252
2253         return 0;
2254
2255 err_free:
2256         kfree(info);
2257         return -EINVAL;
2258 }
2259
2260 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2261 {
2262         struct smi_info *info = pnp_get_drvdata(dev);
2263
2264         cleanup_one_si(info);
2265 }
2266
2267 static const struct pnp_device_id pnp_dev_table[] = {
2268         {"IPI0001", 0},
2269         {"", 0},
2270 };
2271
2272 static struct pnp_driver ipmi_pnp_driver = {
2273         .name           = DEVICE_NAME,
2274         .probe          = ipmi_pnp_probe,
2275         .remove         = __devexit_p(ipmi_pnp_remove),
2276         .id_table       = pnp_dev_table,
2277 };
2278 #endif
2279
2280 #ifdef CONFIG_DMI
2281 struct dmi_ipmi_data {
2282         u8              type;
2283         u8              addr_space;
2284         unsigned long   base_addr;
2285         u8              irq;
2286         u8              offset;
2287         u8              slave_addr;
2288 };
2289
2290 static int __devinit decode_dmi(const struct dmi_header *dm,
2291                                 struct dmi_ipmi_data *dmi)
2292 {
2293         const u8        *data = (const u8 *)dm;
2294         unsigned long   base_addr;
2295         u8              reg_spacing;
2296         u8              len = dm->length;
2297
2298         dmi->type = data[4];
2299
2300         memcpy(&base_addr, data+8, sizeof(unsigned long));
2301         if (len >= 0x11) {
2302                 if (base_addr & 1) {
2303                         /* I/O */
2304                         base_addr &= 0xFFFE;
2305                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2306                 } else
2307                         /* Memory */
2308                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2309
2310                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2311                    is odd. */
2312                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2313
2314                 dmi->irq = data[0x11];
2315
2316                 /* The top two bits of byte 0x10 hold the register spacing. */
2317                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2318                 switch (reg_spacing) {
2319                 case 0x00: /* Byte boundaries */
2320                     dmi->offset = 1;
2321                     break;
2322                 case 0x01: /* 32-bit boundaries */
2323                     dmi->offset = 4;
2324                     break;
2325                 case 0x02: /* 16-byte boundaries */
2326                     dmi->offset = 16;
2327                     break;
2328                 default:
2329                     /* Some other interface, just ignore it. */
2330                     return -EIO;
2331                 }
2332         } else {
2333                 /* Old DMI spec. */
2334                 /*
2335                  * Note that technically, the lower bit of the base
2336                  * address should be 1 if the address is I/O and 0 if
2337                  * the address is in memory.  So many systems get that
2338                  * wrong (and all that I have seen are I/O) so we just
2339                  * ignore that bit and assume I/O.  Systems that use
2340                  * memory should use the newer spec, anyway.
2341                  */
2342                 dmi->base_addr = base_addr & 0xfffe;
2343                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2344                 dmi->offset = 1;
2345         }
2346
2347         dmi->slave_addr = data[6];
2348
2349         return 0;
2350 }
2351
2352 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2353 {
2354         struct smi_info *info;
2355
2356         info = smi_info_alloc();
2357         if (!info) {
2358                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2359                 return;
2360         }
2361
2362         info->addr_source = SI_SMBIOS;
2363         printk(KERN_INFO PFX "probing via SMBIOS\n");
2364
2365         switch (ipmi_data->type) {
2366         case 0x01: /* KCS */
2367                 info->si_type = SI_KCS;
2368                 break;
2369         case 0x02: /* SMIC */
2370                 info->si_type = SI_SMIC;
2371                 break;
2372         case 0x03: /* BT */
2373                 info->si_type = SI_BT;
2374                 break;
2375         default:
2376                 kfree(info);
2377                 return;
2378         }
2379
2380         switch (ipmi_data->addr_space) {
2381         case IPMI_MEM_ADDR_SPACE:
2382                 info->io_setup = mem_setup;
2383                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2384                 break;
2385
2386         case IPMI_IO_ADDR_SPACE:
2387                 info->io_setup = port_setup;
2388                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2389                 break;
2390
2391         default:
2392                 kfree(info);
2393                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2394                        ipmi_data->addr_space);
2395                 return;
2396         }
2397         info->io.addr_data = ipmi_data->base_addr;
2398
2399         info->io.regspacing = ipmi_data->offset;
2400         if (!info->io.regspacing)
2401                 info->io.regspacing = DEFAULT_REGSPACING;
2402         info->io.regsize = DEFAULT_REGSPACING;
2403         info->io.regshift = 0;
2404
2405         info->slave_addr = ipmi_data->slave_addr;
2406
2407         info->irq = ipmi_data->irq;
2408         if (info->irq)
2409                 info->irq_setup = std_irq_setup;
2410
2411         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2412                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2413                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2414                  info->irq);
2415
2416         if (add_smi(info))
2417                 kfree(info);
2418 }
2419
2420 static void __devinit dmi_find_bmc(void)
2421 {
2422         const struct dmi_device *dev = NULL;
2423         struct dmi_ipmi_data data;
2424         int                  rv;
2425
2426         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2427                 memset(&data, 0, sizeof(data));
2428                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2429                                 &data);
2430                 if (!rv)
2431                         try_init_dmi(&data);
2432         }
2433 }
2434 #endif /* CONFIG_DMI */
2435
2436 #ifdef CONFIG_PCI
2437
2438 #define PCI_ERMC_CLASSCODE              0x0C0700
