]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - crypto/cipher.c
[PATCH] uml: support AES i586 crypto driver
[linux-2.6.git] / crypto / cipher.c
1 /*
2  * Cryptographic API.
3  *
4  * Cipher operations.
5  *
6  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option) 
11  * any later version.
12  *
13  */
14 #include <linux/compiler.h>
15 #include <linux/kernel.h>
16 #include <linux/crypto.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/slab.h>
20 #include <linux/string.h>
21 #include <asm/scatterlist.h>
22 #include "internal.h"
23 #include "scatterwalk.h"
24
25 typedef void (cryptfn_t)(void *, u8 *, const u8 *);
26 typedef void (procfn_t)(struct crypto_tfm *, u8 *,
27                         u8*, cryptfn_t, void *);
28
29 static inline void xor_64(u8 *a, const u8 *b)
30 {
31         ((u32 *)a)[0] ^= ((u32 *)b)[0];
32         ((u32 *)a)[1] ^= ((u32 *)b)[1];
33 }
34
35 static inline void xor_128(u8 *a, const u8 *b)
36 {
37         ((u32 *)a)[0] ^= ((u32 *)b)[0];
38         ((u32 *)a)[1] ^= ((u32 *)b)[1];
39         ((u32 *)a)[2] ^= ((u32 *)b)[2];
40         ((u32 *)a)[3] ^= ((u32 *)b)[3];
41 }
42  
43 static inline void *prepare_src(struct scatter_walk *walk, int bsize,
44                                 void *tmp, int in_place)
45 {
46         void *src = walk->data;
47         int n = bsize;
48
49         if (unlikely(scatterwalk_across_pages(walk, bsize))) {
50                 src = tmp;
51                 n = scatterwalk_copychunks(src, walk, bsize, 0);
52         }
53         scatterwalk_advance(walk, n);
54         return src;
55 }
56
57 static inline void *prepare_dst(struct scatter_walk *walk, int bsize,
58                                 void *tmp, int in_place)
59 {
60         void *dst = walk->data;
61
62         if (unlikely(scatterwalk_across_pages(walk, bsize)) || in_place)
63                 dst = tmp;
64         return dst;
65 }
66
67 static inline void complete_src(struct scatter_walk *walk, int bsize,
68                                 void *src, int in_place)
69 {
70 }
71
72 static inline void complete_dst(struct scatter_walk *walk, int bsize,
73                                 void *dst, int in_place)
74 {
75         int n = bsize;
76
77         if (unlikely(scatterwalk_across_pages(walk, bsize)))
78                 n = scatterwalk_copychunks(dst, walk, bsize, 1);
79         else if (in_place)
80                 memcpy(walk->data, dst, bsize);
81         scatterwalk_advance(walk, n);
82 }
83
84 /* 
85  * Generic encrypt/decrypt wrapper for ciphers, handles operations across
86  * multiple page boundaries by using temporary blocks.  In user context,
87  * the kernel is given a chance to schedule us once per block.
