]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - drivers/base/transport_class.c
[SCSI] correct transport class abstraction to work outside SCSI
[linux-2.6.git] / drivers / base / transport_class.c
1 /*
2  * transport_class.c - implementation of generic transport classes
3  *                     using attribute_containers
4  *
5  * Copyright (c) 2005 - James Bottomley <James.Bottomley@steeleye.com>
6  *
7  * This file is licensed under GPLv2
8  *
9  * The basic idea here is to allow any "device controller" (which
10  * would most often be a Host Bus Adapter" to use the services of one
11  * or more tranport classes for performing transport specific
12  * services.  Transport specific services are things that the generic
13  * command layer doesn't want to know about (speed settings, line
14  * condidtioning, etc), but which the user might be interested in.
15  * Thus, the HBA's use the routines exported by the transport classes
16  * to perform these functions.  The transport classes export certain
17  * values to the user via sysfs using attribute containers.
18  *
19  * Note: because not every HBA will care about every transport
20  * attribute, there's a many to one relationship that goes like this:
21  *
22  * transport class<-----attribute container<----class device
23  *
24  * Usually the attribute container is per-HBA, but the design doesn't
25  * mandate that.  Although most of the services will be specific to
26  * the actual external storage connection used by the HBA, the generic
27  * transport class is framed entirely in terms of generic devices to
28  * allow it to be used by any physical HBA in the system.
29  */
30 #include <linux/attribute_container.h>
31 #include <linux/transport_class.h>
32
33 /**
34  * transport_class_register - register an initial transport class
35  *
36  * @tclass:     a pointer to the transport class structure to be initialised
37  *
38  * The transport class contains an embedded class which is used to
39  * identify it.  The caller should initialise this structure with
40  * zeros and then generic class must have been initialised with the
41  * actual transport class unique name.  There's a macro
42  * DECLARE_TRANSPORT_CLASS() to do this (declared classes still must
43  * be registered).
44  *
45  * Returns 0 on success or error on failure.
46  */
47 int transport_class_register(struct transport_class *tclass)
48 {
49         return class_register(&tclass->class);
50 }
51 EXPORT_SYMBOL_GPL(transport_class_register);
52
53 /**
54  * transport_class_unregister - unregister a previously registered class
55  *
56  * @tclass: The transport class to unregister
57  *
58  * Must be called prior to deallocating the memory for the transport
59  * class.
60  */
61 void transport_class_unregister(struct transport_class *tclass)
62 {
63         class_unregister(&tclass->class);
64 }
65 EXPORT_SYMBOL_GPL(transport_class_unregister);
66
67 static int anon_transport_dummy_function(struct transport_container *tc,
68                                          struct device *dev,
69                                          struct class_device *cdev)
70 {
71         /* do nothing */
72         return 0;
73 }
74
75 /**
76  * anon_transport_class_register - register an anonymous class
77  *
78  * @atc: The anon transport class to register
79  *
80  * The anonymous transport class contains both a transport class and a
81  * container.  The idea of an anonymous class is that it never
82  * actually has any device attributes associated with it (and thus
83  * saves on container storage).  So it can only be used for triggering
84  * events.  Use prezero and then use DECLARE_ANON_TRANSPORT_CLASS() to
85  * initialise the anon transport class storage.
86  */
87 int anon_transport_class_register(struct anon_transport_class *atc)
88 {
89         int error;
90         atc->container.class = &atc->tclass.class;
91         attribute_container_set_no_classdevs(&atc->container);
92         error = attribute_container_register(&atc->container);
93         if (error)
94                 return error;
95         atc->tclass.setup = anon_transport_dummy_function;
96         atc->tclass.remove = anon_transport_dummy_function;
97         return 0;
98 }
99 EXPORT_SYMBOL_GPL(anon_transport_class_register);
100
101 /**
102  * anon_transport_class_unregister - unregister an anon class
103  *
104  * @atc: Pointer to the anon transport class to unregister
105  *
106  * Must be called prior to deallocating the memory for the anon
107  * transport class.
108  */
109 void anon_transport_class_unregister(struct anon_transport_class *atc)
110 {
111         attribute_container_unregister(&atc->container);
112 }
113 EXPORT_SYMBOL_GPL(anon_transport_class_unregister);
114
115 static int transport_setup_classdev(struct attribute_container *cont,
116                                     struct device *dev,
117                                     struct class_device *classdev)
118 {
119         struct transport_class *tclass = class_to_transport_class(cont->class);
120         struct transport_container *tcont = attribute_container_to_transport_container(cont);
121
122         if (tclass->setup)
123                 tclass->setup(tcont, dev, classdev);
124
125         return 0;
126 }
127
128 /**
129  * transport_setup_device - declare a new dev for transport class association
130  *                          but don't make it visible yet.