2439 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2440 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2441 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2442 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2443 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2444
2445 #define PCI_HP_VENDOR_ID    0x103C
2446 #define PCI_MMC_DEVICE_ID   0x121A
2447 #define PCI_MMC_ADDR_CW     0x10
2448
2449 static void ipmi_pci_cleanup(struct smi_info *info)
2450 {
2451         struct pci_dev *pdev = info->addr_source_data;
2452
2453         pci_disable_device(pdev);
2454 }
2455
2456 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2457                                     const struct pci_device_id *ent)
2458 {
2459         int rv;
2460         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2461         struct smi_info *info;
2462
2463         info = smi_info_alloc();
2464         if (!info)
2465                 return -ENOMEM;
2466
2467         info->addr_source = SI_PCI;
2468         dev_info(&pdev->dev, "probing via PCI");
2469
2470         switch (class_type) {
2471         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2472                 info->si_type = SI_SMIC;
2473                 break;
2474
2475         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2476                 info->si_type = SI_KCS;
2477                 break;
2478
2479         case PCI_ERMC_CLASSCODE_TYPE_BT:
2480                 info->si_type = SI_BT;
2481                 break;
2482
2483         default:
2484                 kfree(info);
2485                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2486                 return -ENOMEM;
2487         }
2488
2489         rv = pci_enable_device(pdev);
2490         if (rv) {
2491                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2492                 kfree(info);
2493                 return rv;
2494         }
2495
2496         info->addr_source_cleanup = ipmi_pci_cleanup;
2497         info->addr_source_data = pdev;
2498
2499         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2500                 info->io_setup = port_setup;
2501                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2502         } else {
2503                 info->io_setup = mem_setup;
2504                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2505         }
2506         info->io.addr_data = pci_resource_start(pdev, 0);
2507
2508         info->io.regspacing = DEFAULT_REGSPACING;
2509         info->io.regsize = DEFAULT_REGSPACING;
2510         info->io.regshift = 0;
2511
2512         info->irq = pdev->irq;
2513         if (info->irq)
2514                 info->irq_setup = std_irq_setup;
2515
2516         info->dev = &pdev->dev;
2517         pci_set_drvdata(pdev, info);
2518
2519         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2520                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2521                 info->irq);
2522
2523         if (add_smi(info))
2524                 kfree(info);
2525
2526         return 0;
2527 }
2528
2529 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2530 {
2531         struct smi_info *info = pci_get_drvdata(pdev);
2532         cleanup_one_si(info);
2533 }
2534
2535 #ifdef CONFIG_PM
2536 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2537 {
2538         return 0;
2539 }
2540
2541 static int ipmi_pci_resume(struct pci_dev *pdev)
2542 {
2543         return 0;
2544 }
2545 #endif
2546
2547 static struct pci_device_id ipmi_pci_devices[] = {
2548         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2549         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2550         { 0, }
2551 };
2552 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2553
2554 static struct pci_driver ipmi_pci_driver = {
2555         .name =         DEVICE_NAME,
2556         .id_table =     ipmi_pci_devices,
2557         .probe =        ipmi_pci_probe,
2558         .remove =       __devexit_p(ipmi_pci_remove),
2559 #ifdef CONFIG_PM
2560         .suspend =      ipmi_pci_suspend,
2561         .resume =       ipmi_pci_resume,
2562 #endif
2563 };
2564 #endif /* CONFIG_PCI */
2565
2566
2567 #ifdef CONFIG_PPC_OF
2568 static int __devinit ipmi_of_probe(struct platform_device *dev,
2569                          const struct of_device_id *match)
2570 {
2571         struct smi_info *info;
2572         struct resource resource;
2573         const __be32 *regsize, *regspacing, *regshift;
2574         struct device_node *np = dev->dev.of_node;
2575         int ret;
2576         int proplen;
2577
2578         dev_info(&dev->dev, "probing via device tree\n");
2579
2580         ret = of_address_to_resource(np, 0, &resource);
2581         if (ret) {
2582                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2583                 return ret;
2584         }
2585
2586         regsize = of_get_property(np, "reg-size", &proplen);
2587         if (regsize && proplen != 4) {
2588                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2589                 return -EINVAL;
2590         }
2591
2592         regspacing = of_get_property(np, "reg-spacing", &proplen);
2593         if (regspacing && proplen != 4) {
2594                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2595                 return -EINVAL;
2596         }
2597
2598         regshift = of_get_property(np, "reg-shift", &proplen);
2599         if (regshift && proplen != 4) {
2600                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2601                 return -EINVAL;
2602         }
2603
2604         info = smi_info_alloc();
2605
2606         if (!info) {
2607                 dev_err(&dev->dev,
2608                         "could not allocate memory for OF probe\n");
2609                 return -ENOMEM;
2610         }
2611
2612         info->si_type           = (enum si_type) match->data;
2613         info->addr_source       = SI_DEVICETREE;
2614         info->irq_setup         = std_irq_setup;
2615
2616         if (resource.flags & IORESOURCE_IO) {
2617                 info->io_setup          = port_setup;
2618                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2619         } else {
2620                 info->io_setup          = mem_setup;
2621                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2622         }
2623
2624         info->io.addr_data      = resource.start;
2625
2626         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2627         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2628         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2629
2630         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2631         info->dev               = &dev->dev;
2632