88  */
89 static int crypt(struct crypto_tfm *tfm,
90                  struct scatterlist *dst,
91                  struct scatterlist *src,
92                  unsigned int nbytes, cryptfn_t crfn,
93                  procfn_t prfn, void *info)
94 {
95         struct scatter_walk walk_in, walk_out;
96         const unsigned int bsize = crypto_tfm_alg_blocksize(tfm);
97         u8 tmp_src[bsize];
98         u8 tmp_dst[bsize];
99
100         if (!nbytes)
101                 return 0;
102
103         if (nbytes % bsize) {
104                 tfm->crt_flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
105                 return -EINVAL;
106         }
107
108         scatterwalk_start(&walk_in, src);
109         scatterwalk_start(&walk_out, dst);
110
111         for(;;) {
112                 u8 *src_p, *dst_p;
113                 int in_place;
114
115                 scatterwalk_map(&walk_in, 0);
116                 scatterwalk_map(&walk_out, 1);
117
118                 in_place = scatterwalk_samebuf(&walk_in, &walk_out);
119
120                 do {
121                         src_p = prepare_src(&walk_in, bsize, tmp_src,
122                                             in_place);
123                         dst_p = prepare_dst(&walk_out, bsize, tmp_dst,
124                                             in_place);
125
126                         prfn(tfm, dst_p, src_p, crfn, info);
127
128                         complete_src(&walk_in, bsize, src_p, in_place);
129                         complete_dst(&walk_out, bsize, dst_p, in_place);
130
131                         nbytes -= bsize;
132                 } while (nbytes &&
133                          !scatterwalk_across_pages(&walk_in, bsize) &&
134                          !scatterwalk_across_pages(&walk_out, bsize));
135
136                 scatterwalk_done(&walk_in, 0, nbytes);
137                 scatterwalk_done(&walk_out, 1, nbytes);
138
139                 if (!nbytes)
140                         return 0;
141
142                 crypto_yield(tfm);
143         }
144 }
145
146 static void cbc_process_encrypt(struct crypto_tfm *tfm, u8 *dst, u8 *src,
147                                 cryptfn_t fn, void *info)
148 {
149         u8 *iv = info;
150
151         tfm->crt_u.cipher.cit_xor_block(iv, src);
152         fn(crypto_tfm_ctx(tfm), dst, iv);
153         memcpy(iv, dst, crypto_tfm_alg_blocksize(tfm));
154 }
155
156 static void cbc_process_decrypt(struct crypto_tfm *tfm, u8 *dst, u8 *src,
157                                 cryptfn_t fn, void *info)
158 {
159         u8 *iv = info;
160
161         fn(crypto_tfm_ctx(tfm), dst, src);
162         tfm->crt_u.cipher.cit_xor_block(dst, iv);
163         memcpy(iv, src, crypto_tfm_alg_blocksize(tfm));
164 }
165
166 static void ecb_process(struct crypto_tfm *tfm, u8 *dst, u8 *src,
167                         cryptfn_t fn, void *info)
168 {
169         fn(crypto_tfm_ctx(tfm), dst, src);
170 }
171
172 static int setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen)
173 {
174         struct cipher_alg *cia = &tfm->__crt_alg->cra_cipher;
175         
176         if (keylen < cia->cia_min_keysize || keylen > cia->cia_max_keysize) {
177                 tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
178                 return -EINVAL;
179         } else
180                 return cia->cia_setkey(crypto_tfm_ctx(tfm), key, keylen,
181                                        &tfm->crt_flags);
182 }
183
184 static int ecb_encrypt(struct crypto_tfm *tfm,
185                        struct scatterlist *dst,
186                        struct scatterlist *src, unsigned int nbytes)
187 {
188         return crypt(tfm, dst, src, nbytes,
189                      tfm->__crt_alg->cra_cipher.cia_encrypt,
190                      ecb_process, NULL);
191 }
192
193 static int ecb_decrypt(struct crypto_tfm *tfm,
194                        struct scatterlist *dst,
195                        struct scatterlist *src,
196                        unsigned int nbytes)
197 {
198         return crypt(tfm, dst, src, nbytes,
199                      tfm->__crt_alg->cra_cipher.cia_decrypt,
200                      ecb_process, NULL);
201 }
202
203 static int cbc_encrypt(struct crypto_tfm *tfm,
204                        struct scatterlist *dst,
205                        struct scatterlist *src,
206                        unsigned int nbytes)
207 {
208         return crypt(tfm, dst, src, nbytes,
209                      tfm->__crt_alg->cra_cipher.cia_encrypt,
210                      cbc_process_encrypt, tfm->crt_cipher.cit_iv);
211 }
212
213 static int cbc_encrypt_iv(struct crypto_tfm *tfm,