131  *
132  * @dev: the generic device representing the entity being added
133  *
134  * Usually, dev represents some component in the HBA system (either
135  * the HBA itself or a device remote across the HBA bus).  This
136  * routine is simply a trigger point to see if any set of transport
137  * classes wishes to associate with the added device.  This allocates
138  * storage for the class device and initialises it, but does not yet
139  * add it to the system or add attributes to it (you do this with
140  * transport_add_device).  If you have no need for a separate setup
141  * and add operations, use transport_register_device (see
142  * transport_class.h).
143  */
144
145 void transport_setup_device(struct device *dev)
146 {
147         attribute_container_add_device(dev, transport_setup_classdev);
148 }
149 EXPORT_SYMBOL_GPL(transport_setup_device);
150
151 static int transport_add_class_device(struct attribute_container *cont,
152                                       struct device *dev,
153                                       struct class_device *classdev)
154 {
155         int error = attribute_container_add_class_device(classdev);
156         struct transport_container *tcont = 
157                 attribute_container_to_transport_container(cont);
158
159         if (!error && tcont->statistics)
160                 error = sysfs_create_group(&classdev->kobj, tcont->statistics);
161
162         return error;
163 }
164
165
166 /**
167  * transport_add_device - declare a new dev for transport class association
168  *
169  * @dev: the generic device representing the entity being added
170  *
171  * Usually, dev represents some component in the HBA system (either
172  * the HBA itself or a device remote across the HBA bus).  This
173  * routine is simply a trigger point used to add the device to the
174  * system and register attributes for it.
175  */
176
177 void transport_add_device(struct device *dev)
178 {
179         attribute_container_device_trigger(dev, transport_add_class_device);
180 }
181 EXPORT_SYMBOL_GPL(transport_add_device);
182
183 static int transport_configure(struct attribute_container *cont,
184                                struct device *dev,
185                                struct class_device *cdev)
186 {
187         struct transport_class *tclass = class_to_transport_class(cont->class);
188         struct transport_container *tcont = attribute_container_to_transport_container(cont);
189
190         if (tclass->configure)
191                 tclass->configure(tcont, dev, cdev);
192
193         return 0;
194 }
195
196 /**
197  * transport_configure_device - configure an already set up device
198  *
199  * @dev: generic device representing device to be configured
200  *
201  * The idea of configure is simply to provide a point within the setup
202  * process to allow the transport class to extract information from a
203  * device after it has been setup.  This is used in SCSI because we
204  * have to have a setup device to begin using the HBA, but after we
205  * send the initial inquiry, we use configure to extract the device
206  * parameters.  The device need not have been added to be configured.
207  */
208 void transport_configure_device(struct device *dev)
209 {
210         attribute_container_device_trigger(dev, transport_configure);
211 }
212 EXPORT_SYMBOL_GPL(transport_configure_device);
213
214 static int transport_remove_classdev(struct attribute_container *cont,
215                                      struct device *dev,
216                                      struct class_device *classdev)
217 {
218         struct transport_container *tcont = 
219                 attribute_container_to_transport_container(cont);
220         struct transport_class *tclass = class_to_transport_class(cont->class);
221
222         if (tclass->remove)
223                 tclass->remove(tcont, dev, classdev);
224
225         if (tclass->remove != anon_transport_dummy_function) {
226                 if (tcont->statistics)
227                         sysfs_remove_group(&classdev->kobj, tcont->statistics);
228                 attribute_container_class_device_del(classdev);
229         }
230
231         return 0;
232 }
233
234
235 /**
236  * transport_remove_device - remove the visibility of a device
237  *
238  * @dev: generic device to remove
239  *
240  * This call removes the visibility of the device (to the user from
241  * sysfs), but does not destroy it.  To eliminate a device entirely
242  * you must also call transport_destroy_device.  If you don't need to
243  * do remove and destroy as separate operations, use
244  * transport_unregister_device() (see transport_class.h) which will
245  * perform both calls for you.
246  */
247 void transport_remove_device(struct device *dev)
248 {
249         attribute_container_device_trigger(dev, transport_remove_classdev);
250 }
251 EXPORT_SYMBOL_GPL(transport_remove_device);
252
253 static void transport_destroy_classdev(struct attribute_container *cont,
254                                       struct device *dev,
255                                       struct class_device *classdev)
256 {
257         struct transport_class *tclass = class_to_transport_class(cont->class);
258
259         if (tclass->remove != anon_transport_dummy_function)
260                 class_device_put(classdev);
261 }
262
263
264 /**
265  * transport_destroy_device - destroy a removed device
266  *
267  * @dev: device to eliminate from the transport class.
268  *
269  * This call triggers the elimination of storage associated with the
270  * transport classdev.  Note: all it really does is relinquish a
271  * reference to the classdev.  The memory will not be freed until the
272  * last reference goes to zero.  Note also that the classdev retains a
273  * reference count on dev, so dev too will remain for as long as the
274  * transport class device remains around.
275  */
276 void transport_destroy_device(struct device *dev)
277 {
278         attribute_container_remove_device(dev, transport_destroy_classdev);
279 }
280 EXPORT_SYMBOL_GPL(transport_destroy_device);