2633         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2634                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2635                 info->irq);
2636
2637         dev_set_drvdata(&dev->dev, info);
2638
2639         if (add_smi(info)) {
2640                 kfree(info);
2641                 return -EBUSY;
2642         }
2643
2644         return 0;
2645 }
2646
2647 static int __devexit ipmi_of_remove(struct platform_device *dev)
2648 {
2649         cleanup_one_si(dev_get_drvdata(&dev->dev));
2650         return 0;
2651 }
2652
2653 static struct of_device_id ipmi_match[] =
2654 {
2655         { .type = "ipmi", .compatible = "ipmi-kcs",
2656           .data = (void *)(unsigned long) SI_KCS },
2657         { .type = "ipmi", .compatible = "ipmi-smic",
2658           .data = (void *)(unsigned long) SI_SMIC },
2659         { .type = "ipmi", .compatible = "ipmi-bt",
2660           .data = (void *)(unsigned long) SI_BT },
2661         {},
2662 };
2663
2664 static struct of_platform_driver ipmi_of_platform_driver = {
2665         .driver = {
2666                 .name = "ipmi",
2667                 .owner = THIS_MODULE,
2668                 .of_match_table = ipmi_match,
2669         },
2670         .probe          = ipmi_of_probe,
2671         .remove         = __devexit_p(ipmi_of_remove),
2672 };
2673 #endif /* CONFIG_PPC_OF */
2674
2675 static int wait_for_msg_done(struct smi_info *smi_info)
2676 {
2677         enum si_sm_result     smi_result;
2678
2679         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2680         for (;;) {
2681                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2682                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2683                         schedule_timeout_uninterruptible(1);
2684                         smi_result = smi_info->handlers->event(
2685                                 smi_info->si_sm, 100);
2686                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2687                         smi_result = smi_info->handlers->event(
2688                                 smi_info->si_sm, 0);
2689                 } else
2690                         break;
2691         }
2692         if (smi_result == SI_SM_HOSED)
2693                 /*
2694                  * We couldn't get the state machine to run, so whatever's at
2695                  * the port is probably not an IPMI SMI interface.
2696                  */
2697                 return -ENODEV;
2698
2699         return 0;
2700 }
2701
2702 static int try_get_dev_id(struct smi_info *smi_info)
2703 {
2704         unsigned char         msg[2];
2705         unsigned char         *resp;
2706         unsigned long         resp_len;
2707         int                   rv = 0;
2708
2709         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2710         if (!resp)
2711                 return -ENOMEM;
2712
2713         /*
2714          * Do a Get Device ID command, since it comes back with some
2715          * useful info.
2716          */
2717         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2718         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2719         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2720
2721         rv = wait_for_msg_done(smi_info);
2722         if (rv)
2723                 goto out;
2724
2725         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2726                                                   resp, IPMI_MAX_MSG_LENGTH);
2727
2728         /* Check and record info from the get device id, in case we need it. */
2729         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2730
2731  out:
2732         kfree(resp);
2733         return rv;
2734 }
2735
2736 static int try_enable_event_buffer(struct smi_info *smi_info)
2737 {
2738         unsigned char         msg[3];
2739         unsigned char         *resp;
2740         unsigned long         resp_len;
2741         int                   rv = 0;
2742
2743         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2744         if (!resp)
2745                 return -ENOMEM;
2746
2747         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2748         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2749         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2750
2751         rv = wait_for_msg_done(smi_info);
2752         if (rv) {
2753                 printk(KERN_WARNING PFX "Error getting response from get"
2754                        " global enables command, the event buffer is not"
2755                        " enabled.\n");
2756                 goto out;
2757         }
2758
2759         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2760                                                   resp, IPMI_MAX_MSG_LENGTH);
2761
2762         if (resp_len < 4 ||
2763                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2764                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2765                         resp[2] != 0) {
2766                 printk(KERN_WARNING PFX "Invalid return from get global"
2767                        " enables command, cannot enable the event buffer.\n");
2768                 rv = -EINVAL;
2769                 goto out;
2770         }
2771
2772         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2773                 /* buffer is already enabled, nothing to do. */
2774                 goto out;
2775
2776         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2777         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2778         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2779         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2780
2781         rv = wait_for_msg_done(smi_info);
2782         if (rv) {
2783                 printk(KERN_WARNING PFX "Error getting response from set"
2784                        " global, enables command, the event buffer is not"
2785                        " enabled.\n");
2786                 goto out;
2787         }
2788
2789         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2790                                                   resp, IPMI_MAX_MSG_LENGTH);
2791
2792         if (resp_len < 3 ||
2793                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2794                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2795                 printk(KERN_WARNING PFX "Invalid return from get global,"
2796                        "enables command, not enable the event buffer.\n");
2797                 rv = -EINVAL;
2798                 goto out;
2799         }
2800
2801         if (resp[2] != 0)
2802                 /*
2803                  * An error when setting the event buffer bit means
2804                  * that the event buffer is not supported.