214                           struct scatterlist *dst,
215                           struct scatterlist *src,
216                           unsigned int nbytes, u8 *iv)
217 {
218         return crypt(tfm, dst, src, nbytes,
219                      tfm->__crt_alg->cra_cipher.cia_encrypt,
220                      cbc_process_encrypt, iv);
221 }
222
223 static int cbc_decrypt(struct crypto_tfm *tfm,
224                        struct scatterlist *dst,
225                        struct scatterlist *src,
226                        unsigned int nbytes)
227 {
228         return crypt(tfm, dst, src, nbytes,
229                      tfm->__crt_alg->cra_cipher.cia_decrypt,
230                      cbc_process_decrypt, tfm->crt_cipher.cit_iv);
231 }
232
233 static int cbc_decrypt_iv(struct crypto_tfm *tfm,
234                           struct scatterlist *dst,
235                           struct scatterlist *src,
236                           unsigned int nbytes, u8 *iv)
237 {
238         return crypt(tfm, dst, src, nbytes,
239                      tfm->__crt_alg->cra_cipher.cia_decrypt,
240                      cbc_process_decrypt, iv);
241 }
242
243 static int nocrypt(struct crypto_tfm *tfm,
244                    struct scatterlist *dst,
245                    struct scatterlist *src,
246                    unsigned int nbytes)
247 {
248         return -ENOSYS;
249 }
250
251 static int nocrypt_iv(struct crypto_tfm *tfm,
252                       struct scatterlist *dst,
253                       struct scatterlist *src,
254                       unsigned int nbytes, u8 *iv)
255 {
256         return -ENOSYS;
257 }
258
259 int crypto_init_cipher_flags(struct crypto_tfm *tfm, u32 flags)
260 {
261         u32 mode = flags & CRYPTO_TFM_MODE_MASK;
262         
263         tfm->crt_cipher.cit_mode = mode ? mode : CRYPTO_TFM_MODE_ECB;
264         if (flags & CRYPTO_TFM_REQ_WEAK_KEY)
265                 tfm->crt_flags = CRYPTO_TFM_REQ_WEAK_KEY;
266         
267         return 0;
268 }
269
270 int crypto_init_cipher_ops(struct crypto_tfm *tfm)
271 {
272         int ret = 0;
273         struct cipher_tfm *ops = &tfm->crt_cipher;
274
275         ops->cit_setkey = setkey;
276
277         switch (tfm->crt_cipher.cit_mode) {
278         case CRYPTO_TFM_MODE_ECB:
279                 ops->cit_encrypt = ecb_encrypt;
280                 ops->cit_decrypt = ecb_decrypt;
281                 break;
282                 
283         case CRYPTO_TFM_MODE_CBC:
284                 ops->cit_encrypt = cbc_encrypt;
285                 ops->cit_decrypt = cbc_decrypt;
286                 ops->cit_encrypt_iv = cbc_encrypt_iv;
287                 ops->cit_decrypt_iv = cbc_decrypt_iv;
288                 break;
289                 
290         case CRYPTO_TFM_MODE_CFB:
291                 ops->cit_encrypt = nocrypt;
292                 ops->cit_decrypt = nocrypt;
293                 ops->cit_encrypt_iv = nocrypt_iv;
294                 ops->cit_decrypt_iv = nocrypt_iv;
295                 break;
296         
297         case CRYPTO_TFM_MODE_CTR:
298                 ops->cit_encrypt = nocrypt;
299                 ops->cit_decrypt = nocrypt;
300                 ops->cit_encrypt_iv = nocrypt_iv;
301                 ops->cit_decrypt_iv = nocrypt_iv;
302                 break;
303
304         default:
305                 BUG();
306         }
307         
308         if (ops->cit_mode == CRYPTO_TFM_MODE_CBC) {
309                 
310                 switch (crypto_tfm_alg_blocksize(tfm)) {
311                 case 8:
312                         ops->cit_xor_block = xor_64;
313                         break;
314                         
315                 case 16:
316                         ops->cit_xor_block = xor_128;
317                         break;
318                         
319                 default:
320                         printk(KERN_WARNING "%s: block size %u not supported\n",
321                                crypto_tfm_alg_name(tfm),
322                                crypto_tfm_alg_blocksize(tfm));
323                         ret = -EINVAL;
324                         goto out;
325                 }
326                 
327                 ops->cit_ivsize = crypto_tfm_alg_blocksize(tfm);
328                 ops->cit_iv = kmalloc(ops->cit_ivsize, GFP_KERNEL);
329                 if (ops->cit_iv == NULL)
330                         ret = -ENOMEM;
331         }
332
333 out:    
334         return ret;
335 }
336
337 void crypto_exit_cipher_ops(struct crypto_tfm *tfm)
338 {
339         if (tfm->crt_cipher.cit_iv)
340                 kfree(tfm->crt_cipher.cit_iv);
341 }