2805                  */
2806                 rv = -ENOENT;
2807  out:
2808         kfree(resp);
2809         return rv;
2810 }
2811
2812 static int type_file_read_proc(char *page, char **start, off_t off,
2813                                int count, int *eof, void *data)
2814 {
2815         struct smi_info *smi = data;
2816
2817         return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2818 }
2819
2820 static int stat_file_read_proc(char *page, char **start, off_t off,
2821                                int count, int *eof, void *data)
2822 {
2823         char            *out = (char *) page;
2824         struct smi_info *smi = data;
2825
2826         out += sprintf(out, "interrupts_enabled:    %d\n",
2827                        smi->irq && !smi->interrupt_disabled);
2828         out += sprintf(out, "short_timeouts:        %u\n",
2829                        smi_get_stat(smi, short_timeouts));
2830         out += sprintf(out, "long_timeouts:         %u\n",
2831                        smi_get_stat(smi, long_timeouts));
2832         out += sprintf(out, "idles:                 %u\n",
2833                        smi_get_stat(smi, idles));
2834         out += sprintf(out, "interrupts:            %u\n",
2835                        smi_get_stat(smi, interrupts));
2836         out += sprintf(out, "attentions:            %u\n",
2837                        smi_get_stat(smi, attentions));
2838         out += sprintf(out, "flag_fetches:          %u\n",
2839                        smi_get_stat(smi, flag_fetches));
2840         out += sprintf(out, "hosed_count:           %u\n",
2841                        smi_get_stat(smi, hosed_count));
2842         out += sprintf(out, "complete_transactions: %u\n",
2843                        smi_get_stat(smi, complete_transactions));
2844         out += sprintf(out, "events:                %u\n",
2845                        smi_get_stat(smi, events));
2846         out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2847                        smi_get_stat(smi, watchdog_pretimeouts));
2848         out += sprintf(out, "incoming_messages:     %u\n",
2849                        smi_get_stat(smi, incoming_messages));
2850
2851         return out - page;
2852 }
2853
2854 static int param_read_proc(char *page, char **start, off_t off,
2855                            int count, int *eof, void *data)
2856 {
2857         struct smi_info *smi = data;
2858
2859         return sprintf(page,
2860                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2861                        si_to_str[smi->si_type],
2862                        addr_space_to_str[smi->io.addr_type],
2863                        smi->io.addr_data,
2864                        smi->io.regspacing,
2865                        smi->io.regsize,
2866                        smi->io.regshift,
2867                        smi->irq,
2868                        smi->slave_addr);
2869 }
2870
2871 /*
2872  * oem_data_avail_to_receive_msg_avail
2873  * @info - smi_info structure with msg_flags set
2874  *
2875  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2876  * Returns 1 indicating need to re-run handle_flags().
2877  */
2878 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2879 {
2880         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2881                                RECEIVE_MSG_AVAIL);
2882         return 1;
2883 }
2884
2885 /*
2886  * setup_dell_poweredge_oem_data_handler
2887  * @info - smi_info.device_id must be populated
2888  *
2889  * Systems that match, but have firmware version < 1.40 may assert
2890  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2891  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2892  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2893  * as RECEIVE_MSG_AVAIL instead.
2894  *
2895  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2896  * assert the OEM[012] bits, and if it did, the driver would have to
2897  * change to handle that properly, we don't actually check for the
2898  * firmware version.
2899  * Device ID = 0x20                BMC on PowerEdge 8G servers
2900  * Device Revision = 0x80
2901  * Firmware Revision1 = 0x01       BMC version 1.40
2902  * Firmware Revision2 = 0x40       BCD encoded
2903  * IPMI Version = 0x51             IPMI 1.5
2904  * Manufacturer ID = A2 02 00      Dell IANA
2905  *
2906  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2907  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2908  *
2909  */
2910 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2911 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2912 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2913 #define DELL_IANA_MFR_ID 0x0002a2
2914 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2915 {
2916         struct ipmi_device_id *id = &smi_info->device_id;
2917         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2918                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2919                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2920                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2921                         smi_info->oem_data_avail_handler =
2922                                 oem_data_avail_to_receive_msg_avail;
2923                 } else if (ipmi_version_major(id) < 1 ||
2924                            (ipmi_version_major(id) == 1 &&
2925                             ipmi_version_minor(id) < 5)) {
2926                         smi_info->oem_data_avail_handler =
2927                                 oem_data_avail_to_receive_msg_avail;
2928                 }
2929         }
2930 }
2931
2932 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2933 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2934 {
2935         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2936
2937         /* Make it a reponse */
2938         msg->rsp[0] = msg->data[0] | 4;
2939         msg->rsp[1] = msg->data[1];
2940         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2941         msg->rsp_size = 3;
2942         smi_info->curr_msg = NULL;
2943         deliver_recv_msg(smi_info, msg);
2944 }
2945
2946 /*
2947  * dell_poweredge_bt_xaction_handler
2948  * @info - smi_info.device_id must be populated
2949  *
2950  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2951  * not respond to a Get SDR command if the length of the data
2952  * requested is exactly 0x3A, which leads to command timeouts and no
2953  * data returned.  This intercepts such commands, and causes userspace
2954  * callers to try again with a different-sized buffer, which succeeds.
2955  */
2956
2957 #define STORAGE_NETFN 0x0A
2958 #define STORAGE_CMD_GET_SDR 0x23
2959 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2960                                              unsigned long unused,
2961                                              void *in)
2962 {
2963         struct smi_info *smi_info = in;
2964         unsigned char *data = smi_info->curr_msg->data;
2965         unsigned int size   = smi_info->curr_msg->data_size;
2966         if (size >= 8 &&
2967             (data[0]>>2) == STORAGE_NETFN &&
2968             data[1] == STORAGE_CMD_GET_SDR &&
2969             data[7] == 0x3A) {
2970                 return_hosed_msg_badsize(smi_info);
2971                 return NOTIFY_STOP;
2972         }
2973         return NOTIFY_DONE;
2974 }
2975
2976 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2977         .notifier_call  = dell_poweredge_bt_xaction_handler,
2978 };
2979
2980 /*
2981  * setup_dell_poweredge_bt_xaction_handler
2982  * @info - smi_info.device_id must be filled in already
2983  *
2984  * Fills in smi_info.device_id.start_transaction_pre_hook
2985  * when we know what function to use there.
2986  */
2987 static void
2988 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2989 {
2990         struct ipmi_device_id *id = &smi_info->device_id;
2991         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2992             smi_info->si_type == SI_BT)
2993                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2994 }
2995
2996 /*
2997  * setup_oem_data_handler
2998  * @info - smi_info.device_id must be filled in already
2999  *
3000  * Fills in smi_info.device_id.oem_data_available_handler
3001  * when we know what function to use there.
3002  */
3003
3004 static void setup_oem_data_handler(struct smi_info *smi_info)
3005 {
3006         setup_dell_poweredge_oem_data_handler(smi_info);
3007 }
3008
3009 static void setup_xaction_handlers(struct smi_info *smi_info)
3010 {
3011         setup_dell_poweredge_bt_xaction_handler(smi_info);
3012 }
3013
3014 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3015 {
3016         if (smi_info->intf) {
3017                 /*
3018                  * The timer and thread are only running if the
3019                  * interface has been started up and registered.
3020                  */
3021                 if (smi_info->thread != NULL)
3022                         kthread_stop(smi_info->thread);
3023                 del_timer_sync(&smi_info->si_timer);
3024         }
3025 }
3026
3027 static __devinitdata struct ipmi_default_vals
3028 {
3029         int type;
3030         int port;
3031 } ipmi_defaults[] =
3032 {
3033         { .type = SI_KCS, .port = 0xca2 },
3034         { .type = SI_SMIC, .port = 0xca9 },
3035         { .type = SI_BT, .port = 0xe4 },
3036         { .port = 0 }
3037 };
3038
3039 static void __devinit default_find_bmc(void)
3040 {
3041         struct smi_info *info;
3042         int             i;
3043
3044         for (i = 0; ; i++) {
3045                 if (!ipmi_defaults[i].port)
3046                         break;
3047 #ifdef CONFIG_PPC
3048                 if (check_legacy_ioport(ipmi_defaults[i].port))
3049                         continue;
3050 #endif
3051                 info = smi_info_alloc();
3052                 if (!info)
3053                         return;
3054
3055                 info->addr_source = SI_DEFAULT;
3056
3057                 info->si_type = ipmi_defaults[i].type;
3058                 info->io_setup = port_setup;
3059                 info->io.addr_data = ipmi_defaults[i].port;
3060                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3061
3062                 info->io.addr = NULL;
3063                 info->io.regspacing = DEFAULT_REGSPACING;
3064                 info->io.regsize = DEFAULT_REGSPACING;
3065                 info->io.regshift = 0;
3066
3067                 if (add_smi(info) == 0) {
3068                         if ((try_smi_init(info)) == 0) {
3069                                 /* Found one... */
3070                                 printk(KERN_INFO PFX "Found default %s"
3071                                 " state machine at %s address 0x%lx\n",
3072                                 si_to_str[info->si_type],
3073                                 addr_space_to_str[info->io.addr_type],
3074                                 info->io.addr_data);
3075                         } else
3076                                 cleanup_one_si(info);
3077                 } else {
3078                         kfree(info);
3079                 }
3080         }
3081 }
3082
3083 static int is_new_interface(struct smi_info *info)
3084 {
3085         struct smi_info *e;
3086
3087         list_for_each_entry(e, &smi_infos, link) {
3088                 if (e->io.addr_type != info->io.addr_type)
3089                         continue;
3090                 if (e->io.addr_data == info->io.addr_data)
3091                         return 0;
3092         }
3093
3094         return 1;
3095 }
3096
3097 static int add_smi(struct smi_info *new_smi)
3098 {
3099         int rv = 0;
3100
3101         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3102                         ipmi_addr_src_to_str[new_smi->addr_source],
3103                         si_to_str[new_smi->si_type]);
3104         mutex_lock(&smi_infos_lock);
3105         if (!is_new_interface(new_smi)) {
3106                 printk(KERN_CONT " duplicate interface\n");
3107                 rv = -EBUSY;
3108                 goto out_err;
3109         }
3110
3111         printk(KERN_CONT "\n");
3112
3113         /* So we know not to free it unless we have allocated one. */
3114         new_smi->intf = NULL;
3115         new_smi->si_sm = NULL;
3116         new_smi->handlers = NULL;
3117
3118         list_add_tail(&new_smi->link, &smi_infos);
3119
3120 out_err:
3121         mutex_unlock(&smi_infos_lock);
3122         return rv;
3123 }
3124
3125 static int try_smi_init(struct smi_info *new_smi)
3126 {
3127         int rv = 0;
3128         int i;
3129
3130         printk(KERN_INFO PFX "Trying %s-specified %s state"
3131                " machine at %s address 0x%lx, slave address 0x%x,"
3132                " irq %d\n",
3133                ipmi_addr_src_to_str[new_smi->addr_source],
3134                si_to_str[new_smi->si_type],
3135                addr_space_to_str[new_smi->io.addr_type],
3136                new_smi->io.addr_data,
3137                new_smi->slave_addr, new_smi->irq);
3138
3139         switch (new_smi->si_type) {
3140         case SI_KCS:
3141                 new_smi->handlers = &kcs_smi_handlers;
3142                 break;
3143
3144         case SI_SMIC:
3145                 new_smi->handlers = &smic_smi_handlers;
3146                 break;
3147
3148         case SI_BT:
3149                 new_smi->handlers = &bt_smi_handlers;
3150                 break;
3151
3152         default:
3153                 /* No support for anything else yet. */
3154                 rv = -EIO;
3155                 goto out_err;
3156         }
3157
3158         /* Allocate the state machine's data and initialize it. */
3159         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3160         if (!new_smi->si_sm) {
3161                 printk(KERN_ERR PFX
3162                        "Could not allocate state machine memory\n");
3163                 rv = -ENOMEM;
3164                 goto out_err;
3165         }
3166         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3167                                                         &new_smi->io);
3168
3169         /* Now that we know the I/O size, we can set up the I/O. */
3170         rv = new_smi->io_setup(new_smi);
3171         if (rv) {
3172                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3173                 goto out_err;
3174         }
3175
3176         /* Do low-level detection first. */
3177         if (new_smi->handlers->detect(new_smi->si_sm)) {
3178                 if (new_smi->addr_source)
3179                         printk(KERN_INFO PFX "Interface detection failed\n");
3180                 rv = -ENODEV;
3181                 goto out_err;
3182         }
3183
3184         /*
3185          * Attempt a get device id command.  If it fails, we probably
3186          * don't have a BMC here.
3187          */
3188         rv = try_get_dev_id(new_smi);
3189         if (rv) {
3190                 if (new_smi->addr_source)
3191                         printk(KERN_INFO PFX "There appears to be no BMC"
3192                                " at this location\n");
3193                 goto out_err;
3194         }
3195
3196         setup_oem_data_handler(new_smi);
3197         setup_xaction_handlers(new_smi);
3198
3199         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3200         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3201         new_smi->curr_msg = NULL;
3202         atomic_set(&new_smi->req_events, 0);
3203         new_smi->run_to_completion = 0;
3204         for (i = 0; i < SI_NUM_STATS; i++)
3205                 atomic_set(&new_smi->stats[i], 0);
3206
3207         new_smi->interrupt_disabled = 1;
3208         atomic_set(&new_smi->stop_operation, 0);
3209         new_smi->intf_num = smi_num;
3210         smi_num++;
3211
3212         rv = try_enable_event_buffer(new_smi);
3213         if (rv == 0)
3214                 new_smi->has_event_buffer = 1;
3215
3216         /*
3217          * Start clearing the flags before we enable interrupts or the
3218          * timer to avoid racing with the timer.
3219          */
3220         start_clear_flags(new_smi);
3221         /* IRQ is defined to be set when non-zero. */
3222         if (new_smi->irq)
3223                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3224
3225         if (!new_smi->dev) {
3226                 /*
3227                  * If we don't already have a device from something
3228                  * else (like PCI), then register a new one.
3229                  */
3230                 new_smi->pdev = platform_device_alloc("ipmi_si",
3231                                                       new_smi->intf_num);
3232                 if (!new_smi->pdev) {
3233                         printk(KERN_ERR PFX
3234                                "Unable to allocate platform device\n");
3235                         goto out_err;
3236                 }
3237                 new_smi->dev = &new_smi->pdev->dev;
3238                 new_smi->dev->driver = &ipmi_driver.driver;
3239
3240                 rv = platform_device_add(new_smi->pdev);
3241                 if (rv) {
3242                         printk(KERN_ERR PFX
3243                                "Unable to register system interface device:"
3244                                " %d\n",
3245                                rv);
3246                         goto out_err;
3247                 }
3248                 new_smi->dev_registered = 1;
3249         }
3250
3251         rv = ipmi_register_smi(&handlers,
3252                                new_smi,
3253                                &new_smi->device_id,
3254                                new_smi->dev,
3255                                "bmc",
3256                                new_smi->slave_addr);
3257         if (rv) {
3258                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3259                         rv);
3260                 goto out_err_stop_timer;
3261         }
3262
3263         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3264                                      type_file_read_proc,
3265                                      new_smi);
3266         if (rv) {
3267                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3268                 goto out_err_stop_timer;
3269         }
3270
3271         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3272                                      stat_file_read_proc,
3273                                      new_smi);
3274         if (rv) {
3275                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3276                 goto out_err_stop_timer;
3277         }
3278
3279         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3280                                      param_read_proc,
3281                                      new_smi);
3282         if (rv) {
3283                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3284                 goto out_err_stop_timer;
3285         }
3286
3287         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3288                  si_to_str[new_smi->si_type]);
3289
3290         return 0;
3291
3292  out_err_stop_timer:
3293         atomic_inc(&new_smi->stop_operation);
3294         wait_for_timer_and_thread(new_smi);
3295
3296  out_err:
3297         new_smi->interrupt_disabled = 1;
3298
3299         if (new_smi->intf) {
3300                 ipmi_unregister_smi(new_smi->intf);
3301                 new_smi->intf = NULL;
3302         }
3303
3304         if (new_smi->irq_cleanup) {
3305                 new_smi->irq_cleanup(new_smi);
3306                 new_smi->irq_cleanup = NULL;
3307         }
3308
3309         /*
3310          * Wait until we know that we are out of any interrupt
3311          * handlers might have been running before we freed the
3312          * interrupt.
3313          */
3314         synchronize_sched();
3315
3316         if (new_smi->si_sm) {
3317                 if (new_smi->handlers)
3318                         new_smi->handlers->cleanup(new_smi->si_sm);
3319                 kfree(new_smi->si_sm);
3320                 new_smi->si_sm = NULL;
3321         }
3322         if (new_smi->addr_source_cleanup) {
3323                 new_smi->addr_source_cleanup(new_smi);
3324                 new_smi->addr_source_cleanup = NULL;
3325         }
3326         if (new_smi->io_cleanup) {
3327                 new_smi->io_cleanup(new_smi);
3328                 new_smi->io_cleanup = NULL;
3329         }
3330
3331         if (new_smi->dev_registered) {
3332                 platform_device_unregister(new_smi->pdev);
3333                 new_smi->dev_registered = 0;
3334         }
3335
3336         return rv;
3337 }
3338
3339 static int __devinit init_ipmi_si(void)
3340 {
3341         int  i;
3342         char *str;
3343         int  rv;
3344         struct smi_info *e;
3345         enum ipmi_addr_src type = SI_INVALID;
3346
3347         if (initialized)
3348                 return 0;
3349         initialized = 1;
3350
3351         /* Register the device drivers. */
3352         rv = driver_register(&ipmi_driver.driver);
3353         if (rv) {
3354                 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3355                 return rv;
3356         }
3357
3358
3359         /* Parse out the si_type string into its components. */
3360         str = si_type_str;
3361         if (*str != '\0') {
3362                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3363                         si_type[i] = str;
3364                         str = strchr(str, ',');
3365                         if (str) {
3366                                 *str = '\0';
3367                                 str++;
3368                         } else {
3369                                 break;
3370                         }
3371                 }
3372         }
3373
3374         printk(KERN_INFO "IPMI System Interface driver.\n");
3375
3376         hardcode_find_bmc();
3377
3378         /* If the user gave us a device, they presumably want us to use it */
3379         mutex_lock(&smi_infos_lock);
3380         if (!list_empty(&smi_infos)) {
3381                 mutex_unlock(&smi_infos_lock);
3382                 return 0;
3383         }
3384         mutex_unlock(&smi_infos_lock);
3385
3386 #ifdef CONFIG_PCI
3387         rv = pci_register_driver(&ipmi_pci_driver);
3388         if (rv)
3389                 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3390         else
3391                 pci_registered = 1;
3392 #endif
3393
3394 #ifdef CONFIG_ACPI
3395         pnp_register_driver(&ipmi_pnp_driver);
3396         pnp_registered = 1;
3397 #endif
3398
3399 #ifdef CONFIG_DMI
3400         dmi_find_bmc();
3401 #endif
3402
3403 #ifdef CONFIG_ACPI
3404         spmi_find_bmc();
3405 #endif
3406
3407 #ifdef CONFIG_PPC_OF
3408         of_register_platform_driver(&ipmi_of_platform_driver);
3409         of_registered = 1;
3410 #endif
3411
3412         /* We prefer devices with interrupts, but in the case of a machine
3413            with multiple BMCs we assume that there will be several instances
3414            of a given type so if we succeed in registering a type then also
3415            try to register everything else of the same type */
3416
3417         mutex_lock(&smi_infos_lock);
3418         list_for_each_entry(e, &smi_infos, link) {
3419                 /* Try to register a device if it has an IRQ and we either
3420                    haven't successfully registered a device yet or this
3421                    device has the same type as one we successfully registered */
3422                 if (e->irq && (!type || e->addr_source == type)) {
3423                         if (!try_smi_init(e)) {
3424                                 type = e->addr_source;
3425                         }
3426                 }
3427         }
3428
3429         /* type will only have been set if we successfully registered an si */
3430         if (type) {
3431                 mutex_unlock(&smi_infos_lock);
3432                 return 0;
3433         }
3434
3435         /* Fall back to the preferred device */
3436
3437         list_for_each_entry(e, &smi_infos, link) {
3438                 if (!e->irq && (!type || e->addr_source == type)) {
3439                         if (!try_smi_init(e)) {
3440                                 type = e->addr_source;
3441                         }
3442                 }
3443         }
3444         mutex_unlock(&smi_infos_lock);
3445
3446         if (type)
3447                 return 0;
3448
3449         if (si_trydefaults) {
3450                 mutex_lock(&smi_infos_lock);
3451                 if (list_empty(&smi_infos)) {
3452                         /* No BMC was found, try defaults. */
3453                         mutex_unlock(&smi_infos_lock);
3454                         default_find_bmc();
3455                 } else
3456                         mutex_unlock(&smi_infos_lock);
3457         }
3458
3459         mutex_lock(&smi_infos_lock);
3460         if (unload_when_empty && list_empty(&smi_infos)) {
3461                 mutex_unlock(&smi_infos_lock);
3462                 cleanup_ipmi_si();
3463                 printk(KERN_WARNING PFX
3464                        "Unable to find any System Interface(s)\n");
3465                 return -ENODEV;
3466         } else {
3467                 mutex_unlock(&smi_infos_lock);
3468                 return 0;
3469         }
3470 }
3471 module_init(init_ipmi_si);
3472
3473 static void cleanup_one_si(struct smi_info *to_clean)
3474 {
3475         int           rv = 0;
3476         unsigned long flags;
3477
3478         if (!to_clean)
3479                 return;
3480
3481         list_del(&to_clean->link);
3482
3483         /* Tell the driver that we are shutting down. */
3484         atomic_inc(&to_clean->stop_operation);
3485
3486         /*
3487          * Make sure the timer and thread are stopped and will not run
3488          * again.
3489          */
3490         wait_for_timer_and_thread(to_clean);
3491
3492         /*
3493          * Timeouts are stopped, now make sure the interrupts are off
3494          * for the device.  A little tricky with locks to make sure
3495          * there are no races.
3496          */
3497         spin_lock_irqsave(&to_clean->si_lock, flags);
3498         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3499                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3500                 poll(to_clean);
3501                 schedule_timeout_uninterruptible(1);
3502                 spin_lock_irqsave(&to_clean->si_lock, flags);
3503         }
3504         disable_si_irq(to_clean);
3505         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3506         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3507                 poll(to_clean);
3508                 schedule_timeout_uninterruptible(1);
3509         }
3510
3511         /* Clean up interrupts and make sure that everything is done. */
3512         if (to_clean->irq_cleanup)
3513                 to_clean->irq_cleanup(to_clean);
3514         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3515                 poll(to_clean);
3516                 schedule_timeout_uninterruptible(1);
3517         }
3518
3519         if (to_clean->intf)
3520                 rv = ipmi_unregister_smi(to_clean->intf);
3521
3522         if (rv) {
3523                 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3524                        rv);
3525         }
3526
3527         if (to_clean->handlers)
3528                 to_clean->handlers->cleanup(to_clean->si_sm);
3529
3530         kfree(to_clean->si_sm);
3531
3532         if (to_clean->addr_source_cleanup)
3533                 to_clean->addr_source_cleanup(to_clean);
3534         if (to_clean->io_cleanup)
3535                 to_clean->io_cleanup(to_clean);
3536
3537         if (to_clean->dev_registered)
3538                 platform_device_unregister(to_clean->pdev);
3539
3540         kfree(to_clean);
3541 }
3542
3543 static void __exit cleanup_ipmi_si(void)
3544 {
3545         struct smi_info *e, *tmp_e;
3546
3547         if (!initialized)
3548                 return;
3549
3550 #ifdef CONFIG_PCI
3551         if (pci_registered)
3552                 pci_unregister_driver(&ipmi_pci_driver);
3553 #endif
3554 #ifdef CONFIG_ACPI
3555         if (pnp_registered)
3556                 pnp_unregister_driver(&ipmi_pnp_driver);
3557 #endif
3558
3559 #ifdef CONFIG_PPC_OF
3560         if (of_registered)
3561                 of_unregister_platform_driver(&ipmi_of_platform_driver);
3562 #endif
3563
3564         mutex_lock(&smi_infos_lock);
3565         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3566                 cleanup_one_si(e);
3567         mutex_unlock(&smi_infos_lock);
3568
3569         driver_unregister(&ipmi_driver.driver);
3570 }
3571 module_exit(cleanup_ipmi_si);
3572
3573 MODULE_LICENSE("GPL");
3574 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3575 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3576                    " system interfaces.");